
Theory and Applications of Categories, Vol. 33, No. 23, 2018, pp. 644–690.

A PARALLEL SECTION FUNCTOR FOR 2-VECTOR BUNDLES

CHRISTOPH SCHWEIGERT AND LUKAS WOIKE

Abstract. We associate to a 2-vector bundle over an essentially finite groupoid a
2-vector space of parallel sections, or, in representation theoretic terms, of higher invari-
ants, which can be described as homotopy fixed points. Our main result is the extension
of this assignment to a symmetric monoidal 2-functor Par : 2VecBunGrpd −→ 2Vect.
It is defined on the symmetric monoidal bicategory 2VecBunGrpd whose morphisms
arise from spans of groupoids in such a way that the functor Par provides pull-push maps
between 2-vector spaces of parallel sections of 2-vector bundles. The direct motivation
for our construction comes from the orbifoldization of extended equivariant topological
field theories.

1. Introduction and summary

A representation of a group G on, say, a complex vector space V can be seen as a functor
?//G −→ Vect from the groupoid ?//G with one object ? and automorphism group G to
the category Vect of complex vector spaces sending ? to V . It is an obvious generalization
to replace ?//G by a groupoid Γ and call any functor % : Γ −→ Vect a representation of
Γ. The limit of the functor % yields the invariants of the representation.

A functor % : Γ −→ Vect, i.e. a representation of Γ, is a purely algebraic object. It can
also be seen a (flat) vector bundle over the groupoid Γ. This profitable point of view is for
instance emphasized in [Wil05]. It allows us to think of the algebraic notion of invariants
of a representation in a geometric way, namely in terms of parallel sections. We will take
this convenient geometric point of view throughout our paper.

If we denote by VecBun(Γ) the category of finite-dimensional vector bundles over a
groupoid Γ, then taking parallel sections yields a functor

ParΓ : VecBun(Γ) −→ FinVect, (1.1)

namely the limit functor on the functor category VecBun(Γ).
There is a higher analogue of a vector bundle over a groupoid, namely a 2-vector

bundle over a groupoid, i.e. a 2-functor from a given groupoid (seen as a bicategory) to
the bicategory 2Vect of 2-vector spaces, see [BBFW12] and [Kir04] for related notions.
To a 2-vector bundle % : Γ −→ 2Vect over a groupoid Γ we associate the category of
parallel sections (Definition 2.10) and prove that this category is naturally a 2-vector
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space if Γ is essentially finite (Proposition 2.13). Hence, as a categorification of (1.1) we
obtain a 2-functor

ParΓ : 2VecBun(Γ) −→ 2Vect (1.2)

from the bicategory of 2-vector bundles over a fixed groupoid Γ to the category of 2-vector
spaces.

The parallel section functors (1.1) and (1.2) are mathematically not very challenging
and not the main concern of this paper. Instead, we are interested in a variant of parallel
section functors meeting the requirements determined by our motivation, namely the
orbifoldization of equivariant topological field theories: An orbifold construction for (non-
extended) equivariant topological field theories can be formulated [SW17] by means of a
parallel section functor

Par : VecBunGrpd −→ FinVect (1.3)

for vector bundles over varying groupoids whose construction is given in [Tro16]. Here,
VecBunGrpd is the symmetric monoidal bicategory from [SW17, Section 3.2] whose
objects are vector bundles over essentially finite groupoids and whose morphisms come
from spans of groupoids and intertwiners. The key point about this functor is that it
provides pull-push maps between the vector spaces of parallel sections of vector bundles
over different groupoids which are related by a span of groupoids. Having in mind that our
parallel section functor is tailored to the application in equivariant topological field theory
also explains the importance of spans of groupoids in this paper: Equivariant topological
field theories assign quantities to bordisms equipped with principal fiber bundles, and the
application of the bundle stack to bordisms, which can be seen as cospans in manifolds,
yields exactly spans of groupoids. Hence, the biased reader may think of all groupoids in
this paper as groupoids of principal fiber bundles over some manifold.

Applications in mathematical physics and representation theory involve an orbifold
construction for extended equivariant topological field theory (in our terminology extended
means that the field theory is defined on manifolds up to codimension two). In order to
generalize the orbifoldization procedure given in [SW17] to the case of extended field
theories in [SW18], we need a higher analogue of the parallel section functor (1.3) or,
in other words, the extension of the 2-functor (1.2) to a symmetric monoidal 2-functor
defined on a symmetric monoidal bicategory 2VecBunGrpd of 2-vector bundles over
varying groupoids. The construction of this symmetric monoidal 2-functor

Par : 2VecBunGrpd −→ 2Vect, (1.4)

is the main result of this paper (Theorem 4.9). The relation between the different parallel
section functors is summarized in the diagram
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ParΓ : VecBun(Γ) −→ FinVect
for any groupoid Γ

Par : VecBunGrpd −→ FinVect

ParΓ : 2VecBun(Γ) −→ 2Vect
for any groupoid Γ

Par : 2VecBunGrpd −→ 2Vect

passing to spans of groupoids

categorification

passing to spans of groupoids

categorification

,

in which the object of main interest is sitting in the right lower corner. Note that the
upper half of the diagram was already discussed in [SW17].

Concretely, this paper is organized as follows: In Section 2 we first recall ordinary vec-
tor bundles over groupoids and their parallel sections including the pull-push operations
used in [SW17]. Afterwards, we discuss the higher analogues of these notions, i.e. 2-vector
bundles over groupoids and their parallel sections and hence the left lower corner of the
above diagram.

Section 3 is devoted to the introduction of pullback and pushforward maps on two dif-
ferent categorical levels needed for the construction of the parallel section functor (1.4).
The discussion of pullback and pushforward 2-morphisms in Section 3.7 leads to a higher
version of the equivariant Beck-Chevalley condition (Proposition 3.10), which is of inde-
pendent interest.

In Section 4 we construct the parallel section functor (1.4), i.e. the right lower corner
of the above diagram. To this end, we first have to introduce the domain symmetric
monoidal bicategory 2VecBunGrpd in Section 4.1. The objects are 2-vector bundles over
essentially finite groupoids, 1-morphisms arise from spans of essentially finite groupoids
and intertwiners and 2-morphisms from spans of spans of essentially finite groupoids and
higher intertwiners. Section 4.6 contains the formulation and proof of the main result
(Theorem 4.9). Finally, we show how to recover the categorical parallel section functor
(1.3) from the bicategorical one (1.4) introduced in this paper (Proposition 4.10).
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will be over the field of complex numbers. Therefore we suppress the field in the notation
and write Vect instead of VectC. Still all constructions would also work over a field of
characteristic zero.
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2. 2-Vector bundles and their parallel sections

After recalling the notion of a vector bundle over a groupoid, we fix the definition of
2-vector bundle used in this text and define the category of parallel sections of a 2-vector
bundle.

2.1. A brief reminder on vector bundles over groupoids. Let us review some
of the notions and constructions used or introduced in [SW17] while implementing also
some mild generalizations: A vector bundle over a groupoid Ω with values in a 2-vector
space V is a functor ξ : Ω −→ V (in [SW17] this 2-vector space was always chosen to be
the category of vector spaces). For the definition of a 2-vector space and the bicategory
2Vect of 2-vector spaces we refer to [Mor11] or Example 2.8 below.

By VecBun(Γ,V) we denote the category of V-valued vector bundles over Γ. In case
Γ is essentially finite, this category naturally carries the structure of a 2-vector space.

If ξ : Ω −→ V is a vector bundle and Φ : Γ −→ Ω a functor between groupoids, then
we can form the pullback Φ∗ξ := ξ ◦Φ of ξ to Γ. In fact, Φ gives rise to a pullback functor

Φ∗ : VecBun(Ω,V) −→ VecBun(Γ,V). (2.1)

More concisely,

VecBun(?,V) : FinGrpdopp −→ 2Vect

naturally extends to a 2-functor defined on the bicategory of essentially finite groupoids,
functors and natural transformations. Concretely, it sends a groupoid Γ to the 2-vector
space VecBun(Γ,V), a functor Φ : Γ −→ Ω to the pullback functor Φ∗ and a natural
transformation η : Φ⇒ Φ′ of functors Φ,Φ′ : Γ −→ Ω to the obvious natural transforma-
tion ?(η) : Φ∗ ⇒ Φ′∗ whose component

ξ(η) : Φ∗ξ −→ Φ′
∗
ξ

for ξ in VecBun(?,V) consists of the maps ξ(ηx) : ξ(Φ(x)) −→ ξ(Φ′(x)) for all x ∈ Γ.
The space Par ξ of parallel sections of a V-valued vector bundle ξ over Ω is defined as

the limit of the functor ξ,

Par ξ := lim ξ,

see [SW17, Section 3.1]. This construction yields a functor

ParΩ : VecBun(Ω,V) −→ V

for each essentially finite groupoid Ω. These functors constitute a 1-morphism

Par : VecBun(?,V) −→ V

in the bicategory of 2-functors FinGrpdopp −→ 2Vect, where we use V to denote the
constant 2-functor with value V .

By the following standard fact limits can be pulled back:
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2.2. Lemma. Let C be a complete category and X : J −→ C a functor from a small
category J to C. Then any functor Φ : I −→ J of small categories induces a morphism

limX −→ lim Φ∗X.

If Φ is an equivalence, then this morphism is an isomorphism. The dual statement for
colimits is true if C is cocomplete.

For a functor Φ : Γ −→ Ω between groupoids we obtain a natural map

Φ∗ : Par ξ −→ Par Φ∗ξ,

the pullback map. By abuse of notation it is denoted by the same symbol as the pullback
functor (2.1), but should not be confused with the latter.

In case that Γ and Ω are essentially finite, we introduced in [SW17, Section 3.4] also
a pushforward map

Φ∗ : Par Φ∗ξ −→ Par ξ

by integration over the homotopy fiber Φ−1[y] over y ∈ Ω. Recall that for a given y ∈ Ω,
an object (x, g) ∈ Φ−1[y] in the homotopy fiber over y is an object x ∈ Γ together with a
morphism g : Φ(x) −→ y in Γ. Since Par Φ∗ξ is the limit of Φ∗ξ, it comes equipped with
maps πx : Par Φ∗ξ −→ ξ(Φ(x)) for each x ∈ Γ, which we can use to form the concatenation

νx,g : Par Φ∗ξ
πx−→ ξ(Φ(x))

ξ(g)−−→ ξ(y).

Recall that a morphism (x, g) −→ (x′, g′) in the groupoid Φ−1[y] is a morphism h : x −→ x′

such that g′Φ(h) = g. Now an easy computation shows that the morphism νx,g only
depends on the isomorphism class of (x, g) in Φ−1[y]. This allows us to define∫

Φ−1[y]

νx,g d(x, g) :=
∑

[x,g]∈π0(Φ−1(y))

νx,g
|Aut(x, g)|

: Par Φ∗ξ −→ ξ(y). (2.2)

The morphisms νx,g can be added and multiplied by scalars since HomV(Φ∗ξ, ξ(y)) is a
complex vector space. Formula (2.2) provides us with an instance of an integral with
respect to groupoid cardinality, i.e. a sum over the values of an invariant function on an
essentially finite groupoid, here Φ−1[y] 3 (x, g) 7−→ νx,g, taking values in a complex vector
space, here HomV(Φ∗ξ, ξ(y)), weighted by the cardinalities of the automorphism groups
in our groupoid. For more background on groupoid cardinality we refer to [BHW10].
The integral with respect to groupoid cardinality was also an essential concept for the
construction of the parallel section functor in [SW17] and is also fully recalled there.

An easy computation shows that for any morphism a : y −→ y′

ξ(a)

∫
Φ−1[y]

νx,g d(x, g) =

∫
Φ−1[y′]

νx′,g′ d(x′, g′).
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This implies that the maps (2.2) induce a natural map

Φ∗ : Par Φ∗ξ −→ Par ξ,

the so-called pushforward map.
The most important properties of pullback and the pushforward map include the

composition laws and the equivariant Beck-Chevalley property. The proofs are obvious
generalizations of those in [SW17].

2.3. Proposition. Let V be a 2-vector space Φ : Γ −→ Ω and Ψ : Ω −→ Λ be functors
between essentially finite groupoids.

1. For any V-valued vector bundle ξ over Λ the composition law (Ψ ◦Φ)∗ = Φ∗ ◦Ψ∗ for
the pullback maps holds.

2. For any V-valued vector bundle ξ over Γ the composition law (Ψ ◦Φ)∗ = Ψ∗ ◦Φ∗ for
the pushforward maps holds.

2.4. Proposition. [Equivariant Beck-Chevalley condition] For the homotopy pullback

Γ×Ω Λ Γ

Λ Ω

πΓ

πΛ Φ

Ψ

η

of a cospan Λ
Ψ−→ Ω

Φ←− Γ of essentially finite groupoids and any V-valued vector bundle
ξ over Ω the pentagon relating different pull-push combinations

Par Φ∗ξ Par ξ

Parπ∗ΓΦ∗ξ

Parπ∗ΛΨ∗ξ Par Ψ∗ξ

Φ∗

π∗Γ

ξ(η)∗

πΛ∗

Ψ∗

commutes.
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2.5. 2-Vector bundles. The goal of this article is a bicategorical generalization of the
parallel section functor. Hence, we need a higher analogue of a groupoid representation (or
a vector bundle over a groupoid). This will be the notion of a 2-vector bundle below. For
related notions and generalizations see [BBFW12] and [Kir04]. The definition requires the
notion of a bicategory and 2-functors, see [Lei98], and of a symmetric monoidal bicategory,
see [SP11].

2.6. Definition. [2-Vector bundle] A 2-vector bundle % over a groupoid Γ with values
in a symmetric monoidal bicategory S is a representation of Γ on S, i.e. a 2-functor
% : Γ −→ S, where Γ is seen as a bicategory without non-trivial 2-morphisms. (There
are no monoidality requirements on %.) By 2VecBun(Γ,S) we denote the symmetric
monoidal bicategory of S-valued 2-vector bundles over Γ.

2.7. Remark.

1. We use the term ‘2-vector bundle’ although we do not assume any (higher) linear
structure on the target S.

2. Let us partly unpack the definition of a 2-vector bundle % : Γ −→ S:

• To x ∈ Γ the 2-vector bundle % assigns an object %(x) in S, also called the fiber
of % over x.

• To a morphism g : x −→ y in Γ the 2-vector bundle assigns a 1-morphism
%(g) : %(x) −→ %(y), which is geometric terms can be thought of as a parallel
transport operator.

• The data comprises natural isomorphisms

ηx : %(idx) ∼= id%(x),

αgh : %(g) ◦ %(h) ∼= %(gh)

for composable morphisms in Γ. These natural isomorphisms are subject to
obvious coherence conditions.

3. Let us describe the bicategory 2VecBun(Γ,S) in more detail:

(0) Objects are 2-vector bundles over Γ.

(1) 1-morphisms are 2-vector bundles morphisms or, equivalently, intertwiners.
An intertwiner φ : % −→ ξ of 2-vector bundles over Γ consists of 1-morphisms
φx : %(x) −→ ξ(x) for each x ∈ Γ and natural morphisms

ξ(g) ◦ φx
θg−→ φy ◦ %(g) for all g : x −→ y

subject to obvious coherence conditions. These coherence conditions entail in
particular that all θg are 2-isomorphisms. For this it is crucial that Γ is a
groupoid.
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(2) A 2-morphism η : φ −→ ψ between 1-morphisms (φ, θ) and (ψ, κ) between the
2-vector bundles % and ξ consists of 2-morphisms ηx : φx −→ ψx such that for
all g : x −→ y the square

φy ◦ %(g) ξ(g) ◦ φx

ψy ◦ %(g) ξ(g) ◦ ψx

ηy

θg

κg

ηx

commutes. Here ηx : ξ(g) ◦ φx −→ ξ(g) ◦ ψx is the 2-morphism induced by
ηx and the identity on %(x), but we suppress the identity morphism in the
notation for readability.

The tensor product in 2VecBun(Γ,S) is the tensor product in S applied object-
wise. The monoidal unit IΓ in 2VecBun(Γ,S) assigns to each x ∈ Γ is the monoidal
unit I in S and to all morphisms in Γ the identity 1-morphism.

2.8. Example. [The symmetric monoidal bicategory 2Vect] Let us review the main
example of a symmetric monoidal bicategories relevant in this text, namely the symmetric
monoidal bicategory 2Vect of 2-vector spaces (of Kapranov-Voevodsky type1), see [Mor11]:

(0) Objects are 2-vector spaces, i.e. C-linear additive semisimple categories with biprod-
ucts and finitely many simple objects up to isomorphism.

(1) 1-Morphisms are C-linear functors, which are also called 2-linear maps.

(2) 2-Morphisms are natural transformations of C-linear functors.

The tensor product is the Deligne product, the tensor unit is the category FinVect of
finite-dimensional complex vector spaces. For any 2-vector space V we can choose a basis,
i.e. a family of representatives for the finitely many isomorphism classes of simple objects.
Having chosen a basis B of a 2-vector space V we can write any object X in V as a
biproduct

X ∼=
⊕
B∈B

VB ∗B,

where the VB are finite-dimensional complex vector spaces and where VB∗B is the dimVB-
fold biproduct of B with itself. The C-linearity of a functor between 2-vector spaces is
equivalent to the preservation of biproducts. Consequently, any 2-linear map V −→ W is

1There are other types of 2-vector spaces, but throughout this text we will always mean 2-vector
spaces of Kapranov-Voevodsky type when talking about 2-vector spaces. In particular, we always work
over the complex field when talking about 2-vector spaces.
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determined by its values on this basis, which allows us the describe 2-linear maps in terms
of matrices with vector space valued entries. Moreover note that 2-linear maps V −→ W
are precisely the exact functors. Indeed, exactness implies preservations of biproducts.
The converse holds since all short exact sequences in V split by semisimplicity.

Up to C-linear equivalences a 2-vector spaces is determined by the cardinality of its
basis, which we will also refer to as dimension. For instance, any n-dimensional 2-vector
space is equivalent to the category C[Zn]-Mod of finite-dimensional complex modules
over the group algebra of the cyclic group Zn.

Since the symmetric monoidal bicategory 2Vect will be the most important one for us
in the sequel, we agree on the notation 2VecBun(Γ) := 2VecBun(Γ,2Vect), i.e. 2-vector
bundles with unspecified target category always have to be understood as 2Vect-valued
2-vector bundles.

For later use we recall that the symmetric monoidal category obtained by restriction
of 2Vect to the endomorphisms of the monoidal unit is the category FinVect of finite-
dimensional complex vector spaces.

2.9. Parallel sections of 2-vector bundles. Parallel sections of a given vector
bundle % (or, equivalently, invariants of the representation %) can be obtained by taking
the morphisms of the trivial vector bundle to %. This principle can be directly generalized
to 2-vector bundles.

2.10. Definition. [Parallel sections of a 2-vector bundle] Let S be a symmetric monoidal
bicategory. The category of parallel sections of an S-valued 2-vector bundle % over a
groupoid Γ is the category

Par % := Hom2VecBun(Γ,S)(IΓ, %).

2.11. Remark.

1. A parallel section s ∈ Par % gives us a 1-morphism s(x) : I −→ %(x) in S for
each x ∈ Γ and coherent isomorphisms s(y) ∼= %(g) ◦ s(x) for all g : x −→ y in
Γ. Instead of %(x) ◦ s(x) we will often write %(x)s(x) or even g.s(x) if the vector
bundle is clear from the context. For S = 2Vect the monoidal unit I is given
by the category FinVect of finite-dimensional complex vector spaces. Note that
1-morphisms FinVect −→ %(x) can be identified with the value on C and hence
with an object in the fiber %(x).

2. The parallel sections of a 2-vector bundle are thus ‘parallel up to isomorphism’,
where the isomorphism is part of the data. Hence, being parallel is no longer a
property, but structure. In other contexts the parallel sections considered here
would be called homotopy fixed points, see e.g. [HSV17].

For a 2Vect-valued 2-vector bundle we would like to find conditions under which the
category of parallel sections is naturally a 2-vector space again. It is easy to see that
the category of parallel sections inherits all the needed structure and properties from the
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2-vector bundle except for finite semisimplicity. In order to look at this last missing point
more closely, we use techniques and results from [Kir01].

First of all we note that it suffices to study 2-vector bundles over connected groupoids,
i.e. we can concentrate on 2-vector bundles % : ?//G −→ 2Vect for a finite group G. In
this case we obtain a 2-vector space V := %(?), and any g ∈ G yields a 2-linear equivalence
%(g) : V −→ V . These equivalences fulfill the properties of a representation only up to
isomorphism as discussed in Remark 2.7, 2, but still we will refer to this as a representation
of G on V . We denote the action of g ∈ G on some object X ∈ V by g.X and the evaluation
of the coherence isomorphisms on X by

βXg,h : g.h.X −→ (gh).X.

According to Definition 2.10, Par % is the category of pairs (X,φ = (φg)g∈G), where X is
in V and φ is a family of coherent isomorphisms φg : g.X := %(g)(X) −→ X.

Let (Xs)s∈S be a basis of V . Since any g ∈ G acts as an equivalence, it maps simple
objects to simple objects. Hence, when forgetting about the coherence data, g ∈ G just
acts as a permutation of the basis. Consequently, we obtain an action of G on S . We
denote the corresponding action groupoid by S //G and the set of orbits by S /G.

For a given orbit O ∈ S /G and s ∈ O there is an isomorphism ξsg : g.Xs −→ Xg.s.
It is unique up to multiplication by an element in C× = C \ {0} since Xg.s is simple,

and we fix such an isomorphism. Now for g, h ∈ G we find ξh.sg ◦ g.ξsh ◦
(
βXsgh
)−1

= αsghξ
s
gh

for some αsgh ∈ C× since X(gh).s = Xg.h.s is simple. The scalars αsgh form a cocycle
αO ∈ Z2(G; Map(O,C×)) with coefficients in the Abelian group of functions O −→ C×,
and the class [αO] ∈ H2(G; Map(O,C×)) does not depend on the chosen isomorphisms
ξsg. This cocycle (or its class) is used to define the twisted group algebra AαO(G,O), a
semisimple finite-dimensional complex algebra. Using the category of modules over these
twisted group algebras we can state a version of the following result of [Kir01]:

2.12. Proposition. [Kir01, Theorem 3.5] Let % : ?//G −→ 2Vect be a 2-vector bundle,
i.e. a representation of the group G on a 2-vector space V := %(?). There is an equivalence

Par % ∼=
⊕
O∈S /G

AαO(G,O)-Mod

of Abelian categories. Hence if G is finite, Par % is semisimple with finitely many simple
objects and hence a 2-vector space.

Since

Map(S ,C×) ∼= Map

 ∐
O∈S /G

O,C×
 ∼= ∏

O∈S /G

Map(O,C×)

we can combine the cocycles αO with coefficients in Map(O,C×) into a cocycle α with
coefficients in Map(S ,C×). In the sequel we will rather use the cocycle α and write



654 CHRISTOPH SCHWEIGERT AND LUKAS WOIKE

Aα(G,O)-Mod instead of AαO(G,O)-Mod (the dependence on the orbit is still present
in the notation, so there is no risk of confusion).

Summarizing and extending to non-connected groupoids, we conclude that for an
essentially finite groupoid Γ taking parallel sections of a 2Vect-valued 2-vector bundle
% over Γ produces a 2-vector space Par %, which is entirely determined by the action
groupoid S //Γ and a gerbe on Γ, i.e. a class H2(Γ; Map(S ,C×)) with coefficients in
the Abelian group of functions S −→ C×. Obviously, taking parallel sections is also
2-functorial:

2.13. Proposition. Taking parallel sections of 2-vector bundles over an essentially finite
groupoid Γ naturally extends to a 2-functor

ParΓ : 2VecBun(Γ) −→ 2Vect.

The image of a 1-morphism λ or a 2-morphism η will be denoted by λ∗ or η∗, respectively.

We should emphasize that this is just the parallel section functor for 2-vector bundles
over one fixed groupoid. It is not the parallel section functor we intend to construct in
this article as our main result.

3. Pullback and pushforward

The construction of the parallel section functor in Section 4 relies on certain pullback
and pushforward maps that we will introduce in this section on two different categorical
levels.

3.1. Pullback and pushforward 1-morphisms. Just like ordinary bundles, 2-vector
bundles have an obvious notion of pullback: For any functor Φ : Γ −→ Ω between
groupoids we obtain a pullback functor

Φ∗ : 2VecBun(Ω,S) −→ 2VecBun(Γ,S)

by precomposition.
Additionally, for any 2-vector bundle % over Ω we get a pullback 1-morphism in S

Φ∗ : Par % −→ Par Φ∗%, s 7−→ Φ∗s

denoted by the same symbol and given by

(Φ∗s)(x) := s(Φ(x)) for all x ∈ Γ

together with the isomorphisms

(Φ∗s)(y) = s(Φ(y)) ∼= Φ(g).s(Φ(x)) = (Φ∗%)(g)(Φ∗s)(x) for all g : x −→ y in Γ.

It is now easy to prove the following statements:
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3.2. Proposition. [Pullback 1-morphism] Let Φ : Γ −→ Ω be a functor between groupoids.

1. Contravariance: If Ψ : Ω −→ Λ is another functor, then we have (Ψ◦Φ)∗ = Φ∗ ◦Ψ∗

for both the functors as well as the pullback 1-morphisms induced by them.

2. If η : Φ −→ Φ′ is natural transformation of functors Γ −→ Ω, then for any 2-vector
bundle % over Ω we obtain a 1-isomorphism %(η) : Φ∗% −→ Φ′∗%.

3. Naturality: The pull maps are natural in the sense that for any 1-morphism λ :
% −→ ξ of 2-vector bundles over Ω the square

Par % Par Φ∗%

Par ξ Par Φ∗ξ

Φ∗

λ∗

Φ∗

(Φ∗λ)∗

commutes strictly. The vertical arrows are the images of 2-vector bundle morphisms
under the functor from Proposition 2.13.

We define the pushforward 1-morphisms via the limit of diagrams with shape of a homo-
topy fiber and values in spaces of 1-morphisms:

3.3. Definition. [Pushforward 1-morphism] Let S be a symmetric monoidal bicategory
with complete categories of 1-morphisms between any two objects. Let Φ : Γ −→ Ω be a
functor between groupoids. For an S-valued 2-vector bundle % over Ω and s ∈ Par Φ∗% we
define the parallel section Φ∗s ∈ Par % by

(Φ∗s)(y) := lim
(x,g)∈Φ−1[y]

g.s(x) for all y ∈ Ω

The limit is taken in HomS(I, %(y)) and has the shape of the homotopy fiber Φ−1[y] of Φ
over y ∈ Ω. We call the resulting 2-linear map

Φ∗ : Par Φ∗% −→ Par %, s 7−→ Φ∗s

pushforward 1-morphism.

3.4. Remark.

1. An easy computation shows that Φ∗ actually takes values in parallel sections.

2. In the special case S = 2Vect the functor

Φ−1[y] −→ Hom2Vect(FinVect, %(y)) ∼= %(y), (x, g) 7−→ g.s(x)

is a %(y)-valued vector bundle over the homotopy fiber Φ−1[y] of Φ over y. Its limit,
by definition, coincides with (Φ∗s)(y) and is the space of parallel sections of this
vector bundle as recalled in Section 2.1.

We now recall an observation already needed in [SW17, Lemma 4.12]:
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3.5. Lemma. For composable functors Φ : Γ −→ Ω and Ψ : Ω −→ Λ between groupoids,
there is a canonical equivalence

(Ψ ◦ Φ)−1[z] ∼= Ψ−1[z]×Ω Γ.

3.6. Proposition. Let Φ : Γ −→ Ω and Ψ : Ω −→ Λ between be composable functors
between groupoids.

1. Covariance: The pushforward 1-morphisms obey the composition law (Ψ ◦ Φ)∗ ∼=
Ψ∗ ◦ Φ∗ by a canonical isomorphism.

2. Naturality: The pushforward 1-morphisms are natural in the sense that for any
1-morphism λ : % −→ ξ of 2-vector bundles over Ω the square

Par Φ∗% Par %

Par Φ∗ξ Par ξ

Φ∗

(Φ∗λ)∗

Φ∗

λ∗
∼=

commutes up to a canonical natural isomorphism arising from the coherence iso-
morphism that λ comes equipped with.

3. The naturality isomorphisms and the composition of pushforward 1-morphisms are
compatible in the sense that for a 1-morphism λ : % −→ ξ of 2-vector bundles over
Λ we have the equality of 2-isomorphisms

Par Φ∗Ψ∗% Par Ψ∗% Par %

Par Φ∗Ψ∗ξ Par Ψ∗ξ Par ξ

=

Par Φ∗Ψ∗% Par %

Par Φ∗Ψ∗ξ Par ξ

(Φ∗Ψ∗λ)∗

(Ψ ◦ Φ)∗

(Ψ ◦ Φ)∗

(Ψ∗λ)∗ (Φ∗Ψ∗λ)∗λ∗ λ∗

Φ∗ Ψ∗

Φ∗ Ψ∗

∼= ∼= ∼=

∼=

∼=

(Ψ ◦ Φ)∗

(Ψ ◦ Φ)∗
.
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Proof. For a parallel section s of a 2-vector bundle % over Λ and z ∈ Λ we find by
definition

(Ψ∗Φ∗s)(z) ∼= lim
(y,h)∈Ψ−1[z]

lim
(x,g)∈Φ−1[y]

(hΨ(g)).s(x), (3.1)

((Ψ ◦ Φ)∗s)(z) = lim
(x,k)∈(Ψ◦Φ)−1[z]

k.s(x).

The double limit (3.1) can be seen as a limit over the homotopy pullback Ψ−1[z] ×Ω Γ,
which by Lemma 3.5 is canonically equivalent to (Ψ ◦ Φ)−1[z] ∼= Ψ−1[z] ×Ω Γ. This
equivalence yields the needed isomorphism (Ψ ◦ Φ)∗ ∼= Ψ∗ ◦ Φ∗ by Lemma 2.2. The
remaining assertions can be directly verified.

3.7. Pullback and pushforward 2-morphisms and the equivariant Beck-
Chevalley condition. So far, we have established pullback and pushforward 1-mor-
phisms. In the next step, we will provide pull and push 2-morphisms between different
pull-push combinations.

We consider a weakly commuting square

Π Γ

Λ Ω

P

Q Φ

Ψ

η

of essentially finite groupoids. By the definition of the homotopy fiber Q−1[y] we obtain
a weakly commutative square

Π Γ

Λ Ω?

Q−1[y]

Q

P

y Ψ

Φ
η

(the natural isomorphism being part of the square for the homotopy fiber is suppressed
in the notation) and by the universal property of the homotopy fiber Φ−1[Ψ(y)] a functor
F : Q−1[y] −→ Φ−1[Ψ(y)], which is explicitly given by

F (z, g) := (P (z),Ψ(g)ηz) for all (z, g) ∈ Q−1[y]. (3.2)

Now for any 2-vector bundle % over Ω taking values in 2-vector spaces, s ∈ Par Φ∗% and
y ∈ Λ we define the vector bundle with values in the 2-vector space %(Ψ(y))

ξ : Φ−1[Ψ(y)] −→ %(Ψ(y)), (x, h) 7−→ %(h)s(x) = h.s(x).
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We should emphasize that ξ is an ordinary vector bundle, so we obtain a pullback map

F ∗ : Par ξ −→ ParF ∗ξ, (3.3)

and a pushforward map

F∗ : ParF ∗ξ −→ Par ξ (3.4)

by the constructions recalled in Section 2.1. Of course, the auxiliary objects ξ and F
depend on all the functors involved and on s and y, which is suppressed in the notation.
Next observe

Par ξ = lim
(x,h)∈Φ−1[Ψ(y)]

%(h)s(x) = (Ψ∗Φ∗s)(y)

and

ParF ∗ξ = lim
(z,g)∈Q−1[y]

%(Ψ(g)ηz)s(P (z)) = (Q∗%(η)P ∗s)(y).

Restoring the previously suppressed dependence on s and y we obtain maps

(η∗)ys := F ∗ : (Ψ∗Φ∗s)(y) −→ (Q∗%(η)∗P
∗s)(y) (3.5)

and

(η∗)
y
s := F∗ : (Q∗%(η)∗P

∗s)(y) −→ (Ψ∗Φ∗s)(y). (3.6)

If we let s and y run over all parallel sections of Φ∗% and all objects of Λ, respectively,
they combine into the following natural transformations:

3.8. Proposition. Consider a weakly commuting square

Π Γ

Λ Ω

P

Q Φ

Ψ

η

of essentially finite groupoids and a 2-vector bundle % over Ω. Then we have two natural
transformations

Par Φ∗% Par Ψ∗%

Ψ∗Φ∗

Q∗%(η)∗P
∗

η∗ η∗



A PARALLEL SECTION FUNCTOR FOR 2-VECTOR BUNDLES 659

of 2-linear functors by the construction just given. We call η∗ the pull map and η∗ the
push map.

We will need the special case in which the square in Proposition 3.8 is a homotopy pullback
square. For the investigation of this special case we need the following easy Lemma:

3.9. Lemma. Let Φ : Γ −→ Ω be an equivalence of groupoids, then Φ−1[y] is equivalent to
the groupoid consisting of one object (x, g), where x ∈ Γ and g : Φ(x) −→ y, and trivial
automorphism group.

Now if the square in Proposition 3.8 is a homotopy pullback square, then the functor F
from (3.2) is an equivalence by the fiberwise characterization of homotopy pullbacks in
[CPS06, 5.2]. Using Lemma 3.9 we can deduce that in this case F ∗ from (3.3) is inverse
to F∗ from (3.4). Interpreting this in terms of η∗ and η∗, see (3.5) and (3.6), we obtain a
generalization of the equivariant Beck-Chevalley condition in [SW17] to 2-vector bundles:

3.10. Proposition. [Equivariant Beck-Chevalley condition for 2-vector bundles] For the
homotopy pullback

Γ×Ω Λ Γ

Λ Ω

πΓ

πΛ Φ

Ψ

η

of a cospan Λ
Ψ−→ Ω

Φ←− Γ of essentially finite groupoids and any 2-vector bundle % over
Ω the pentagon relating different pull-push combinations

Par Φ∗% Par %

Parπ∗ΓΦ∗%

Parπ∗ΛΨ∗% Par Ψ∗%

Φ∗

π∗Γ

%(η)∗

πΛ∗

Ψ∗

η∗

commutes up to the natural isomorphism η∗ : Ψ∗Φ∗ ⇒ Q∗%(η)∗P
∗ with inverse η∗ :

Q∗%(η)∗P
∗ ⇒ Ψ∗Φ∗.

For later purposes we work out a special case of Proposition 3.8. To this end, let us look at
a special case of the pushforward maps from Section 2.1: Let V be an object in a 2-vector
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space V and Γ an essentially finite groupoid. Then there is a constant vector bundle
ξV assigning V to all objects in Γ and the identity on V to all morphisms. Obviously,
Par ξV , i.e. the limit of the functor ξV , is given by the product

∏
π0(Γ) V , but this is also

a coproduct, hence

Par ξV =
∐
π0(Γ)

V.

Now note that ξV = t∗V , where t : Γ −→ ? is the functor to the terminal groupoid ? and
V is the object seen as vector bundle of ?. The pushforward along t is now a map∫

Γ

:= t∗ :
∐
π0(Γ)

V −→ V

that we call integral with respect to groupoid cardinality. Recalling the definition of the
pushforward (Section 2.1), we see that on the summand belong to [x] ∈ π0(Γ) it is given
by the endomorphism

1

|Aut(x)|
· idV : V −→ V.

3.11. Corollary. Consider a weakly commuting square

Π Γ

Λ Γ

P

Q idΓ

Ψ

η

of essentially finite groupoids and a given 2-vector bundle % over Γ. Then the natural
transformation

η∗ : Q∗%(η)∗P
∗ =⇒ Ψ∗

admits the following explicit description: For s ∈ Par % and y ∈ Λ we obtain the commut-
ing diagram

(Q∗%(η)∗P
∗s)(y)

∐
π0(Q−1[y])

s(Ψ(y))

(Ψ∗s)(y) = s(Ψ(y))

∼=

η∗ ∫
Q−1[y]

,

where ∼= denotes a natural isomorphism to
∐

π0(Q−1[y]) s(Ψ(y)). This expresses η∗ as an
integral with respect to groupoid cardinality.
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Proof. We use that s is parallel to see

(Q∗%(η)P ∗s)(y) = lim
(z,g)∈Q−1[y]

%(Ψ(g)η)s(P (z)) ∼= lim
(z,g)∈Q−1[y]

s(Ψ(y)).

The limit of this last constant diagram is obviously given by the finite product∏
π0(Q−1[y])

s(Ψ(y)),

which coincides with the finite coproduct
∐

π0(Q−1[y]) s(Ψ(y)) since s(Ψ(y)) is an object in a

2-vector space. By definition and Lemma 3.9 the component (Q∗%(η)P ∗s)(y) −→ s(Ψ(y))
of η∗ is the pushforward map along the functor Q−1[y] −→ Ψ(y), where Ψ(y) is the discrete
groupoid with one object Ψ(y). This implies the claim.

4. The parallel section functor on the symmetric monoidal bicategory
2VecBunGrpd

In this section we formulate and prove the main result of this paper: We introduce the
symmetric monoidal bicategory 2VecBunGrpd, which is built from 2-vector bundles
and spans of groupoids (Section 4.1) and construct the parallel section functor

Par : 2VecBunGrpd −→ 2Vect

with values in 2-vector spaces.

4.1. The symmetric monoidal bicategory 2VecBunGrpd. In this subsection we
introduce the symmetric monoidal bicategory 2VecBunGrpd needed for the definition of
the parallel section functor. Objects are 2-vector bundles over essentially finite groupoids.
The 1-morphisms and 2-morphisms come from spans of groupoids and spans of spans of
groupoids decorated with (higher) intertwiners. We show below in Proposition 4.4 that
2VecBunGrpd generalizes the symmetric monoidal category VecBunGrpd, which was
the domain of the parallel section functor in [SW17].2 We remark that, in a homotopical
setting, related (higher) span categories for (higher) vector bundles have been discussed
in [Hau17].

4.2. Definition. [The symmetric monoidal bicategory 2VecBunGrpd] We define the
symmetric monoidal bicategory 2VecBunGrpd as follows:

1. Objects are 2-vector bundles over essentially finite groupoids, i.e. pairs (Γ, %) where
% is a 2-vector bundle over an essentially finite groupoid Γ.

2In [SW17] we additionally specified a field, but we suppress this here and always work over the
complex numbers.
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2. A 1-morphism (Γ0, %0) −→ (Γ1, %1) is a span

Γ0
r0←− Λ

r1−→ Γ1

of essentially finite groupoids together with an intertwiner

λ : r∗0%0 −→ r∗1%1,

i.e. a 1-morphism of the 2-vector bundles r∗0%0 and r∗1%1 over Λ. We denote such a
1-morphism by (Γ0, %0)

r0←− (Λ, λ)
r1−→ (Γ1, %1).

3. A 2-morphism from (Γ0, %0)
r0←− (Λ, λ)

r1−→ (Γ1, %1) to (Γ0, %0)
r′0←− (Λ, λ)

r′1−→
(Γ1, %1) is an equivalence of class (as explained in Remark 4.3, 2 below) of

• a span of spans, i.e. a diagram

Γ0

Λ

Γ1

Λ′

Ω

r0 r1

r′0 r′1
t′

t

α0 α1

in essentially finite groupoids commutative up to the indicated natural isomor-
phisms (in this way of presentation the direction of the natural isomorphism
is obtained by reading from top to bottom, e.g. α0 is a natural isomorphism
r0t⇒ r′0t

′).

• together with a natural morphism

(r0t)
∗%0 = t∗r∗0%0 t∗r∗1%1 = (r1t)

∗%1

(r′0t
′)∗%0 = t′∗r′0

∗%0 t′∗r′1
∗%1 = (r′1t

′)∗%1

t∗λ

%0(α0)

t′∗λ′

%1(α1)
ω

We will denote this 2-morphism by
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(Γ0, %0)

(Λ, λ)

(Γ1, %1)

(Λ′, λ′)

(Ω, ω)

r0 r1

r′0 r′1
t′

t

α0 α1

4. Composition of 1-morphisms: For 1-morphisms

(Γ0, %0)
r0←− (Λ, λ)

r1−→ (Γ1, %1)

and

(Γ1, %1)
r′1←− (Λ′, λ′)

r′2−→ (Γ2, %2)

the composition (Λ′, λ′) ◦ (Λ, λ) is by homotopy pullback. More precisely, the span
part of the composition is the outer span of

Γ

Λ

Γ1

Λ′

Γ2

Λ×Ω Λ′

r0 r1 r′1 r′2

π π′

η

,

where η is the natural transformation the homotopy pullback comes equipped with,
together with the intertwiner

λ×Γ1 λ
′ : π∗r∗0%0

π∗λ−−→ π∗r∗1%1
%1(η)−−−→ π′

∗
r′1
∗
%1

π′∗λ′−−−→ π′
∗
r′2
∗
%2.

5. Vertical composition of 2-morphisms: The vertical composition of the 2-morphisms
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(Γ0, %0)

(Λ, λ)

(Γ1, %1)

(Λ′, λ′)

(Ω, ω)

r0 r1

r′0 r′1
t′

t

α0 α1

and

(Γ0, %0)

(Λ′, λ′)

(Γ1, %1)

(Λ′′, λ′′)

(Ω̃, ω̃)

r′0 r′1

r′′0 r′′1
u′′

u′

β0 β1

is the 2-morphism

(Γ0, %0)

(Λ, λ)

(Γ1, %1)

(Λ′′, λ′′)

(Ω×Λ′ Ω̃, ω ×λ′ ω̃)

r0 r1

r′′0 r′′1
v′′

v

γ0 γ1

, (4.1)

whose components are defined as follows:

• Ω×Λ′ Ω̃ denotes the homotopy pullback

Ω×Λ′ Ω̃ Ω

Ω̃ Λ′

q

q̃ t′

u′

η

,
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which introduces q, q̃ and η,

• the functors v and v′′ in (4.1) are defined by v := tq and v′′ := u′′q̃,

• the natural transformations γ0 and γ1 in (4.1) are obtained by

γ0 : r0v = r0tq
α0=⇒ r′0t

′q
η

=⇒ r′0u
′q̃

β0
=⇒ r′′0u

′′q̃ = r′′0v
′′

and

γ1 : r1v = r1tq
α1=⇒ r′1t

′q
η

=⇒ r′1u
′q̃

β1
=⇒ r′′1u

′′q̃ = r′′1v
′′,

where identity transformations are suppressed in the notation,

• and the natural morphism ω ×λ′ ω̃ is obtained as the composition

(r0v)∗%0 = q∗t∗r∗0%0 q∗t∗r∗1%1 = (r1v)∗%1

q∗t′∗r′0
∗%0 q∗t′∗r′1

∗%1

q̃∗u′∗r′0
∗%0 q̃∗u′∗r′1

∗%1

q̃∗u′′∗r′′0
∗%0 q̃∗u′′∗r′′1

∗%1

q∗t∗λ

q∗%0(α0)

%0(η) %1(η)

q̃∗u′∗λ′

q̃∗u′′∗λ′′

q∗t′∗λ′

q∗%1(α1)

q̃∗%0(β0) q̃∗%1(β1)

q∗ω

θ′

q̃∗ω′

,

where the middle square is decorated with the isomorphism θ′ belonging to λ′

(Remark 2.7, 3), i.e. the evaluation of the 2-morphisms on the middle square

on (z, z̃, g) ∈ Ω×Λ′ Ω̃ is given by

%0(r′0t
′(z)) %1(r′1t

′(z))

%0(r′0u
′(z̃)) %1(r′1u

′(z̃))

λ′
t′(z)

%0(r′0(g)) %1(r′1(g))

λ′
u′(z̃)

θg

.

6. Horizontal composition of 2-morphisms: The horizontal composition of the 2-morph-
isms
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(Γ0, %0)

(Λ, λ)

(Γ1, %1)

(Λ′, λ′)

(Ω, ω)

r0 r1

r′0 r′1
t′

t

α0 α1

and

(Γ1, %1)

(Π, π)

(Γ2, %2)

(Π′, π′)

(Ω̃, ω̃)

v1 v2

v′1 v′2
u′

u

β0 β1

is

(Γ0, %0)

(Λ×Γ1 Π, λ×Γ1 π)

(Γ2, %2)

(Λ′ ×Γ1 Π′, λ′ ×Γ1 π
′)

(Ω×Γ1 Ω̃, ω ×Γ1 ω̃)

r0p v2q

r′0p
′ v′2q

′d

c

δ0 δ1

,

where

• p : Λ×Γ1 Π −→ Λ, q : Λ×Γ1 Π −→ Π, p′ : Λ′×Γ1 Π′ −→ Λ′, q′ : Λ′×Γ1 Π′ −→ Π′

are the projection functors defined on the respective homotopy pullbacks,

• Ω×Λ′ Ω̃ denotes the homotopy pullback
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Ω×Γ1 Ω̃ Ω

Ω̃ Γ1

`

˜̀ r1t

v1u

ε

,

which introduces `, ˜̀ and ε; note that the groupoid Ω ×Γ1 Ω̃ together with the
natural isomorphism ε′ given as the composition

Γ1Ω̃

Ω×Γ1 Ω̃ Ω
`

˜̀

v1u

r1t
ε

r′1t
′

α−1
1

v′1u
′

β0

is also a homotopy pullback of the cospan defined by the primed functors r′1t
′

and v′1u
′, we call this homotopy pullback (Ω×Γ1 Ω̃)′,

• the functor c : Ω×Γ1 Ω̃ −→ Λ×Γ1 Π is defined using the universal property of
the homotopy pullback and makes the diagram

Λ×Γ1 Π Λ

Π Γ1Ω̃

Ω×Γ1 Ω̃ Ω

p

q r1

`

˜̀
c

u

t

v1

η

commute up to ε (the squares left blank are also labeled by natural isomorphisms
arising from the universal property of the homotopy pullback, but we suppress
them in the notation); note here that c arises from the product functor t× u,
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• the functor d : Ω×Γ1 Ω̃ −→ Λ′×Γ1 Π′ is defined analogously using the universal
property of the homotopy pullback and makes the diagram

Λ′ ×Γ1 Π′ Λ′

Π′ Γ1Ω̃

Ω×Γ1 Ω̃ Ω

p′

q′ r′1

`

˜̀
d

u′

t′

v′1

η′

r1t
α1

v1u

β0

commute up to ε (again, the squares left blank are also labeled by natural iso-
morphisms arising from the universal property of the homotopy pullback, but
we suppress them in the notation); note here that d arises from the product
functor t′ × u′ and that the composition of the natural isomorphisms in the
inner square is ε′,

• λ×Γ1 π is the intertwiner

λ×Γ1 π : (r0p)
∗%0
∼= p∗r∗0%0

p∗λ−−→ p∗r∗1%1
%1(η)−−−→ q∗v∗1%1

q∗π−−→ q∗v∗2%2

and λ′×Γ1 π
′ is defined analogously (these definitions are recalled here for con-

venience, although they already follow from the definition of 1-morphisms, see
Definition 4.2, 4),

• δ0 : r0pc⇒ r′0p
′d is the natural transformation

r0pc = r0t`
α0=⇒ r′0t

′` = r′0p
′d,

and, analogously, δ1 : v2qc⇒ v′2q
′d is the natural transformation

v2qc = v2u˜̀ β1
=⇒ v′2u

′˜̀= v′2q
′d,

• the natural transformation ω ×Γ1 ω̃ is defined by the commutativity of the dia-
gram

(r0pc)
∗%0 (r1pc)

∗%1 (v1qc)
∗%1 (v2qc)

∗%2

(r′0p
′d)∗%0 (r′1p

′d)∗%1 (v′1q
′d)∗%1 (v′2q

′d)∗%2

%0(δ0) = %0(`∗α0) %1(`∗α1) %1(˜̀∗β0) %2(˜̀∗β1) = %2(δ1)

(pc)∗λ %1(ε) (qc)∗π

(p′d)∗λ′ %1(d∗η′) (q′d)∗π′

`∗ω ˜̀∗ω̃

.
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7. The symmetric monoidal structure is inherited from the symmetric monoidal struc-
ture of 2VecBun(Γ) for one fixed groupoid (Definition 2.6) and the symmetric
monoidal structure on the bicategory of spans of essentially finite groupoids: For ob-
jects X = (Γ, %) and Y = (Ω, ξ) the tensor product X � Y is the bundle over Γ×Ω
assigning to (x, y) ∈ Γ× Ω to 2-vector space %(x) � ξ(y). The tensor product of 1-
and 2-morphisms is defined analogously by using the Cartesian product of groupoids
and the Deligne product. The monoidal unit object is the trivial representation of
the groupoid ? with one object and trivial automorphism group on the 2-vector space
FinVect of finite-dimensional complex vector spaces; we denote it again by ?.

4.3. Remark.

1. The composition of 1-morphisms in 2VecBunGrpd requires a model for the ho-
motopy pullback to be chosen. For definiteness we have chosen the one used e.g. in
[SW17, Definition 3.6]. Choosing a different model yields a composition naturally
2-isomorphic to the initial one.

2. For readability we did not spell out the equivalence relation needed to define 2-
morphisms, but only worked with representatives. We justfify this by the fact that
in [Mor15] such issues were addressed for pure span bicategories (without 2-vector
bundles) and in [SW17] it was explicitly explained in the categorical case how these
equivalence relations have to be generalized to take vector bundles into account.
This generalization can be done in the bicategorical case as well following the exact
same strategy one categorical level higher.

The next result explains the relation between the symmetric monoidal bicategory
2VecBunGrpd and the symmetric monoidal category VecBunGrpd from [SW17, Def-
inition 3.7]:

4.4. Proposition. The category End2VecBunGrpd(?) of endomorphisms of the monoidal
unit is canonically equivalent, as a symmetric monoidal category, to VecBunGrpd.

Proof. The claim holds more or less by construction, so we only give the main arguments:
Denote by τ : ? −→ FinVect the trivial representation of the terminal groupoid ? and by
t : Γ −→ ? the unique functor. The category End2VecBunGrpd(?) is symmetric monoidal.

Its objects are spans ?
t←− Γ

t−→ ? together a 1-morphism λ : t∗τ −→ t∗τ . But this
means that we specify for each x ∈ Γ a 2-linear map λ : FinVect −→ FinVect, i.e. –
by evaluation of λ on the ground field – a vector space %λ(x). For a morphism x −→ y
in Γ we obtain a natural transformation λx −→ λy, which is equivalent to a linear map
%λ(x) −→ %λ(y). This shows that the objects of End2VecBunGrpd(?) can be identified with
vector bundles over essentially finite groupoids.

A 1-morphism (Γ0, λ0) −→ (Γ1, λ1) in End2VecBunGrpd(?) is a span of spans
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?

Γ0

?

Γ1

Ω

t t

t t
r1

r0

together with a natural morphism ω between the intertwiners t∗λ0, t
∗λ1 : r∗0t

∗τ −→ r∗1t
∗τ ,

which is just an intertwiner from r∗0%λ0 to r∗1%λ1 . All these identifications extend naturally
to the composition and the symmetric monoidal structure.

In a symmetric monoidal bicategory there is a notion of a (fully) dualizable object, see
[Lur09, Definition 2.3.5]: An object in a symmetric monoidal bicategory is called dualizable
if it is dualizable in the homotopy category. So informally speaking, a dualizable object
has evaluation and coevaluation 1-morphisms which obey the triangle identities up to
2-isomorphism. The 2-isomorphisms are not required to be coherent.

Exactly the same arguments which yielded duals in VecBunGrpd in [SW17, Propo-
sition 3.8] prove the following result:

4.5. Proposition. Every object in 2VecBunGrpd is dualizable.

4.6. The parallel section functor. This subsection is devoted to the construc-
tion of the parallel section functor Par : 2VecBunGrpd −→ 2Vect. It will send an
object (Γ, %), i.e. a 2-vector bundle % over a groupoid Γ to its space of parallel sections
(Definition 2.10). We have already shown that this is indeed a 2-vector space (Proposi-
tion 2.13). It remains to define Par on 1-morphisms and 2-morphisms in 2VecBunGrpd.
This is accomplished in the following two definitions using the pullback and pushforward
constructions from Section 3.

4.7. Definition. [Parallel section functor on 1-morphisms] Let (Γ0, %0)
r0←− (Λ, λ)

r1−→
(Γ1, %1) be a 1-morphism in 2VecBunGrpd. Denote by Par(Λ, λ) the 2-linear map

Par(Λ, λ) : Par %0

r∗0−→ Par r∗0%0
λ∗−→ Par r∗1%1

r1∗−−→ Par %1.

Here we use the 2-linear pull map from Proposition 3.2, the operation of intertwiners on
parallel sections from Proposition 2.13 and the 2-linear push map from Proposition 3.3.

4.8. Definition. [Parallel section functor on 2-morphisms] Let
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(Γ0, %0)

(Λ, λ)

(Γ1, %1)

(Λ′, λ′)

(Ω, ω)

r0 r1

r′0 r′1
t′

t

α0 α1

be a 2-morphism in 2VecBunGrpd. Then we define the 2-morphism

Par(Ω, ω) : Par(Λ, λ) −→ Par(Λ′, λ′)

to be

Par r∗0%0 Par r∗1%1

Par t∗r∗0%0 Par t∗r∗1%1

Par t′∗r′0
∗%0 Par t′∗r′1

∗%1

Par r′0
∗%0 Par r′1

∗%1

Par %0 Par %1

λ∗

r∗0

r′0
∗

r1∗

r′1∗

t∗

%0(α0)∗ %1(α1)∗

t′∗λ′∗

λ′∗

t∗λ∗

t∗

t′∗ t′∗

ω∗

∼=

α0∗ α∗1

,

where

• the commutativity of the top square expresses the naturality of the pullback maps
(Proposition 3.2, 3) and the commutativity of the lowest square expresses the natu-
rality of the pushforward maps up to natural isomorphism (Proposition 3.6, 2),

• ω∗ is the application of the functor from Proposition 2.13 to ω,

• α0∗ : t′∗%0(α0)(r0t)
∗ −→ r′0

∗ comes from the application of Proposition 3.8 to the
square

Ω Γ0

Λ′ Γ0

r0t

t′ idΓ0

r′0

α0

,
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• and α∗1 : r1∗ −→ (r′1t
′)∗%1(α1)t∗ comes similarly from the application of Proposi-

tion 3.8 to the square

Ω Λ

Γ1 Γ1

t

r′1t
′ r1

idΓ1

α1

.

We are now ready to formulate the main result of this paper whose proof will take the
rest of the paper, except for Proposition 4.10.

4.9. Theorem. [Parallel section functor] The assignments of Definition 4.7 for 1-morph-
isms and Definition 4.8 for 2-morphisms extend to a symmetric monoidal 2-functor

Par : 2VecBunGrpd −→ 2Vect,

that we call parallel section functor.

Proof.

1. First we prove that Par is functorial on 1-morphisms. Obviously, it respects identi-
ties up to natural isomorphism. For the proof of the compatibility with composition
we start with two composable 1-morphisms

(Γ0, %0)
r0←− (Λ, λ)

r1−→ (Γ1, %1)

and

(Γ1, %1)
r′1←− (Λ′, λ′)

r′2−→ (Γ2, %2)

in 2VecBunGrpd. According to the definition of the composition of 1-morphisms
(Definition 4.2, 4) we need to form the homotopy pullback

Γ0

Λ

Γ1

Λ′

Γ2

Λ×Ω Λ′

r0 r1 r′1 r′2

π π′

η

.
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By the definition of the parallel section functor we find in our situation the following
isomorphisms

Par((Λ′, λ′) ◦ (Λ, λ)) = (r′2π
′)∗(π

′∗λ′)∗%1(η)∗(π
∗λ)∗(r0π)∗

∼= r′2∗π
′
∗(π
′∗λ′)∗%1(η)∗(π

∗λ)∗π
∗r∗0

(
Proposition 3.2, 1 and

Proposition 3.6, 1

)

= r′2∗π
′
∗(π
′∗λ′)∗%1(η)∗π

∗λ∗r
∗
0 (Proposition 3.2, 3)

∼= r′2∗λ
′
∗π
′
∗%1(η)∗π

∗λ∗r
∗
0 (Proposition 3.6, 2)

∼= r′2∗λ
′
∗r
′
1
∗
r1∗λ∗r

∗
0 (Proposition 3.10)

= Par(Λ′, λ′) ◦ Par(Λ, λ).

Their composition defines an isomorphism that we take as part of data of the 2-
functor Par.

2. Now we prove that the vertical composition of 2-morphisms is preserved. Again, it
is obvious that identities are respected. For the proof of the composition law we
take 2-morphisms

(Γ0, %0)

(Λ, λ)

(Γ1, %1)

(Λ′, λ′)

(Ω, ω)

r0 r1

r′0 r′1
t′

t

α0 α1

and

(Γ0, %0)

(Λ′, λ′)

(Γ1, %1)

(Λ′′, λ′′)

(Ω̃, ω̃)

r′0 r′1

r′′0 r′′1
u′′

u′

β0 β1

as well as the composition
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(Γ0, %0)

(Λ, λ)

(Γ1, %1)

(Λ′′, λ′′)

(Ω×Λ′ Ω̃, ω ×λ′ ω̃)

r0 r1

r′′0 r′′1
v′′

v

γ0 γ1

,

as given in Definition 4.2, 5. According to Definition 4.8 the natural transformation
Par(Ω×Λ′ Ω̃, ω ×λ′ ω̃) for the composition is given by

Par r′′0
∗%0 Par r′′1

∗%1

Par v′′∗r′′0
∗%0 Par v′′∗r′′1

∗%1

Par v∗r∗0%0 Par v∗r∗1%1

Par r∗0%0 Par r∗1%1

Par %0 Par %1

v∗

%0(γ0)∗

v′′∗

v∗

%1(γ1)∗

v′′∗

λ∗

v∗λ∗

v′′∗λ′′∗

λ′′∗

r∗0

r′′0
∗

r1∗

r′′1 ∗
∼=

(ω ×λ′ ω̃)∗γ0∗ γ∗1

.

In a first step let us look at the inner ladder of this diagram. The ladder is equal to
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Par r∗0%0 Par r∗1%1

Par t∗r∗0%0 Par t∗r∗1%1

Par v∗r∗0%0 Par v∗r∗1%1

Par q∗t′∗r′0
∗%0 Par q∗t′∗r′1

∗%1

Par q̃∗u′∗r′0
∗%0 Par q̃∗u′∗r′1

∗%1

Par q̃∗u′′∗r′′0
∗%0 Par q̃∗u′′∗r′′1

∗%1

Paru′′∗r′′0
∗%0 Paru′′∗r′′1

∗%1

Par r′′0
∗%0 Par r′′1

∗%1

t∗

q∗

%0(α0)∗

%0(η)∗

%0(β0)∗

q̃∗

u′′∗

t∗

q∗

%1(α1)∗

%1(η)∗

%1(β1)∗

q̃∗

u′′∗

λ∗

t∗λ∗

v∗λ∗

q∗t′∗λ′∗

q̃∗u′∗λ′∗

q̃∗u′′∗λ′′∗

u′′∗λ′′∗

λ′′∗

(q∗ω)∗

θ′∗

(q̃∗ω̃)∗

∼=

∼=

.

Here we have used the composition behaviour and naturality of the pull and push 1-
morphisms (Proposition 3.2 and Proposition 3.6), but we suppress the isomorphism
v′′∗
∼= u′′∗ q̃∗ for readability. Additionally, we have unpacked the definition of ω ×λ′ ω̃

(Definition 4.2, 5). Recall that the isomorphism θ′ is the datum that λ′ comes
equipped with.

We investigate this ladder and obtain the equality
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Par r∗0%0 Par r∗1%1

Par t∗r∗0%0 Par t∗r∗1%1

Par v∗r∗0%0 Par v∗r∗1%1

Par q∗t′∗r′0
∗%0 Par q∗t′∗r′1

∗%1

Par q̃∗u′∗r′0
∗%0 Par q̃∗u′∗r′1

∗%1

Par q̃∗u′′∗r′′0
∗%0 Par q̃∗u′′∗r′′1

∗%1

Paru′′∗r′′0
∗%0 Paru′′∗r′′1

∗%1

Par r′′0
∗%0 Par r′′1

∗%1

t∗

q∗

%0(α0)∗

%0(η)∗

%0(β0)∗

q̃∗

u′′∗

t∗

q∗

%1(α1)∗

%1(η)∗

%1(β1)∗

q̃∗

u′′∗

λ∗

t∗λ∗

v∗λ∗

q∗t′∗λ′∗

q̃∗u′∗λ′∗

q̃∗u′′∗λ′′∗

u′′∗λ′′∗

λ′′∗

(q∗ω)∗

θ′∗

(q̃∗ω̃)∗

∼=

∼=

Par r∗0%0 Par r∗1%1

Par t∗r∗0%0 Par t∗r∗1%1

Par t′∗r′0
∗%0 Par t′∗r′1

∗%1

Par q∗t′∗r′0
∗%0 Par q∗t′∗r′1

∗%1

Par q̃∗u′∗r′0
∗%0 Par q̃∗u′∗r′1

∗%1

Paru′∗r′0
∗%0 Paru′∗r′1

∗%1

Paru′′∗r′′0
∗%0 Paru′′∗r′′1

∗%1

Par r′′0
∗%0 Par r′′1

∗%1

=

t∗

%0(α0)∗

q∗

%0(η)

q̃∗

%0(β0)∗

u′′∗

t∗

%1(α1)∗

q∗

%1(η)

q̃∗

%1(β1)∗

u′′∗

λ∗

t∗λ∗

t′∗λ′∗

q∗t′∗λ′∗

q̃∗u′∗λ′∗

u′∗λ′∗

u′′∗λ′′∗

λ′′∗

ω∗

θ′∗

∼=

ω̃∗

∼=

,

where the changes only involve the second and the third as well as the fifth and the
sixth square. By re-inserting the ladder we obtain

Par r∗0%0 Par r∗1%1

Par t∗r∗0%0 Par t∗r∗1%1

Par t′∗r′0
∗%0 Par t′∗r′1

∗%1

Par q∗t′∗r′0
∗%0 Par q∗t′∗r′1

∗%1

Par q̃∗u′∗r′0
∗%0 Par q̃∗u′∗r′1

∗%1

Paru′∗r′0
∗%0 Paru′∗r′1

∗%1

Paru′′∗r′′0
∗%0 Paru′′∗r′′1

∗%1

Par r′′0
∗%0 Par r′′1

∗%1

Par r′0
∗%0 Par r′1

∗%1Par %0 Par %1
∼=⇐

∼=⇐

t∗

%0(α0)∗

q∗

%0(η)∗

q̃∗

%0(β0)∗

u′′∗

t∗

%1(α1)∗

q∗

%1(η)∗

q̃∗

%1(β1)∗

u′′∗

λ∗

t∗λ∗

t′∗λ′∗

q∗t′∗λ′∗

q̃∗u′∗λ′∗

u′∗λ′∗

u′′∗λ′′∗

λ′′∗

r∗0

r′′0
∗

r′0
∗

t′∗

r′1∗

t′∗

u′∗ u′∗

r1∗

r′′1 ∗

ω∗

θ′∗

∼=

ω̃∗

∼=

α0∗

β∗1

β0∗

α∗1

.

(4.2)

Here we have also decomposed the triangles containing γ0∗ and γ∗1 into three smaller
triangles each, which we will justify in step 3. If we accept this for a moment, we
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can observe that the natural isomorphisms in the inner hexagon yield a natural
isomorphism

u′
∗
t′∗(t

′∗λ′∗) −→ (u′
∗
λ′∗)u

′∗t′∗

between 2-linear maps Par t′∗r′0
∗%0 −→ Paru′∗r′1

∗%1. Evaluated on s ∈ Par t′∗r′0
∗%0

and z̃ ∈ Ω̃ it consists of the isomorphism from

((u′
∗
t′∗(t

′∗λ′∗))s)(z̃) = lim
(z,g)∈t′−1[u′(z̃)]

%1(r′1(g))λ′t′(z)s(z)

to

((u′
∗
λ′∗)u

′∗t′∗)s)(z̃) = lim
(z,g)∈t′−1[u′(z̃)]

λ′u′(z̃)%0(r′0(g))s(z)

described as follows: We have to pull back the diagram underlying the first limit
along the equivalence t′−1[u′(z̃)] ∼= q̃−1[z̃] coming from the fiberwise characteriza-
tion of the homotopy pullback to a diagram over q−1[z̃], which amounts just to a
change of variables. Then we apply the (pulled back version of) θ′. Finally, we pull
back the diagram to t′−1[u′(z̃)] using (the inverse of) t′−1[u′(z̃)] ∼= q̃−1[z̃]. But this
isomorphism is obviously equal to the isomorphism

lim
(z,g)∈t′−1[u′(z̃)]

%1(r′1(g))λ′t′(z)s(z) −→ lim
(z,g)∈t′−1[u′(z̃)]

λ′u′(z̃)%0(r′0(g))s(z)

just coming from θ′.

This allows us to simplify the inner hexagon in (4.2) and gives us

Par r∗0%0 Par r∗1%1

Par t∗r∗0%0 Par t∗r∗1%1

Par t′∗r′0
∗%0 Par t′∗r′1

∗%1

Par r′0
∗%0 Par r′1

∗%1

Paru′∗r′0
∗%0 Paru′∗r′1

∗%1

Paru′′∗r′′0
∗%0 Paru′′∗r′′1

∗%1

Par r′′0
∗%0 Par r′′1

∗%1

Par %0 Par %1

t∗

%0(α0)∗

t′∗

u′∗

%0(β0)∗

u′′∗

t∗

%1(α1)∗

t′∗

u′∗

%1(β1)∗

u′′∗

λ∗

t∗λ∗

t′∗λ′∗

λ′∗

u′∗λ′∗

u′′∗λ′′∗

u′′∗λ′′∗

r∗0

r′0
∗ r′1∗

r1∗

r′′1
∗r′′0

∗

ω∗

∼=

ω̃∗

∼=

α0∗

β∗1β0∗

α∗1

.
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Here we have replaced the inner hexagon by two squares. One of them commutes
strictly (Proposition 3.2, 3), the other up to a natural isomorphism coming from θ′

(Proposition 3.6, 2). This proves the preservation of the vertical composition.

3. We still have to justify the decomposition of γ0∗ and γ∗1 that we have used to ob-
tain (4.2). We only do this for γ0∗ because it is the more difficult case (involving
pushforward maps instead of only pullback maps). First note that the small inner
triangles (the ones being part of the inner hexagon) come from a homotopy pull-
back, so the corresponding natural transformations are actually isomorphisms by
Proposition 3.10. To prove that γ0∗ is equal to the composition of the transforma-
tion living on the three triangles on the left side of (4.2), we choose s ∈ Par %0 and
y′′ ∈ Λ. Now both transformations in question correspond to maps

(u′′∗%0(β0)∗q̃∗%0(η)∗q
∗%(α0)∗t

∗r∗0s)(y
′′) −→ s(r′′0(y′′)). (4.3)

Using the definition of γ0 in Definition 4.2, 5 we can identify

(u′′∗%0(β0)∗q̃∗%0(η)∗q
∗%(α0)∗t

∗r∗0s)(y
′′)

with (v′′∗%0(γ0)∗v
∗r∗0s)(y

′′). Hence, we will see the maps (4.3) as maps

(v′′∗%0(γ0)∗v
∗r∗0s)(y

′′) −→ s(r′′0(y′′)).

Now the composition of the three triangles amounts to the composition

(v′′∗%0(γ0)∗v
∗r∗0s)(y

′′)
η∗−→(u′′∗%0(β0)∗u

′∗t′∗%(α0)∗t
∗r∗0s)(y

′′)
α0∗−−→(u′′∗%0(β0)∗u

′∗r′0
∗
s)(y′′)

β0∗−−→s(r′′0(y′′)), (4.4)

and we have to show that it is given by γ0∗. To see this, observe that the object
(v′′∗%0(γ0)∗v

∗r∗0s)(y
′′) is a limit over the groupoid v′′−1[y′′], whereas

(u′′∗%0(β0)∗u
′∗t′∗%(α0)∗t

∗r∗0s)(y
′′)

is a limit over u′′−1[y′′]×Λ′ Ω. The first map η∗ is the pushforward along the equiv-
alence

v′′
−1

[y′′] = (u′′ ◦ q̃)−1
[y′′] ∼= u′′

−1
[y′′]×Ω̃ (Ω×Λ′ Ω̃) ∼= u′′

−1
[y′′]×Λ′ Ω.

Here, by pushforward we always mean pushforward of limits, i.e. pushforward of
sections of ordinary vector bundles in the sense of Section 2.1. As a next step,
(u′′∗%0(β0)∗u

′∗r′0
∗s)(y′′) is a limit over u′′−1[y′′] and α0∗ is the pushforward along

the projection u′′−1[y′′] ×Λ′ Ω −→ u′′−1[y′′]. Finally, s(r′′0(y′′)) is a limit over the
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terminal groupoid ? and β0∗ is the pushforward along the functor u′′−1[y′′] −→ ?.
By Proposition 2.3, 2 we conclude that the composition (4.4) is the pushforward
along the composition

v′′
−1

[y′′] ∼= u′′
−1

[y′′]×Λ′ Ω −→ u′′
−1

[y′′] −→ ?

of functors, i.e. it integrates over the homotopy fiber v′′−1[y′′] with respect to
groupoid cardinality. Hence, by Corollary 3.11 it is equal to γ0∗. This gives us
the missing step in the derivation of (4.2).

4. Next we prove that the horizontal composition of 2-morphisms is respected up to
the isomorphisms specified for the composition of 1-morphisms. To this end, we
take 2-morphisms

(Γ0, %0)

(Λ, λ)

(Γ1, %1)

(Λ′, λ′)

(Ω, ω)

r0 r1

r′0 r′1
t′

t

α0 α1

and

(Γ1, %1)

(Π, π)

(Γ2, %2)

(Π′, π′)

(Ω̃, ω̃)

v1 v2

v′1 v′2
u′

u

β0 β1

and their horizontal composition
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(Γ0, %0)

(Λ×Γ1 Π, λ×%1 π)

(Γ2, %2)

(Λ′ ×Γ1 Π′, λ′ ×%1 π
′)

(Ω×Γ1 Ω̃, ω ×%1 ω̃)

r0p v2q

r′0p
′ v′2q

′d

c

δ0 δ1

as given in Definition 4.2, 6. We have to show the equality of natural transformations

Par(Ω×Γ1 Ω̃, ω ×Γ1 ω̃) = Par %0 Par %1 Par %2

Par(Λ, λ)

Par(Λ′, λ′)

Par(Π, π)

Par(Π′, π′)

Par(Ω, ω) Par(Ω̃, ω̃)

∼=

∼=

Par(Λ×Γ1 Π, λ×Γ1 π)

Par(Λ′ ×Γ1
Π′, λ′ ×Γ1

π′)

.
(4.5)

We abbreviate the left hand side by L and the right hand side by R. Using Defini-
tion 4.2, 6 and the labels therein we find for the left hand side

L =

Par(r0p)∗%0 Par(v2q)∗%2Par(r1p)∗%1 Par(r1q)∗%1

Par(r0pc)∗%0 Par(v2qc)∗%2Par(r1pc)∗%1 Par(v1pc)∗%1

Par(r′0pd)∗%0 Par(v′2q
′d)∗%1Par(r′1p

′d)∗%1 Par(v′1q
′d)∗%1

Par(r′0p
′)∗%0 Par(v′2q

′)∗%1Par(r′1p
′)∗%1 Par(v′1q

′)∗%1

Par %0 Par %2

c∗

%0(`∗α0)∗

d∗

c∗

%1(`∗α1)∗

d∗

c∗

%1(˜̀∗β0)∗

d∗

c∗

%2(˜̀∗β1)∗

d∗

p∗λ∗ %1(η) q∗π∗

(pc)∗λ∗ %1(ε) (qc)∗π

(p′d)∗λ′∗ %1(d∗η′) (q′d)∗π′∗

p′∗λ′∗ %1(η′) q′∗π′∗

(r0p)
∗

(r′0p
′)∗

(v2q)∗

(v′2q
′)∗

δ0∗ δ∗1

∼= ∼=

`∗ω∗ ˜̀∗ω̃∗

,

while the right hand side of (4.5) is given by
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R =

Par r∗0%0 Par v∗2%2Par r∗1%1 Par v∗1%1

Par(r0p)∗%0 Par(r1p)∗%2 Par(v1q)∗%1 Par(v2q)∗%1

Par(r′0p
′)∗%0 Par(r′1p

′)∗%2 Par(v′1q
′)∗%1 Par(v′2q

′)∗%1

Par %1

Par(r0t)∗%0 Par(v2u)∗%2Par(r1t)∗%1 Par(v1u)∗%1

Par(r′0t
′)∗%0 Par(v′2u

′)∗%2Par(r′1t
′)∗%1 Par(v′1u

′)∗%1

Par r′0
∗%0 Par v′2

∗%2Par r′1
∗%1 Par v′1

∗%1

Par %0 Par %2

p∗ p∗ q∗ q∗

p′∗ p′∗ q′∗ q′∗

t∗

%0(α0)∗

t′∗

t∗

%1(α1)∗

t′∗

t∗

%1(β0)∗

t′∗

t∗

%2(β1)∗

t′∗

λ∗

%1(η)p∗λ∗ q∗π∗

π∗

t∗λ∗ u∗π∗

t′∗λ′∗ u′∗π′∗

λ′∗

%1(η′)p′∗λ′∗ q′∗π′∗

π′∗

r1∗ v∗1

r′1∗ v′1
∗

r∗0

(r0p)
∗

(r′0p
′)∗

r′0
∗

v2∗

(v2q)∗

(v′2q
′)∗

v′2∗

α0∗

η∗

η∗

β∗1α∗1 β0∗

∼=

∼=

∼=

∼=

ω∗ ω̃∗

.

We now describe the 2-morphisms

L, R : (v2q)∗(q
∗π∗)%1(η)(p∗λ∗)(r0p)

∗ −→ (v′2q
′)∗(q

′∗π′∗)%1(η′)(p′
∗
λ′∗)(r

′
0p
′)∗

explicitly by chasing through the diagrams. We will look at the component for a
parallel section s ∈ Par %0. The image of s under the transformations will be eval-
uated at x2 ∈ Γ2. In the following step-by-step description of both transformations
some of the obvious isomorphisms will not be mentioned explicitly in order to not
obscure the main ideas:

Description of L: Using the canonical equivalences

(v2q)
−1[x2] ∼= v−1

2 [x2]×Π (Λ×Γ1 Π) ∼= v−1
2 [x2]×Γ1 Λ

we obtain

((v2q)∗(q
∗π∗)%1(η)(p∗λ∗)(r0p)

∗s)(x2) = lim
v−1
2 [x2]×Γ1

Λ:

ȳ∈Π,v2(ȳ)
ξ∼=x2

y∈Λ,r1(y)
ν∼=v1(ȳ)

%2(ξ)πȳ%1(ν)λys(r0(y)). (4.6)

The groupoid v−1
2 [x2] ×Γ1 Λ is the index groupoid for the diagram that we need to

compute the limit of. We have written the index groupoid below the limit symbol.
After a double point we also listed all the dummy variables. We will use this notation
in the sequel.

The first transformation we have to apply is δ∗1. Since

(v′2q
′d)−1[x2] ∼= v′2

−1
[x2]×Π′ (Ω×Γ1 Ω̃)
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its target is

((v′2q
′d)∗%2(˜̀∗β1)c∗(q∗π∗)%1(η)(p∗λ∗)(r0p)

∗s)(x2)
= lim

v′2
−1[x2]×Π′ (Ω×Γ1

Ω̃):

ȳ′∈Π′,v′2(ȳ′)
ξ′∼=x2

z∈Ω,z̃∈Ω̃,r1t(z)
µ∼=v1u(z̃)

ȳ′
κ∼=u′(z̃)

%2(ξ′v′2(κ)β1,z̃)πu(z̃)%1(µ)λt(z)s(r0t(z)).

(4.7)

The needed map from (4.6) to (4.7) is the pullback along the functor

v′2
−1

[x2]×Π′ (Ω×Γ1 Ω̃) −→ v−1
2 [x2]×Γ1 Λ

which, on the level of dummy variables as established in (4.6) and (4.7) sends(
ȳ′, v′2(ȳ′)

ξ′∼= x2, z, z̃, r1t(z)
µ∼= v1u(z̃), ȳ′

κ∼= u′(z̃)

)
∈ v′2

−1
[x2]×Π′ (Ω×Γ1 Ω̃)

to (
u(z̃), v2u(z̃)

β1∼= v′2u
′(z̃)

κ∼= v′2(ȳ′)
ξ′∼= x2, t(z), r1t(z)

µ∼= v1u(z̃)

)
∈ v−1

2 [x2]×Γ1 Λ.

The next transformation does not change the index groupoids, but is the vertex-wise
transformation

%2(ξ′v′2(κ))%2(β1,z̃)πu(z̃)%1(µ)λt(z)s(r0t(z))
ω̃z̃−→ %2(ξ′v′2(κ))π′u′(z̃)%1(β0,zµ)λt(z)s(r0t(z))

applied to the diagram on the right hand side of (4.7). In the next step we have

to replace the groupoid Ω ×Γ1 Ω̃ as a part of the index groupoid in (4.7) by the

canonically equivalent groupoid (Ω ×Γ1 Ω̃)′, see Definition 4.2, 6 for the notation.

More concretely, we replace z ∈ Ω and z̃ ∈ Ω̃ together with r1t(z)
µ∼= v1u(z̃) by the

same pair (z, z′) ∈ Ω× Ω̃, but now with r′1t
′(z)

µ′∼= r′1t
′(z), where µ′α1,z = β0,z̃µ. This

leaves us with vertices

%2(ξ′v′2(κ))π′u′(z̃)%1(µ′α1,z)λt(z)s(r0t(z))

such that we can apply the vertex-wise transformation

%2(ξ′v′2(κ))π′u′(z̃)%1(µ′α1,z)λt(z)s(r0t(z))
ωz−→ %2(ξ′v′2(κ))π′u′(z̃)%1(µ′)λt′(z)%0(αα0,z)s(r0t(z))

∼= %2(ξ′v′2(κ))π′u′(z̃)%1(µ′)λt′(z)s(r
′
0t
′(z)),
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where the last isomorphism comes from parallelity of s. We need to perform one
last step, namely the application of δ0∗: Our current index groupoid is v′2

−1[x2]×Π′

(Ω×Γ1 Ω̃)′, whereas the index groupoid for the final result

((v′2q
′)∗(q

′∗π′∗)%1(η′)(p′
∗
λ′∗)(r

′
0p
′)∗s)(x2)

is v′2
−1[x2]×Γ1 Λ′. The needed map comes from pushing along the functor

v′2
−1

[x2]×Π′ (Ω×Γ1 Ω̃)′ −→ v′2
−1

[x2]×Γ1 Λ′,

which is induced from projection to Ω and t′ : Ω −→ Λ′. In summary, the natural
transformation L = Par(Ω×Γ1 Ω̃, ω ×Γ1 ω̃) consists of the maps

((v2q)∗(q
∗π∗)%1(η)(p∗λ∗)(r0p)

∗s)(x2) −→ ((v′2q
′)∗(q

′∗π′∗)%1(η′)(p′
∗
λ′∗)(r

′
0p
′)∗s)(x2)

obtained by performing two operations:

• Apply ω and ω̃ vertex-wise to the diagrams involved.

• Compute on the level of the index groupoids the pull-push map along the span

v−1
2 [x2]×Γ1 Λ←−

{
v′2
−1[x2]×Π′ (Ω×Γ1 Ω̃)

∼= v′2
−1[x2]×Π′ (Ω×Γ1 Ω̃)′

}
−→ v′2

−1
[x2]×Γ1 Λ′. (4.8)

These two operations obviously commute.

Description of R: The maps

((v2q)∗(q
∗π∗)%1(η)(p∗λ∗)(r0p)

∗s)(x2) −→ ((v′2q
′)∗(q

′∗π′∗)%1(η′)(p′
∗
λ′∗)(r

′
0p
′)∗s)(x2)

that R consists of can be described similarly as for L. Since no new ideas enter, we
just give the result. Again, we have to perform two commuting operations:

• Apply ω and ω̃ vertex-wise to the diagrams involved.

• Compute on the level of the index groupoids the pull-push map along the two
composable spans

v2
−1[x2]×Γ1 Λ←− v′2

−1
[x2]×Π′ (Ω̃×Γ1 Λ) −→ v′2

−1
[x2]×Γ1 Λ

and

v′2
−1

[x2]×Γ1 Λ←− v′2
−1

[x2]×Γ1 Ω←− v′2
−1

[x2]×Γ1 Λ′.

The composition of these two spans is (equivalent to) the span in (4.8). Indeed, we
find the canonical equivalences(

v′2
−1

[x2]×Π′ (Ω̃×Γ1 Λ)
)
×v′2−1[x2]×Γ1

Λ

(
v′2
−1

[x2]×Γ1 Ω
)

∼=
((
v′2
−1

[x2]×Γ1 Λ
)
×Π′ Ω̃

)
×v′2−1[x2]×Γ1

Λ

(
v′2
−1

[x2]×Γ1 Ω
)

∼=Ω̃×Π′

(
v′2
−1

[x2]×Γ1 Ω
)

∼=v′2
−1

[x2]×Π′ (Ω×Γ1 Ω̃)
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Applying Proposition 2.4 (equivariant Beck-Chevalley condition) now finishes the
proof of (4.5).

5. We endow Par with a monoidal structure. For this we use for any 2-vector bundle
% over Γ and ξ over Ω the obvious 2-linear maps

Φ : Par %� Par ξ −→ Par(%� ξ)

defined using the universal property of the Deligne product. Note that we suppress
the groupoids in the notation, i.e. we use the shorthand Par % = Par(Γ, %) etc. It
remains to show that these 2-linear maps are equivalences. For the proof we can
assume without loss of generality that Γ and Ω are finite groups G and H, in which
case % and ξ send the one object to a 2-vector space V and W , respectively. Now
we use Proposition 2.12 and the notation used therein to write the relevant 2-vector
spaces of parallel sections as

Par % ∼=
⊕
O∈S /G

Aα(G,O)-Mod,

Par ξ ∼=
⊕
P∈T /H

Aβ(H,P)-Mod,

where S and T is the set of isomorphism classes of simple objects in V andW with
representing systems (Xs)s∈S and (Yt)t∈T , respectively, and α ∈ H2(G; Map(S ,C×))
and β ∈ H2(H; Map(T ,C×)) are the corresponding gerbes, see Section 2.9. The
set of isomorphism classes of V �W is given by S ×T with a representing system
(Xs � Yt)(s,t)∈S×T . Denote the corresponding gerbe by γ ∈ H2(G × H; Map(S ×
T ,C×)). Using (S ×T )//(G×H) ∼= S //G×T //H we obtain

Par(%� ξ) ∼=
⊕

(O,P)∈S /G×T /H

Aγ(G×H; (O,P))-Mod.

This yields the weakly commutative diagram

Par %� Par ξ Par(%� ξ)

(⊕
O∈S Aα(G,O)-Mod

)
�
(⊕
P∈T Aβ(H,P)-Mod

) ⊕
(O,P)∈S /G×T /H Aγ(G×H; (O,P))-Mod

Φ

∼=

Ψ

∼=

,

in which the vertical equivalences are the ones just discussed. The functor Ψ admits
the following description: The projections S ×T −→ S and S ×T −→ T yield
maps

Map(S ,C×) −→ Map(S ×T ,C×),

Map(T ,C×) −→ Map(S ×T ,C×).
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Together with the projections G×H −→ G and G×H −→ H they induce a map

H2(G; Map(S ,C×))⊕H2(H; Map(T ,C×))

−→H2(G×H; Map(S ×T ,C×))⊕H2(G×H; Map(S ×T ,C×)).

Using the group operation in H2(G×H; Map(S ×T ,C×)) we obtain a map

H2(G; Map(S ,C×))⊕H2(H; Map(T ,C×)) −→ H2(G×H; Map(S ×T ,C×))

sending (α, β) to γ. With this observation in mind, Ψ is the equivalence(⊕
O∈S

Aα(G,O)-Mod

)
�

(⊕
P∈T

Aβ(H,P)-Mod

)
∼=

⊕
(O,P)∈S /G×T /H

Aα(G,O)-Mod� Aβ(H,P)-Mod

∼=
⊕

(O,P)∈S /G×T /H

(Aα(G,O)⊗ Aβ(H,P)) -Mod

∼=
⊕

(O,P)∈S /G×T /H

Aγ(G×H; (O,P))-Mod.

Since Ψ is an equivalence, so is Φ.

To fully specify the monoidal structure we need to exhibit for 1-morphisms

(Γ0, %0)
r0←− (Λ, λ)

r1−→ (Γ1, %1)

and

(Γ′0, %
′
0)

r′0←− (Λ′, λ′)
r′1−→ (Γ′1, %

′
1)

in 2VecBunGrpd natural 2-isomorphisms

Par(Γ0, %0) � Par(Γ′0, %
′
0) Par(Γ1, %1) � Par(Γ′1, %

′
1)

Par((Γ0, %0) � (Γ′0, %
′
0)) Par((Γ′1, %

′
1) � (Γ′1, %

′
1))

Par(Λ, λ) � Par(Λ′, λ′)

Φ Φ

Par((Λ, λ) � (Λ, λ))

∼=

.

Evaluated on s ∈ Par(Γ0, %0), s′ ∈ Par(Γ0, %0) and (y, y′) ∈ Γ1 × Γ′1 they are given
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by

((Φ ◦ (Par(Λ, λ) � Par(Λ′, λ′)))(s� s′))(y, y′) = (Par(Λ, λ)s)(y) � (Par(Λ′, λ′)s′)(y′)

= lim
(x,g)∈r−1

1 [y]
g.λxs(r0(x)) � lim

(x′,g′)∈r′−1
1 [y′]

g′.λx′s
′(r′0(x′))

∼= lim
((x,g),(x′,g′))∈r−1

1 [y]×r′−1
1 [y′]

g.λxs(r0(x)) � g′.λx′s
′(r′0(x′))

∼= lim
((x,g),(x′,g′))∈r−1

1 [y]×r′−1
1 [y′]

(g.λx � g′.λx′)(s(r0(x)) � s′(r′0(x′)))

∼= lim
((x,x′),(g,g′))∈(r1×r′1)−1[y,y′]

(g.λx � g′.λx′)(s(r0(x)) � s′(r′0(x′)))

= (((Par((Λ, λ) � (Λ, λ)) ◦ Φ))(s� s′)) (y, y′).

Here we used that the Deligne product preserves limits (because �-tensoring with
an object is exact). This concludes the definition of the monoidal structure. This
monoidal structure is also symmetric: For a monoidal functor between symmetric
monoidal bicategories the symmetry is structure and is given by natural isomor-
phisms

Par %� Par ξ Par(%� ξ)

Par ξ � Par % Par(ξ � ξ)

Φ

cPar %,Par ξ Par c%,ξ

Φ

∼=

for all 2-vector bundles % over Γ and ξ over Ω, where the horizontal maps are the
monoidal structure of Par and the vertical maps are given by the braiding and the
image thereof under the parallel section functor. Indeed, we can easily exhibit the
needed diagonal isomorphisms: For (x, y) ∈ Γ×Ω, s ∈ Par and s′ ∈ Par ξ we recall
that (Par c%,ξ ◦ Φ(s � s′))(y, x) is computed as a limit over the homotopy fiber of
the flip Γ × Ω −→ Ω × Γ over (y, x). But this homotopy fiber is equivalent to the
discrete groupoid with one point (x, y), so we obtain a canonical isomorphism

(Par c%,ξ ◦ Φ(s� s′))(y, x) ∼= s′(y) � s(x) = (Φ ◦ cPar %,Par ξ(s� s′))(y, x).

This isomorphism is natural in x, y, s and s′ and gives us the symmetric structure.

The parallel section functors for 2-vector bundles generalizes the parallel section functor
from [Tro16] used in [SW17]:
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4.10. Proposition. Restriction of the parallel section functor Par : 2VecBunGrpd −→
2Vect to the endomorphisms of the respective monoidal units yields the parallel section
functor VecBunGrpd −→ FinVect from [SW17, Theorem 3.17], i.e. the square

End2VecBunGrpd(?) End2Vect(FinVect)

VecBunGrpd FinVect

Par

Φ Ψ

Par

featuring the equivalences from Proposition 4.4 and Example 2.8 is weakly commutative.

Proof. The proof proceeds very much like the proof of Proposition 4.4 and also uses the

notation established therein. An object in End2VecBunGrpd(?) is a span ?
t←− Γ

t−→ ?
together with an intertwiner λ : t∗τ −→ t∗τ , where τ is the trivial representation of their
terminal groupoid ? on FinVect. The restriction

Par : End2VecBunGrpd(?) −→ End2Vect(FinVect)

of the parallel section functor sends this object to a 2-linear map FinVect −→ FinVect.
Under Ψ this 2-linear map is identified with the vector space

(t∗λ∗t
∗s)(?),

where s ∈ Par(?, τ) is the parallel section sending ? to C. But by definition

(t∗λ∗t
∗s)(?) = lim

x∈Γ
%λ(x),

where the representation %λ of Γ is the image of Γ and λ under Φ (Proposition 4.4), and
the limit of %λ is just the space of parallel sections of %λ.

Consider now a morphism

(?, τ)

(Γ0, λ0)

(?, τ)

(Γ1, λ1)

(Ω, ω)

t t

t t
r0

r1
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in End2VecBunGrpd(?). By what we have already seen in this proof the parallel section
functor assigns to this morphism the transformation

FinVect FinVect

C 7−→ lim
x0∈Γ0

%λ0(x0)

C 7−→ lim
x1∈Γ1

%λ1(x1)

,

whose image under Ψ is the linear map

Par %λ0 = lim
x0∈Γ0

%λ0(x0) −→ Par %λ1 = lim
x1∈Γ1

%λ1(x1)

being by Definition 4.8 the composition

Par %λ0

r∗0−→ Par r∗0%λ0

ω∗−→ Par r∗1%λ1

r1∗−→ Par %λ1 .

The names chosen for these three maps suggestively already coincide with the correspond-
ing maps used for the parallel section functor in [SW17]. For the first map (the pullback
map) this is indeed obvious. For the second map this follows from the fact that ω can
be seen as an intertwiner r∗0%λ0 −→ r∗1%λ1 as observed in the proof of Proposition 4.4. Fi-
nally, the fact that r1∗ is really given by integral over homotopy fibers of r1 with respect
to groupoid cardinality (as the pushforward maps in [SW17]) follows from the application
of Corollary 3.11 to the square

Ω ?

Γ1 ?

r1

.



A PARALLEL SECTION FUNCTOR FOR 2-VECTOR BUNDLES 689

References

[BHW10] J. C. Baez, A. E. Hoffnung, C. D. Walker. Higher dimensional algebra. VII:
Groupoidification. Theory and Applications of Categories, 2010.

[BBFW12] J. C. Baez, A. Baratin, L. Freidel, D. K. Wise. Infinite-Dimensional Rep-
resentations of 2-Groups. Mem. Amer. Math. Soc. 219 (2012) No.1032.

[CPS06] W. Chachlski, W. Pitsch, J. Scherer. Homotopy pull-back squares up to
localization. An alpine anthology of homotopy theory, Contemp. Math.,
399, Amer. Math. Soc., Providence, RI, 2006.

[Hau17] R. Haugseng. Iterated spans and classical topological field theories. Mathe-
matische Zeitschrift (2017).

[HSV17] J. Hesse, C. Schweigert, A. Valentino. Frobenius Algebras and Homotopy
Fixed Points of Group Actions on Bicategories. Theory Appl. Categ. 32
(2017), No. 18.

[Kir01] A. A. Kirillov. Modular categories and orbifold models II.
arXiv:math/0110221 [math.QA]

[Kir04] A. A. Kirillov. On G-equivariant modular categories.
arXiv:math/0401119v1 [math.QA]

[Lei98] T. Leinster. Basic Bicategories. arXiv:math/9810017 [math.CT]

[Lur09] J. Lurie. On the Classification of Topological Field Theories. Current Devel.
Math. (2009).

[Mor11] J. C. Morton. Two-vector spaces and groupoids. Appl. Categ. Structures 19
(2011).

[Mor15] J. C. Morton. Cohomological Twisting of 2-Linearization and Extended
TQFT. J. Homotopy Relat. Struct. 10 (2015).

[SP11] C. J. Schommer-Pries. The classification of two-dimensional extended topo-
logical field theories. Ph.D. thesis, 2011.

[SW17] C. Schweigert, L. Woike. Orbifold Construction for Topological Field Theo-
ries. Accepted for publication in the Journal of Pure and Applied Algebra.
arXiv:1705.05171 [math.QA]

[SW18] C. Schweigert, L. Woike. Extended Homotopy Quantum Field Theories and
their Orbifoldization. arXiv:1802.08512 [math.QA]

[Tro16] F. Trova. Nakayama categories and groupoid quantization. arXiv:1602.01019
[math.CT]

[Wil05] S. Willerton. The twisted Drinfeld double of a finite group via gerbes and
finite groupoids. Algebraic & Geometric Topology 8 (2008).



690 CHRISTOPH SCHWEIGERT AND LUKAS WOIKE

Fachbereich Mathematik, Universiät Hamburg
Bereich Algebra und Zahlentheorie
Bundesstraße 55, D – 20 146 Hamburg

Email: Christoph.Schweigert@uni-hamburg.de
Lukas.Woike@uni-hamburg.de

This article may be accessed at http://www.tac.mta.ca/tac/



THEORY AND APPLICATIONS OF CATEGORIES will disseminate articles that significantly advance
the study of categorical algebra or methods, or that make significant new contributions to mathematical
science using categorical methods. The scope of the journal includes: all areas of pure category theory,
including higher dimensional categories; applications of category theory to algebra, geometry and topology
and other areas of mathematics; applications of category theory to computer science, physics and other
mathematical sciences; contributions to scientific knowledge that make use of categorical methods.
Articles appearing in the journal have been carefully and critically refereed under the responsibility of
members of the Editorial Board. Only papers judged to be both significant and excellent are accepted
for publication.

Subscription information Individual subscribers receive abstracts of articles by e-mail as they
are published. To subscribe, send e-mail to tac@mta.ca including a full name and postal address. Full
text of the journal is freely available at http://www.tac.mta.ca/tac/.

Information for authors LATEX2e is required. Articles may be submitted in PDF by email
directly to a Transmitting Editor following the author instructions at
http://www.tac.mta.ca/tac/authinfo.html.

Managing editor. Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca

TEXnical editor. Michael Barr, McGill University: barr@math.mcgill.ca

Assistant TEX editor. Gavin Seal, Ecole Polytechnique Fédérale de Lausanne:
gavin seal@fastmail.fm

Transmitting editors.
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Gabriella Böhm, Wigner Research Centre for Physics: bohm.gabriella (at) wigner.mta.hu

Valeria de Paiva: Nuance Communications Inc: valeria.depaiva@gmail.com
Richard Garner, Macquarie University: richard.garner@mq.edu.au
Ezra Getzler, Northwestern University: getzler (at) northwestern(dot)edu

Kathryn Hess, Ecole Polytechnique Fédérale de Lausanne: kathryn.hess@epfl.ch
Dirk Hoffman, Universidade de Aveiro: dirk@ua.pt
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