
Theory and Applications of Categories, Vol. 33, No. 17, 2018, pp. 476–491.

DOUBLE POWER MONAD PRESERVING ADJUNCTIONS ARE
FROBENIUS

CHRISTOPHER TOWNSEND

Abstract. We give a direct proof that between two toposes, F and E , bounded over a
base topos S, adjunctions L a R : LocF

-� LocE over LocS are Frobenius if and only
if R commutes with the double power locale monad and finite coproducts. The proof
uses only certain categorical properties of the category of locales, Loc. This implies that
between categories axiomatized to behave like categories of locales, it does not make a
difference whether maps are defined as structure preserving adjunctions (i.e. those that
commute with the double power monads) or Frobenius adjunctions.

1. Introduction

Let C be a cartesian category and S some distinguished object of C. The exponential SX

may not exist in C for another object X but the presheaf C( ×X,S) : Cop - Set can
always be considered (and it is representable if and only if SX exists). The object S is said
to be double exponentiable if the exponential C( , S)C( ×X,S) exists in the presheaf category
[Cop, Set] and is representable for any objectX of C. The Sierpiński locale S in the category
of locales, Loc, provides a non-trivial example for which SX does not always exists (not
all locales are locally compact) but double exponentiation does. This determines a monad
structure on Loc, the double power locale monad and indeed for any double exponentiable
object S a monad structure (P : C - C, η:Id - P, µ : PP - P) is determined by
the universal properties of double exponentiation. Its functor part is given by defining
PX to be the object that represents C( , S)C( ×X,S). The unit η is the double exponential
transpose of the identity natural transformation SX - SX . Note that we write SX as
shorthand for C( ×X,S).

Say now that we have two cartesian categories, D and C, each with a distinguished
object, say SD and SC respectively, both double exponentiable. It can be shown that if

L a R : D
L-�
R
C is an adjunction that satisfies Frobenius reciprocity1 and there is an

isomorphism SD ∼= RSC, then R commutes with the double exponentiation monads. That

is, there is a natural isomorphism φ : RPC
∼=- PDR that commutes with the monad

structure in the obvious manner (explicitly, φ(RηC) = ηDR and φ(RµC) = µDR(PDφ)φPC).
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1i.e. each map (Lπ1, εXLπ2) : L(W ×RX) - LW ×X is an isomorphism, where ε is the counit of
L a R.
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The purpose of this paper is to provide a partial converse.
At first sight this may seem odd. By taking SC = 1, the terminal object of C, it is

easy to construct a monad isomorphism for any adjunction. So certainly we will have
to place some restrictions on the distinguished object S to get a converse. In order to
show that there are some meaningful examples where we can hope to get a converse
consider the main results of [T10b] and [T13]. Let F and E be two toposes and let A be
the collection of isomorphism classes of geometric morphisms f : F - E . The paper
[T10b] establishes a bijection between A and B where B is defined to be the collection of
isomorphism classes of order enriched adjunctions

{L a R : LocF
-� LocE |L a R Frobenius, R preserves Sierpiński}.

On the other hand, the paper [T13] establishes a bijection between A and C, where C is
defined to be the collection of isomorphism classes of order enriched adjunctions

{L a R : LocF
-� LocE |RPE ∼= PFR and R preserves finitary coproduct}.

It is natural to then ask whether a direct proof is available which shows that Frobenius
adjunctions between categories of locales are the same thing as adjunctions that commute
with the double power locale monad. In other words can we prove that B is in bijection
with C directly, referring only to properties of Loc? Or is this relationship something
particular to geometric morphisms? The question is relevant to investigating the category
of locales axiomatically. A key viewpoint provided by the [T13] result (i.e. A ∼= C) is
that geometric morphisms can be seen as structure preserving maps, this view being
justified by the fact that the double power locale monad can be axiomatized as a double
exponential and this axiomatization used to give structure to the theory of locales. But
in other work, particularly [T17], we see that to get a good localic theory of geometric
morphisms it is the Frobenius reciprocity condition that appears to be key. By exploiting
Frobenius reciprocity a number of results about geometric morphisms can be shown via
their representation as Frobenius adjunctions between categories of locales (e.g. pullback
stable hyperconnected-localic factorization, results on boundedness etc). So it is quite
natural to ask the following question: What is the right notion of continuous map when
working localically? Is it those adjunctions that satisfy Frobenius reciprocity or should
we be looking at the double power monad preserving adjunctions? What we show here is
that, provided we restrict to the bounded case (in the sense of corresponding to bounded
geometric morphisms), it makes no difference.

2. Summary contents

The paper is structured as follows. The following section covers a number of categorical
preliminaries. It clarifies that our context is order enriched cartesian categories and pro-
vides a number of categorical characterisations of the connected components adjunction
of any internal groupoid.
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In the next section we recall the definition of a category of spaces; that is, a category
axiomatized to behave like the category of locales. We then recall the definition of triquo-
tient surjection, and provide criteria for when certain forks (i.e. diagrams · -- · - ·)
are coequalizer diagrams, stable under product.

After that we define a notion of morphism between categories of spaces which we call
Sierpiński morphism. We show how each geometric morphism determines, uniquely up
to isomorphism, a Sierpiński morphism. Sierpiński morphisms are certain double power
monad preserving adjunctions, and we recall how being double power monad preserving
is the same thing as having an extension to Kleisli categories. Since the morphisms of the
Kleisli categories of the double power monad are natural transformations SX - SY ,
being double power monad preserving is the same thing as having a contravariant ex-
tension to natural transformations. We recall how if an adjunction between categories
of spaces satisfies Frobenius reciprocity it then necessarily extends to natural transfor-
mations. This is key to showing that Frobenius adjunctions are examples of Sierpiński
morphisms between spaces.

Next we define when a Sierpiński morphism is bounded and show that if a geometric
morphism is bounded its corresponding Sierpiński morphism is bounded. We also explain,
using our preliminary categorical results characterising connected component adjunctions,
that bounded Sierpiński morphisms necessarily arise from groupoids; the definition of
boundedness implies that the domain category of spaces is a category of G-objects for a
groupoid G internal to the codomain category of spaces. Applying this observation we see
that a bounded Sierpiński morphism between categories of locales necessarily arises from
a bounded geometric morphism. We then go on to our main result which is that bounded
Sierpiński morphisms are Frobenius and show that indeed they are stably Frobenius as
bounded Sierpiński morphisms are slice stable.

Finally we provide an omnibus theorem the highlight of which is to show that between
categories of spaces, bounded over some base C, an adjunction is a Sierpiński morphism
if and only if it is Frobenius.

In order to keep this paper to a reasonable length we have had to refer to a number
of other papers for proofs. None of the proofs involves anything but known topos theory
([J02]) or basic categorical reasoning relative to cartesian categories.

3. Categorical preliminaries

In this section we gather together some results about cartesian categories. They are
effectively taken from [T17], which contains detailed proofs. Our categories are order
enriched, which means that universal properties establish order isomorphisms between
(partially ordered) homsets rather than just bijections. We state our results for order
enriched categories but may refer to proofs that are only given for ordinary categories;
this is because the extension of the universal property from being a bijection to an order
isomorphism can be seen to be trivial.

An order enriched adjunction L a R : D -� C between order enriched cartesian
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categories is Frobenius if for each object X of C and W of D the map (Lπ1, εXLπ2) :
L(W × RX) - LW × X is an isomorphism where ε is the counit of the adjunction.
Being Frobenius is two conditions away from being an equivalence:

3.1. Lemma. Let L a R : D
L-�
R
C be an order enriched Frobenius adjunction between

order enriched cartesian categories. If L1 ∼= 1 and η, the unit, is a regular monomorphism,
then L = R−1 (i.e. the adjunction is an equivalence).

For the short proof of this lemma consult [T17] (or Lemma 3.4 of [T14], where it
originally appears).

Any adjunction L a R : D -� C can be sliced at any object X of C. The sliced
adjunction LX a RX : D/RX -� C/X is given by LX(f) = ‘the adjoint transpose of f ’
and RX(g) = Rg. An order enriched adjunction is stably Frobenius if LX a RX is Frobe-
nius for every X. If f : X - Y is a morphism of a cartesian order enriched category
C then there is a stably Frobenius order enriched adjunction Σf a f ∗ : C/X -

� C/Y ,
where f ∗ is pullback. This is the pullback adjunction of f . We will write Zg for a typical
object of C/X; i.e. for g : Z - X. So, for example, Σf (Zg) = Zfg. We write ZX
for the projection π1 : X × Z - X, an object of C/X, and ΣX a X∗ for the pullback
adjunction C/X -� C of ! : X - 1. An adjunction of this form is known as a slice.
All pullback adjunctions can be seen to be slices because for any f : X - Y , C/X is
isomorphic to (C/Y )/Xf . We observe that a monomorphism of C/X which is split in C is
necessarily a regular monomorphism. To prove this observation say n : Yf - Zg is split
in C by k : Z - Y (i.e. kn = IdY ), then it is readily checked that n is the equalizer

of Zg
(g,k)- YX

IdX×n- ZX and Zg
(g,IdZ)- ZX . Note that the unit of ΣX a X∗ is split in C

since, at Yf , it is given by Y
(f,Id)- X × Y which is split by π2. The existence of this split

is key to proving that any stably Frobenius adjunction, if its domain is a slice of some
base category, is itself a slice:

3.2. Lemma. Let C and D be two order enriched cartesian categories, X an object of C
and say D comes equipped with an order enriched adjunction ΣD a D∗ : D -� C back to
C. Then any stably Frobenius adjunction L a R : C/X -� D over C is equivalent to the
slice of D at L1.

By ‘over C’ we mean that L a R comes equipped with a natural isomorphism X∗ ∼=
RD∗.

Proof. The adjunction L a R can be factored as

C/X
Ση1-�
η∗1

(C/X)/RL1
LL1-�
RL1

D/L1
ΣL1-�
L1∗
D

where η is the unit of the adjunction L a R. The adjunction LL1Ση1 a η∗RL1 must be
Frobenius; this is because the composition of two Frobenius adjunctions is Frobenius and
LL1 a RL1 is Frobenius by assumption that L a R is stably Frobenius. Since it is easy to
see that LL1Ση1 preserves 1 by our first lemma all that remains is to check that the unit
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of LL1Ση1 a η∗RL1 is a regular monomorphism. But the unit of this adjunction is (up to
isomorphism) a factor of the unit of the adjunction ΣX a X∗ and so is split in C because
the unit of ΣX a X∗ is split in C.

We now recall how the Frobenius reciprocity condition can be used to characterise the

connected component adjunctions of internal groupoids. Let G = (G1

d0-

d2

- G0, ...) be a

groupoid internal to an order enriched cartesian category C. Writing [G, C] for the category
of G-objects and G-homomorphisms, there is an order enriched functor G∗ : C - [G, C]
which sends any object X to the G-object (XG0 , d1 × Id : G1 × X - G0 × X); i.e.
π1 : G0 × X - G0 with trivial action. Its left adjoint, if it exists, is written ΣG, and
the adjunction ΣG a G∗ is the connected components adjunction of G.

The following lemma provides characterizations of the connected components adjunc-
tion for any internal groupoid:

3.3. Lemma. Let D and C be order enriched cartesian categories and ΣD a D∗ : D -� C
an order enriched adjunction. The following are equivalent:

(i) There exists an internal groupoid G in C and an equivalence Θ : [G, C] - D over
C.

(ii) There exists an object W of D such that ! : W - 1 is an effective descent
morphism and (ΣD)W : D/W - C/ΣDW is an equivalence.

(iii) There exists an object G0 of C and a stably Frobenius adjunction T a U :
C/G0

-� D over D with U monadic.

Recall that a morphism f : X - Y is of effective descent if the pullback functor
f ∗ : C/Y - C/X is monadic.

Proof. A more detailed proof is given in [T17]. The (i) implies (iii) step follows from
easily verified properties of [G, C]. Send any object Xf of C/G0 to (G1 ×G0 X,m × Id :
G1 ×G0 G1 ×G0 X - G1 ×G0 X) to define T where m is the groupoid multiplication.
This determines a free functor left adjoint to the forgetful functor, U : [G, C] - C/G0.
The algebras of the monad induced on C/G0 by T a U are exactly the G-objects and so U
is monadic. Given a G-homomorphism φ : (Yg, b : G1×G0 Y - Y ) - (Zh, c : G1×G0

Z - Z) and Xf an object of C/G0 it is clear how to construct a G-homeomorphism
T(X ×Z Y ) ∼= T(Xf )×(Zh,c) (Yg, b) ((g, x, y) 7→ (g, x, gy) in one direction and (g′, x′, y′) 7→
(g′, x′, (g′)−1y′) in the other). This is the key step in showing that T a U is stably
Frobenius.

That (iii) implies (ii) follows from the previous lemma, applied to the adjunction
T a U : C/G0

-
� D. This shows that C/G0 is equivalent to D/W over C where W is

taken to be T1. So there must be an equivalence φ : C/G0
- D/W and as it is over

D there is a natural isomorphism ΣDΣWφ ∼= ΣG0 which by evaluating at 1 shows that
G0
∼= ΣDW . But we must also then have that ΣG0φ

−1 ∼= ΣDΣW and so φ−1 can be taken
to be (ΣD)W (recall that all objects of D/W can also be seen to be morphisms of D/W ,
with 1 as codomain). To complete the (iii) implies (ii) implication note that since U is
monadic, ! : W - 1 must be of effective descent.
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For (ii) implies (i) apply ΣD to the groupoid (W ×W
π2-

π1

- W, ...) in order to obtain a

groupoid G in C; i.e. G0 = ΣDW , G1 = ΣD(W ×W ) etc. As ! : W - 1 is an effective
descent morphism, D is the category of algebras of the pullback adjunction determined
by ! : W - 1. By construction of G the category of G-objects is the same thing, up to
equivalence, as this category of algebras, given that C/G0 ' D/W .

Finally for this preliminary section we recall some notation and results about lattices
internal to order enriched cartesian categories. If C is an order enriched cartesian category
then an order internal distributive lattice is an internal distributive lattice such that
binary and nullary joins(meets) are left (right) adjoint to finitary diagonals. Being an
order internal distributive lattice is therefore a property of the object and not additional
structure on the object. If S is an order internal distributive lattice in an order enriched
cartesian category C then we use CopP for the full subcategory of [Cop, Set] consisting of
all objects of the form SX ; it is an order enriched category as its morphisms are natural
transformations that can be ordered pointwise. If further C has finitary coproducts and
product distributes over them then CopP can be seen to have finite products (e.g. SX × SY
is given by SX+Y ; the diagonal on SX is given by S∇ where ∇ : X + X - X is the
codiagonal). Every object of CopP is an order internal distributive lattice. The notation
CopPL (CopPU ) is used for the categories that are the same as CopP but with morphisms only
those natural transformations that are internal join (meet) homomorphisms.

4. Categories of spaces

We are now in a position to define our categorical context.

4.1. Definition. A category C is a category of spaces provided:
Axiom 1. It is an order enriched cartesian category with finite coproducts.
Axiom 2. For any morphism f : X - Y the functor f ∗ : C/Y - C/X preserves

finite coproducts.
Axiom 3. C has a distinguished order internal distributive lattice S = (S,tS : S ×

S - S,uS : S × S - S, 0S : 1 - S, 1S : 1 - S) such that for any object X the
pullback i∗ : C(X, S) - Sub(X) is an injection for both i = 0S and i = 1S.

Axiom 4. S is double exponentiable.
Axiom 5. Any natural transformation α : SX - SY which is also a distributive

lattice homomorphism is of the form Sf for some unique f : Y - X.
Axiom 6. Inflationary (deflationary) idempotents split in CPL (CPU ).

Axiom 7. For any equalizer diagram E
e- X

f-

g
- Y in C the diagram

SX × SX × SY
u(Id×t)(Id×Id×Sf )-

u(Id×t)(Id×Id×Sg)
- SX Se- SE

is a coequalizer in CopP .
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Of course, following the notation of the introduction, we use (P, η : Id - P, µ :
PP - P) for the monad induced on C by the assumption that S is double exponentiable
and will refer to this as the double power monad of C. The object S is called the Sierpiński
object of C.

4.2. Example. For any topos E the category of locales over that topos, LocE , is a
category of spaces. See [T05] and [T10a].

4.3. Example. If G is a localic groupoid that is not étale complete, then [G,Loc] is a
category of spaces that is not of the form LocE for any topos E , [T16]. So the class of all
categories of spaces is strictly larger than the class determined by the previous example.

To show the axioms in action, let us start with a straightforward lemma:

4.4. Lemma. If C is a category of spaces then P reflects isomorphisms.

Proof. We are given f : X - Y such that Pf is an isomorphism; that is, there
exists g : PY - PX such that gPf = IdPX and (Pf)g = IdPY . Clearly we have to
only show that Sf is an isomorphism since then its inverse must be a distributive lattice
homomorphism and so must be of the form Sh for some h by application of Axiom 5;
then by application of the uniqueness part of Axiom 5 we see that h must be f−1. It is
an exercise in the universal properties of double exponentiation to show that SηY αg is an
inverse for Sf , where αg : SX - SPY is the double exponential transpose of g.

We now recall the definition of triquotient surjection. These maps were originally
introduced by Plewe for locales ([P97]) and the paper [T10a] contains a detailed discussion
on how they work using our axiomatic approach. A key aspect of the class of triquotient
surjections is that it is a common generalisation of both open and proper surjections.

4.5. Definition. Given a morphism p : Z - Y in a category of spaces, a triquotient
assignment on p is a natural transformation p# : SZ - SY satisfying

(i) uSY (p# × IdSY ) v p# uSZ (IdSZ × Sp) and
(ii) p# tSZ (IdSZ × Sp) v tSY (p# × IdSY ).
Further p is a triquotient surjection if it has a triquotient assignment p# such that

p#Sp = IdSY .

The usual ‘Beck-Chevalley for pullback squares’ result holds relative to any category of
spaces: if p# is a triquotient assignment on p : Z - Y then for any f : X - Y there is
a triquotient assignment (π1)

#
on π1 : X×Y Z - X such that (π1)

#
Sπ2 = Sfp#. Notice

that if p : Z - Y is a triquotient surjection witnessed by the triquotient assignment
p# : SZ - SY , then p#(1) = 1 and p#(0) = 0. Conversely if p : Z - Y has a
triquotient assignment p# with p#(1) = 1 and p#(0) = 0 then p#(Sp(b)) = p#(0tSp(b)) v
p#(0) t b = b and order dually b v p#(Sp(b)) and so p is a triquotient surjection. Using
this characterization of triquotient surjection it is clear from Beck-Chevalley for pullback
squares that triquotient surjections are pullback stable. Note that having a triquotient
assignment is stable under composition and, in particular, triquotient surjections are
closed under composition.



DOUBLE POWER MONAD PRESERVING ADJUNCTIONS ARE FROBENIUS 483

Next we will provide a lemma about triquotient assignments, relating the existence of
a S( )-splitting to showing that certain forks are coequalizers. The lemma will be used to
show that bounded Sierpiński morphisms are Frobenius. To state the lemma we need a

definition: a fork X
f-

g
- Y

q- Q (i.e. with qf = qg) is S( )-split if there exist natural

transformations q# : SY - SQ and α : SX - SY such that (a) q# is a triquotient
assignment on q, (b) q#Sq = IdSQ , (c) Sqq# = αSf and (d) αSg = IdSY . For example the
kernel pair of any triquotient surjection is S( )-split: take α to be (π1)#.

4.6. Lemma. If X
f-

g
- Y

q- Q is a S( )-split fork then for any object Z,

X × Z
f×Id-

g×Id
- Y × Z q×Id- Q× Z is a coequalizer in C.

Proof. Firstly we can reduce to the case Z = 1. If q# and α are splittings for the

diagram, then qZ# and αZ are splittings for X×Z
f×Id-

g×Id
- Y ×Z q×Id- Q×Z. The exponential

αZ : SX×Z - SY×Z is defined by αZV = αZ×V for any object V ; similarly for q#. It is
straightforward to verify that qZ# is a triquotient assignment on q×Id : Y ×Z - Q×Z
(recall that the natural transformation uSX is really just ‘post compose with uS : S ×
S - S’ for any X).

The remainder of the proof essentially follows the proof of Proposition 6.2 of [T16].
We have a diagram

SQ
Sq
-�

q#

SY
Sf
-

Sg
-

�
α

SX

which is a split fork in CopP and so certainly Sq is the equalizer of Sf and Sg. So for any
p : Y - W with pf = pg we therefore have that Sp factors (uniquely) as Spβ for some
natural transformation β (it is given by q#Sp). By Axiom 5 it therefore only remains
to check that β is a distributive lattice homomorphism. Since we have already observed
q# preserves 0 and 1 we just need to show that β preserves binary meet and join, and
for this it is sufficient to check q#Sp(c1) u q#Sp(c2) v q#Sp(c1 u c2) and q#Sp(c1 t c2) v
q#Sp(c1) t q#Sp(c2). But

q#Sp(c1) u q#Sp(c2) v q#(Spc1 u Sqq#Spc2)

= q#(Spc1 u αSfSpc2)

= q#(Spc1 u αSgSpc2) (since pf = pg)

= q#(Spc1 u Spc2)

= q#Sp(c1 u c2)

and q#Sp(c1 t c2) v q#Sp(c1)t q#Sp(c2) follows an order dual proof and so we are done.
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One can probably state this lemma more generally to cover full pullback stability of the
regular epimorphisms induced by S( )-splittings, but we do not need that in applications
investigated here. The lemma shows that if ! : W - 1 is a triquotient surjection then
π1 : X × W - X is a regular epimorphism for any X; this is key to showing that
W - 1 is an effective descent morphism. Originally observed for locales by Plewe, the
general result is:

4.7. Proposition. Any triquotient surjection is an effective descent morphism.

Proof. A full proof is in [T04].

5. Sierpiński morphisms

We now define our notion of morphism between categories of spaces.

5.1. Definition. If C and D are two categories of spaces, then a Sierpiński morphism
f : D - C consists of an order enriched adjunction Σf a f ∗ : D -� C together
with a monad morphism (f ∗, φ) such that φ : f ∗PC - PDf ∗ is an isomorphism and f ∗

preserves finitary coproducts.

The Sierpiński object S is isomorphic to P0; so the right adjoint of any Sierpiński
morphism necessarily preserves the Sierpiński object.

5.2. Example. If f : F - E is a geometric morphism then there is an order enriched
adjunction Σf a f ∗ : LocF

-� LocE ; f
∗ is given by pullback in the category of toposes

(Σf a f ∗ is the pullback adjunction of the geometric morphism f). The paper [T13]
describes how this adjunction necessarily commutes with the double power locale monad
and so is a Sierpiński morphism as we have defined here.

Our next lemma provides another class of examples, showing how Frobenius adjunc-
tions give rise to Sierpiński morphisms. To prove it we will need to recall how lifting
adjunctions to Kleisli categories corresponds to the right adjoint commuting with mon-
ads. An adjunction is said to be a lifting to Kleisli categories if it commutes with the left
adjoints P : C - CP. Lemma 3.3 of [T13] shows that such a lifting exists if and only
if the right adjoint commutes with the monads. In the context of double power monads
giving a lifting for L a R : D -� D is the same thing as having an order enriched
adjunction R̄op a L̄op : CopPC

-
� DopPD such that (i) for any morphism f : X - Y of C,

R̄opSfC = SRfD , (ii) for any morphism g : W - V of D, L̄opSgD = SLgC , and (iii) η̄ = SεC,
ε̄ = SηD where η̄(ε̄) is the unit(counit) of R̄op a L̄op. In summary, therefore, a right adjoint
commutes with the double power monad if and only if the adjunction extends to natural
transformations in the obvious manner.

5.3. Lemma. Let C and D be two categories of spaces and L a R : D -
� C a Frobenius

order enriched adjunction for which there is an isomorphism SD
∼=- RSC. Then L a R

is the adjunction of a Sierpiński morphism D - C.

This lemma is effectively the content of Proposition 5.1 of [T10b].
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Proof. If α : SXC - SYC is a natural transformation then define R̄op(α) by setting
[R̄op(α)]W to

D(W ×RX,SD) ∼= D(W ×RX,RSC) ∼= C(L(W ×RX),SC)
∼= C(LW ×X, SC)

αLW- C(LW × Y, SC) ∼= D(W ×RY,SD)

for each object W of D. If β : SWD - SVD is a natural transformation then define L̄op(β)
by setting [L̄op(β)]X to

C(X × LW,SC) ∼= C(L(RX ×W ),SC) ∼= D(RX ×W,RSC)
∼= D(RX ×W,SD)

βRX- D(RX × V, SD) ∼= C(X × LV, SC)

for each object X of C, where we are repressing the isomorphisms induced by twist isomor-
phisms such as τ : RX×W - W ×RX in order to ease the presentation. By checking
that the triangular identities hold (since they hold for L a R) it can be established that
R̄op a L̄op. That an extension is defined is routine from construction. To complete the
proof we therefore only need to confirm that R preserves finitary coproduct. That R
preserves nullary coproduct (i.e. 0) follows because of our assumption that R preserves
the Sierpiński object; there are isomorphisms PD0D ∼= RPC0C ∼= PDR0C and so 0D ∼= R0C
by Lemma 4.4. For binary coproduct, let X and Y be objects of C and W an object of
D; then

D(W ×R(X + Y ),SD) ∼= C(LW × (X + Y ), SC) ∼= C(LW ×X, SC)× C(LW × Y, SC)
∼= D(W ×RX, SD)×D(W ×RY,SD) ∼= D(W × (RX +RY ),SD).

Therefore SR(X+Y )
D

∼= SRX+RY
D and so R(X + Y ) ∼= RX +RY by Lemma 4.4.

So Frobenius adjunctions give rise to Sierpiński morphisms categorically; this paper’s
primary aim is to shown that the implication can reverse. As a step towards achieving
that aim we now show how the adjunction of a Sierpiński morphism, extended to natural
transformations, necessarily preserves triquotient assignments in both directions:

5.4. Lemma. If f : D - C is a Sierpiński morphism then the extended adjunction
Σ̄f a f̄ ∗ : DPD

-� CPC preserves triquotient assignments in both directions. That is, (a)
if p# : SZC - SYC is a triquotient assignment on p : Z - Y , a morphism of C, then
f̄ ∗

op
p# is a triquotient assignment on f ∗p and (b) if q# : SWD - SVD is a triquotient

assignment on q : W - V , a morphism of D, then Σ̄f
op
q# is a triquotient assignment

on Σfq. In particular both f ∗ and Σf preserve triquotient surjections.

Proof. For any object X in a category of spaces the join map tSX : SX × SX - SX is

the left adjoint of SX S∇- SX+X ∼= SX × SX where ∇ : X +X - X is the codiagonal.
Any order enriched functor necessarily preserves the property of being a left adjoint in
the order enrichment and so will preserve the join map if it preserves S∇; but if an order
enriched functor preserves binary coproduct then it must preserve the codiagonal and
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so its extension to natural transformations must preserve the join tSX . This applies to
both Σf and f ∗ as both preserve binary coproduct (Σf since it is a left adjoint, f ∗ by
definition). An order dual argument shows that extensions to natural transformations
also preserve binary meet on SX . This is enough to show that triquotient assignments
are preserved in both directions because triquotient assignments are defined in terms of
certain inequalities involving binary meet and join on SX .

We now define boundedness for Sierpiński morphisms, which is the restriction that we
need in order to get our converse for Lemma 5.3.

5.5. Definition. A Sierpiński morphism p : D - C is bounded provided there exists
an object W of D such that the map ! : W - 1 is a triquotient surjection and (Σp)W :
D/W - C/ΣpW is an equivalence of categories.

Note that Lemma 3.3 can be applied to this definition because triquotient surjections
are of effective descent. Therefore Sierpiński morphisms are the connected component
adjunctions of groupoids internal to the codomain. This agrees with our well known
intuition about bounded geometric morphisms, e.g. [JT84], which is that they can be
represented using localic groupoids. Let us make the relationship precise:

5.6. Example. Let p : E - S be a bounded geometric morphism. If B is a bound for
p then the unique map ! : [N � B] - 1 is an open surjection and so is a triquotient
surjection. Here [N � B] is the locale of surjections from the naturals onto B. The paper
[T14] recalls this fact and shows that (Σp)[N�B] : LocE/[N � B] - LocS/Σp[N � B]
is an equivalence. Therefore Σp a p∗ corresponds to a bounded Sierpiński morphism.

On the other hand, say we have a bounded Sierpiński morphism p : LocE - LocS .
Then we know from [T13] that there exists a geometric morphism p : E - S, unique
up to isomorphism, such that Σp a p∗ is the pullback adjunction of p. But is the geo-
metric morphism p necessarily bounded? By (ii) of Lemma 3.3 there is an equivalence
LocE ' [G,LocS ] over LocS and by restricting to discrete locales one sees that there is
an equivalence E ' BG over S, where BG is the topos of G-equivariant sheaves which is
well known (e.g. B3.1.14(b) of [J02]) to be bounded over S. This observation, together
with the example just given, justifies our use of the term ‘bounded’ in the context of
Sierpiński morphisms. We can now state our main result:

5.7. Theorem. If p : D - C is a bounded Sierpiński morphism then Σp a p∗ is
Frobenius.

Proof. Say W - 1 is the triquotient surjection such that there is an equivalence
D/W ' C/ΣpW over C. Since the pullback adjunction ΣΣpW a (ΣpW )∗ is Frobenius we
know that the composite adjunction

D/W
ΣW-�
W ∗
D

Σp-�
p∗
C (*)
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is Frobenius. Now for any object V of D the fork

W ×W × V
π1×Id-

π2×Id
- W × V π2- V

is S( )
D -split (it is the kernel pair of the triquotient surjection π2 : W × V - V ). By

Lemma 4.6 we therefore know that it is a coequalizer diagram in D, stable under product.
In particular for any object X of C,

W ×W × V × p∗X
π1×Id×Id-

π2×Id×Id
- W × V × p∗X π2×Id- V × p∗X

is a coequalizer diagram in D and so since the left adjoint Σp preserves coequalizers we
get that

Σp(W ×W × V × p∗X)
Σp(π1×Id×Id)-

Σp(π2×Id×Id)
- Σp(W × V × p∗X)

Σp(π2×Id)- Σp(V × p∗X)

is a coequalizer diagram in C.
Now Σ̄p

op
preserves triquotient assignments and so the fork

Σp(W ×W × V )
Σp(π1×Id)-

Σp(π2×Id)
- Σp(W × V )

Σpπ2- ΣpV

is S( )
C -split and is therefore a coequalizer diagram in C, stable under product. In particular

Σp(W ×W × V )×X
Σp(π1×Id)×Id-

Σp(π2×Id)×Id
- Σp(W × V )×X Σpπ2×Id- ΣpV ×X

is a coequalizer diagram in C. This effectively completes the proof because as the com-
posite adjunction (*) is Frobenius we can see that the two pairs of arrows that de-
termine Σp(V × p∗X) and ΣpV × X (i.e. (Σp(π1 × Id × Id),Σp(π2 × Id × Id)) and
(Σp(π1 × Id)× Id,Σp(π2 × Id)× Id)) are isomorphic (recall W × V = ΣWW

∗V etc).

Now that we know that bounded Sierpiński morphisms are Frobenius we can get results
about them by using known results about Frobenius adjunctions:

5.8. Proposition. The composition of two bounded Sierpiński morphisms is bounded.

Proof. The proof is effectively taken from Proposition 14.1 of [T17]. Say p0 : D0
- D

and p : D - C are two bounded Sierpiński morphisms with objects W0 and W of D0

and D respectively such that W0
- 1 and W - 1 are both triquotient surjections and

there are equivalences (Σp0)W0 : D0/W0
'- D/Σp0W0 and (Σp)W : D/W '- C/ΣpW .

By slicing the equivalence (Σp0)W0 at π1 : W0 × p∗0W - W0 we obtain an equivalence
D0/W0 × p∗0W ' D/Σp0(W0 × p∗0W ) and since Σp0 a p∗0 is Frobenius there is therefore an
equivalence D0/W0× p∗0W ' D/Σp0W0×W . But D/Σp0W0×W is a slice of D/W which
is itself a slice C and therefore D/Σp0W0 ×W is a slice of C. So to complete the proof
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we just need to check that ! : W0 × p∗0W - 1 is a triquotient surjection. W0
- 1

is a triquotient surjection and triquotient surjections are closed under composition and
so it remains to check that π1 : W0 × p∗W - W0 is a triquotient surjection which
will follow by the pullback stability of triquotient surjections provided we can show that
p∗0W - 1 is a triquotient surjection. But we know that p∗0W - 1 is a triquotient
surjection because p∗0 preserves triquotient surjections.

However to make further progress and so get a good theory of geometric morphisms
using their localic representations, it is clear from [T17] that we need the adjunctions to
be stably Frobenius and not just Frobenius. In fact the hard work on this has already
been done in [T13]:

5.9. Proposition. If p : D - C is a Sierpiński morphism and X is an object of C then
the sliced adjunction (Σp)X a p∗X : D/p∗X -

� C/X determines a Sierpiński morphism
pX : D/p∗X - C/X. Further if p is bounded, so is pX .

Recall from [T12] that if C is a category of spaces then so is C/X; for example SX is a
Sierpiński object of the slice. The pullback adjunction ΣX a X∗ determines a Sierpiński
morphism C/X - C. In particular note that this Sierpiński morphism is bounded (take
W = IdX ; the identity map is a triquotient surjection).

Proof. Consult Theorem 6.13 of [T13]. Whilst Theorem 6.13 is stated and proved as
a property of adjunctions between categories of locales, care was taken in the proof to
ensure that it only used properties of locales that could be proved using our axiomatic
approach.

For the ‘Further’ part, say W - 1 is an effective descent morphism and (Σp)W :
D/W - C/ΣpW is an equivalence. The pullback morphism (p∗X)∗ : D - D/p∗X will
preserve triquotient surjections because it is the right adjoint of a Sierpiński morphism.
Therefore ! : Wp∗X

- 1D/p∗X (i.e. π1 : p∗X ×W - p∗X) is a triquotient surjection
relative to D/p∗X. Finally (D/p∗X)/Wp∗X must be equivalent to (C/X)/ΣpX (Wp∗X); this
can be seen by slicing the equivalence D/W ' C/ΣpW .

Combining this with our main result (Theorem 5.7) we see that:

5.10. Proposition. The adjunction of any bounded Sierpiński morphism is stably Frobe-
nius.

Our final result clarifies the main aim of this paper which is to show that between cat-
egories of spaces, bounded over a base, it makes no difference whether we define Sierpiński
morphisms as Frobenius adjunctions or double power monad preserving adjunctions:

5.11. Theorem. If p′ : D′ - C and p : D - C are two bounded Sierpiński mor-
phisms then the following conditions on order enriched adjunctions L a R : D′ -

� D
over C are equivalent:

(a) L a R is stably Frobenius.
(b) L a R is Frobenius.
(c) L a R is the adjunction of a Sierpiński morphism over C.
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(d) L a R is the adjunction of a bounded Sierpiński morphism over C.

Proof. That (a) implies (b) is clear because (b) requires less of the adjunction. For
(b) implies (c) we can appeal to Lemma 5.3 provided we can show, assuming (b), that
R preserves the Sierpiński object. But L a R is over C and both p′ and p preserve the
Sierpiński object as they are Sierpiński morphisms.

Showing (c) implies (a) in fact reduces to showing (c) implies (b). To see this assume
(c) and let V be any object of D. The adjunction LV a RV is an adjunction of a Sierpiński
morphism which is over C via the adjunctions Σp′ΣRV a (RV )∗(p′)∗ and ΣpΣV a V ∗p∗,
both of which are the adjunctions of bounded Sierpiński morphisms (the composition of
bounded Sierpiński morphisms is bounded). So if we have proved that (c) implies (b) we
can conclude that LV a RV is Frobenius. This is true for all V and so L a R is stably
Frobenius.

To prove (c) implies (b) let us now assume that L a R is the adjunction of a Sierpiński
morphism. Let W be the object of D that witnesses that p is bounded; i.e. W - 1
is a triquotient surjection and (Σp)W : D/W - C/ΣpW is an equivalence. Now the
composite adjunction

D′/RW
LW-
�
RW
D/W

(Σp)W-
�
[(Σp)W ]−1

C/ΣpW

is naturally isomorphic to

D′/RW
Σ
RηD
W-

�
(RηDW )∗

D′/(p′)∗ΣpW
(Σp′ )ΣpW-
�

(p′)∗ΣpW

C/ΣpW

where ηD is the unit of Σp a p∗ (recall that Rp∗ ∼= (p′)∗) and so LW a RW must be
Frobenius because Σp′ a (p′)∗ is stably Frobenius by assumption that p′ is bounded.
But then the adjunction LΣRW a (RW )∗R must be Frobenius since it can be factored
as ΣWLW a RWW

∗ and so we can proceed exactly as in the proof of Theorem 5.7:
the adjunction L a R is a factor of a Frobenius adjunction where the first factor is
ΣRW a RW ∗ : D′/RW -

� D′ with RW - 1 a triquotient surjection (because R
preserves triquotient surjections). This completes the proof of (c) implies (b).

Certainly (d) implies (c) as (c) requires less of the Sierpiński morphism.
To complete we prove that (a) implies (d) and from our earlier observations we just

need to prove boundedness. Let W ′ be the object of D′ that witnesses that p′ is bounded;
i.e. W ′ - 1 is a triquotient surjection and (Σp′)W ′ : D′/W ′ - C/Σp′W

′ is an
equivalence. Then the adjunction

D′/W ′ ΣW ′-
�
(W ′)∗

D′
L-
�
R
D

is stably Frobenius, over C and its domain is equivalent to a slice of C. It follows that
Lemma 3.2 can be applied to show that D′/W ′ ' D/LW ′ which proves boundedness.
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In particular, we note as a final observation, that if two composable Sierpiński mor-
phisms f and g are such that fg is bounded and f is bounded, then g is bounded.
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Robert Paré, Dalhousie University: pare@mathstat.dal.ca
Kate Ponto, University of Kentucky: kate.ponto (at) uky.edu

Jiri Rosicky, Masaryk University: rosicky@math.muni.cz
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