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PSEUDO-KAN EXTENSIONS AND DESCENT THEORY

FERNANDO LUCATELLI NUNES

Abstract. There are two main constructions in classical descent theory: the cate-
gory of algebras and the descent category, which are known to be examples of weighted
bilimits. We give a formal approach to descent theory, employing formal consequences
of commuting properties of bilimits to prove classical and new theorems in the context of
Janelidze-Tholen “Facets of Descent II”, such as Bénabou-Roubaud Theorems, a Galois
Theorem, embedding results and formal ways of getting effective descent morphisms. In
order to do this, we develop the formal part of the theory on commuting bilimits via
pseudomonad theory, studying idempotent pseudomonads and proving a 2-dimensional
version of the adjoint triangle theorem. Also, we work out the concept of pointwise
pseudo-Kan extension, used as a framework to talk about bilimits, commutativity and
the descent object. As a subproduct, this formal approach can be an alternative per-
spective/guiding template for the development of higher descent theory.

Introduction

Descent theory is a generalization of a solution given by Grothendieck to a problem
related to modules over rings [17, 24, 22]. There is a pseudofunctor Mod : Ring Ñ CAT
which associates each ring R with the category ModpRq of right R-modules. The original
problem of descent is the following: given a morphism f : R Ñ S of rings, we wish to
understand what is the image of Modpfq : ModpRq Ñ ModpSq. The usual approach to this
problem in descent theory is somewhat indirect: firstly, we characterize the morphisms
f in Ring such that Modpfq is a functor that forgets some “extra structure”. Then, we
would get an easier problem: verifying which objects of ModpSq could be endowed with
such extra structure (see, for instance, [24]).

Given a category C with pullbacks and a pseudofunctor A : Cop Ñ CAT, for each mor-
phism p : E Ñ B of C, the descent data plays the role of such “extra structure” in the
basic problem (see [22, 23, 45]). More precisely, in this context, there is a natural construc-
tion of a category DescAppq, called descent category, such that the objects of DescAppq
are objects of ApEq endowed with descent data, which encompasses the 2-dimensional
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analogue for equality/1-dimensional descent: one invertible 2-cell plus coherence. This
construction comes with a comparison functor and a factorization; that is to say, we have
the commutative diagram below, in which DescAppq Ñ ApEq is the functor which forgets
the descent data (see [22, 23]).

ApBq φp //

Appq %%

DescAppq

��
ApEq

(Descent Factorization)

Therefore the problem is reduced to investigating whether the comparison functor φp is
an equivalence. If it is so, p is said to be of effective A-descent and the image of Appq are
the objects of ApEq that can be endowed with descent data. Pursuing this strategy, it is
also usual to study cases in which φp is fully faithful or faithful: in these cases, p is said
to be, respectively, of A-descent or of almost A-descent.

Furthermore, we may consider that the descent problem (in dimension 2) is, in a
broad context, the characterization of the image (up to isomorphism) of any given functor
F : b Ñ e. In this case, using the strategy described above, we investigate if b can be
viewed as a category of objects in e with some extra structure (plus coherence). Thereby,
taking into account the original basic problem, we can ask, hence, if F is (co)monadic.
Again, we would get a factorization, the Eilenberg-Moore factorization:

b
φ //

F
$$

pCoqAlg

��
e

This approach leads to what is called “monadic descent theory”. Bénabou and Roubaud
proved that, if F � Appq in which A : Cop Ñ CAT is a pseudofunctor satisfying the Beck-
Chevalley condition, then “monadic A-descent theory” coincides with “Grothendieck A-
descent theory”. More precisely, in this case, p is of effective A-descent if and only if Appq
is monadic [4, 22, 19, 32].

Thereby, in the core of classical descent theory, there are two constructions: the
category of algebras and the descent category. These constructions are known to be
examples of 2-categorical limits (see [45, 46]). Also, in a 2-categorical perspective, we can
say that the general idea of category of objects with “extra structure (plus coherence)”
is, indeed, captured by the notion of 2-dimensional limits.

Not contradicting such point of view, Street considered that (higher) descent theory
is about the higher categorical notion of limit [45]. Following this posture, we investigate
whether pure formal methods and commuting properties of bilimits are useful to prove
classical and new theorems in the classical context of descent theory of [22, 23, 24, 14].

Willing to give such formal approach, we employ the following perspective: the prob-
lems of descent theory are usually reduced to the study of the image of a (pseudo)monadic
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(pseudo)functor. We restrict our attention to idempotent pseudomonads and prove for-
mal results on pseudoalgebra structures, such as a biadjoint triangle theorem and lifting
theorems.

In order to apply such formal approach to get theorems on commutativity of bilimits,
we employ a bicategorical analogue of the concept of (pointwise) Kan extension: (point-
wise) pseudo-Kan extension, introduced in [34].

By successive applications of these formal results, we get results within the context
of [22, 23], such as the Bénabou-Roubaud Theorem, embedding results and theorems on
effective descent morphisms of bilimits of categories. We also apply this approach to get
results on effective descent morphisms of categories of small enriched categories V -Cat
provided that V satisfies suitable hypotheses.

In this direction, the fundamental standpoint on “classical descent theory” of this
paper is the following: the “descent object” of a (pseudo)cosimplicial object in a given
context is the image of the initial object of the appropriate notion of Kan extension of
such cosimplicial object. More precisely, in our context of dimension 2 (which is the same
context of [22, 23]), we get the following result (Theorem 4.11): The descent category
of a pseudocosimplicial object A : ∆ Ñ CAT is equivalent to PsRanjAp0q, in which

j : ∆ Ñ 9∆ is the full inclusion of the category of finite nonempty ordinals into the category
of finite ordinals and order preserving functions, and PsRanjA denotes the right pseudo-
Kan extension of A along j. In particular, we show abstract features of the “classical
theory of descent” as a theory (of pseudo-Kan extensions) of pseudocosimplicial objects
or pseudofunctors 9∆ Ñ CAT.

This work was motivated by three main aims. Firstly, to get formal proofs of classical
results of descent theory. Secondly, to prove new results in the classical context – for
instance, formal ways of getting sufficient conditions for a morphism to be of effective
descent. Thirdly, to get proofs of descent theorems that could be recovered in other
contexts, such as in the development of higher descent theory (see, for instance, the work
of Hermida [18] and Street [45] in this direction).

In Section 1, we give an idea of our scope within the context of [22, 23]: we show
the main results classically used to deal with the problem of characterization of effective
descent morphisms and we present classical results, which are proved using results on
commutativity in Sections 8 and 9. Namely, the embedding results (Theorems 1.1 and
1.3) and the Bénabou-Roubaud Theorem (Theorem 1.4). At the end of Section 1, we
establish a theorem on pseudopullbacks of categories (Theorem 1.6) which is proved in
Section 9.

Section 2 contains most of the abstract results of our formal approach to descent via
pseudomonad theory. We start by establishing our main setting: the tricategory of 2-
categories, pseudofunctors and pseudonatural transformations. In 2.12, we define and
study basic aspects of idempotent pseudomonads. Then, in 2.21, we study pseudoalge-
bra structures w.r.t. idempotent pseudomonads, proving a Biadjoint Triangle Theorem
(Theorem 2.23) and giving a result related to the study of pseudoalgebra structures in
commutative squares (Corollary 2.24).
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We deal with the technical situation of considering objects that cannot be endowed
with pseudoalgebra structures but have comparison morphisms belonging to a special
class of morphisms in 2.25.

Section 3 explains why we do not use the usual enriched Kan extensions to study
commutativity of the 2-dimensional limits related to descent theory: the main point is
that we like to have results which work for bilimits in general (not only flexible ones). In
3.1, we define pseudo-Kan extensions and, then, we give the associated factorizations in
3.2. Particular cases of these factorizations are the Eilenberg-Moore factorization of an
adjunction and the descent factorization described above.

We give further background material in 3.8, studying weighted bilimits and proving
the first result that relates pseudo-Kan extensions and weighted bilimits. Then, in 3.14,
we introduce pseudoends and prove basic results such as a version of Fubini’s theorem for
pseudoends (Theorem 3.17) and the fundamental equivalence for pseudoends (Proposition
3.16). In 3.18, we finally introduce the appropriate notion of pointwise pseudo-Kan ex-
tension (Definition 3.25) and, using the results on pseudoends, we prove that a pointwise
pseudo-Kan extension exists if and only if suitable weighted bilimits exist (Theorem 3.19
and Corollary 3.27).

In 3.29, 3.34 and 3.38, we fit the study of pseudo-Kan extensions into the perspective
of Section 2. We apply the results of 2 to the special case of weighted bilimits and pseudo-
Kan extensions: we get, then, results on commutativity of weighted bilimits/pseudo-Kan
extensions and exactness/(almost/effective) descent diagrams.

Section 4 studies descent objects. We prove that the classical descent object (category)
is given by the pseudo-Kan extension of a pseudocosimplicial object (as explained above).
In particular, this means that descent objects are conical bilimits of pseudocosimplicial
objects. We adopt this description as our definition of descent object of a pseudocosim-
plicial object. We finish Section 4 presenting also the strict version of a descent object,
which is given by a Kan extension of a special type of 2-diagram. We get, then, the strict
factorization of descent theory.

Section 5 gives elementary examples of our context of effective descent diagrams. Every
weighted bilimit can be seen as an example, but we focus in examples that we use in
applications. As mentioned above, the most important examples of bilimits in descent
theory are descent objects and Eilenberg-Moore objects: thereby, Section 6 is dedicated to
explain how Eilenberg-Moore objects fit in our context, via the free adjunction 2-category
of [44].

In Section 7, we study the Beck-Chevalley condition: by doctrinal adjunction [26], this
is the necessary and sufficient condition to guarantee that a pointwise adjunction between
pseudoalgebras can be, actually, extended to an adjunction between such pseudoalgebras.
We show how it is related to commutativity of weighted bilimits, giving our first version
of a Bénabou-Roubaud Theorem (Theorem 7.4).

We apply our results to the usual context [22, 23] of descent theory in Section 8: we
prove a general version (Theorem 8.2) of the embedding results (Theorem 1.1), we prove
another Bénabou-Roubaud Theorem (Theorem 8.5) and, finally, we give a weak version
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of Theorem 1.6.
We finish the paper in Section 9: there, we give a stronger result on commutativity

(Theorem 9.2) and we apply our results to descent theory, proving Theorem 1.6 and the
Galois result of [20] (Theorem 9.8). Finally, we prove that V -Cat can be nicely embedded
in the category of internal categories CatpV q provided that V satisfies suitable hypotheses.
In this situation, we apply Theorem 1.6 to get effective descent morphisms of the category
of enriched categories V -Cat. We give instances of this result, getting effective descent
morphisms of Top-Cat and Cat-Cat.

This work was realized during my PhD program at University of Coimbra. I am
grateful to my supervisor Maria Manuel Clementino for her precious help, support and
attention. I also thank all the speakers of our informal seminar on descent theory for their
insightful talks: Maria Manuel Clementino, George Janelidze, Andrea Montoli, Dimitri
Chikhladze, Pier Basile and Manuela Sobral. Finally, I wish to thank Stephen Lack for
our brief conversations which helped me to understand aspects related to this work about
2-dimensional category theory, Kan extensions and coherence.

1. Basic Problem

In the context of [19, 22, 23, 24, 32, 43, 9], the very basic problem of descent is the
characterization of effective descent morphisms w.r.t. the basic fibration. As a conse-
quence of Bénabou-Roubaud Theorem [4], this problem is trivial for suitable categories
(for instance, for locally cartesian closed categories).

However there are remarkable examples of nontrivial characterizations. The topo-
logical case, solved by Tholen and Reiterman [43] and reformulated by Clementino and
Hofmann [8, 10], is an important example.

Below, we present some theorems classically used as a framework to deal with this
basic problem. In this paper, we show that most of these theorems are consequences of a
formal theorem presented in Section 2, while others are consequences of theorems about
bilimits.

Firstly, the most fundamental features of descent theory are the descent category and
its related factorization. Assuming that C is a category with pullbacks, if A : Cop Ñ CAT
is a pseudofunctor, the Descent Factorization is described by Janelidze and Tholen in [23].

We show in Section 4 that the concept of pseudo-Kan extension encompasses these
features. In fact, the comparison functor and the Descent Factorization (up to isomor-
phism) come from the unit and the triangular invertible modification of the (bi)adjunction
rt,CATspPSq % pPsqRant.

Secondly, for the nontrivial problems, the usual approach to study (basic/universal)
effective/almost descent morphisms is the embedding in well behaved categories, in which
“well behaved category” means just that we know which are the effective descent mor-
phisms of this category. For this matter, there are some theorems in [22, 19]. We state
below examples of these results:
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1.1. Theorem. Let U : C Ñ D be a pullback preserving functor between categories with
pullbacks.

1. If U is faithful, then U reflects almost descent morphisms;

2. If U is fully faithful, then U reflects descent morphisms.

1.2. Remark. The result on descent morphisms above can be seen as a consequence of
Proposition of 2.6 of [22].

1.3. Theorem. [22, 19] Let C and D be categories with pullbacks. If U : C Ñ D is a
fully faithful pullback preserving functor and Uppq is of effective descent in D, then p is
of effective descent if and only if it satisfies the following property: whenever the diagram
below is a pullback in D, there is an object C in C such that UpCq � A.

UpP q //

��

A

��
UpEq

Uppq
// UpBq

We show in Section 8 that Theorem 1.1 is a very easy consequence of formal and
commuting properties of pseudo-Kan extensions (Corollary 3.36 and Corollary 3.40) that
follow directly from results of Section 2, while we show in Section 9 that Theorem 1.3 is
a consequence of a theorem on bilimits (Theorem 9.4) which also implies the generalized
Galois Theorem of [20]. It is interesting to note that, since Theorems 1.1 and 1.3 are just
formal properties, they can be applied in other contexts – for instance, for morphisms
between pseudofunctors A : Cop Ñ CAT and B : Dop Ñ CAT, as it is explained in Section
8.

Finally, Bénabou-Roubaud Theorem [4, 22] is a celebrated result of Descent Theory
which allows us to understand some problems via monadicity: it says that monadic A-
descent theory is equivalent to Grothendieck A-descent theory in suitable cases, such as
the basic fibration. We demonstrate in Section 8 that it is also a corollary of formal results
of Section 2.

1.4. Theorem. [Bénabou-Roubaud [4, 22]] Let C be a category with pullbacks. If A :
Cop Ñ CAT is a pseudofunctor such that, for every morphism p : E Ñ B of C, Appq has
left adjoint Appq! and the invertible 2-cell induced by A below satisfies the Beck-Chevalley
condition, then the Descent Factorization is pseudonaturally equivalent to the Eilenberg-
Moore factorization. In other words, assuming the hypotheses above, Grothendieck A-
descent theory is equivalent to monadic descent theory.

ApBq
Appq

��

Appq // ApEq

��
�

ApEq // ApE �p Eq
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1.5. Open problems. Clementino and Hofmann [9] studied the problem of character-
ization of effective descent morphisms for pT, V q-categories provided that V is a lattice.
To deal with this problem, they used the embedding pT, V q-Cat Ñ pT, V q-Grph and The-
orems 1.1 and 1.3. However, for more general monoidal categories V , such inclusion is
not fully faithful and the characterization of effective descent morphisms still is an open
problem even for the simpler case of the category of enriched categories V -Cat.

As an application, we give some results about effective descent morphisms of V -Cat.
They are consequences of formal results given in this paper on effective descent morphisms
of categories constructed from other categories: more precisely, 2-dimensional limits of
categories.

More precisely, firstly we prove Theorem 1.6 in Section 9. Then, we prove that, if V
is a cartesian closed category satisfying suitable hypotheses and CatpV q is the category of
internal categories, there is a full inclusion V -Cat Ñ CatpV q which is the pseudopullback
of a suitable fully faithful functor Set Ñ V along the projection of the underlying object of
objects CatpV q Ñ V . In this case, we conclude that the inclusion reflects effective descent
morphisms by Theorem 1.6. Since the characterization of effective descent morphisms for
the category of internal categories in our setting was already done by Le Creurer [32], we
actually get effective descent morphisms for the category of V -enriched categories.

1.6. Theorem. Assume that the diagram of categories with pullbacks

B
S //

Z
��

C

F
��

D

�

G
// E

is a pseudopullback such that all the functors are pullback preserving functors. If p is
a morphism in B such that Sppq, Zppq are of effective descent and FSppq is a descent
morphism, then p is of effective descent.

2. Formal Results

Our perspective herein is that, instead of considering the problem of understanding the im-
age of a generic (pseudo)functor, the main theorems of descent theory usually deal with the
problem of understanding the pseudoalgebras of (fully) property-like (pseudo)monads [25].
It is easier to study these pseudoalgebras: they are just the objects that can be endowed
with a unique pseudoalgebra structure (up to isomorphism), or, more appropriately, the
effective descent points/objects.

Thereby results on pseudoalgebra structures are in the core of our formal approach. In
this section, we give the main results of this paper in this direction, restricting the scope
to idempotent pseudomonads. This setting is sufficient to deal with the classical descent
problem of [22, 23].
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We start by recalling basic results of bicategory theory [3, 47, 48]. To fix notation,
we give the definition of the tricategory of 2-categories, pseudofunctors, pseudonatural
transformations and modifications, denoted by 2-CAT. We refer to [34] for the omitted
coherence axioms of 2.1 to 2.9 and for the proof of Lemma 2.11.

Henceforth, in a given 2-category, we always denote by � the vertical composition of
2-cells and by � their horizontal composition.

2.1. Definition. [Pseudofunctor] Let A,B be 2-categories. A pseudofunctor A : AÑ B
is a pair pA, aq with the following data:

– Function A : objpAq Ñ objpBq;

– Functors A
XY

: ApX, Y q Ñ BpApXq,ApY qq;

– For each pair g : X Ñ Y, h : Y Ñ Z of 1-cells in A, an invertible 2-cell in B:
a
hg

: AphqApgq ñ Aphgq;

– For each object X of A, an invertible 2-cell a
X

: IdAX ñ ApIdX q in B;

subject to associativity, identity and naturality coherence axioms.

If A � pA, aq : A Ñ B and pB, bq : B Ñ C are pseudofunctors, we define the
composition as follows: B � A :� pBA, pbaqq, in which pbaq

hg
:� Bpa

hg
q � bAphqApgq and

pbaq
X

:� Bpa
X
q � bApXq . This composition is associative and it has trivial identities. A

pseudonatural transformation between pseudofunctors A ÝÑ B is a natural transforma-
tion in which the usual (natural) commutative squares are replaced by invertible 2-cells
plus coherence.

2.2. Definition. [Pseudonatural transformation] If A,B : A Ñ B are pseudofunctors,
a pseudonatural transformation α : A ÝÑ B is defined by:

– For each object X of A, a 1-cell α
X

: ApXq Ñ BpXq of B;

– For each 1-cell g : X Ñ Y of A, an invertible 2-cell αg : Bpgqα
X
ñ α

Y
Apgq of B;

such that coherence axioms of associativity, identity and naturality hold.

Firstly, the vertical composition, denoted by βα, of two pseudonatural transformations
α : Añ B, β : B ñ C is defined by

pβαq
W

:� β
W
α
W

ApW q
β
W
α
W //

Apfq
��

pβαq
f

ðùùù

CpW q

:�Cpfq
��

ApW q
α
W //

Apfq
��

α
f
ðù

BpW q

Bpfq
��

β
W //

β
f
ðù

CpW q

Cpfq
��

ApXq
β
X
α
X

// CpXq ApXq α
X

// BpXq
β
X

// CpXq
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Secondly, let pU , uq, pL, lq : BÑ C and A,B : AÑ B be pseudofunctors. If α : A ÝÑ B,
λ : U ÝÑ L are pseudonatural transformations, then the horizontal composition of U with

α, denoted by Uα, is defined by: pUαq
W

:� Upα
W
q and pUαq

f
:�

�
u
α
X

Apfq

	�1

� Upα
f
q �

uBpfqα
W

, while the composition λA is defined trivially. Thereby, we get the definition of

the horizontal composition

pλ � αq :� pλBqpUαq � pLαqpλAq.
Similarly, we get the three types of compositions of modifications.

2.3. Definition. [Modification] Let A,B : A Ñ B be pseudofunctors. If α, β : A ñ B
are pseudonatural transformations, a modification Γ : α ùñ β is defined by the following
data:

– For each object X of A, a 2-cell Γ
X

: α
X
ñ β

X
of B subject to one coherence axiom

of naturality.

It is straightforward to verify that 2-CAT is a tricategory which is locally a 2-category.
In particular, we denote by rA,BsPS the 2-category of pseudofunctors AÑ B, pseudonat-
ural transformations and modifications. Also, we have the bicategorical Yoneda lemma [47]
and, hence, the bicategorical Yoneda embedding Y : A Ñ rAop,CATsPS is locally an
equivalence (i.e. it induces equivalences between the hom-categories).

2.4. Lemma. [Bicategorical Yoneda Lemma [47]] The Yoneda embedding

Y : AÑ rAop,CATsPS : X ÞÑ Ap�, Xq

is locally an equivalence.

2.5. Definition. [Bicategorically representable] A pseudofunctor A : AÑ CAT is called
bicategorically representable if there is an object W of A such that A is pseudonaturally
equivalent to ApW,�q : A Ñ CAT. In this case, W endowed with a pseudonatural
equivalence A � ApW,�q is called the bicategorical representation of A.

By the bicategorical Yoneda lemma, if it exists, a bicategorical representation of a
pseudofunctor is unique up to equivalence.

2.6. Definition. [Bicategorical reflection] Let L : AÑ B be a pseudofunctor and X an
object of B such that BpL�, Xq : Aop Ñ CAT has a bicategorical representation UpXq.
If ε

X
: LUpXq Ñ X denotes the image of the identity on UpXq by the equivalence

ApUpXq,UpXqq � BpLUpXq, Xq,
the pair pUpXq, ε

X
q is called the right bicategorical reflection of X along L. In this case,

we often omit the morphism and say that UpXq is the right bicategorical reflection and
ε
X

is the universal arrow or counit of the right bicategorical reflection.

Since bicategorical representations are unique up to equivalence, right bicategorical
reflections are unique up to equivalence as well. This means that, whenever pUpXq1, ε1

X
q

and pUpXq, ε
X
q are right bicategorical reflections of X along L, there exists an equivalence

v : UpXq1 � UpXq such that there is an invertible 2-cell ε
X
Lpvq � ε1

X
.
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2.7. Remark. In the context of the definition above, it is easy to verify that pUpXq, ε
X
q

is a right bicategorical reflection of X along L if and only if

Ap�,UpXqq Ñ BpL�, Xq, f ÞÑ ε
X
Lpfq

defines a pseudonatural equivalence.

2.8. Remark. The dual notion is that of left bicategorical reflection. Namely, if it exists,
the left bicategorical reflection of X along L is the right bicategorical reflection of

Lop : Aop Ñ Bop.

Hence, if it exists, it consists of a pair pXL, ρX q in which XL is an object of A and
ρ
X

: X Ñ LpXLq is a morphism in B such that

ApXL,�q Ñ BpX,L�q, g ÞÑ Lpgq ρ
X

is a pseudonatural equivalence.

We say that L is left biadjoint to U : BÑ A if, for every object X of B, UpXq is the
right bicategorical reflection of X along L. In this case, we say that U is right biadjoint
to L. This definition of biadjunction is equivalent to Definition 2.9.

2.9. Definition. [Biadjunction] A pseudofunctor L : A Ñ B is left biadjoint to U if
there exist

1. pseudonatural transformations η : IdA ÝÑ UL and ε : LU ÝÑ IdB

2. invertible modifications s : IdL ùñ pεLq � pLηq and t : pUεq � pηUq ùñ IdU

satisfying coherence equations. In this case, pL % U , η, ε, s, tq : A Ñ B is a biadjunction.
Sometimes we omit the invertible modifications, denoting a biadjunction by pL % U , η, εq.

By the bicategorical Yoneda lemma, if L : A Ñ B is left biadjoint, its right biadjoint
U : BÑ A is unique up to pseudonatural equivalence. Furthermore, if L is left 2-adjoint,
it is left biadjoint.

2.10. Definition. A pseudofunctor U is a local equivalence if it induces equivalences
between the hom-categories.

2.11. Lemma. A right biadjoint U is a local equivalence if and only if the counit of the
biadjunction is a pseudonatural equivalence.
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2.12. Idempotent Pseudomonads. Since we deal only with idempotent pseudomon-
ads, we give an elementary approach focusing on them. The main benefit of this approach
is that idempotent pseudomonads have only free pseudoalgebras. For this reason, assum-
ing that η is the unit of an idempotent pseudomonad T , an object X can be endowed
with a T -pseudoalgebra structure if and only if η

X
: X Ñ T pXq is an equivalence.

Recall that a pseudomonad T on a 2-category H consists of a sextuple pT , µ, η,Λ, ρ,Γq,
in which T : H Ñ H is a pseudofunctor, µ : T 2 ÝÑ T , η : Id

H
ÝÑ T are pseudonatural

transformations and

T
ηT //

Λ
ðù

T 2

µ

��

TT ηoo

ρ
ðù

T 3 T µ //

µT
��

Γ
ðùù

T 2

µ

��
T T 2

µ
// T

are invertible modifications satisfying the following coherence equations [39, 34]:

– Identity:

T 2

T ηT

}}

T ηT

!!
Id

T 2

��

T 2

T ηT
��

T 3

µT !!

ρT
ðù T 3yT Λ

ðù

T µ}}

T 3

µT
}}

T µ
!!

T 2

µ

��

� T 2 Γ
ðùù

µ

!!

T 2

µ

}}
T T

– Associativity:

T 4 T 2µ //

T µT
!!

µT 2

��

T 3

T µ

!!

yT Γ
ðù

T 4 T 2µ //

µ�1
µ
ðùù

µT 2

��

T 3

µT
��

T µ

!!
T 3

µT !!

ΓT
ðù T 3 T µ //

µT
��

Γ
ðù

T 2

µ

��

� T 3 T µ //

µT !!

T 2 Γ
ðù

!!

Γ
ðù

T 2

µ

��
T 2

µ
// T T 2

µ
// T

in which yT Λ :� ptT q
�1 pT Λq

�
t
pµqpηT q

�
, xT Γ :�

�
t
pµqpµT q

��1
pT Γq

�
t
pµqpT µq

�
.

2.13. Definition. [Idempotent pseudomonad] A pseudomonad pT , µ, η,Λ, ρ,Γq is idem-
potent if there is an invertible modification ηT � T η.

Similarly to 1-dimensional monad theory, the name idempotent pseudomonad is justi-
fied by Lemma 2.14, which says that the multiplication of an idempotent pseudomonad
is a pseudonatural equivalence.
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2.14. Lemma. A pseudomonad pT , µ, η,Λ, ρ,Γq is idempotent if and only if the multi-
plication µ is a pseudonatural equivalence. In this case, ηT is an inverse equivalence of
µ.

Proof. Since µpηT q � IdT � µpT ηq, it is obvious that, if µ is a pseudonatural equiv-
alence, then ηT � T η. Therefore T is idempotent and ηT is an equivalence inverse of
µ.

Reciprocally, assume that T is idempotent. By the definition of pseudomonads, there
is an invertible modification µpηT q � IdT . And, since ηT � T η, we get the invertible
modifications

pηT qµ � pT µqpηT 2q � pT µqpT ηT q � T pµpηT qq � Id
T 2

which prove that µ is a pseudonatural equivalence and ηT is a pseudonatural equivalence
inverse.

The reader familiar with lax-idempotent/Kock-Zöberlein pseudomonads will notice
that an idempotent pseudomonad is just a Kock-Zöberlein pseudomonad whose adjunction
µ % ηT is actually an adjoint equivalence. Hence, idempotent pseudomonads are fully
property-like pseudomonads [25].

Every biadjunction induces a pseudomonad [29, 34]. In fact, we get the multiplica-
tion µ from the counit, and the invertible modifications Λ, ρ,Γ come from the invertible
modifications of Definition 2.9. Of course, a biadjunction L % U induces an idempotent
pseudomonad if and only if its unit η is such that ηUL � ULη. As a consequence of this
characterization, we have Lemma 2.15 which is necessary to give the Eilenberg-Moore
factorization for idempotent pseudomonads.

2.15. Lemma. A biadjunction pL % U , η, εq induces an idempotent pseudomonad if and
only if ηU : U ÝÑ ULU is a pseudonatural equivalence.

Proof. By the triangle invertible modifications of Definition 2.9, if ε is the counit of the
biadjunction L % U , pUεqpηUq � IdU . Also, since ULη � ηUL, we have the following
invertible modifications

pηUq � pUεq � pULUεqpηULUq � pULUεqpULηUq � ULpIdU q � IdULU

Therefore ηU is a pseudonatural equivalence.
Reciprocally, if ηU is a pseudonatural equivalence, so is ηUL. Therefore the multi-

plication of the induced pseudomonad is an inverse equivalence of ηUL and, by Lemma
2.14, we conclude that the induced pseudomonad is idempotent.

We can avoid the coherence equations [39, 29, 34] used to define the 2-category of
pseudoalgebras of a pseudomonad T when assuming that T is idempotent.
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2.16. Definition. [Pseudoalgebras] Let pT , µ, η,Λ, ρ,Γq be an idempotent pseudomonad
on a 2-category H. We define the 2-category of T -pseudoalgebras Ps-T -Alg as follows:

– Objects: the objects of Ps-T -Alg are the objects X of H such that

η
X

: X Ñ T pXq

is an equivalence;

– The inclusion objpPs-T -Algq Ñ objpHq extends to a full inclusion 2-functor

I : Ps-T -Alg Ñ H

In other words, the inclusion I : Ps-T -Alg Ñ H is defined to be final among the full
inclusions pI : AÑ H such that ηpI is a pseudonatural equivalence.

If η
X

: X Ñ T pXq is an equivalence, X can be endowed with a pseudoalgebra structure
and the left adjoint a : T pXq Ñ X to η

X
: X Ñ T pXq is called a pseudoalgebra structure

to X. Because we could describe Ps-T -Alg by means of pseudoalgebras/pseudoalgebra
structures, we often denote the objects of Ps-T -Alg by small letters a, b.

2.17. Theorem. [Eilenberg-Moore biadjunction] Let pT , µ, η,Λ, ρ,Γq be an idempotent
pseudomonad on a 2-category H. There is a unique pseudofunctor LT

such that

H T //

LT

$$

H

Ps-T -Alg

I

::

is a commutative diagram. Furthermore, LT
is left biadjoint to I.

Proof. Firstly, we define LT
pXq :� T pXq. On the one hand, it is well defined, since, by

Lemma 2.14,
ηT : T ÝÑ T 2

is a pseudonatural equivalence. On the other hand, the uniqueness of LT
is a consequence

of I being a monomorphism.
Now, it remains to show that LT

is left biadjoint to I. By abuse of language, if a is
an object of Ps-T -Alg, we denote by a its pseudoalgebra structure (of Definition 2.16).
Then we define the mutually inverse equivalences below

Ps-T -AlgpT pXq, bq Ñ HpX, Ipbqq
f ÞÑ fη

X

α ÞÑ α � Idη
X

HpX, Ipbqq Ñ Ps-T -AlgpT pXq, bq
g ÞÑ bT pgq

β ÞÑ Id
b
� T pβq

It completes the proof that LT
% I.
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Theorem 2.18 shows that this biadjunction LT
% I satisfies the expected universal

property [29] of the 2-category of pseudoalgebras, which is the Eilenberg-Moore factor-
ization. In other words, we prove that our definition of Ps-T -Alg for idempotent pseu-
domonads T agrees with the usual definition [33, 29, 39, 47] of pseudoalgebras for a
pseudomonad.

2.18. Theorem. [Eilenberg-Moore] If L % U is a biadjunction which induces an idem-
potent pseudomonad pT , µ, η,Λ, ρ,Γq, then we have a unique comparison pseudofunctor
K : BÑ Ps-T -Alg such that

B
K //

U
$$

Ps-T -Alg

I
��

A
LT
//

L
$$

Ps-T -Alg

A B

K

OO

commute.

Proof. It is enough to define KpXq � UpXq and Kpfq � Upfq. This is well defined,
since, by Lemma 2.15, ηU : U ÝÑ T U is a pseudonatural equivalence.

Actually, in 2-CAT, every biadjunction L % U induces a comparison pseudofunctor
and an Eilenberg-Moore factorization [33] as above, in which T � UL denotes the induced
pseudomonad. When the comparison pseudofunctor K is a biequivalence, we say that U
is pseudomonadic. Although there is the Beck’s theorem for pseudomonads [33, 18, 34],
the setting of idempotent pseudomonads is simpler.

2.19. Theorem. Let L % U be a biadjunction. The pseudofunctor U is a local equiv-
alence (or, equivalently, the counit is a pseudonatural equivalence) if and only if U is
pseudomonadic and the induced pseudomonad is idempotent.

Proof. Firstly, if the counit ε of the biadjunction of L % U is a pseudonatural equiva-
lence, then µ :� UεL is a pseudonatural equivalence as well. And, thereby, the induced
pseudomonad is idempotent. Now, if a : T pXq Ñ X is a pseudoalgebra structure to X,
we have that

KpLpXqq � T pXq �
a // X.

Thereby U is pseudomonadic.
Reciprocally, if L % U induces an idempotent pseudomonad and U is pseudomonadic,

then we have that I �K � U , K is a biequivalence and I is a local equivalence. Thereby
U is a local equivalence and ε is a pseudonatural equivalence.

In descent theory, one needs conditions to decide if a given object can be endowed
with a pseudoalgebra structure. Idempotent pseudomonads provide the following simpli-
fication.
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2.20. Theorem. Let T � pT , µ, η,Λ, ρ,Γq be an idempotent pseudomonad on H. Given
an object X of H, the following conditions are equivalent:

1. The object X can be endowed with a T -pseudoalgebra structure;

2. η
X

: X Ñ T pXq is a pseudosection, i.e. there is a : T pXq Ñ X such that aη
X
� Id

X
;

3. η
X

: X Ñ T pXq is an equivalence.

Proof. Assume that η
X

: X Ñ T pXq is a pseudosection. By hypothesis, there is a :
T pXq Ñ X such that aη

X
� Id

X
. Thereby

η
X
a � T paqηT pXq � T paqT pηX q � T paηX q � IdT pXq .

Hence η
X

is an equivalence.

2.21. Biadjoint Triangle Theorem. The main result of this formal approach is
somehow related to distributive laws of pseudomonads [39, 40]. However, we choose a
more direct approach, avoiding some technicalities of distributive laws unnecessary to our
setting. To give such direct approach, we use the Biadjoint Triangle Theorem 2.23.

Precisely, we give a bicategorical analogue (for idempotent pseudomonads) of an ad-
joint triangle theorem [11, 1, 41]. It is important to note that this bicategorical version
holds for more general biadjoint triangles [34, 35, 37], so that our restriction to the idem-
potent version is due to our scope.

2.22. Lemma. Let pL % U , η, εq and p pL % pU , pη, pεq be biadjunctions. Assume that pL % pU
induces an idempotent pseudomonad and that there is a pseudonatural equivalence

A

�

BEoo

C

L

__

pL

??

If η
X

is a pseudosection, then pη
X

is an equivalence.

Proof. Let X be an object of C such that η
X

: X Ñ ULpXq is pseudosection. By
Theorem 2.20, it is enough to prove that pη

X
is a pseudosection, because the pseudomonad

induced by pL % pU is idempotent.
To prove that pη

X
is a pseudosection, we construct a pseudonatural transformation

α : pU pL ÝÑ UL such that there is an invertible modification

Id
C

�pη
}}

η

!!pU pL α // UL
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Without losing generality, we assume that E � pL � L. Then we define α :� pUEpε pLqpη pU pLq.
Indeed,

αpη � pUEpε pLq�η pU pL	 ppηq � pUEpε pLq pULpηq pηq � pUEpε pLq�UE pLpη	 pηq � η

Therefore, if η
X

is a pseudosection, so is pη
X

. And, as mentioned, by Theorem 2.20, if pη
X

is a pseudosection, it is an equivalence.

Let pT be the idempotent pseudomonad induced by pL % pU and T the pseudomonad
induced by L % U . Then Lemma 2.22 could be written as follows:

If X is an object of C that can be endowed with a T -pseudoalgebra structure, then X
can be endowed with a pT -pseudoalgebra structure, provided that there is a pseudonatural
equivalence E pL � L.

2.23. Theorem. Let pL % U , η, εq and p pL % pU , pη, pεq be biadjunctions such that their
right biadjoints are local equivalences. If there is a pseudonatural equivalence

A

�

BEoo

C

L

__

pL

??

then E is left biadjoint to a pseudofunctor R which is a local equivalence.

Proof. It is enough to define R :� pLU . By Lemma 2.22, ppηUq : U ÝÑ pU pLU � pUR is a
pseudonatural equivalence. Thereby we get

ApEpbq, aq � ApE pL pUpbq, aq � ApL pUpbq, aq � Cp pUpbq,Upaqq � Cp pUpbq, pURpaqq � Bpb, Rpaqq.

This completes the proof that R is right biadjoint to E.

Assume that A : A Ñ B and B : B Ñ C are pseudomonadic pseudofunctors, and
their induced pseudomonads are idempotent. Then it is obvious that B � A : A Ñ C is
also pseudomonadic and induces an idempotent pseudomonad. Indeed, by Theorem 2.19,
this statement is equivalent to: compositions of right biadjoint local equivalences are right
biadjoint local equivalences as well.

2.24. Corollary. Assume that there is a pseudonatural equivalence

A

�

HEoo

B

L
A

OO

CL
B

oo

L
C

OO

such that L
A
% A, L

B
% B and L

C
% C are pseudomonadic biadjunctions inducing

idempotent pseudomonads TA , TB , TC . Then E % R and R is a local equivalence.
In particular, if pX, aq is a TB-pseudoalgebra that can be endowed with a TA-pseudoalg-

ebra structure, then X can be endowed with a TC -pseudoalgebra structure as well.
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Lemma 2.22 and Corollary 2.24 are results on our formal approach to descent theory,
i.e. they give conditions to decide whether a given object can be endowed with a pseudoal-
gebra structure. In fact, most of the theorems proved in this paper are consequences of
successive applications of these results, including Bénabou-Roubaud Theorem and other
theorems within the context of [22, 23]. However it does not deal with the technical
“almost descent” aspects, which follow from the results on F-comparisons below.

2.25. F-comparisons. Instead of restricting attention to objects that can be endowed
with a pseudoalgebra structure, we often are interested in almost descent and descent
objects as well. In the context of idempotent pseudomonads, these are objects that
possibly do not have pseudoalgebra structure but have comparison 1-cells belonging to
special classes of morphisms.

In this subsection, every 2-category H is assumed to be endowed with a special subclass
of morphisms F

H
satisfying the following properties:

– Every equivalence of H belongs to F
H
;

– F
H

is closed under composition;

– If there is an invertible 2-cell f ñ h in H such that f P F
H
, then h P F

H
;

– (Left) cancellation property: if fg and f belong to F
H
, g belongs to F

H
as well.

If f is a morphism of H that belongs to F
H
, we say that f is an F

H
-morphism.

2.26. Remark. Recall that a morphism in a 2-category is faithful/fully faithful if its
images by the representable 2-functors are faithful/fully faithful. Given any 2-category
H, there are at least three important examples of subclasses of morphisms satisfying
the properties above. The first class is the class of equivalences of H. The others are
respectively the classes of faithful and fully faithful morphisms of H.

2.27. Definition. Let pT , µ, η,Λ, ρ,Γq be an idempotent pseudomonad on a 2-category
H. An object X is an pF

H
, T q-object if the comparison η

X
: X Ñ T pXq is an F

H
-morphism.

We say that a pseudofunctor E : H Ñ H preserves pF
H
, T q-objects if it takes pF

H
, T q-

objects to pF
H
, T q-objects.

Theorem 2.28 follows from the construction given in the proof of Lemma 2.22. Simi-
larly to Corollary 2.24, Theorem 2.28 is a commutativity result for pF

H
, T q-objects.

2.28. Theorem. Let
A

�

HEoo

B

L
A

OO

CL
B

oo

L
C

OO

be a pseudonatural equivalence such that L
A
% A, L

B
% B and L

C
% C are biadjunctions

inducing pseudomonads TA , TB , TC . Also, we denote by T the pseudomonad induced by the
biadjunction L

A
L

B
% BA.
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Assume that all the right biadjoints are local equivalences, B takes F
B

-morphisms to
F

C
-morphisms and TC preserves pF

C
, T q-objects. If X is a pF

C
, TBq-object of C and L

B
pXq

is a pF
B
, TAq-object, then X is a pF

C
, TCq-object as well.

Proof. By the composition of biadjunctions, the unit η of T is such that, for each object
Y of C,

η
Y
�
�
BηAL

B

	
Y

η
B

Y
.

Let X be an object satisfying the hypotheses of the theorem. We have that
�
BηAL

B

	
X

and η
B

X
are F

C
-morphisms. Hence, by the closure under composition and by the invertible

2-cell above, we conclude that η
X

is an F
C
-morphism.

By the proof of Lemma 2.22, there is a pseudonatural transformation α : TC ÝÑ T
such that we have in particular an invertible 2-cell

X

�η
C
X||

η
X

""
TCpXq α

X
// T pXq.

By the left cancellation property of the subclass F
C

and by the invertible 2-cell above,
we only need to prove that α

X
is an F

C
-morphism to complete our proof that η

C

X
is an

F
C
-morphism.
Recall that α

X
is defined by

α
X

:� pBAεCL
C
q
X
pηTCqX ,

in which ε
C

is the counit of the biadjunction L
C
% C.

Firstly, pBAεCL
C
q
X

is an equivalence. Secondly, since TC preserves pF
C
, T q-objects,

pηTCqX � pTCηqX is an F
C
-morphism. Therefore α

X
is a composition of F

C
-morphisms

and, hence, an F
C
-morphism as well.

The result above can be seen as a generalization of Corollary 2.24, since we get that
corollary from Theorem 2.28 by defining the classes F

A
, F

B
, F

C
to be the classes of

equivalences.

3. Pseudo-Kan Extensions

It is known that the descent category and the category of algebras are 2-categorical limits
(see, for instance, [46, 47, 21]). Thereby, our standpoint is to deal with the context of
[22, 23] strictly guided by bilimits results.

For the sake of this aim, we focus our study on the pseudomonads coming from the
bicategorical analogue of the notion of right Kan extension. Actually, since the concept
of “right Kan extension” plays the leading role in this work, “(pseudo-)Kan extension”
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means always right (pseudo-)Kan extension, while we always make the word “left” explicit
when we refer to the dual notion.

We explain below why we need to use a bicategorical notion of Kan extension, instead
of employing the fully developed theory of enriched Kan extensions. The natural setting
of (classical) descent theory is 2-CAT. Although we can construct the bilimits related
to descent theory as (enriched/strict) Kan extensions of 2-functors in the 3-category of
2-categories, 2-functors, 2-natural transformations and modifications (see [46, 42, 34, 35]),
the necessary replacements [28, 34] do not make computations and formal manipulations
any easier.

Furthermore, most of the transformations between 2-functors that are necessary in the
development of the theory are pseudonatural. Thus, to work within the “strict world”
without employing repeatedly coherence theorems (such as the general coherence result of
[28]), we would need to add hypotheses to assure that usual Kan extensions of pseudonat-
urally equivalent diagrams are pseudonaturally equivalent. This is not true in most of the
cases: it is easy to construct examples of pseudonaturally isomorphic diagrams such that
their usual Kan extensions are not pseudonaturally equivalent. For instance, consider the
2-category A below.

1
d0
//

d1
// 2

The 2-category A has no nontrivial 2-cells. Assume that 9A is the 2-category obtained
from A adding an initial object 0, with full inclusion t : AÑ 9A. Now, if � is the terminal
category and ∇2 is the category with two objects and one isomorphism between them
(i.e. ∇2 is the localization of the preorder 2 w.r.t. all morphisms), then there are two
2-natural isomorphism classes of diagrams A Ñ CAT of the type below, while all such
diagrams are pseudonaturally isomorphic.

� // // ∇2

These 2-natural isomorphism classes give pseudonaturally nonequivalent Kan extensions
along t. More precisely, if X ,Y : A Ñ CAT are such that X p1q � Yp1q � �, X p2q �
Yp2q � ∇2, X pd0q � X pd1q and Ypd0q � Ypd1q; then RantX p0q � H, while RantYp0q �
�. Therefore RantX and RantY are not pseudonaturally equivalent, while X is pseudo-
naturally isomorphic to Y .

The usual Kan extensions behave well if we add extra hypotheses related to flexible di-
agrams (see [5, 6, 42, 28, 34]). However, we do not give such restrictions and technicalities.
Thereby we deal with the problems natively in the tricategory 2-CAT, without employing
further coherence results. The first step is, hence, to understand the appropriate notion
of Kan extension in this tricategory.

3.1. The Definition. In a given tricategory, if t : aÑ b, f : aÑ c are 1-cells, we might
consider that the formal right Kan extension of f along t is the right 2-reflection of f along
the 2-functor rt, cs : rb, cs Ñ ra, cs. That is to say, if it exists for all f : aÑ c, the (formal)
global Kan extension along t : a Ñ b would be a 2-functor ra, cs Ñ rb, cs right 2-adjoint
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to rt, cs : rb, cs Ñ ra, cs. But, in important cases, such concept is very restrictive, because
it does not take into account the bicategorical structure of the hom-2-categories of the
tricategory. Hence, it is possible to consider other notions of Kan extension, corresponding
to the two other important notions of adjunctions between 2-categories [16], that is to say,
lax adjunction and biadjunction. For instance, Gray [15] studied the notion of lax-Kan
extension.

We also consider an alternative notion of Kan extension in our tricategory 2-CAT,
that is to say, the notion of pseudo-Kan extension, introduced in [34]. In our case, the
need of this concept comes from the fact that, even with many assumptions, the (formal)
Kan extension of a pseudofunctor may not exist. Furthermore, we prove in Section 4 that
the descent object (descent category) and the Eilenberg-Moore object (Eilenberg-Moore
category) can be easily described using our language.

Henceforth, A,B always denote small 2-categories. If t : A Ñ B and A : A Ñ H
are pseudofunctors, a right pseudo-Kan extension of A along t, denoted by PsRantA,
is, if it exists, a right bicategorical reflection of A : A Ñ H along the pseudofunctor
rt,HsPS : rB,HsPS Ñ rA,HsPS. Although it is omitted in our notation, every right
pseudo-Kan extension comes with a universal arrow

εA : pPsRantAq � t ÝÑ A

by Definition 2.6 of right bicategorical reflection. Furthermore, by Remark 2.7 we could
actually give the definition of pseudo-Kan extension via the property of this universal
arrow. That is to say, pPsRantA, εAq is the right pseudo-Kan extension of A along t if
and only if

rB,HsPS p�,PsRantAq Ñ rA,HsPS p� � t,Aq : α ÞÑ εA pαtq

defines a pseudonatural equivalence. By uniqueness (up to equivalence) of bicategorical
reflections, pseudo-Kan extensions are unique up to pseudonatural equivalence.

The global right pseudo-Kan extension along t : A Ñ B w.r.t. a 2-category H is
the right biadjoint of rt,HsPS, provided that it exists. That is to say, a pseudofunctor
PsRant : rA,HsPS Ñ rB,HsPS such that rt,HsPS % PsRant.

Herein, the expression Kan extension refers to the usual notion of Kan extension in
CAT-enriched category theory. That is to say, if t : AÑ B and A : AÑ H are 2-functors,
the (right) Kan extension of A along t, denoted by RantA : B Ñ H, is (if it exists) the
right 2-reflection of A along the 2-functor rt,Hs. And the global Kan extension is a right
2-adjoint of rt,Hs : rB,Hs Ñ rA,Hs , in which rB,Hs denotes the 2-category of 2-functors
BÑ H, CAT-natural transformations and modifications.

If RantA exists, it is not generally true that RantA is pseudonaturally equivalent to
PsRantA. This is a coherence problem, related to flexible diagrams [6, 28, 5, 34] and
to the construction of bilimits via strict 2-limits [46, 47]. For instance, in particular,
using the results of [34], we can easily prove that, for a given pseudofunctor A : A Ñ H
and a 2-functor t : A Ñ B, we can replace A by a pseudonaturally equivalent 2-functor
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A1 : A Ñ H such that RantA1 is equivalent to PsRantA1 � PsRantA, provided that H
satisfies some completeness conditions (for instance, if H is CAT-complete).

In Section 4 we show that the descent category, as defined and studied in [48, 22, 23],
of a pseudocosimplicial object D : ∆ Ñ CAT is equivalent to PsRanjDp0q, in which

j : ∆ Ñ 9∆ is the inclusion of the category of nonempty finite ordinals into the category
of finite ordinals. Observe that the Kan extension of a cosimplicial object does not give
the descent object: it gives an equalizer (which is the notion of descent for dimension
1), although we might give the descent object via a Kan extension after replacing the
(pseudo)cosimplicial objects by suitable strict versions of pseudocosimplicial objects as it
is done in 4.12.

3.2. Factorization. Our setting often reduces to the study of right pseudo-Kan exten-
sions of pseudofunctors A : A Ñ H along t, in which t : A Ñ 9A is the full inclusion of a
small 2-category A into a small 2-category 9A which has only one extra object a.

3.3. Definition. [a-inclusion] A 2-functor t : A Ñ 9A is called an a-inclusion, if a is an
object of 9A and t is a fully faithful functor between small 2-categories in which

objp 9Aq � objpAq Y tau

is a disjoint union.

3.4. Remark. The terminology established in the definition above makes reference to
the extra object. Hence, using this terminology, a full inclusion B Ñ 9B between small
2-categories in which objp 9Bq � objpBq Y tbu is called a b-inclusion.

3.5. Remark. Theorem 3.19 shows that a right pseudo-Kan extension of a pseudofunc-
tor A : A Ñ H along an a-inclusion t is precisely A extended with a weighted bilimit
bilimp 9Apa, t�q,Aq whenever such weighted bilimit exists. Thereby a-inclusions are pre-
cisely what we need to give statements and proofs on (weighted) bilimits via pseudo-Kan
extensions.

In this setting, we have factorizations for pseudo-Kan extensions along a-inclusions,
which follow formally from the biadjunction rt,HsPS % PsRant.

3.6. Theorem. [Factorization] Assume that prt,HsPS % PsRant, η, εq is a biadjunction

and t : A Ñ 9A is an a-inclusion. If A : 9A Ñ H is a pseudofunctor, a � b and f : b Ñ a,
g : aÑ b are morphisms of 9A, we get induced “factorizations” (actually, invertible 2-cells):

Apbq Apfq //

fA
&&

Apaq
ηa
A

xx

Apaq Apgq //

ηa
A

&&

Apbq

PsRantpA � tqpaq

�

PsRantpA � tqpaq

� gA

88

in which

f
A

:� PsRantpA � tqpfq � ηb
A

g
A

:� εb
pA�tq

� PsRantpA � tqpgq

and ηa
A

, εb
pA�tq

are the 1-cells induced by the components of η and ε.
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Proof. By the triangular invertible modifications of Definition 2.9,

g
A
� ηa

A
� εb

pA�tq
� PsRantpA � tqpgq � ηa

A
� εb

pA�tq
� ηb

A
�Apgq � Apgq

The factorization involving Apfq follows from the pseudonaturality of η.

3.7. Remark. Using the results of 3.18 below, we find the factorizations above to be
properties of (weighted) bilimits as we show in Section 5. For instance, we get the usual
Descent Factorization and the Eilenberg-Moore factorization, respectively, in Sections 4
and 6.

3.8. Weighted bilimits. Similarly to the usual approach for (enriched) Kan extensions,
we define what should be called pointwise pseudo-Kan extension. We prove that pseudo-
Kan extensions exist and are pointwise whenever the codomain has suitable weighted
bilimits.

Pointwise (left) pseudo-Kan extensions are constructed with weighted bi(co)limits [34,
42, 47, 48], the bicategorical analogue of (enriched) weighted (co)limits [27, 12]. Thereby
we list some needed results on weighted bilimits.

3.9. Definition. [Weighted bilimit] Let W : A Ñ CAT and A : A Ñ H be pseudofunc-
tors. If it exists, a weighted bilimit of A with weight W is an object of H, denoted by
tW ,Aubi or by bilimpW ,Aq, endowed with an equivalence (pseudonatural in X)

HpX, bilimpW ,Aqq � rA,CATsPS pW ,HpX,A�qq,

which means that bilimpW ,Aq is a bicategorical representation of

Hop Ñ CAT : X ÞÑ rA,CATsPS pW ,HpX,A�qq.

In other words, a weighted bilimit is, if it exists, the left bicategorical reflection of W
along the 2-functor

Hop Ñ rA,CATsPS : X ÞÑ HpX,A�q, f ÞÑ Hpf,A�q.

By the uniqueness of the right bicategorical reflection, bilimpW ,Aq is unique up to equiv-
alence. We refer to it as the (W-weighted) bilimit (of A).

By Remark 2.7, in the context of the definition above, the weighted bilimit is a pair
pbilimpW ,Aq, ρAq in which bilimpW ,Aq is an object of H and

ρ
bilimpW,Aq :W ÝÑ HpbilimpW ,Aq,A�q

is a pseudonatural transformation such that

HpX, bilimpW ,Aqq Ñ rA,CATsPS pW ,HpX,A�qq, f ÞÑ Hpf,A�q ρ
bilimpW,Aq

is an equivalence pseudonatural in X.
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3.10. Remark. [Weighted bicolimit] The dual notion is called weighted bicolimit. If it
exists, given a pseudofunctor W 1 : Aop Ñ CAT, the W 1-weighted bicolimit of A, de-
noted by W 1 �bi A or by bicolimpW 1,Aq, is an object of H endowed with an equivalence
(pseudonatural in X)

rA,CATsPSpW 1,HpA�, Xqq � HpbicolimpW 1,Aq, Xq.
3.11. Remark. [Conical Bilimit] Analogously to the enriched case, denoting by J the ap-
propriate 2-functor constantly equal to the terminal category, the J-weighted bi(co)limit
of a pseudofunctor A : AÑ H is the conical bi(co)limit of A provided that it exists.

The 2-category CAT is bicategorically complete, that is to say, it has all (small)
weighted bilimits. Indeed, if W ,A : AÑ CAT are pseudofunctors, we have that

bilimpW ,Aq � rA,CATsPSpW ,Aq.
Moreover, from the bicategorical Yoneda lemma, we get the strong bicategorical Yoneda
lemma.

3.12. Lemma. [Yoneda Lemma] Let A : AÑ H be a pseudofunctor. There is an equiva-
lence bilimpApX,�q,Aq � ApXq pseudonatural in X.

Before giving results on pointwise pseudo-Kan extensions, the following result, which
is mainly used in Section 4, already gives a glimpse of the relation between weighted
bilimits and pseudo-Kan extensions.

3.13. Theorem. Let t : A Ñ B, W : A Ñ CAT be pseudofunctors. If the left pseudo-
Kan extension PsLantW exists and A : B Ñ H is a pseudofunctor, then there is an
equivalence

bilimpW ,A � tq � bilimpPsLantW ,Aq
either side existing if the other does.

Proof. Assuming that PsLantW exists, we have a pseudonatural equivalence between
the 2-functors

X ÞÑ rB,CATsPS pW ,HpX,A � t�qq and X ÞÑ rA,CATsPS pPsLantW ,HpX,A�qq.
Therefore, assuming that any of the 2-functors above has a bicategorical representation
Y , we get that Y is indeed a bicategorical representation of both 2-functors.

3.14. Pseudoends. There is one important notion remaining to study weighted bilim-
its: the bicategorical analogue of the end [27, 12]. Below and in [34], we give a direct
definition of pseudoend, avoiding the unnecessary work on bicategorical analogues of the
extranatural transformations of the classical enriched case. In order to do this, we con-
sider the usual characterization of the end of a 2-functor T : Aop � A Ñ CAT in the
strict/enriched case given by:

rAop � A,CATs pAp�,�q, T q.

Herein, we do not work with ends and, hence, we reserve the integral sign to denote
pseudoends.
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3.15. Definition. [Pseudoend] The pseudoend of a pseudofunctor T : Aop � A Ñ CAT
is »

A

T :� rAop � A,CATsPSpAp�,�q, T q � bilimpAp�,�q, T q.

In order to avoid possible confusions when stating results that involve iterated pseu-
doends, we often adopt a terminology in which the pseudoend is indexed by the variable
as well. That is to say, we use the following terminology:»

aPA

T pa, aq :�

»
A

T.

This definition allows us to get analogues of the usual fundamental results on ends of
the strict/enriched case [27, 12]. We start by:

3.16. Proposition. [Fundamental equivalence for pseudoends] Let A,B : A Ñ H be
pseudofunctors. There is a pseudonatural equivalence»

aPA

HpApaq,Bpaqq � rA,HsPSpA,Bq.

Proof. Firstly, observe that a pseudonatural transformation

α : Ap�,�q ÝÑ HpA�,B�q

corresponds to a collection of 1-cells α
pW,Xq

: ApW,Xq Ñ HpApW q,BpXqq and collections
of invertible 2-cells

α
pY,fq

: HpApY q,Bpfqqα
pY,W q

� α
pY,Xq

ApY, fq

α
pf,Y q

: HpApfq,BpY qqα
pX,Y q

� α
pW,Y q

Apf, Y q

such that, for each object Y of A, α
pY,�q

and α
p�,Y q

(with the invertible 2-cells above)
are pseudonatural transformations. In other words, pseudonatural transformations are
transformations which are pseudonatural in each variable.

By the bicategorical Yoneda lemma, we get what we want: such a pseudonatural
transformation corresponds (up to isomorphism) to a collection of 1-cells

γ
W

:� α
W,W

pId
W
q : ApW q Ñ BpW q

with (coherent) invertible 2-cells Bpfq � γ
W
� γ

W
�Apfq.

Hence, the original bicategorical Yoneda lemma may be reinterpreted. Given a pseud-
ofunctor A : AÑ CAT, we have an equivalence»

aPA

CATpApX, aq,Apaqq � ApXq

pseudonatural in X. Theorem 3.17 is the bicategorical analogue of the Fubini’s Theorem
in the enriched context.
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3.17. Theorem. Given a pseudofunctor T : Aop � Bop � A � Bop Ñ CAT, there are
pseudofunctors T

B
: Aop � AÑ CAT and T

A
: Bop �BÑ CAT such that

T
B

pX, Y q �

»
bPB

T pX, b, Y, bq and T
A

pW,Zq �

»
aPA

T pa,W, a, Zq.

Furthermore,

»
A�B

T �

»
A

T
B

�

»
B

T
A

.

We usually denote the iterated pseudoends of the result above by:»
aPA

»
bPB

T pa, b, a, bq :�

»
A

T
B

and

»
bPB

»
aPA

T pa, b, a, bq :�

»
B

T
A

.

3.18. Pointwise pseudo-Kan extensions. If we consider the full 2-subcategory HY
of rBop,CATsPS such that the objects of HY are the bicategorically representable pseud-
ofunctors of a 2-category H, the Yoneda embedding Y : H Ñ HY is a biequivalence: that
is to say, we can choose a pseudofunctor I : HY Ñ H and pseudonatural equivalences
YI � Id and IY � Id.

Therefore if H has all the weighted bilimits of a pseudofunctor A : A Ñ H, there
is a pseudofunctor bilimp�,Aq : rA,CATsop

PS Ñ H which is unique up to pseudonatural
equivalence and which gives the bilimits of A [46, 34]. More precisely, in this case, we are
actually assuming that the pseudofunctor F : rA,CATsop

PS Ñ rHop,CATsPS, in which

F pWq : Bop Ñ CAT : X ÞÑ rA,CATsPS pW ,HpX,A�qq

is such that F pWq has a bicategorical representation for every weight W : A Ñ CAT.
Therefore F can be lifted to a pseudofunctor F : rA,CATsop

PS Ñ HY . Hence we can take
bilimp�,Aq :� IF .

3.19. Theorem. Assume that A : A Ñ H, t : A Ñ B are pseudofunctors. If H has
the weighted bilimit bilimpBpb, t�q,Aq for every object b of B, then PsRantA exists.
Furthermore, there is an equivalence

PsRantApbq � bilimpBpb, t�q,Aq

pseudonatural in b.

Proof. In this proof, we denote by RAN tA the pseudofunctor defined by

RAN tApbq :� bilimpBpb, t�q,Aq.

By the propositions presented in this section, we have the following pseudonatural equiv-
alences (in S):
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rB,HsPS pS,RAN tAq �

»
bPB

HpSpbq,RAN tApbqq

�

»
bPB

HpSpbq, bilimpBpb, t�q,Aqq

�

»
bPB

rA,CATsPS pBpb, t�q,HpSpbq,A�qq

�

»
bPB

»
aPA

CATpBpb, tpaqq,HpSpbq,Apaqqq

�

»
aPA

»
bPB

CATpBpb, tpaqq,HpSpbq,Apaqqq

�

»
aPA

HpS � tpaq,Apaqq

� rA,HsPS pS � t,Aq.

More precisely, the first, fourth, sixth and seventh pseudonatural equivalences come from
the fundamental equivalence for pseudoends (Proposition 3.16), while the second and third
are, respectively, the definitions of RAN tA and the definition of weighted bilimit. The
remaining pseudonatural equivalence follows from Theorem 3.17. These pseudonatural
equivalences show that PsRantA exists and PsRantA � RAN tA.

3.20. Corollary. Assume that A : A Ñ CAT, t : A Ñ B are pseudofunctors. Then
PsRantA exists and

PsRantApbq � rA,CATsPS pBpb, t�q,Aq.

Proof. This result follows from Theorem 3.19 and from the fact that

bilimpBpb, t�q,Aq � rA,CATsPS pBpb, t�q,Aq.

3.21. Remark. It is clear that Theorem 3.19 has a dual. That is, we have an equivalence
PsLantApbq � bicolimpBpt�, bq,Aq pseudonatural in b whenever bicolimpBpt�, bq,Aq
exists for each b in B.

3.22. Remark. By Remark 3.11 and Theorem 3.19, if A : AÑ H is a pseudofunctor, if
it exists, the conical bilimit of A is equivalent to PsRantpAqpaq � bilimp 9Apa, t�q,Aq in
which t : AÑ 9A is the a-inclusion such that a is the initial object added to A.

3.23. Definition. [Preservation of pseudo-Kan extensions] Let U : HÑ H1, A : AÑ H
and t : A Ñ B be pseudofunctors. Assume that PsRantA exists and has the universal
arrow εA . We say that U preserves this pseudo-Kan extension if

PsRantpU �Aq � U � PsRantA and UεA : pU � PsRantAq � t ÝÑ U �A

is the universal arrow of PsRantpU �Aq.
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3.24. Lemma. If U has a left biadjoint, then it preserves all the existing right pseudo-Kan
extensions.

3.25. Definition. [Pointwise pseudo-Kan extension] Let t : A Ñ B,A : A Ñ H be
pseudofunctors such that PsRantA exists. We say that PsRantA is a pointwise (right)
pseudo-Kan extension of A along t if PsRantA is preserved by all representable pseudo-
functors.

3.26. Remark. The definition of pointwise pseudo-Kan extension is motivated by the
usual definition of pointwise Kan extension in the strict/enriched case. See page 240 of
[38] or page 52 and 54 of [12].

Analogously to the enriched case (see [12]), pointwise pseudo-Kan extensions are point-
wise constructed as in Theorem 3.19 by weighted bilimits. Corollary 3.27 makes this
statement precise.

3.27. Corollary. Assume that A : A Ñ H, t : A Ñ B are pseudofunctors. The
pseudofunctor A has a pointwise pseudo-Kan extension PsRantA if and only if H has
the weighted bilimit bilimpBpb, t�q,Aq for every object b of B. In this case, there is an
equivalence

PsRantApbq � bilimpBpb, t�q,Aq
pseudonatural in b.

Proof. Firstly, assume that PsRantA is pointwise. Since it is pointwise, we have an
equivalence

HpX,PsRantApbqq � PsRantHpX,A�qpbq
pseudonatural in b, while, by the bicategorical Yoneda lemma and the universal property
of PsRantHpX,A�q, we have an equivalence

PsRantHpX,A�qpbq � rB,CATsPS pBpb,�q,PsRantHpX,A�qq
� rA,CATsPS pBpb, t�q,HpX,A�qq

pseudonatural in b. This completes the proof that PsRantApbq is the left bicategorical
reflection of Bpb, t�q along

Hop Ñ rA,CATsPS : X ÞÑ HpX,A�q,

which means that bilimpBpb, t�q,Aq exists and PsRantApbq � bilimpBpb, t�q,Aq pseudo-
natural in b.

Reciprocally, assume that bilimpBpb, t�q,Aq exists for every b in B. In this case, by
Theorem 3.19 PsRantA exists and there is an equivalence

bilimpBpb, t�q,Aq � PsRantApbq

pseudonatural in b. Given any X in H, we have equivalences

HpX,PsRantApbqq � HpX, bilimpBpb, t�q,Aqq � rA,CATsPS pBpb, t�q,HpX,A�qq
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pseudonatural in b. Since by Corollary 3.20 we have an equivalence

rA,CATsPS pBpb, t�q,HpX,A�qq � PsRantHpX,A�qpbq

pseudonatural in b, the proof is complete.

In the enriched case [12, 27], in the presence of weighted limits, pointwise Kan ex-
tensions are constructed pointwise by equalizers of products of cotensor products, since
every weighted limit can be seen as such. In the bicategorical case, weighted bilimits are
descent objects of bicategorical products and cotensor products whenever they exist and,
therefore, the result above shows that, in suitable cases, pointwise pseudo-Kan extensions
can be constructed pointwise by them (see [34]).

In this paper, for simplicity, we always assume that H is a bicategorically complete 2-
category, or at least H has enough bilimits to construct the considered (right) pseudo-Kan
extensions as pointwise pseudo-Kan extensions.

3.28. Remark. The pointwise pseudo-Kan extension was studied originally in [34] using
the Biadjoint Triangle Theorem proved therein. The construction presented above is
similar to the usual approach of the enriched case [27, 12], while the argument via biadjoint
triangles of [34] is not.

3.29. The pseudomonad xty :� PsRantp� � tq. By the (bicategorical) Yoneda lemma,
whenever t is a local equivalence, if the pseudo-Kan extension PsRantA exists, it is
actually a pseudoextension. More precisely:

3.30. Theorem. If t : AÑ 9A is a local equivalence and there is a biadjunction

rt,HsPS % PsRant,

its counit is a pseudonatural equivalence. Thereby PsRant : rA,HsPS Ñ
�
9A,H

�
PS

is a

local equivalence and, hence, pseudomonadic and the induced pseudomonad is idempotent.

Proof. It follows from the bicategorical Yoneda lemma. By Lemma 3.12, if X is an
object of A, bilimp 9AptpXq, t�q,Aq � bilimpApX,�q,Aq � ApXq.

In the context of the result above, we denote the idempotent pseudomonad induced
by the biadjunction rt,HsPS % PsRant by PsRantp� � tq or, for short, xty.

Our interest is to study the objects of
�
9A,H

�
PS

that can be endowed with xty-

pseudoalgebra structure. Assuming that t is a local equivalence, this means that our
interest is to study the image of the forgetful Eilenberg-Moore 2-functor

xty -Alg Ñ
�
9A,H

�
PS
.

3.31. Definition. [Effective Diagrams] Let t : A Ñ 9A,A : 9A Ñ H be pseudofunctors.
A : 9AÑ H is of effective t-descent ifA can be endowed with a xty-pseudoalgebra structure.

We now can apply the results of Section 2 on idempotent pseudomonads. Firstly, by
Theorem 2.20, we can easily study the xty-pseudoalgebra structures on diagrams, using
the unit of the pseudomonad.
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3.32. Theorem. Let t : A Ñ 9A be a local equivalence and A : 9A Ñ H a pseudofunctor.
The following conditions are equivalent:

– A is of effective t-descent;

– The component of the unit on A/comparison ηA : AÑ PsRantpA � tq is a pseudo-
natural equivalence;

– The comparison ηA : AÑ PsRantpA � tq is a pseudonatural pseudosection.

The component of the unit ηA : A ÝÑ PsRantpA � tq is a pseudonatural equivalence
if and only if all components of ηA are equivalences. By Theorem 3.30, assuming that

t : AÑ 9A is an a-inclusion, ηb
A

is an equivalence for all b in A. Thereby we get:

3.33. Lemma. Let t : A Ñ 9A be an a-inclusion. A pseudofunctor A : 9A Ñ H is of
effective t-descent if and only if ηa

A
: Apaq Ñ PsRantpA � tqpaq is an equivalence.

3.34. Commutativity. Let t : A Ñ 9A and h : B Ñ 9B be, respectively, an a-inclusion
and a b-inclusion (see Definition 3.3 and Remark 3.4). Unless we explicitly state otherwise,
henceforth we always consider right pseudo-Kan extensions along such type of inclusions.

In general, we have (see [48]):
�
9A� 9B,H

�
PS

�
�
9A,
�
9B,H

�
PS

�
PS

�
�
9B,
�
9A,H

�
PS

�
PS

.

Thereby every pseudofunctor A : 9A � 9B Ñ H can be seen (up to pseudonatural equiva-

lence) as a pseudofunctor A : 9A Ñ
�
9B,H

�
PS

. Also, A : 9A Ñ
�
9B,H

�
PS

can be seen as a

pseudofunctor A : 9BÑ
�
9A,H

�
PS

.

Applying our formal approach of Section 2 to our context of pseudo-Kan extensions,
we get theorems on commutativity as we show below.

3.35. Theorem. If A : 9A Ñ H is an effective t-descent pseudofunctor and T is an
idempotent pseudomonad on H such that A � t can be factorized through Ps-T -Alg Ñ H,
then Apaq can be endowed with a T -pseudoalgebra structure.

Proof. Let L % U be the biadjunction induced by T and pH :� Ps-T -Alg (see Definition
2.16 and Theorem 2.17). Observe that the pseudonatural equivalence�

A, pH�
PS

�

�
9A, pH�

PS
rt,pHs

PS
oo

rA,HsPS

rA,LsPS

OO

�
9A,H

�
PS

rt,HsPS
oo

r 9A,Ls
PS

OO

satisfies the hypotheses of Corollary 2.24.
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If A : 9A Ñ H is an effective t-descent pseudofunctor such that all the objects of the
image of A � t have T -pseudoalgebra structure, it means that A satisfies the hypotheses
of Corollary 2.24. That is to say, A is a xty-pseudoalgebra that can be endowed with a
rA, T sPS-pseudoalgebra structure. Thereby, by Corollary 2.24, A can be endowed with a�
9A, T

�
PS

-pseudoalgebra structure.

3.36. Corollary. Let A : 9A Ñ
�
9B,H

�
PS

be an effective t-descent pseudofunctor such

that the diagrams in the image of A � t are of effective h-descent, then Apaq is of effective
h-descent as well.

Proof. Since xhy is idempotent, this result is Theorem 3.35 applied to the case T � xhy.

3.37. Corollary. Assume that the pseudofunctors pA : 9A Ñ
�
9B,H

�
PS

and Ā : 9B Ñ�
9A,H

�
PS

are mates such that the diagrams in the image of pA� t and Ā�h are respectively

of effective h- and t-descent. We have that pApaq is of effective h-descent if and only if
Āpbq is of effective t-descent.

3.38. Almost descent pseudofunctors. Recall that a 1-cell in a 2-category H is
called faithful/fully faithful if its images by the (covariant) representable 2-functors are
faithful/fully faithful.

3.39. Definition. Let t : A Ñ 9A be an a-inclusion. A pseudofunctor A : 9A Ñ H is of
almost t-descent/t-descent if ηa

A
: Apaq Ñ PsRantpA � tqpaq is faithful/fully faithful.

Consider the class F
r 9A,HsPS

of pseudonatural transformations in
�
9A,H

�
PS

whose com-

ponents are faithful. This class satisfies the properties described in 2.25. Also, a pseudo-
functor A : 9AÑ H is of almost descent if and only if A is a pF

r 9A,HsPS
, xtyq-object.

Analogously, if we take the class F1
r 9A,HsPS

of objectwise fully faithful pseudonatural

transformations, A : 9AÑ H is of descent if and only if A is a pF1
r 9A,HsPS

, xtyq-object.

Since in our context of right pseudo-Kan extensions along local equivalences the hy-
potheses of Theorem 2.28 hold, we get the corollaries below. Again, we are considering
full inclusions t : AÑ 9A, h : BÑ 9B as in 3.34.

3.40. Corollary. Let A : 9A Ñ
�
9B,H

�
PS

be an almost t-descent pseudofunctor such

that the pseudofunctors in the image of A � t are of almost h-descent. In this case, Apaq
is also of almost h-descent.

Similarly, if A is of t-descent and the pseudofunctors of the image of A � t are of
h-descent, then Apaq is of h-descent as well.
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Proof. In order to show that both cases fit in the technical conditions of the hypothesis
of 2.28, we only need to observe that any pointwise (right) pseudo-Kan extension pseud-
ofunctor preserves pointwise faithful and pointwise fully faithful pseudonatural transfor-
mations. In order to verify that, it is enough to see that, given any small 2-category C,
we have that

rC,CATsPS pB, αq,

is pointwise (fully) faithful whenever α is so.

3.41. Corollary. Assume that the mates pA : 9A Ñ
�
9B,H

�
PS

and Ā : 9B Ñ
�
9A,H

�
PS

are such that the diagrams in the image of pA � t and Ā � h are respectively of almost h-
and t-descent. In this case,pApaq is of almost h-descent if and only if Āpbq is of almost t-descent.

If, furthermore, the pseudofunctors in the image of pA � t and Ā � h are respectively of h-
and t-descent, then:pApaq is of h-descent if and only if Āpbq is of t-descent.

4. Descent Objects

In this section, we give a description of the descent category, as defined in classical descent
theory, via pseudo-Kan extensions. The results of the first part of this section is hence
important to fit the context of [22, 23] within our framework.

Let j : ∆ Ñ 9∆ be the full inclusion of the category of finite nonempty ordinals into
the category of finite ordinals and order preserving functions. Recall that 9∆ is generated
by its degeneracy and face maps. That is to say, 9∆ is generated by the diagram

0 d�d0
// 1

d0 //

d1 //
2s0oo

d0 //

d1 //

d2 //
3

s0

��

s1

^^

//////// � � �gg[[

{{

with the following relations:

dkdi � didk�1, if i   k;

sksi � sisk�1, if i ¤ k;

skdi � disk�1, if i   k;

d0d � d1d;

skdi � id, if i � k and i � k � 1;

skdi � di�1sk, if i ¡ k � 1.

4.1. Remark. The category 9∆ has an obvious strict monoidal structure p�, 0q that turns
p 9∆,�, 0, 1q into the initial object of the category of monoidal categories with a chosen
monoid [31].
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4.2. Remark. There is a full inclusion 9∆ Ñ CAT such that the image of each n is the
corresponding ordinal. This is the reason why we may consider that 9∆ is precisely the
full subcategory of CAT of the finite ordinals (considered as partially ordered sets). In
this context, the object n is often confused with its image which is the category

0Ñ 1Ñ 2Ñ � � � n� 1.

It is important to keep in mind that 9∆ is a category, but we often consider it inside the
tricategory 2-CAT. More precisely, by abuse of language, 9∆ and ∆ denote respectively
the images of the categories 9∆ and ∆ by the inclusion CAT Ñ 2-CAT. Hence 9∆ is locally
discrete and is not a full sub-2-category of CAT. In fact, it is clear that ∆p1, nq is the
image of n by the comonad induced by the right adjoint forgetful functor between the
category of small categories and the category of sets, the counit of which is denoted by
εd.

4.3. Definition. A pseudofunctor A : ∆ Ñ H is called a pseudocosimplicial object of H.
The descent object of such a pseudocosimplicial object A is PsRanjAp0q.

4.4. Remark. Since 0 is the initial object of 9∆, the weight 9∆p0, j�q is terminal. By
Remark 3.11 and Theorem 3.19, we get that the descent object of A : ∆ Ñ H is by
Definition 4.3 the conical bilimit of A.

Theorem 4.11 shows that our definition of descent object agrees with Definition 4.6,
which is the usual definition of the descent object [48, 22, 21].

4.5. Definition. The category 9∆3 is generated by the diagram:

0 d // 1
d0

//

d1
//
2s0oo

B0
//

B1 //

B2
//
3

such that:

d1d � d0d; Bkdi � Bidk�1 if i   k; s0d0 � s0d1 � id.

We denote by j3 : ∆3 Ñ 9∆3 the full inclusion of the subcategory ∆3 in which objp∆3q �
t1, 2, 3u. Still, there are obvious inclusions: 9t3 : 9∆3 Ñ 9∆ and t3 : ∆3 Ñ ∆. Again, 9∆3

herein usually denotes the respective locally discrete 2-category.

4.6. Definition. We denote by W : ∆3 Ñ CAT the weight below (defined in [48]), in
which ∇n denotes the localization of the category/finite ordinal n w.r.t all the morphisms.

∇1
//

//
∇2oo

//
//
//
∇3

Following [48], if A : ∆ Ñ H is a pseudofunctor, we define

DescpAq :� bilimpW,A � t3q.
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4.7. Remark. The weight W is pseudonaturally equivalent to the terminal weight.
Therefore, DescpAq is by definition (equivalent to) the conical bilimit of A � t3 .

In order to prove Theorem 4.10, we need:

4.8. Proposition. Let Y be any category and Y : ∆op
3
Ñ CAT the constant 2-functor

n ÞÑ Y . Given any (strict) 2-functor B : ∆op
3
Ñ H and a pseudonatural transformation

α : B ÝÑ Y , the following equations hold:

Y oo
Id
Y // Y Y

Bp1q α�1

d1ùùñ

α1

;;

Bp1qα
d0ùùñ

α�1

d1ùùñ

α1

cc
α1

;;
�

�

Bp1q �
α
d0ùùñ

α1

cc

Bp1q α�1

d1ùùñ

α1

;;

Bp1qα
d0ùùñ

α1

cc

Bp2q
Bpd1q

bb

Bpd0q

<<
α2

OO

Bp3q
BpB2q
oo

BpB0q
// Bp2q

Bpd1q

bb

Bpd0q

<<
α2

OO

Bp2q
Bpd1q

bb

Bpd0q

<<
α2

OO

Bp3q
BpB1q
oo

(associativity codescent equation)

Y Y

Bp1q

α1

;;

α�1

d1ùùñ
Bp1qα

d0ùùñ

α1

cc

Bp2q
Bpd1q

bb

Bpd0q

<<
α2

OO

Bp1q

Bps0q

OO

Bp1q

� � α1

VV

α1

HH

(identity of codescent)

Proof. We start by proving the identity of codescent. Indeed, by Definition 2.2 of
pseudonatural transformation (see [34]), since d0s0 � d1s0 � id1 , B is a 2-functor and Y
is constant equal to Y , we have that α

d0s0
� Idα1 � α

d1s0
which implies in particular that

Bp1q
α
s0ùùñ

Bps0q //

α1

��

Bp2q

α2

��

Bpd0q // Bp1q
α
d0ùùñ
α1

��

�

Bp1q

� α1

��

α1

��

Bp1q
α
s0ùùñ

Bps0q //

α1

��

�

Bp2q

α2

��

Bpd1q // Bp1q
α
d1ùùñ
α1

��
Y Y Y
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and therefore:

Bp1q
α�1

d1ùùñ
α1

��

Bp2qBpd1qoo

α2

��

Bp1qBps0qoo

α�1

s0ùùñ
α1

��

α
s0ùùñ

Bps0q //

α1

��

�

Bp2q

α2

��

Bpd0q // Bp1q
α
d0ùùñ
α1

��

�

Bp2q

α2

��

Bpd0q
""

Bpd1q
||

Bp1qBps0qoo

Bp1q α�1

d1ùùñ
α1

##

Bp1q
α1

{{

α
d0ùùñ

Y oo
Id
Y

// Y Y

is equal to the identity on α1 . This proves that the identity of codescent holds.
It remains to prove that the associativity codescent equation holds. Since by the

definition of pseudonatural transformation we have that�
α
d0
� Id

BpB2q

	
� α

B2 � α
d0B2 � α

d1B0 �
�
α
d1
� Id

BpB0q

	
� α

B0 ,

we conclude that

Y oo
Id
Y // Y

�

Y
Id
Y //

α�1

B2

ùùñ

Y

α
B0

ùùñBp1qα
d0ùùñ

�

�

α�1

d1ùùñ

α1

;;
α1

cc

Bp2q

α2

OO

Bpd0q

<<

Bp3q
BpB2q
oo

BpB0q
// Bp2q

α2

OO

Bpd1q

bb

Bp2q

α2

OO

Bp3q
BpB2q
oo

α3

cc

BpB0q
//

α3

;;

�

Bp2q

α2

OO

holds. Since α
d0B0 � α

d1B0 , α
d1B2 � α

d1B1 , by the equality above, the left side of the
associativity codescent equation is equal to

Y
Id
Y //

α�1

B2

ùùñ

Y

α
B0

ùùñ

Y
Id
Y //

α�1

B1

ùùñ

Y

α
B1

ùùñBp1q

α1

??

α�1

d1ùùñ
Bp1q

α1

__

α
d0ùùñ � Bp1q

α1

??

α�1

d1ùùñ
Bp1q

α1

__

α
d0ùùñ

Bp2q
Bpd1q

__
α2

OO

Bp3q
BpB2q
oo

α3

``

BpB0q
//

α3

>>

�

Bp2q

α2

OO

Bpd0q

??

Bp2q
Bpd1q

__
α2

OO

Bp3q
BpB1q
oo

α3

``

BpB1q
//

α3

>>

�

Bp2q

α2

OO

Bpd0q

??

which is clearly equal to the right side of the associativity codescent equation.

4.9. Remark. One important difference between (pointwise) pseudo-Kan extensions
(weighted bilimits) and (pointwise) Kan extensions (strict 2-limits) is the following: if
we consider the inclusion t2 : ∆2 Ñ ∆ of the full subcategory with only 1 and 2 as ob-
jects into the category ∆, then Lant2

J � J while PsLant2
J � J, where, by abuse of

language, J always denotes the appropriate 2-functor constantly equal to the terminal
category. Actually, PsLant2

Jp3q is equivalent to the category with only one object and
one nontrivial automorphism.
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4.10. Theorem. Let J : ∆3 Ñ CAT and J : ∆ Ñ CAT be the terminal weights. We
have that PsLant3

J � J.

Proof. We prove below that, given a constant 2-functor Y : ∆3 Ñ CAT,�
∆op

3
,CAT

�
PS
p∆pt3�, nq, Y q � CATp∇n, Y q

which, by the dual of Theorem 3.19 given in Remark 3.21, completes our argument since
it proves that bicolimp∆pt3�, nq,Jq � ∇n � Jpnq.

Let εd be the counit of the discrete comonad on the category of small categories (see
4.2), we define the functor

CATp∇n, Y q Ñ
�
∆op

3
,CAT

�
PS
p∆pt3�, nq, Y q, A ÞÑ ξA, px : AÑ Bq ÞÑ

�
ξx : ξA ùñ ξB

�

in which, given a functor A : ∇nÑ Y and a natural transformation x : AÑ B, ξA and ξx

are defined by:

ξA
1

:� A � εd
n
,

ξA
2

:� A � εd
n
�∆pt3pd

1q, nq,

ξA
3

:� A � εd
n
�∆pt3pd

1B2q, nq,

ξA
d1

:� Id
ξ2
,

ξA
s0

:� Id
ξ2
,

ξA
B1

:� Id
ξ2
,

�
ξA
d0

	
f :2Ñn

:� Apfp0q ¤ fp1qq,

ξA
B0

:� Id
∆pt3 pB

2q,nq
� ξA

d0
.

ξx
1

:� x � Id
εdn

, ξx
2

:� x � Id
εdn �∆pt3 pd

1q,nq
, ξx

3
:� x � Id

εdn �∆pt3 pd
1B2q,nq

.

We prove that this functor is actually an equivalence. Firstly, we define the inverse
equivalence

�
∆op

3
,CAT

�
PS
p∆pt3�, nq, Y q Ñ CATp∇n, Y q, α ÞÑ ℘α, py : α ùñ βq ÞÑ

�
℘y : ℘α ùñ ℘β

	

where p℘yq
j

:� py1qj and ℘αpi ¤ jq is the component of the natural transformation below

on the object pi, jq : 2Ñ n of ∆pt3p2q, nq.

Y

∆pt3p1q, nq
α�1

d1ùùñ

α1

77

∆pt3p1q, nq
α
d0ùùñ

α1

gg

∆pt3p2q, nq
∆pd1,nq

gg

∆pd0,nq

77
α2

OO

It remains to show that ℘α defines a functor ∇n Ñ Y . Indeed, this follows from the
associativity codescent equation and the identity of codescent of Proposition 4.8. More
precisely, α satisfies the equations of this proposition, since ∆pt3�, nq is a 2-functor. Given
i ¤ j ¤ k of ∇n, by the definition of ℘α, ℘αpj ¤ kq℘αpi ¤ jq is the component of the natural
transformation of the left side of the associativity codescent equation on pi, j, kq : 3 Ñ n,
while the component of the right side on pi, j, kq is equal to ℘αpi ¤ kq. Analogously, the
identity of codescent implies that ℘αpid

i
q � id

℘αpiq
.
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Finally, since it is clear that ℘ξ
p�q

� Id
CATp∇n,Y q

, the proof is completed by showing the
natural isomorphism

Γ : ξ℘
p�q

ùñ Id
r∆op

3 ,CATs
PS

p∆pt3�,nq,Y q

where each component is the invertible modification defined by:

pΓαq1 :� Idα1 , pΓαq2 :� α
d1
, pΓαq3 :� α

d1B2 .

4.11. Theorem. [Descent Objects] Let A : ∆ Ñ H be a pseudofunctor. We have that
DescpAq � PsRanjAp0q.
Proof. By Remarks 4.4 and 4.7, we need to prove that the conical bilimit of A is
equivalent to the conical bilimit of A � t3 . Indeed, by Theorems 3.13 and 4.10,

bilimpJ,A � t3q � bilimpPsLant3
J,Aq � bilimpJ,Aq.

Observe that, by Theorem 4.11, if A : 9∆ Ñ H is a pseudofunctor, then A is of
(almost/effective) j-descent if and only if A � 9t3 is of (almost/effective) j3-descent.

4.12. Strict Descent Objects. To finish this section, we show how we can see descent
objects via (strict/enriched) Kan extensions of 2-diagrams. Although this construction
gives a few strict features of descent theory (such as the strict factorization), we do not
use the results of this part in the rest of the paper. For this reason, the reader can skip
this part and consider it to be technical observations on strict results.

Clearly, since the point of these observations is to consider strict results, unlike the
general viewpoint of this paper, we have to deal closely with coherence theorems. The
coherence replacements used here follow from the 2-monadic approach to general coher-
ence results [28, 6, 34]. Also, to formalize some observations of free 2-categories, we use
the concept of computad, defined in [46]. Therefore it is clear that this part assumes
knowledge on coherence [28, 34], icons [30, 36], computads [46, 36] and flexible weighted
limits [5]. Moreover, we omit most of the proofs of this last part of this section.

The first step is actually older than the general coherence results: the strict replace-
ment of a bicategory. Consider the locally full inclusion Icon Ñ Bicat of the 2-category
Icon of 2-categories and 2-functors into the 2-category Bicat of 2-categories, pseudofunc-
tors and icons. By the general coherence result [28, 34], this inclusion has a left 2-adjoint
Str : Bicat Ñ Icon, and the unit of this 2-adjunction is a pseudonatural equivalence
(which means that it is pointwise an equivalence in Bicat).

4.13. Lemma. If there is an equivalence StrpAq Ñ A
Str

in Icon, the inclusion

rA
Str
,Hs Ñ rA

Str
,HsPS

is essentially surjective (which means that every pseudofunctor A
Str
Ñ H is pseudonatu-

rally isomorphic to a 2-functor A
Str
Ñ H).



426 FERNANDO LUCATELLI NUNES

Proof. This follows from the fact the composition of the equivalences

IconpStrpAq,Hq � BicatpA,Hq � BicatpStrpAq,Hq,

in which BicatpA,Hq � BicatpStrpAq,Hq is the precomposition of the component of the
unit on A, gives the inclusion IconpStrpAq,Hq Ñ BicatpStrpAq,Hq. Therefore this inclu-
sion is an equivalence of categories.

In particular, for each pseudofunctor A : StrpAq Ñ H, there are a 2-functor A1 :
StrpAq Ñ H and an invertible icon A ÝÑ A1. This property clearly holds for any A

Str

such that there is an equivalence A
Str
Ñ StrpAq in Icon.

Since invertible icons are pseudonatural isomorphisms with identity 1-cell components,
this fact proves that rA

Str
,Hs Ñ rA

Str
,HsPS is indeed essentially surjective.

Herein, given a small 2-category A, a strict replacement of A is a 2-category A
Str

such
that there is an equivalence A

Str
Ñ StrpAq in Icon. Thus strict replacements are clearly

unique up to equivalence and choices of strict replacements define a left biadjoint to the
inclusion IconÑ Bicat.

4.14. Definition. A 2-category A is locally groupoidal if every hom-category Apa, bq is a
groupoid. Moreover, A is locally thin if there is at most one 2-cell f ñ g for every ordered
pair of 1-cells pf, gq of A. Finally, A is locally thin groupoidal, or, for short, locally t.g., if
it is locally groupoidal and locally thin.

4.15. Definition. We denote by 9∆
Str

the locally t.g. 2-category freely generated by the
diagram

0 d // 1
d0

//

d1
//
2s0oo

B0
//

B1 //

B2
//
3

with the 2-cells:

σ01 : B1d0 ñ B0d0,

σ02 : B2d0 ñ B0d1,

σ12 : B2d1 ñ B1d1,

n0 : s0d0 ñ id1 ,

n1 : s0d1 ñ id1 ,

ϑ : d1dñ d0d.

We consider the full inclusion j
Str

: ∆
Str
Ñ 9∆

Str
in which objp∆

Str
q � t1, 2, 3u.

4.16. Remark. Observe that the diagram and the invertible 2-cells described above
define a computad [46] (or, more appropriately, a groupoidal computad [36]) which we
denote by 9�. Thereby Definition 4.15 is precise in the following sense: there is a forgetful
functor between the category of locally t.g. 2-categories and the category of (groupoidal)
computads. This forgetful functor has a left adjoint which gives the locally t.g. 2-category
freely generated by each computad. The (locally groupoidal) 2-category 9∆

Str
is, by defi-

nition, the image of the computad 9� by this left adjoint functor.

The 2-categories 9∆
Str

and ∆
Str

are strict replacements of the 2-categories 9∆3 and ∆3

respectively. Actually, j
Str

is a strict replacement of j3 . By this fact and by the result that
descent objects are flexible [5], we get:
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4.17. Proposition. There are obvious biequivalences ∆
Str
� ∆3 and 9∆

Str
� 9∆3 which

are bijective on objects. Also, if H is any 2-category, r∆
Str
,Hs Ñ r∆

Str
,HsPS is essentially

surjective. Moreover, for any 2-functor C : ∆
Str
Ñ CAT, we have an equivalence

r∆
Str
,CATs p 9∆

Str
p0, j

Str
p�qq, Cq � r∆

Str
,CATsPS p

9∆
Str
p0, j

Str
p�qq, Cq.

Proof. The last part of the result follows from the fact that the descent object is a
flexible weighted limit (see [5]). The rest follows from the fact that ∆

Str
is the strict

replacement of ∆3 (see Lemma 4.13).

4.18. Corollary. If A : ∆
Str
Ñ H is a 2-functor,

PsRanj3
Ǎ � PsRanj

Str
A � Ranj

Str
A

provided that the pointwise Kan extension Ranj
Str
A exists, in which Ǎ is the composition

of A with the biequivalence ∆3 � ∆
Str

.

Assuming that the pointwise Kan extension Ranj
Str
A exists, Ranj

Str
Ap0q is called the

strict descent diagram of A. By Corollary 4.18, the descent object of A is equivalent to
its strict descent object provided that A has a strict descent object.

4.19. Remark. Using the strict descent object, we can construct the “strict” factoriza-
tion described in Section 1. If A : 9∆

Str
Ñ H is a 2-functor and H has strict descent

objects, we get the factorization from the universal property of the right Kan extension of
A�j

Str
: ∆

Str
Ñ H along j

Str
. More precisely, since j

Str
is fully faithful, we can consider that

Ran
j
Str
A � j

Str
is actually a strict extension of A � j

Str
. Thereby we get the factorization

Ran
j
Str
pA � j

Str
qp0q

Ranj
Str

pA�j
Str

qpdq

��
Ap0q

η0A

99

Apdq
// Ap1q

in which η0
A

is the comparison induced by the unit/comparison ηA : A ÝÑ Ran
j
Str
pA�j

Str
q.

4.20. Remark. As observed in Section 3.1, the right Kan extension of a 2-functor A :
∆ Ñ H along j gives the equalizer of Apd0q and Apd1q. This is a consequence of the
isomorphism Lant2

J � J of Remark 4.9.

We get a glimpse of the explicit nature of the (strict) descent object at Theorem
4.21 which gives a presentation to 9∆

Str
. We denote by Fgp 9�q the locally groupoidal 2-

category freely generated by the diagram and 2-cells described in Definition 4.15. It is
important to note that Fgp 9�q is not locally thin. Moreover, there is an obvious 2-functor

Fgp 9�q Ñ 9∆
Str

, induced by the unit of the adjunction between the category of locally
groupoidal 2-categories and the category of locally t.g. 2-categories.
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4.21. Theorem. [36] Let H be a 2-category. There is a bijection between 2-functors
A : 9∆

Str
Ñ H and 2-functors A : Fgp 9�q Ñ H satisfying the following equations:

– Associativity:

Ap0q
Apdq //

Apdq
��

Apϑq
ùùùñ

Ap1q

Apd0q
��

Apd0q //

Apσ01q
ùùùùñ

Ap2q

ApB0q
��

�

Ap3q
Apσ02q
ùùùùñ

Ap2q
ApB0qoo

Apϑq
ùùùñ

Ap2q

Ap1q Apd1q //

Apd1q
��

Apσ12q
ùùùùñ

Ap2q ApB1q // Ap3q

Apid3 q��

Ap2q
Apϑq
ùùùñ

ApB2q

OO

Ap1qApd0qoo

Apd1q

OO

Ap2q
ApB2q

// Ap3q Ap1q

Apd1q

OO

Ap0q
Apdq
oo

Apdq

OO

Apdq
// Ap1q

Apd0q

OO

– Identity:

Ap0q
Apdq //

Apdq

��

Ap1q

Apd1q

��
Apn1q
ðùùù

Ap0q

Apdq

��

� Apdq

��

Apϑq
ðùùù

Ap1q Apd0q //

Apn0q
ðùùù

Ap2q

Aps0q!!
Ap1q

�

Ap1q

4.22. Remark. [36] ∆
Str

is the locally groupoidal 2-category freely generated by the
corresponding diagram and 2-cells σ01, σ02, σ12, n0, n1.

4.23. Remark. [34] The 2-category CAT is CAT-complete. In particular, CAT has strict
descent objects. More precisely, if A : ∆

Str
Ñ CAT is a 2-functor, then

limp 9∆
Str
p0, j

Str
p�qq,Aq � r∆

Str
,CATs

�
9∆

Str
p0, j

Str
p�qq,A

	
.

Thereby, we can describe the category the strict descent object of A : ∆
Str

Ñ CAT
explicitly as follows:

1. Objects are 2-natural transformations W : 9∆
Str
p0,�q ÝÑ A. We have a bijective

correspondence between such 2-natural transformations and pairs pW, %
W
q in which

W is an object of Ap1q and %
W

: Apd1qpW q Ñ Apd0qpW q is an isomorphism in Ap2q
satisfying the following equations:

– Associativity:

�
ApB0qp%

W
q
�
pApσ02qW q

�
ApB2qp%

W
q
� �
Apσ12q

�1
W

�
� pApσ01qW q

�
ApB1qp%

W
q
�

– Identity:
pApn0qW q

�
Aps0qp%

W
q
�
pApn1qW q � idW
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If W : 9∆p0,�q ÝÑ A is a 2-natural transformation, we get such pair by the corre-
spondence W ÞÑ pW1pdq,W2pϑqq.

2. The morphisms are modifications. In other words, a morphism m : W Ñ X is
determined by a morphism m : W Ñ X such that Apd0qpmq%

W
� %

X
Apd1qpmq.

5. Elementary Examples

We use some particular elementary examples of inclusions t : A Ñ 9A for which we
can study the xty-pseudoalgebras/effective t-descent diagrams in the setting of Section 2.
These examples are given herein.

Let H be a 2-category with enough bilimits to construct our pseudo-Kan extensions
as global pointwise pseudo-Kan extensions. The most simple example is taking the final
category 1 and the inclusion 0 Ñ 1 of the empty category/empty ordinal. In this case, a
pseudofunctor A : 1 Ñ H is of effective descent if and only if this pseudofunctor (which
corresponds to an object of H) is equivalent to the pseudofinal object of H.

If, instead, we take the inclusion d0 : 1Ñ 2 of the ordinal 1 into the ordinal 2 such that
d0 is the inclusion of the codomain object, then a pseudofunctor A : 2 Ñ H corresponds
to a 1-cell of H and A is of effective d0-descent if and only if its image is an equivalence
1-cell. Moreover, A is almost d0-descent/d0-descent if and only if its image is faithful/fully

faithful. Precisely, the comparison morphism would be the image Ap0 d
Ñ 1q of the only

nontrivial 1-cell of 2.
Furthermore, we may consider the following 2-categories 9B. The first one corresponds

to the bilimit notion of comma object, while the second corresponds to the notion of
pseudopullback.

b //

��

e

��

b //

��

e

��
c

ñ

// o c // o

As explained in Remark 3.22, all the examples above but the comma object are conical
bilimits: it is clear that we can get every conical bilimit via a pseudo-Kan extension.
Actually, we can study the exactness of any weighted bilimit in our setting. More precisely,
if W : AÑ CAT is a weight, we can define 9A adding an extra object a and defining

9Apa, aq :� � 9Apa, bq :�Wpbq 9Apb, aq :� H

for each object b of A. Hence, it remains just to define the unique nontrivial composition,
that is to say, we define the functor composition � : 9Apb, cq � 9Apa, bq Ñ 9Apa, cq for each
pair of objects b, c of A to be the “mate” of

W
bc

: 9Apb, cq Ñ CATpWpbq,Wpcqq.
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Thereby, a pseudofunctor A : 9A Ñ H is of effective t-descent/t-descent/almost t-descent
if the canonical comparison 1-cell Apaq Ñ bilimpW ,A � tq is an equivalence/fully faith-
ful/faithful.

6. Eilenberg-Moore Objects

Let H be a 2-category as in 5. The 2-category Adj such that an adjunction in a 2-
category corresponds to a 2-functor AdjÑ H is described in [44]. There is a full inclusion
m : Mnd Ñ Adj such that monads in H correspond to 2-functors Mnd Ñ H. We describe
this 2-category below, and we show how it (still) works in our setting. The 2-category
Adj has two objects: alg and b. The hom-categories are defined as follows:

Adjpb, bq :� 9∆ Adjpalg, bq :� ∆� Adjpalg, algq :� ∆�
� Adjpb, algq :� ∆�

in which ∆� denotes the subcategory of ∆ with the same objects such that its morphisms
preserve initial objects and, analogously, ∆� is the subcategory of ∆ with the same objects
and last-element-preserving arrows. Finally, ∆�

� is just the intersection of both ∆� and
∆�.

Then the composition of Adj is such that Adjpb, wq � Adjpc, bq Ñ Adjpc, wq is given
by the usual “ordinal sum” � (given by the usual strict monoidal structure of ∆) for all
objects c, w of Adj and

Adjpalg, wq � Adjpc, algq Ñ Adjpc, wq

px, yq ÞÑ x� y � 1

pφ : xÑ x1, υ : y Ñ y1q ÞÑ φ` υ

in which

φ` υpiq :�

#
υpiq, if i   y

φpi�mq � 1� y1 otherwise.

It is straightforward to verify that Adj is a 2-category. We denote by u the 1-cell
1 P Adjpalg, bq and by l the 1-cell 1 P Adjpb, algq. Also, we consider the following 2-cells

9∆p0, 1q Q n : id
b
ñ ul, ∆�

�p1, 2q Q e : luñ id
alg
.

The 2-category Mnd is defined to be the full sub-2-category of Adj with the unique object
b. As mentioned above, we denote its full inclusion by m : MndÑ Adj.

Firstly, observe that pl % u, n, eq is an adjunction in Adj, therefore the image of
pl % u, n, eq by a 2-functor is an adjunction. Also, if pL % U, η, εq is an adjunction in H,
then there is a unique 2-functor A : Adj Ñ H such that Apuq :� U , Aplq :� L, Apeq :� ε
and Apuq :� η. Thereby, it gives a bijection between adjunctions in H and 2-functors
AdjÑ H [44].

Secondly, as observed in [44], there is a similar bijection between 2-functors MndÑ H
and monads in the 2-category H. Also, if the pointwise (enriched) Kan extension of a
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2-functor MndÑ H along m exists, it gives the usual Eilenberg-Moore adjunction. More-
over, given a 2-functor A : AdjÑ H, if the pointwise Kan extension Ranm pA �mq exists,
the usual comparison Apalgq Ñ Ranm pA �mq palgq is the Eilenberg-Moore comparison
1-cell.

If, instead, A : AdjÑ H is a pseudofunctor, we also get that Aplq % Apuq and�
Aplq % Apuq, a�1

ul
Apnqa

b
, a�1

alg
Apeqa

lu

	
(strict adjunction)

is an adjunction in H. It is straightforward to verify that the unique 2-functorA1 : AdjÑ H
corresponding to this adjunction is pseudonaturally isomorphic to A. Furthermore, the
Eilenberg-Moore object is a flexible limit as it is shown in [5].

6.1. Proposition. If H is any 2-category, rAdj,Hs Ñ rAdj,HsPS is essentially surjective.
Moreover, for any 2-functor C : AdjÑ CAT, we have an equivalence

rMnd,CATs pAdjpalg,mp�qq, Cq � rMnd,CATsPS pAdjpalg,mp�qq, Cq.

Proof. In order to prove the first part, as mentioned above, it is enough to show that
there is a pseudonatural isomorphism between A and A1. The 1-cell components of this
pseudonatural isomorphism α are identities, while the component 2-cells are induced by
the structure of pseudofunctor of A (the constraints/invertible 2-cells). The second part
follows from the fact that Eilenberg-Moore objects are flexible weighted limits [5].

6.2. Corollary. If A : MndÑ H is a pseudofunctor,

PsRanj3
A � PsRanmǍ � RanmǍ

provided that the pointwise Kan extension RanmǍ exists, in which Ǎ is a 2-functor
pseudonaturally isomorphic to A.

Therefore, if H has Eilenberg-Moore objects, a pseudofunctor A : AdjÑ H is of effec-
tive m-descent/m-descent/almost m-descent if and only ifApuq is monadic/premonadic/al-
most monadic. Also, the “factorizations”

Apbq Aplq //

lA
''

Apalgq Apalgq Apuq //

ηalg
A

''

Apbq

PsRanmpA �mqpalgq

� ηalg
A

77

PsRanmpA �mqpalgq

� uA

77

described in Theorem 3.6 are pseudonaturally equivalent to the usual Eilenberg-Moore
factorizations. Henceforth, these factorizations are called Eilenberg-Moore factorizations
(even if the 2-category H does not have the strict version of it).
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7. The Beck-Chevalley Condition

With these elementary examples, we can already give generalizations of Theorems 8.2 and
1.1. We keep our setting in which t : AÑ 9A is an a-inclusion as in 3.34.

Let T be an idempotent pseudomonad over the 2-category H. The most obvious
consequence of the commutativity results of Section 2 is the following: if an object X of
H can be endowed with a T -pseudoalgebra structure and there is an equivalence X Ñ W ,
then W can be endowed with a T -pseudoalgebra as well.

In the case of pseudo-Kan extensions, we have the following: let A,B : 9A Ñ H
be pseudofunctors. A pseudonatural transformation α : A ÝÑ B can be seen as a

pseudofunctor Cα : 2 Ñ
�
9A,H

�
PS

. By Corollaries 3.36 and 3.40, we get the following:

if Cαp1q is of effective t-descent/t-descent/almost t-descent and the images of the mate
9A Ñ r2,HsPS of Cα are of effective d0-descent/d0-descent/almost d0-descent as well, then
Cαp0q is also of effective t-descent/t-descent/almost t-descent. In Section 8, we show that
Theorem 1.1 is a particular case of:

7.1. Proposition. Let α : A ÝÑ B be a pseudonatural transformation. If B is of effec-
tive t-descent/t-descent/almost t-descent and α is a pseudonatural equivalence/objectwise
fully faithful/objectwise faithful, then A is of effective t-descent/t-descent/almost t-descent
as well.

7.2. Definition. [Beck-Chevalley condition] A pseudonatural transformation α : A ÝÑ
B satisfies the Beck-Chevalley condition if every 1-cell component of α is left adjoint
and, for each 1-cell f : w Ñ c of the domain of A, the mate of the invertible 2-cell
α
f

: Bpfqαw ñ αcApfq w.r.t. the adjunctions pαw % αw and pαc % αc is invertible.

By doctrinal adjunction [26], α : A ÝÑ B satisfies the Beck-Chevalley condition if and

only if α is itself a right adjoint in the 2-category
�
9A,H

�
PS

. In other words, we get:

7.3. Lemma. Let α : A ÝÑ B be a pseudonatural transformation and Cα : 2Ñ
�
9A,H

�
PS

the corresponding pseudofunctor. Consider the inclusion u : 2 Ñ Adj of the morphism

u. There is a pseudofunctor pCα : Adj Ñ
�
9A,H

�
PS

such that pCα � u � Cα if and only if α

satisfies the Beck-Chevalley condition.

Thereby, as straightforward consequences of Corollaries 3.37 and 3.41, using the termi-
nology of Lemma 7.3, we get what can be called a generalized version of Bénabou-Roubaud
Theorem:

7.4. Theorem. Assume that α : A ÝÑ B is a pseudonatural transformation satisfying
the Beck-Chevalley condition and all components of αt � α � Idt are monadic.

– If B is of almost t-descent, then: αa is of almost m-descent if and only if A is of
almost t-descent;

– If B is of t-descent, then: αa is premonadic if and only if A is of t-descent;
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– If B is of effective t-descent, then: αa is monadic if and only if A is of effective
t-descent.

Proof. Indeed, by the hypotheses, for each item, there is a pseudofunctor pCα : Adj Ñ�
9A,H

�
PS

satisfying the hypotheses of Corollary 3.37 or Corollary 3.41.

7.5. Remark. It is important to observe that the hypothesis of the theorem obviously
does not include the monadicity of αa , since t : AÑ 9A is an a-inclusion.

8. Descent Theory

In this section, we establish the setting of [22, 23] and prove all the classical results men-
tioned in Section 1 for pseudocosimplicial objects, except Theorem 1.3 which is postponed
to Section 9.

Henceforth, let C,D be categories with pullbacks and H be a 2-category with the
weighted bilimits whenever needed as in the previous sections. In the context of [23], given
a pseudofunctor A : Cop Ñ H, the morphism p : E Ñ B of C is of effective A-descent/A-
descent/almost A-descent if Ap : 9∆ Ñ H is of effective j-descent/j-descent/almost j-
descent, where Ap is the composition of the diagram

Dp : 9∆op Ñ C

� � � ////
//
// E �p E �p E

//////
vv
hh
zz

E �p E
ss

mm

//
// Eoo p // B

with the pseudofunctor A, in which the diagram above is given by the pullbacks of p along
itself, its projections and diagonal morphisms. By the results of Section 4, for H � CAT,
this definition of effective A-descent morphism coincides with the classical one in the
context of [22, 23].

We get the usual factorizations of (Grothendieck) A-descent theory [22, 23] from The-
orem 3.6, although the usual strict factorization comes from Remark 4.19. More precisely,
if p : E Ñ B is a morphism of C, we get:

App0q � ApBq Appq //

η0
A�Dp

**

App1q � ApEq

DescAppq � PsRanjpAp � jqp0q

� dAp

44

In descent theory, a morphism pU, αq between pseudofunctors A : Cop Ñ H and B :
Dop Ñ H is a pullback preserving functor U : CÑ D with a pseudonatural transformation
α : A ÝÑ B � U . Such a morphism is called faithful/fully faithful if α is objectwise
faithful/fully faithful.

For each morphism p : E Ñ B of C, a morphism pU, αq between pseudofunctors
A : Cop Ñ H and B : Dop Ñ H induces a pseudonatural transformation α

p
: Ap ÝÑ BUppq.

Of course, α
p

is objectwise faithful/fully faithful if pU, αq is faithful/fully faithful.
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We say that such a morphism pU, αq between pseudofunctors A : Cop Ñ H and
B : Dop Ñ H reflects almost descent/descent/effective descent morphisms if, whenever
Uppq is of almost B-descent/B-descent/effective B-descent, p is of almost A-descent/A-
descent/effective A-descent.

8.1. Remark. Consider the pseudofunctor given by the basic fibration p q� : Cop Ñ CAT
in which

ppq� : C{B Ñ C{E

is the change of base functor, given by the pullback along p : E Ñ B. For short, we say
that a morphism p : E Ñ B is of effective descent if p is of effective p q�-descent.

In this case, a pullback preserving functor U : C Ñ D induces a morphism pU, uq
between the basic fibrations p q� : Cop Ñ CAT and p q� : Dop Ñ CAT in which, for each
object B of C, u

B
: C{B Ñ D{UpBq is given by the evaluation of U . If U is faithful/fully

faithful, so is the induced morphism pU, uq between the basic fibrations.

We study pseudocosimplicial objects A : 9∆ Ñ H and verify the obvious implications
within the setting described above. We start with the embedding results (which are
particular cases of 7.1):

8.2. Theorem. [Embedding Results] Let α : A ÝÑ B be a pseudonatural transformation.
If α is objectwise faithful and B is of almost j-descent, then so is A. Furthermore, if B is
of j-descent and α is objectwise fully faithful, then A is of j-descent as well.

Of course, we have that, if A � B, then A is of almost j-descent/j-descent/effective
j-descent if and only if B is of almost j-descent/j-descent/effective j-descent as well.

8.3. Corollary. Let pU, αq be a morphism between the pseudofunctors A : Cop Ñ H
and B : Dop Ñ H (as defined above).

– If pU, αq is faithful, it reflects almost descent morphisms;

– If pU, αq is fully faithful, it reflects descent morphisms;

– If α is a pseudonatural equivalence, pU, αq reflects and preserves effective descent
morphisms, descent morphisms and almost descent morphisms.

We finish this section by proving Bénabou-Roubaud Theorems. A functor F is a
pseudosection if there is G such that G � F is naturally isomorphic to the identity. We
use the following straightforward result:

8.4. Lemma. [Monadicity of pseudosections] If a pseudosection is right adjoint, then it
is monadic. In particular, if A is a pseudocosimplicial object, then Apdi : n Ñ n � 1q is
monadic whenever it has a left adjoint.

Proof. Assume that F � G is isomorphic to the identity. Given an absolute colimit
diagram G �D, it follows that F �G �D � D is an absolute colimit diagram. The result
follows, then, from the monadicity theorem [2].

The second part of the lemma follows from the fact that di is a retraction and, hence,
since A is a pseudofunctor, Apdi : nÑ n� 1q is a pseudosection for any i ¤ n.
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Recall that 1 is a monoid in 9∆, as explained in Remark 4.1. On the one hand, the
monad induced by this monoid, considered, for instance, in [47] and [31], is denoted by
suc :� p1��q on 9∆. On the other hand, this monad induces a pseudomonad

Suc :� rsuc,HsPS

on the 2-category
�
9∆,H

�
PS

of pseudocosimplicial objects of H. This is the 2-dimensional

(dual) analogue of the notion of décalage of simplicial sets as in [13].
In particular, for each A : 9∆ Ñ H the component of the unit of Suc on A gives a

pseudonatural transformation SucA : A ÝÑ A � Suc whose correspondent pseudofunctor

is denoted by CA : 2Ñ
�
9∆,H

�
PS

.

Observe that, CA : 2Ñ
�
9∆,H

�
PS

is given by the mate of A � n : 2� 9∆ Ñ H, where n

is the mate of the unit of suc viewed as a functor 2Ñ
�
9∆, 9∆

�
, defined by

n : 2� 9∆ Ñ 9∆

pa, bq ÞÑ b� a pd, id
b
q ÞÑ

�
d0 : bÑ pb� 1q

�
pida , d

iq ÞÑ

#
di : bÑ pb� 1q, if a � 0

di�1 : pb� 1q Ñ pb� 2q, otherwise

pida , s
iq ÞÑ

#
si : bÑ pb� 1q, if a � 0

si�1 : pb� 1q Ñ pb� 2q, otherwise.

0

d
��

d // 1

d0

��

//
// 2

d0

��

oo
//
//
// 3

d0

��

s0ww

s1

��
//////// � � �

s0ss
s1

{{

s2

��

d0

��
1

d1
// 2 d1 //

d2 // 3s1oo d1 //
d2 //
d3 // 4

s1
gg

s2

^^

//////// � � �
s1

kk

s2

cc

s3

[[

We say that a pseudofunctor A : 9∆ Ñ H satisfies the descent shift property (or just
shift property for short) if A � Suc is of effective j-descent. We get, then, a version of
Bénabou-Roubaud Theorem for pseudocosimplicial objects:

8.5. Theorem. Let A : 9∆ Ñ H be a pseudofunctor satisfying the shift property. If
the pseudonatural transformation SucA satisfies the Beck-Chevalley condition, then the
Eilenberg-Moore factorization of Apdq is pseudonaturally equivalent to its usual factoriza-
tion of j-descent theory. In particular,

– A is of effective j-descent iff Apdq is monadic;

– A is of j-descent iff Apdq is premonadic;

– A is of almost j-descent iff Apdq is almost monadic.
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Proof. By Lemma 8.4, the components of SucAj � pSucAq � Id
j

are monadic.

It is known that in the context of [22, 23] introduced in this section, the natural
morphism E �p E Ñ E is always of effective A-descent. It follows from this fact that Ap
always satisfies the shift property. More precisely:

8.6. Lemma. Let A : Cop Ñ CAT be a pseudofunctor, in which C is a category with
pullbacks. If p is a morphism of C, Ap (defined above as Ap :� A �Dp) satisfies the shift
property.

Proof. This follows from the fact that, for any pseudofunctor A : Cop Ñ CAT, given
a morphism p : E Ñ B of C, the natural morphism E �p E Ñ E between the pullback
of p along p and E (being a split epimorphism) is of effective A-descent. In particular,
Ap � Suc � AE�BEÑE is of effective j-descent.

The usual Bénabou-Roubaud Theorem (Theorem 1.4) follows from Theorem 8.5, as it
is shown below.

Proof. Assuming that A : Cop Ñ H satisfies the hypotheses of Theorem 1.4, we have in
particular that SucAp satisfies the Beck Chevalley condition. Therefore, since Ap satisfies
the shift property, Appdq � Appq is monadic/premonadic/almost monadic iff Ap is of
effective j-descent/j-descent/almost j-descent.

Finally, the most obvious consequence of the commutativity properties is that bilimits
of effective j-descent diagrams are effective j-descent diagrams. For instance, taking into
account Remark 8.1 and realizing that pseudopullbacks of functors induce pseudopullback
of overcategories we already get a weak version of Theorem 1.6.

Next section, we study stronger results on bilimits and apply them to descent theory.

9. Further on Bilimits and Descent

Henceforth, let t : AÑ 9A, h : BÑ 9B be inclusions as in 3.34 and let H be a bicategorically
complete 2-category.

9.1. Definition. [Pure Structure] A morphism f : a Ñ b of 9A is called a t-irreducible
morphism if b � a and f is not in the image of

� : 9Apc, bq � 9Apa, cq Ñ 9Apa, bq,

for every b � c in A.
An object c of A is called a t-pure structure object if each 1-cell g of 9Apa, cq can be

factorized through some t-irreducible morphism f : a Ñ b such that b � c. That is to
say, c is a t-pure structure object if, for all g P 9Apa, cq, there are a morphism g1 and a
t-irreducible morphism f such that g1f � g.

The full sub-2-category of the t-pure structure objects of A is denoted by St , while
the full sub-2-category of 9A of the objects that are not in St (including a) is denoted by
It . We have the full inclusion it : It Ñ 9A.
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In particular, if f : a Ñ b is a t-irreducible morphism of 9A, then b is an object of It .
We denote by gt : It � 2Ñ It � 2 the full inclusion in which

obj
�
It � 2

�
:� obj pIt � 2q � tpa, 0qu .

9.2. Theorem. Let α : A ÝÑ B be an objectwise fully faithful pseudonatural trans-
formation such that B is of effective t-descent. We consider the mate of α, denoted
by Cα : 9A � 2 Ñ H. The pseudofunctor A is of effective t-descent if and only if
Cα � pit � Id2q : It � 2Ñ H is of effective gt-descent.

Proof. Without losing generality, we prove it to H � CAT and get the general result
via representable 2-functors. We just need to prove that PsRantA � tpaq is equivalent to
PsRangt

pCα � pit � Id2q � gtq pa, 0q.

The category of pseudonatural transformations %1 : 9Apa, tp�qq Ñ A � t is equivalent
to the category of pseudonatural transformations % : 9Apa, tp�qq ÝÑ B � t that can be
factorized through αt, since αt is objectwise fully faithful. Also, given % : 9Apa, tp�qq ÝÑ
B � t, there exists %1 : 9Apa, tp�qq Ñ A � t such that % � pαtq%1 if and only if the image of
pαtq

b
is essentially surjective in the image of %

b
for every b of A. Also, if such %1 exists, it

is unique up to isomorphism: it is the pseudopullback of % along pαtq.
Actually, we claim that, for the existence of such %1, it is (necessary and) sufficient

pαtq
b

be essentially surjective onto the image of %
b

for every object b of It . That is to say,
we just need to verify the lifting property for the objects in It .

Indeed, assume that %it can be lifted by αtit . Given an object c of St and a morphism
g : aÑ c, we prove that %cpgq is in the image of pαtq

c
up to isomorphism. Actually, there

is a t-irreducible morphism f : a Ñ b such that g1f � f for some g1 : b Ñ c morphism of
A, and, by hypothesis, there is an object u of Apbq such that pαtq

b
puq � %

b
pfq, thereby:

%cpgq � %c �
�
9Apa, tpg1qq

	
pfq � Bpg1q%

b
pfq � Bpg1q pαtq

b
puq � pαtq

c
pApg1qpuqq.

This completes the proof that it is enough to test the lifting property for the objects
in It . Now, one should observe that, since B is of effective t-descent, a pseudonatural
transformation

It � 2ppa, 0q, gt�q ÝÑ Cα � pit � Id2q � gt

is precisely determined (up to isomorphism) by a pseudonatural transformation

% : 9Apa, tp�qq ÝÑ B � t.

(i.e., an object of Bpaq), such that %it can be lifted by αtit . That is to say, as we proved,
this is just a pseudonatural transformation

%1 : 9Apa, tp�qq Ñ A � t.
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9.3. Remark. Definition 9.1 and Theorem 9.2 are part of a general perspective over
generalizations of classical theorems of cubes and pullbacks. The exhaustive exposition
of such is outside the scope of this paper.

We return to the context of Section 2. Let T be an idempotent pseudomonad on a
2-category H and X be an object of H. We say that X is of T -descent if the comparison
η
X

: X Ñ T pXq is fully faithful. It is important to note that, if A : 9AÑ H is of t-descent
(following Definition 3.39), then A is of PsRantp� � tq-descent.

9.4. Corollary. Let T be an idempotent pseudomonad on H and A : 9A Ñ H a pseud-
ofunctor such that all the objects in the image of A � t are T -descent objects. Assume
that both A, T �A are of effective t-descent. We assume that Apbq can be endowed with a
T -pseudoalgebra structure for every object b R St in A. Then Apaq can be endowed with
a T -pseudoalgebra structure.

9.5. Corollary. Let A : 9A Ñ
�
9B,H

�
PS

be an effective t-descent pseudofunctor such

that all the pseudofunctors in the image of A � t are of h-descent. Furthermore, we
assume that Apbq is of effective h-descent for every b R St in A. Then Apaq is of effective
h-descent.

Recall the following full inclusion of 2-categories h : BÑ 9B described in Section 5.

e

��
ÞÑ

b

��

// e

��
c // o c // o

(P)

As explained there, a diagram 9B Ñ H is of effective h-descent if and only if it is a
pseudopullback. In this case, the unique object in S

h
is o. Thereby we get:

9.6. Corollary. Assume that A : 9B Ñ r 9A,HsPS is a pseudopullback diagram. If
Apcq,Apeq : 9A Ñ H are of effective t-descent and Apoq : 9A Ñ H is of t-descent, then
Apbq is of effective t-descent.

Taking into account Remark 8.1 and realizing that pseudopullbacks of functors induce
pseudopullback of overcategories, we get Theorem 1.6 as a corollary.

9.7. Applications. In this subsection, we finish the paper giving applications of our
results and proving the remaining theorems presented in Section 1. Firstly, considering
our inclusion j : ∆ Ñ 9∆, it is important to observe that 1 R S

j
, while all the other objects

of ∆ belong to S
j
. We start proving Theorem 4.2 of [20], which is presented therein as a

generalized Galois Theorem.

9.8. Theorem. [Galois] Let A,B : 9∆ Ñ CAT be pseudofunctors and α : A ÝÑ B be an
objectwise fully faithful pseudonatural transformation. We assume that B is of effective
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j-descent. The pseudofunctor A is also of effective j-descent if and only if the diagram
below is a pseudopullback.

Ap0q
α0

��

Apdq //

α
dùñ

Ap1q
α1

��
Bp0q

Bpdq
// Bp1q

Proof. Since, in this case, I
j
� 2 and the inclusion g

j
: I

j
� 2Ñ I

j
� 2 is precisely equal

to the inclusion described in the diagram P, by Theorem 9.2, the proof is complete.

As a consequence of Theorem 9.8, we get a generalization of Theorem 1.3. More
precisely, in the context of Section 8 and using the definitions presented there, we get:

9.9. Corollary. Let pU, αq be a fully faithful morphism between pseudofunctors A :
Cop Ñ H and B : Dop Ñ H, in which C and D are categories with pullbacks. Assume that
Uppq is an effective B-descent morphism of D. Then p : E Ñ B is of effective A-descent
if and only if, whenever there are u P BpBq, v P ApEq such that α

p

1
puq � B

Uppq
pdqpvq, there

is w P ApBq such that α
p

0
pwq � u.

Proof. Recall the definitions of Ap ,BUppq , α
p
. Since we already know that Ap is j-descent,

the condition described is precisely the condition necessary and sufficient to conclude that
the diagram of Theorem 9.8 is a pseudopullback.

Indeed, taking into account Remark 8.1, we conclude that Theorem 1.3 is actually a
immediate consequence of last corollary.

Given a category with pullbacks V , we denote by CatpV q the category of internal
categories in V . If V is a category with products, we denote by V -Cat the category of
small categories enriched over V . We give a simple application of the Theorem 1.6 below.

9.10. Lemma. If pV,�, Iq is an infinitary lextensive category such that

J : Set Ñ V

A ÞÑ
¸
aPA

Ia

is fully faithful, then the pseudopullback of the projection of the object of objects U0 :
CatpV q Ñ V along J is the category V -Cat.

Proof. We denote by SpanpV q the usual bicategory of objects of V and spans between
them and by V -Mat the usual bicategory of sets and V -matrices between them. Let
Span

Set
pV q be the full sub-bicategory of SpanpV q in which the objects are in the image of

Set.
Assuming our hypotheses, we have that Span

Set
pV q is biequivalent to V -Mat. Indeed,

we define “identity” on the objects and, if A,B are sets, take a matrix M : A�B Ñ objpV q

to the obvious span given by the coproduct
¸

px,yqPA�B

Mpx, yq, that is to say, the morphism
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px,yqPA�BMpx, yq Ñ A is induced by the morphisms Mpx, yq Ñ Ix and the morphism°
px,yqPA�BMpx, yq Ñ B is analogously defined.

Since V is lextensive, this defines a biequivalence. Thereby this completes our proof.

Corollary 6.2.5 of [32] says in particular that, for lextensive categories, effective descent
morphisms of CatpV q are preserved by the projection U0 : CatpV q Ñ V to the objects of
objects. Thereby, by Theorem 1.6, we get:

9.11. Theorem. If pV,�, Iq is an infinitary lextensive category such that each arrow of
V can be factorized as a regular epimorphism followed by a monomorphism and

J : Set Ñ V

A ÞÑ
¸
aPA

Ia

is fully faithful, then I : V -Cat Ñ CatpV q reflects effective descent morphisms.

Proof. We denote by U : V -Cat Ñ Set the forgetful functor and by U0 : CatpV q Ñ V the
projection defined above. We have that U0, U, J and I are pullback preserving functors.

If p : E Ñ B is a morphism of V -Cat such that Ippq is of effective descent, then U0Ippq
is of descent (by Corollary 5.2.1 of [32]). Therefore JUppq is of descent.

Since J is fully faithful, by Theorem 8.3, Uppq is of descent. Therefore, since descent
morphisms of Set are of effective descent, we conclude that Uppq is of effective descent.
This completes the proof.

For instance, Theorem 6.2.8 of [32] and Proposition 9.11 can be applied to the cases
of V � Cat or V � Top:

9.12. Corollary. A 2-functor F between Cat-categories is of effective descent in Cat-
Cat, if

– F is surjective on objects;

– F is surjective on composable triples of 2-cells;

– F induces a functor surjective on composable pairs of 2-cells between the categories
of composable pairs of 1-cells;

– F induces a functor surjective on 2-cells between the categories of composable triples
of 1-cells.

9.13. Corollary. A Top-functor F between Top-categories is of effective descent in
Top-Cat, if F induces

– effective descent morphisms between the discrete spaces of objects and between the
spaces of morphisms in Top;

– a descent continuous map between the spaces of composable pairs of morphisms in
Top;
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– an almost descent continuous map between the spaces of composable triples of mor-
phisms in Top.

Since the characterization of (effective/almost) descent morphisms in Top is known [43,
10, 8], the result above gives effective descent morphisms of Top-Cat.

9.14. Remark. We can give further formal results on (basic) effective descent morphisms
(context of Remark 8.1). The main technique in this case is to understand our overcate-
gory as a bilimit of other overcategories.

For instance, we study below the categories of morphisms of a given category C with
pullbacks. Consider the full inclusion of 2-categories t : AÑ 9A

0

d
��

ÞÑ

a

pro0

��

pro1
//

ξ
ùñ

0

d

��
1 1

Given a morphism of C, i.e. a functor F : 2 Ñ C, we take the overcategory Funp2,Cq{F
and define A : 9AÑ CAT in which

Apaq :�Funp2,Cq{F Ap0q :�C{F p1q Ap1q :�C{F p0q.

Finally, Appro0q,Appro1q are given by the obvious projections, Apdq :� F pdq� and the
component Apξq in a morphism $ : H Ñ F is given by the induced morphism from Hp0q
to the pullback.

Observe that A is of effective t-descent, that is to say, we have that the overcategory
Funp2,Cq{F is a bilimit constructed from overcategories C{F p0q and C{F p1q. Also, given
a natural transformation $ : F Ñ G between functors 2 Ñ C, i.e. a morphism of
Funp2,Cq, taking Remark 8.1, we can extend A to a 2-functor A : 9A Ñ r 9∆,CATs in
which Apaq :� p q�$, Ap0q :� p q�$1

and Ap1q :� p q�$0
.

The 2-functor A is also of effective t-descent. Therefore, by our results, we conclude
that, if the components $1, $0 are of (basic) effective descent, so is $. Analogously,
considering the category of spans in C, the morphisms between spans which are objectwise
of effective descent are of effective descent.
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