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GENERATING THE ALGEBRAIC THEORY OF C(X):
THE CASE OF PARTIALLY ORDERED COMPACT SPACES

DIRK HOFMANN, RENATO NEVES, AND PEDRO NORA

Abstract. It is known since the late 1960's that the dual of the category of compact

Hausdor� spaces and continuous maps is a variety � not �nitary, but bounded by ℵ1. In
this note we show that the dual of the category of partially ordered compact spaces and

monotone continuous maps is an ℵ1-ary quasivariety, and describe partially its algebraic

theory. Based on this description, we extend these results to categories of Vietoris

coalgebras and homomorphisms on ordered compact spaces. We also characterise the

ℵ1-copresentable partially ordered compact spaces.

1. Introduction

The motivation for this paper stems from two very di�erent sources. Firstly, it is known
since the end of the 1960's that the dual of the category CompHaus of compact Hausdor�
spaces and continuous maps is a variety � not �nitary, but bounded by ℵ1. In detail,

• in [Dus69] it is proved that the representable functor hom(−, [0, 1]) : CompHausop →
Set is monadic,

• the unit interval [0, 1] is shown to be a ℵ1-copresentable compact Hausdor� space
in [GU71],

• a presentation of the algebra operations of CompHausop is given in [Isb82], and

• a complete description of the algebraic theory of CompHausop is obtained in [MR17].

It is also worth mentioning that, by the famous Gelfand duality theorem [Gel41], CompHaus
is dually equivalent to the category of commutative C∗-algebras and homomorphisms; the
algebraic theory of (commutative) C∗-algebras is extensively studied in [Neg71, PR89,
PR93].

Our second source of inspiration is the theory of coalgebras. In [KKV04] the authors
argue that the category BooSp of Boolean spaces and continuous maps �is an interesting
base category for coalgebras�; among other reasons, due to the connection of the latter with
�nitary modal logic. A similar study based on the Vietoris functor on the category Priest of
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Priestley spaces and monotone continuous maps can be found in [CLP91, Pet96, BKR07].
Arguably, the categories BooSp and Priest are very suitable in this context because they
are duals of �nitary varieties (due to the famous Stone dualities [Sto36, Sto38a, Sto38b]),
a property which extends to categories of coalgebras and therefore guarantees for instance
good completeness properties.

In this note we go a step further and study the category PosComp of partially ordered
compact spaces and monotone continuous maps, which was introduced in [Nac50] and
forms a natural extension of the categories CompHaus and Priest. It remains open to
us whether PosCompop is also a variety; however, based on the duality results of [HN18]
and inspired by [Isb82], we prove that PosCompop is an ℵ1-ary quasivariety and also give
a partial description of its algebraic theory. Moreover, this description is su�cient to
identify the dual of the category of coalgebras for the Vietoris functor V : PosComp →
PosComp as an ℵ1-ary quasivariety. Finally, we characterise the ℵ1-copresentable objects
of PosComp as precisely the metrisable ones.

In this paper we assume the reader to be familiar with basic facts about varieties,
quasivarieties, locally presentable categories (see, for instance, [AR94]) and quantale-
enriched categories. For a gentle introduction to the latter subject we refer to [Law73,
Stu14]. The general theory of categories enriched in a symmetric monoidal closed category
can be found in [Kel82].

2. Preliminaries

In this section we recall the notion of partially ordered compact space introduced in
[Nac50] together with some fundamental properties of these spaces.

2.1. Definition. A partially ordered compact space (X,≤, τ) consists of a set X,
a partial order ≤ on X and a compact topology τ on X so that the set

{(x, y) ∈ X ×X | x ≤ y}

is closed in X ×X with respect to the product topology.

We will often write X instead of (X,≤, τ) to keep the notation simple. For every
partially ordered compact space X, also the subset

{(x, y) ∈ X ×X | x ≥ y}

is closed inX×X since the mappingX×X → X×X, (x, y) 7→ (y, x) is a homeomorphism.
Therefore the diagonal

∆X = {(x, y) ∈ X ×X | x ≤ y} ∩ {(x, y) ∈ X ×X | x ≥ y}

is closed in X ×X, which tells us that the topology of a partially ordered compact space
is Hausdor�. We denote the category of partially ordered compact spaces and monotone
continuous maps by PosComp.
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2.2. Example. The unit interval [0, 1] with the usual Euclidean topology and the �greater
or equal� relation > is a partially ordered compact space; via the mapping x 7→ 1 − x,
this space is isomorphic in PosComp to the space with the same topology and the �less or
equal� relation 6.

There is a canonical functor PosComp → Pos from PosComp to the category Pos of
partially ordered sets and monotone maps that forgets the topology. By the observa-
tion above, forgetting the order relation induces a functor PosComp → CompHaus from
PosComp to the category CompHaus of compact Hausdor� spaces and continuous maps.
For more information regarding properties of PosComp we refer to [Nac65, GHK+80,
Jun04, Tho09]; however, let us recall that:

2.3. Theorem. The category PosComp is complete and cocomplete, and both canonical
forgetful functors PosComp→ CompHaus and PosComp→ Pos preserve limits.

Proof. This follows from the construction of limits and colimits in PosComp described
in [Tho09].

A cone (fi : X → Yi)i∈I in PosComp is initial with respect to the forgetful functor
PosComp→ CompHaus if and only if

x0 ≤ x1 ⇐⇒ ∀i ∈ I . fi(x0) ≤ fi(x1),

for all x0, x1 ∈ X (see [Tho09]). In particular, an embedding in PosComp is a morphism
m : X → Y that satis�es

x0 ≤ x1 ⇐⇒ m(x0) ≤ m(x1)

for all x0, x1 ∈ X. Note that embeddings in PosComp are, up to isomorphism, closed
subspace inclusions with the induced order.

The following result of Nachbin is crucial for our work.

2.4. Theorem. The unit interval [0, 1] is injective in PosComp with respect to embed-
dings.

Proof. See [Nac65, Theorem 6].

The theorem above has the following important consequence.

2.5. Lemma. Let X be a partially ordered compact space, A,B ⊆ X closed subsets so that
A ∩B = ∅ and B = ↓B ∩ ↑B. Then there is a family (fu : X → [0, 1])u∈[0,1] of monotone
continuous maps that coincide on A and, moreover, satisfy fu(y) = u, for all u ∈ [0, 1]
and y ∈ B.

Proof. Put A0 = A ∩ ↑B and A1 = A ∩ ↓B. Then A0 and A1 are closed subsets of X
and

A0 ∩ A1 = A ∩ ↑B ∩ ↓B = A ∩B = ∅.
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Moreover, for every x0 ∈ A0 and x1 ∈ A1, x0 � x1. In fact, if x0 ≥ y0 ∈ B and
x1 ≤ y1 ∈ B, then x0 ≤ x1 implies

y0 ≤ x0 ≤ x1 ≤ y1,

hence x0 ∈ B which contradicts A ∩ B = ∅. We de�ne now the monotone continuous
map

g : A0 ∪ A1 −→ [0, 1]

x 7−→

{
0 if x ∈ A0,

1 if x ∈ A1.

By Theorem 2.4, g extends to a monotone continuous map g : A → [0, 1]. Let now
u ∈ [0, 1]. We de�ne

fu : A ∪B −→ [0, 1]

x 7−→

{
g(x) if x ∈ A,
u if x ∈ B.

Using again Theorem 2.4, fu extends to a monotone continuous map fu : X → [0, 1].

The following theorem implies in particular that PosCompop is a quasivariety (see
[Adá04, Theorem 3.6]). In the next section we will give a more concrete description of
the algebraic theory of PosCompop.

2.6. Theorem. The regular monomorphisms in PosComp are, up to isomorphism, the
closed subspaces with the induced order and the epimorphisms in PosComp are precisely
the surjections. Consequently, PosComp has (Epi,Regular mono)-factorisations and the
unit interval [0, 1] is a regular injective regular cogenerator of PosComp.

Proof. An application of [AHS90, Proposition 8.7] tells that every regular monomor-
phism is an embedding, and the converse implication follows from Lemma 2.5.

Since faithful functors re�ect epimorphisms, every surjective morphism of PosComp
is an epimorphism. Let f : X → Y be an epimorphism in PosComp, we consider its
factorisation f = m ·e in PosComp with e surjective and m an embedding. Hence, since m
is a regular monomorphism and an epimorphism, we conclude that m is an isomorphism
and therefore f is surjective.

Finally, the �order Urysohn property� for partially ordered compact spaces (see [Jun04,
Lemma 2.2]) implies that [0, 1] is a regular cogenerator of PosComp.

We close this section with the following characterisation of co�ltered limits in CompHaus
which goes back to [Bou66, Proposition 8, page 89] (see also [Hof02, Proposition 4.6] and
[HNN16]).



280 DIRK HOFMANN, RENATO NEVES, AND PEDRO NORA

2.7. Theorem. Let D : I → CompHaus be a co�ltered diagram and (pi : L → D(i))i∈I a
cone for D. The following conditions are equivalent:

(i) The cone (pi : L→ D(i))i∈I is a limit of D.

(ii) The cone (pi : L → D(i))i∈I is mono and, for every i ∈ I, the image of pi is equal
to the intersection of the images of all D(k : j → i) with codomain i:

im pi =
⋂
j→i

imD(j
k−→ i).

We emphasise that this intrinsic characterisation of co�ltered limits in CompHaus
is formally dual to the following well-known description of �ltered colimits in Set (see
[AR94]).

2.8. Theorem. Let D : I → Set be a �ltered diagram and (ci : D(i)→ C)i∈I a compatible
cocone (ci : D(i)→ C)i∈I for D. The following conditions are equivalent:

(i) The cocone (ci : D(i)→ C)i∈I is a colimit of D.

(ii) The cocone (ci : D(i)→ C)i∈I is epi and, for all i ∈ I, the coimage of ci is equal to
the cointersection of the coimages of all D(k : i→ j) with domain i:

ci(x) = ci(y) ⇐⇒ ∃(i k−→ j) ∈ I .D(k)(x) = D(k)(y),

and x, y ∈ D(i).

3. The quasivariety PosCompop

In this section we show that PosCompop is an ℵ1-ary quasivariety and give a concrete pre-
sentation of the algebra structure of PosCompop. To achieve this, we resort to [HN18] where
PosCompop is shown to be equivalent to the category of certain [0, 1]-enriched categories,
for various quantale structures on the complete lattice [0, 1]. Arguably, the most conve-
nient quantale structure is the �ukasiewicz tensor given by u� v = max(0, u+ v− 1),
for u, v ∈ [0, 1]. We recall that, for this quantale, a [0, 1]-category is a set X equipped
with a mapping a : X ×X → [0, 1] so that

1 6 a(x, x) and a(x, y)� a(y, z) 6 a(x, z),

for all x, y ∈ X. Each [0, 1]-category (X, a) induces the order relation (that is, a re�exive
and transitive relation)

x 6 y whenever 1 6 a(x, y) (x, y ∈ X)

on X. A [0, 1]-category is called separated (also called skeletal) whenever this order
relation is anti-symmetric. As we explain in Section 5, categories enriched in this quantale
can be also thought of as metric spaces.
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To state the duality result of [HN18], we need to impose certain (co)completeness con-
ditions on [0, 1]-categories: we consider the category A with objects all separated �nitely
cocomplete [0, 1]-categories with a monoid structure that, moreover, admit [0, 1]-powers
(also called cotensors); the morphisms of A are the �nitely cocontinuous [0, 1]-functors
preserving the monoid structure and the [0, 1]-powers. Alternatively, these structures can
be described algebraically as sup-semilattices with actions of [0, 1]. Below we recall from
[HN18] that the category A together with its canonical forgetful functor A → Set is an
ℵ1-ary quasivariety.

3.1. Remark. The category A is equivalent to the quasivariety de�ned by the following
operations and implications (also known as quasi-equations). Firstly, the set of operation
symbols consists of

• the nullary operation symbols ⊥ and >;

• the unary operation symbols −� u and − t u, for each u ∈ [0, 1];

• the binary operation symbols ∨ and }.

Secondly, the algebras for this theory should be sup-semilattices with a supremum-pre-
serving action of [0, 1]; writing x ≤ y as an abbreviation for the equation y = x ∨ y, this
translates to the equations and implications

x ∨ x = x, x ∨ (y ∨ z) = (x ∨ y) ∨ z, x ∨ ⊥ = x, x ∨ y = y ∨ x,
x� 1 = x, (x� u)� v = x� (u� v), ⊥� u = ⊥, (x ∨ y)� u = (x� u) ∨ (y � u),

x� u ≤ x� v,
∧
u∈S

(x� u ≤ y) =⇒ (x� v ≤ y) (S ⊆ [0, 1] countable, v = supS).

The algebras de�ned by the operations ⊥, ∨ and −� u (u ∈ [0, 1]) and the equations
above are precisely the separated [0, 1]-categories with �nite weighted colimits. Such a
[0, 1]-category (X, a) has all powers x t u (x ∈ X, u ∈ [0, 1]) if and only if, for all u ∈ [0, 1],
−� u has a right adjoint − t u with respect to the underlying order. Therefore we add
to our theory the implications

x� u ≤ y ⇐⇒ x ≤ y t u,

for all u ∈ [0, 1]. Finally, regarding }, we impose the commutative monoid axioms with
neutral element the top-element:

x} y = y } x, x} (y } z) = (x} y) } z, x}> = x, > ≤ x.

Moreover, we require this multiplication to preserve suprema and the action − � u (for
u ∈ [0, 1]) in each variable:

x} (y ∨ z) = (x} y) ∨ (x} z), x}⊥ = ⊥, x} (y � u) = (x} y)� u.
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3.2. Remark. The unit interval [0, 1] becomes an algebra for the theory above with
} = � and v t u = min(1, 1 − u + v) = 1 −max(0, u − v), and the usual interpretation
of all other symbols.

The following result is in [HN18].

3.3. Theorem. The functor
C : PosCompop −→ A

sending f : X → Y to Cf : CY → CX, ψ 7→ ψ · f is fully faithful, here the algebraic
structure on

CX = {f : X → [0, 1] | f is monotone and continuous}
is de�ned pointwise.

3.4. Remark. We recall that, in order to de�ne the functor of Theorem 3.3, it is im-
portant that all operation symbols are interpreted as monotone continuous functions
[0, 1]n → [0, 1]. Furthermore, the theorem above remains valid if we augment the al-
gebraic theory of A with an operation symbol corresponding to a monotone continuous
function [0, 1]I → [0, 1]. More precisely, let ℵ be a cardinal and h : [0, 1]ℵ → [0, 1] a
monotone continuous map. If we add to the algebraic theory of A an operation symbol of
arity ℵ, then C : PosCompop → A lifts to a fully faithful functor from PosCompop to the
category of algebras for this theory by interpreting the new operation symbol in CX by

(fi)i∈I 7−→ (X
〈fi〉i∈I−−−−→ [0, 1]I

h−→ [0, 1]).

By Theorem 3.3, all A-morphisms of type CY → CX preserves this new operation auto-
matically.

3.5. Remark. Note that 1 − u = 0 t u, for every u ∈ [0, 1]. Therefore we can express
truncated minus v 	 u = max(0, v − u) in [0, 1] with the operations of A:

v 	 u = 0 t (u t v).

In particular, every subalgebra M ⊆ CX of CX is also closed under truncated minus.

In order to identify the image of C : PosCompop −→ A, in [HN18] we use an adaptation
of the classical �Stone�Weierstraÿ theorem�. This theorem a�rms that certain subalgebras
of CX are dense, which in turn depends on a notion of closure in quantale enriched
categories. Such a closure operator is studied in [HT10]; however, as we observed in
[HN18], for categories enriched in [0, 1] with the �ukasiewicz tensor, the topology de�ned
by this closure operator coincides with the usual topology induced by the �sup-metric� on
CX.

3.6. Theorem. Let X be a partially ordered compact space and m : A ↪→ CX be a sub-
object of CX in A so that the cone (m(a) : X → [0, 1])a∈A is point-separating and initial.
Then m is dense in CX. In particular, if the [0, 1]-category A is Cauchy complete, then
m is an isomorphism.

One important consequence of Theorem 3.6 is the following proposition.
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3.7. Proposition. The unit interval [0, 1] is ℵ1-copresentable in PosComp.

Proof. This can be shown with the same argument as in [GU71, 6.5.(c)]. Firstly, by
Theorem 3.6, hom(−, [0, 1]) sends every ℵ1-codirected limit to a jointly surjective cocone.
Secondly, using Theorem 2.8, this cocone is a colimit since [0, 1] is ℵ1-copresentable in
CompHaus.

3.8. Theorem. The functor C : PosCompop → A corestricts to an equivalence between
PosCompop and the full subcategory of A de�ned by those objects A which are Cauchy
complete and where the cone of all A-morphisms from A to [0, 1] is point-separating.

Proof. See [HN18].

Instead of working with Cauchy completeness, we wish to add an operation to the
algebraic theory of A so that, if M is closed under this operation in CX, then M is closed
with respect to the topology of the [0, 1]-category CX. In the case of CompHaus, this is
achieved in [Isb82] using the operation

[0, 1]N −→ [0, 1], (un)n∈N 7−→
∞∑
n=0

1

2n+1
un

on [0, 1]. For a compact Hausdor� space X, Isbell considers the set CX of all continuous
functionsX → [−1, 1]. He observes that every subsetM ⊆ CX closed under the operation
above (de�ned now in [−1, 1]), truncated addition and subtraction, is topologically closed.
To see why, let (ϕn)n∈N be a sequence in M with limit ϕ = limn→∞ ϕn, we may assume
that ‖ϕn+1 − ϕn‖ ≤ 1

2n+1 , for all n ∈ N. Then

ϕ = ϕ0 +
1

2
(2(ϕ1 − ϕ0)) + · · · ∈M.

However, this argument cannot be transported directly into the ordered setting since the
di�erence ϕ1 − ϕ0 of two monotone maps ϕ0, ϕ1 : X → [0, 1] is not necessarily mono-
tone. To circumvent this problem, we look for a monotone and continuous function
[0, 1]N → [0, 1] which calculates the limit of �su�ciently many� sequences. We now make
the meaning of �su�ciently many� more precise.

3.9. Lemma. Let M ⊆ CX be a subalgebra in A and ψ ∈ CX with ψ ∈ M . Then there
exists a sequence (ψn)n∈N in M converging to ψ so that

1. (ψn)n∈N is increasing, and

2. for all n ∈ N and all x ∈ X: ψn+1(x)− ψn(x) ≤ 1
2n
.

Proof. We can �nd (ψn)n∈N so that, for all n ∈ N, |ψn(x) − ψ(x)| ≤ 1
n+1

. Then the

sequence (ψn 	 1
n+1

)n∈N converges to ψ too; moreover, since M ⊆ CX is a subalgebra,

also ψn 	 1
n+1
∈ M , for all n ∈ N. Therefore we can assume that we have a sequence

(ψn)n∈N in M with (ψn)n∈N → ψ and ψn ≤ ψ, for all n ∈ N. Then the sequence
(ψ0 ∨ · · · ∨ ψn)n∈N has all its members in M , is increasing and converges to ψ. Finally,
there is a subsequence of this sequence which satis�es the second condition above.
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3.10. Lemma. Let

C = {(un)n∈N ∈ [0, 1]N | (un)n∈N is increasing and un+1 − un ≤
1

2n
, for all n ∈ N}.

Then every sequence in C is Cauchy and lim: C → [0, 1] is monotone and continuous.

Proof. Clearly, every element of C is a Cauchy sequence and the function lim: C → [0, 1]
is monotone. To see that lim is also continuous, let (un)n∈N ∈ C with and ε > 0. Put
u = limn→∞ un. Choose N ∈ N so that

∑∞
n=N

1
2n
< ε

2
and u− uN < ε

2
. Then

U = {(vn)n∈N ∈ C | |u− vN | <
ε

2
}

is an open neighbourhood of (un)n∈N. For every (vn)n∈N ∈ U with v = limn→∞ vn,

|v − u| ≤ |v − vN |+ |vN − u| <
ε

2
+
ε

2
= ε;

which proves that lim: C → [0, 1] is continuous.

Motivated by the two lemmas above, we are looking for a monotone continuous map
[0, 1]N → [0, 1] which sends every sequence in C to its limit. Such a map can be obtained
by combining lim: C → [0, 1] with a monotone continuous retraction of the inclusion map
C ↪→ [0, 1]N. The following result is straightforward to prove.

3.11. Lemma. The map µ : [0, 1]N → [0, 1]N, (un)n∈N 7→ (u0 ∨ · · · ∨ un)n∈N is monotone
and continuous.

Clearly, µ sends a sequence to an increasing sequence, and µ((un)n∈N) = (un)n∈N for
every increasing sequence (un)n∈N.

3.12. Lemma. The map γ : [0, 1]N → [0, 1]N sending a sequence (un)n∈N to the sequence
(vn)n∈N de�ned recursively by

v0 = u0 and vn+1 = min

(
un+1, vn +

1

2n

)
is monotone and continuous. Furthermore, γ sends an increasing sequence to an increas-
ing sequence.

Proof. It is easy to see that γ is monotone. In order to verify continuity, we consider N
as a discrete topological space, this way [0, 1]N is an exponential in Top. We show that γ

corresponds via the exponential law to a (necessarily continuous) map f : N→ [0, 1]([0,1]
N).

The recursion data above translate to the conditions

f(0) = π0 and f(n+ 1)((um)m∈N) = min

(
un+1, f(n)((um)m∈N) +

1

2n

)
,
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that is, f is de�ned by the recursion data π0 ∈ [0, 1]([0,1]
N) and

[0, 1]([0,1]
N) −→ [0, 1]([0,1]

N), ϕ 7−→ min

(
πn+1, ϕ+

1

2n

)
.

Note that with ϕ : [0, 1]N → [0, 1] also min
(
πn+1, ϕ+ 1

2n

)
: [0, 1]N → [0, 1] is continuous.

Finally, if (un)n∈N is increasing, then so is (vn)n∈N.

We conclude that the map γ · µ : [0, 1]N → C is a retraction for the inclusion map
C → [0, 1]N in PosComp. Therefore we de�ne now:

3.13. Definition. Let A be the ℵ1-ary quasivariety obtained by adding one ℵ1-ary oper-
ation symbol to the theory of A (see Remark 3.1). Then [0, 1] becomes an object of A by
interpreting this operation symbol by

δ = lim ·γ · µ : [0, 1]N → [0, 1].

The (accordingly modi�ed) functor C : PosComp→ A is fully faithful (see Remark 3.4);
moreover, by Proposition 3.7, C sends ℵ1-codirected limits to ℵ1-directed colimits in A.

3.14. Definition. Let A0 be the subcategory of A de�ned by those objects A where the
cone of all morphisms from A to [0, 1] is point-separating.

Hence, A0 is a regular epire�ective full subcategory of A and therefore also a quasiva-
riety. Moreover:

3.15. Theorem. The embedding C : PosCompop → A corestricts to an equivalence functor
C : PosCompop → A0. Hence, A0 is closed in A under ℵ1-directed colimits and therefore
also an ℵ1-ary quasivariety (see [AR94, Remark 3.32]).

4. Vietoris coalgebras

Resorting to the results of Section 3, in this section we present immediate consequences
for the category CoAlg(V ) of coalgebras and homomorphisms, where V : PosComp →
PosComp is the Vietoris functor. In particular, we show that CoAlg(V ), as well as certain
full subcategories, are also ℵ1-ary quasivarieties.

Recall from [Sch93] (see also [HN18, Proposition 3.28]) that, for a partially ordered
compact space X, the elements of V X are the closed upper subsets of X, the order on
V X is containment ⊇, and the sets

{A ∈ V X | A ∩ U 6= ∅} (U ⊆ X open lower)

and

{A ∈ V X | A ∩K = ∅} (K ⊆ X closed lower)
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generate the compact Hausdor� topology on V X. Furthermore, for f : X → Y in
PosComp, the map V f : V X → V Y sends A to the up-closure ↑f [A] of f [A]. A coal-
gebra (X,α) for V consists of a partially ordered compact space X and a monotone
continuous map α : X → V X. For coalgebras (X,α) and (Y, β), a homomorphism of
coalgebras f : (X,α) → (Y, β) is a monotone continuous map f : X → Y so that the
diagram

X
f //

α
��

Y

β
��

V X
V f
// V Y

commutes. The coalgebras for the Vietoris functor and their homomorphisms form the
category CoAlg(V ); moreover, there is a canonical forgetful functor CoAlg(V )→ PosComp
which sends (X,α) to X and keeps the maps unchanged. For the general theory of
coalgebras we refer to [Adá05, Rut00].

As it is well-known, the functor V is part of a monad V = (V,m, e) on PosComp (see
[Sch93]); here eX : X → V X sends x to ↑x and mX : V V X → V X is given by A 7→

⋃
A.

In order to show that CoAlg(V )op is an ℵ1-ary quasivariety, we will use this perspective
together with the duality result for PosComp

V
of [HN18] detailed below.

Let B denote the category with the same objects as A and morphisms those maps
ϕ : A→ A′ that preserve �nite suprema and the action −�u, for all u ∈ [0, 1], and satisfy

ϕ(x} y) ≤ ϕ(x) } ϕ(y),

for all x, y ∈ A.

4.1. Theorem. The functor C : PosCompop → A extends to a fully faithful functor
C : PosComp

V
→ B making the diagram

PosCompop
V

C // B

PosCompop
C
//

OO

A0

OO

commutative, where the vertical arrows denote the canonical inclusion functors.

Proof. See [HN18].

Clearly, a coalgebra structure X → V X for V can be also interpreted as an endomor-
phism X −→◦ X in the Kleisli category PosComp

V
. Therefore the category CoAlg(V ) is

dually equivalent to the category with objects all pairs (A, a) consisting of an A0 object
A and a B-morphism a : A → A, and a morphism between such pairs (A, a) and (A′, a′)
is an A0-morphism A→ A′ commuting in the obvious sense with a and a′.

4.2. Theorem. The category CoAlg(V ) of coalgebras and homomorphisms for the Vi-
etoris functor V : PosComp→ PosComp is dually equivalent to an ℵ1-ary quasivariety.
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Proof. Just consider the algebraic theory of A0 augmented by one unary operation
symbol and by those equations which express that the corresponding operation is a B-
morphism.

In particular, CoAlg(V ) is complete and the forgetful functor CoAlg(V ) → PosComp
preserves ℵ1-codirected limits. In fact, slightly more is shown in [HNN16]:

4.3. Proposition. The forgetful functor CoAlg(V )→ PosComp preserves codirected lim-
its.

We �nish this section by pointing out some further consequences of our approach for
certain full subcategories of CoAlg(V ). We will be guided by familiar concepts, namely
re�exive and transitive relations, but note that our arguments apply to other concepts as
well (for instance, idempotent relations).

Still thinking of a coalgebra structure α : X → V X as an endomorphism α : X −→◦ X
in PosComp

V
, we say that α is re�exive whenever 1X ≤ α in PosComp

V
, and α is called

transitive whenever α ◦ α ≤ α in PosComp
V
; with the local order in PosComp

V
being

inclusion.

4.4. Proposition. The full subcategory of CoAlg(V ) de�ned by all re�exive (or transi-
tive or re�exive and transitive) coalgebras is dually equivalent to an ℵ1-ary quasivariety.
Moreover, this subcategory is core�ective in CoAlg(V ) and closed under ℵ1-directed limits.

Proof. First note that the functor C : PosComp
V
→ B preserves and re�ects the local

order of morphisms (de�ned pointwise, see [HN18]). Therefore, considering the corre-
sponding B-morphism a : A → A, the inequalities expressing re�exivity and transitivity
can be formulated as equations in A. Then the assertion follows from [AR94, Theo-
rem 1.66].

For a classM of monomorphisms in CoAlg(V ), a coalgebraX for V is called coorthog-
onal whenever, for all m : A→ B inM and all homomorphisms f : X → B there exists a
(necessarily unique) homomorphism g : X → A withm·g = f (see [AR94, De�nition 1.32]
for the dual notion). We writeM> for the full subcategory of CoAlg(V ) de�ned by those
coalgebras which are coorthogonal to M. From the dual of [AR94, Theorem 1.39] we
obtain:

4.5. Proposition. For every setM of monomorphisms in CoAlg(V ), the inclusion func-
torM> ↪→ CoAlg(V ) has a right adjoint. Moreover, if λ denotes a regular cardinal larger
or equal to ℵ1 so that, for every arrow m ∈ M, the domain and codomain of m is λ-
copresentable, thenM> ↪→ CoAlg(V ) is closed under λ-codirected limits.

Another way of specifying full subcategories of CoAlg(V ) uses coequations (see [Adá05,
De�nition 4.18]). For the Vietoris functor, the latter is a particular case of coorthogonality,
and therefore we obtain the following result.

4.6. Corollary. For every set of coequations in CoAlg(V ), the full subcategory of
CoAlg(V ) de�ned by these coequations is core�ective.
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5. ℵ1-copresentable spaces
It is shown in [GU71] that the ℵ1-copresentable objects in CompHaus are precisely the
metrisable compact Hausdor� spaces. We end this paper with a characterisation of the ℵ1-
copresentable objects in PosComp which resembles the one for compact Hausdor� spaces;
to do so, we consider generalised metric spaces in the sense of Lawvere [Law73].

More precisely, we think of metric spaces as categories enriched in the quantale [0, 1],
ordered by the �greater or equal� relation >, with tensor product ⊕ given by truncated
addition:

u⊕ v = min(1, u+ v),

for all u, v ∈ [0, 1]. We note that the right adjoint hom(u,−) of u ⊕ − : [0, 1] → [0, 1] is
de�ned by

hom(u, v) = v 	 u = max(0, v − u),

for all u, v ∈ [0, 1].

5.1. Remark. Via the isomorphism [0, 1] → [0, 1], u 7→ 1 − u, the quantale described
above is isomorphic to the quantale [0, 1] equipped with the �ukasiewicz tensor used in
Section 3. However, we decided to switch so that categories enriched in [0, 1] look more
like metric spaces.

5.2. Definition. A metric space is a pair (X, a) consisting of a set X and a map
a : X ×X → [0, 1] satisfying

0 > a(x, x) and a(x, y)⊕ a(y, z) > a(x, z),

for all x, y, z ∈ X. A map f : X → Y between metric spaces (X, a), (Y, b) is called
non-expansive whenever

a(x, x′) > b(f(x), f(x′)),

for all x, x′ ∈ X. Metric spaces and non-expansive maps form the category Met.

5.3. Example. The unit interval [0, 1] is a metric space with metric hom(u, v) = v 	 u.
Our de�nition of metric space is not the classical one. Firstly, we consider only metrics

bounded by 1; however, since we are interested in the induced topology and the induced
order, �large� distances are irrelevant. Secondly, we allow distance zero for di�erent points,
which, besides topology, also allows us to obtain non-trivial orders. Every metric a on a
set X de�nes the order relation

x ≤ y whenever 0 > a(x, y),

for all x, y ∈ X; this construction de�nes a functor

O : Met −→ Ord

commuting with the canonical forgetful functors to Set. The following assertion is straight-
forward to prove.
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5.4. Lemma. The functor O : Met→ Ord preserves limits and initial cones.

A metric space is called separated whenever the underlying order is anti-symmetric,
that is,

(0 > a(x, y) & 0 > a(y, z)) =⇒ x = y,

for all x, y ∈ X.
Thirdly, we are not insisting on symmetry. However, every metric space (X, a) can be

symmetrised by
as(x, y) = max(a(x, y), a(y, x)).

For every metric space (X, a), we consider the topology induced by the symmetrisation
as of a. This construction de�nes the faithful functor

T : Met −→ Top.

We note that (X, a) is separated if and only if the underlying topology is Hausdor�. Let
us recall:

5.5. Lemma. The functor T : Met → Top preserves �nite limits. In particular, T sends
subspace embeddings to subspace embeddings.

5.6. Lemma. Let (X, a) be a separated compact metric space. Then X equipped with the
order and the topology induced by the metric a becomes a partially ordered compact space.

Proof. See [Nac65, Chapter II].

5.7. Example. The metric space [0, 1] of Example 5.3 induces the partially ordered
compact Hausdor� space [0, 1] with the usual Euclidean topology and the �greater or
equal� relation >.

5.8. Definition. A partially ordered compact space X is called metrisable whenever
there is a metric on X which induces the order and the topology of X. We denote by
PosCompmet the full subcategory of PosComp de�ned by all metrisable spaces.

5.9. Proposition. PosCompmet is closed under countable limits in PosComp.

Proof. By Lemma 5.5, PosCompmetis closed under �nite limits in PosComp. The argu-
ment for countable products is the same as in the classical case: for a family (Xn)n∈N of
metrisable partially ordered compact Hausdor� spaces, with the metric an on Xn (n ∈ N),
the structure of the product space X =

∏
n∈NXn is induced by the metric a de�ned by

a((xn)n∈N, (yn)n∈N) =
∞∑
n=0

1

2n+1
an(xn, yn),

for (xn)n∈N, (yn)n∈N ∈ X.
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For classical metric spaces it is known that the compact spaces are subspaces of count-
able powers of the unit interval; this fact carries over without any trouble to our case.
Before we present the argument, let us recall that, for every metric space (X, a), the cone
(a(x,−) : X → [0, 1])x∈X is initial with respect to the forgetful functor Met → Set; this
is a consequence of the Yoneda Lemma for enriched categories (see [Law73]). Moreover,
(X, a) is separated if and only if this cone is point-separating.

5.10. Lemma. Let (X, a) be a compact metric space. Then there exists a countable subset
S ⊆ X so that the cone

(a(z,−) : X −→ [0, 1])z∈S

is initial with respect to the forgetful functor Met→ Set.

Proof. Since X is compact, for every natural number n ≥ 1, there is a �nite set Sn so
that the open balls

{y ∈ X | a(x, y) <
1

n
and a(y, x) <

1

n
}

with x ∈ Sn cover X. Let S =
⋃
n≥1 Sn. We have to show that, for all x, y ∈ X,∨

z∈S

a(z, y)	 a(z, x) > a(x, y).

To see that, let ε = 1
n
, for some n ≥ 1. By construction, there is some z ∈ S so that

a(x, z) < ε and a(z, x) < ε. Hence,

(a(z, y)	 a(z, x)) + 2ε > a(z, y) + a(x, z) > a(x, y);

and the assertion follows.

5.11. Proposition. Every partially ordered compact space is a ℵ1-co�ltered limit in
PosComp of metrisable spaces.

Proof. For a separated metric spaceX = (X, a), the initial cone (a(x,−) : X → [0, 1])x∈S
of Lemma 5.10 is automatically point-separating, therefore there is an embedding X ↪→
[0, 1]N in Met. This proofs that the full subcategory PosCompmet of PosComp is small. Let
X be a partially ordered compact space. By Proposition 5.9, the canonical diagram

D : X ↓ PosCompmet −→ PosComp

is ℵ1-co�ltered. Moreover, the canonical cone

(f : X → Y )f∈(X↓PosCompmet) (1)

is initial since (1) includes the cone (f : X → [0, 1])f . Finally, to see that (1) is a limit
cone, we use Theorem 2.7: for every f : X → Y with Y metrisable, im(f) ↪→ Y actually
belongs to PosCompmet, which proves

im f =
⋂

k : g→f∈(X↓PosCompmet)

imD(k).
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5.12. Corollary. Every ℵ1-copresentable object in PosComp is metrisable.

Proof.Also here the argument is the same as for CompHaus. LetX be a ℵ1-copresentable
object in PosComp. By Proposition 5.11, we can present X as a limit (pi : X → Xi)i∈I
of a ℵ1-co�ltered diagram D : I → PosComp where all D(i) are metrisable. Since X is
ℵ1-copresentable, the identity 1X : X → X factorises as

X
pi−−→ Xi

h−→ X,

for some i ∈ I. Hence, being a subspace of a metrisable space, X is metrisable.

To prove that every metrisable partially ordered compact space X is ℵ1-copresentable,
we will show that every closed subspace A ↪→ [0, 1]I with countable I is an equaliser of a
pair of arrows

[0, 1]I // // [0, 1]J

with countable J . For a symmetric metric on X, one can simply consider

[0, 1]I
0

//
a(A,−) // [0, 1],

but in our non-symmetric setting this argument does not work since the map a(A,−) is
in general not monotone.

5.13. Lemma. Let n ∈ N and A ⊆ [0, 1]n be a closed subset. Then there is a countable
set J and monotone continuous maps

[0, 1]n
k
//

h // [0, 1]J

so that A ↪→ [0, 1]n is the equaliser of h and k. In particular, A is ℵ1-copresentable.

Proof. We denote by d the usual Euclidean metric on [0, 1]n. For every x ∈ [0, 1]n with
x /∈ A, there is some ε > 0 so that the closed ball

B(x, ε) = {y ∈ [0, 1]n | d(x, y) 6 ε}

does not intersect A. Furthermore, B = ↑B ∩ ↓B. Put

J = {(k, x1, . . . xn) | k ∈ N, k ≥ 1 and x = (x1, . . . xn) ∈ ([0, 1]∩Q)n and B(x,
1

k
)∩A = ∅};

clearly, J is countable. For every j = (k, x1, . . . xn) ∈ J , we consider the monotone
continuous maps f0, f1 : [0, 1]n → [0, 1] obtained in Lemma 2.5 and put hj = f0 and
kj = f1. Then A ↪→ [0, 1]n is the equaliser of

[0, 1]n
k=〈kj〉

//
h=〈hj〉 // [0, 1]J



292 DIRK HOFMANN, RENATO NEVES, AND PEDRO NORA

5.14. Theorem. Every metrisable partially ordered compact space is ℵ1-copresentable in
PosComp.

Proof. Let X be a metrisable partially ordered compact space. By Lemma 5.10, there
is an embedding m : X ↪→ [0, 1]N in PosComp. Moreover, with

J = {F ⊆ N | F is �nite}

ordered by containment ⊇, (πF : [0, 1]N → [0, 1]F )F∈J is a limit cone of the codirected
diagram

Jop −→ PosComp

sending F to [0, 1]F and G ⊇ F to the canonical projection π : [0, 1]G → [0, 1]F . For every
F ∈ J , we consider the (Epi,Regular mono)-factorisation

X
pF−−→ XF

mF−−→ [0, 1]F

of πF ·m : X → [0, 1]F . Then, using again Bourbaki's criterion (see Theorem 2.7),

(pF : X → AF )F∈J

is a limit cone of the codirect diagram

Jop −→ PosComp

sending F to XF and G ⊇ F to the diagonal of the factorisation. By Lemma 5.13, each
XF is ℵ1-copresentable, hence also X is ℵ1-copresentable since X is a countable limit of
ℵ1-copresentable objects.
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