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CLASSIFYING TANGENT STRUCTURES USING WEIL ALGEBRAS

POON LEUNG

Abstract. At the heart of differential geometry is the construction of the tangent
bundle of a manifold. There are various abstractions of this construction, and of partic-
ular interest here is that of Tangent Structures.

Tangent Structure is defined via giving an underlying categoryM and a tangent functor
T along with a list of natural transformations satisfying a set of axioms, then detailing
the behaviour of T in the category End(M). However, this axiomatic definition at first
seems somewhat disjoint from other approaches in differential geometry.

The aim of this paper is to present a perspective that addresses this issue. More specif-
ically, this paper highlights a very explicit relationship between the axiomatic definition
of Tangent Structure and the Weil algebras (which have a well established place in
differential geometry).

1. Introduction

The starting point for the notion of tangent structure is that given a smooth manifold M ,
we can construct the tangent space TM , which to each point x ∈ M attaches the vector
space TxM of all tangents to M at x. The functoriality of this construction is used to
capture the idea of differentiation of maps between more abstract spaces.

T being a functor (moreover an endofunctor over the category under consideration)
allows us to talk about Tangent Structure; the ingredients required to give a notion of
“tangent space” to an arbitrary category. There is also a more specific, technical meaning
of “Tangent Structure” given by Rosický in [Rosický, 1984] and by Cockett and Cruttwell
in [Cockett and Cruttwell, 2014].

Weil algebras, on the other hand, have a well established history in the world of
differential geometry. For instance, Kolar et al give discussion of Weil algebras and Weil
functors in [Kolar et al., 2010] (Section 35), and of course there is the work of Weil [Weil,
1953]. Indeed, there are also the ideas of synthetic differential geometry (SDG), which
define tangent spaces and related structures through the use of infinitesimals (given as the
spectrum of corresponding Weil algebras; for instance, see [Kock, 2006] for more details).

There are, as we shall see, strong connections between these two seemingly different
concepts. Furthermore, it will turn out that the tangent functor T is closely related to
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a particular Weil algebra in a very meaningful way. We shall begin with a brief look at
Tangent Structure, then discuss Weil algebras and some of their properties.

We will then introduce (co)graphs and show that they are a surprisingly useful tool
in characterising not only the objects, but also the morphisms of a category Weil1 (a
particular subcategory of Weil) we shall be using in our discussion.

More specifically, we will show that each object of Weil1 corresponds canonically to
a particular graph (moreover, what we shall call piecewise complete graphs), and further
that each morphism f : A→ B of such Weil algebras can be described using cliques and
independent sets. These observations then provide a language for a methodical process
to “construct” any such map using a collection of generating maps.

We will conclude with Theorem 14.1, which states that to give a tangent structure (in
the sense of [Cockett and Cruttwell, 2014]) over a category M is to give a functor

F : Weil1 → [M,M]

satisfying certain axioms.
One final observation we will make is that we can in fact remove the requirement of

the codomain of F needing to be an endofunctor category [M,M], and instead replace
it with an arbitrary monoidal category (G,�, I). This then more clearly exhibits Weil1
as what one might call the “initial” tangent structure.

2. Tangent Structure

Tangent Structure is defined by Rosický [Rosický, 1984] using (internal) bundles of abelian
groups, but we will be following the more general definition of Cockett-Cruttwell [Cockett
and Cruttwell, 2014] using (internal) bundles of commutative monoids. More explicitly,
this requires that the tangent bundle TM sitting over a smooth manifold M is a commu-
tative monoid, referred to as an additive bundle.

In this section, we shall give said definition of Tangent Structure below in Definition
2.6. However, we first have the following:

2.1. Definition. Given a category C, a commutative monoid in C consists of

1. An object C such that finite powers of C exist (the terminal object we shall call t);

2. A pair of maps η : t → C and µ : C × C → C such that the following diagrams
commute

C × (C × C) α //

1×µ
��

(C × C)× C µ×1 // C × C
µ

��

t× C η×1 //

∼=
$$

C × C
µ

��

C × t1×ηoo

∼=
zz

C × C µ
// C C ;
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where α : C × (C × C) → (C × C) → C is the obvious associativity map, and µ
agrees with the symmetry map

s : C × C → C × C ,

so that the diagram

C × C
s //

µ

$$

C × C

µ

��
C

also commutes.

2.2. Remark. Often, commutative monoids are considered in categories with all finite
products, but we shall not be assuming this.

2.3. Definition. If A is an object in a category M, then an additive bundle over A is
a commutative monoid in the slice category M/A. Explicitly, this consists of

1. A map p : X → A such that pullback powers of p exist, the nth pullback power denoted
by X(n) and projections πi : X

(n) → X for i ∈ {1, . . . , n};

2. Maps +: X(2) → X and η : A→ X with p ◦+ = p ◦π1 = p ◦π2 and p ◦ η = id which
are associative, commutative, and unital.

2.4. Remark. We will note here that the notation used in [Cockett and Cruttwell, 2014]
for the nth pullback power is instead Xn.

2.5. Definition. Suppose p : X → A and q : Y → B are additive bundles. An additive
bundle morphism is a pair of maps f : X → Y and g : A → B such that the following
diagrams commute.

X
f //

p

��

Y

q

��

X(2) f×f //

+

��

Y (2)

+

��

A
g //

η

��

B

η′

��
A g

// B X
f

// Y X
f

// Y

2.6. Definition. Given a category M, a tangent structure T = (T, p, η,+, l, c) consists
of

1. (tangent functor) a functor T : M →M and a natural transformation p : T ⇒
1M such that pullback powers T (n) of p exist and the composites Tm of T preserve
these pullbacks for all m ∈ N;

2. (tangent bundle) natural transformations +: T (2) ⇒ T and η : 1M ⇒ T making
p : T ⇒ 1M into an additive bundle;
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3. (vertical lift) a natural transformation l : T ⇒ T 2 such that

(l, η) : (p,+, η)→
(
Tp, T+, T η

)
is an additive bundle morphism;

4. (canonical flip) a natural transformation c : T 2 ⇒ T 2 such that

(c, idT ) :
(
Tp, T+, T η

)
→
(
pT,+T, ηT

)
is an additive bundle morphism;

where the natural transformations l and c satisfy

1. (coherence of l and c) c2 = id, c ◦ l = l, and the following diagrams commute

T l //

l

��

T 2

T l

��

T 3 Tc //

cT

��

T 3 cT // T 3

Tc

��

T 2 lT //

c

��

T 3 Tc // T 3

cT

��
T 2

lT
// T 3 T 3

Tc
// T 3

cT
// T 3 T 2

T l
// T 3 ;

2. (universality of vertical lift) the following is an equaliser diagram

T (2) (T+)◦(l×T ηT ) // T 2

η◦p◦Tp
//

Tp // T ,

where (T+) ◦ (l ×T ηT ) is the composite

T
l // T 2

T (2)

π1

>>

π2

  

// TT (2)

π1

OO

π2

��

T+ // T 2

T
ηT

// T 2

2.7. Remark. We will note here that l : T ⇒ T 2 and p : T ⇒ 1M do not form a
comonad. However, there is a canonical way to make T a monad (detailed in [Cockett
and Cruttwell, 2014]).

We may then refer to the pair (M,T) as a tangent category.
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3. Weil Algebras

We now introduce Weil algebras. For the purposes of this paper, we will always be
using commutative, unital algebras. We shall initially define Weil algebras over a field,
but ultimately we are interested in working over a commutative rig; recall a rig is a
commutative monoid equipped with (a unital) multiplication.

Traditionally, Weil algebras are defined over a field, and we may at first naively use
some more general structure (say an arbitrary ring). The problem in doing so is that the
notion of “Weil algebra” in complete generality becomes somewhat difficult to define in
a consistent and coherent manner.

For the purposes of this paper, however, we will only be interested in Weil algebras
with presentations of a particular form (we will describe this in detail in 6). As such,
when we restrict to these presentations, we will be able to work unhindered over a rig
(rather than a field).

In particular, if we take k to be (the commutative ring) Z, we will ultimately recover
the abelian group bundles of [Rosický, 1984], while (the commutative rig) N corresponds
to the additive bundles of [Cockett and Cruttwell, 2014]. Later on in our discussion, we
will also be interested in the rig 2 (which we shall formally introduce in Definition 7.1).

We shall begin by defining Weil algebras over some given field k.

3.1. Definition. A Weil algebra B is an augmented (commutative and unital) algebra
with a finite dimensional underlying k-vector space, for which all elements of the augmen-
tation ideal are nilpotent.

Equivalently, we can say that a Weil algebra is simply a finite dimensional local algebra
with residue field k.

3.2. Remark. The equivalence arises from the fact that the augmentation ideal ker(ε)
(for augmentation ε : B → k) is the unique maximal ideal of B.

A morphism between Weil algebras B and C is simply an augmented algebra homo-
morphism, i.e. an algebra map

f : B → C

that is compatible with the augmentations, i.e. we have a commuting diagram

B
f //

εB
��

C

εC��
k

From here onwards, we shall simply refer to these augmented algebra homomorphisms
as maps.

3.3. Definition. Let Weil be the category with objects the Weil algebras and morphisms
the maps described above.
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3.4. Remark. The category Weil is a full subcategory of AugAlg (= Alg/k, the cate-
gory of augmented algebras).

3.5. Remark. We will (soon) further restrict Weil to a full subcategory Weil1 in order
to discuss tangent structure.

It is often convenient to give a Weil algebra B via a presentation

B = k[b1, . . . , bm]/QB ,

where we quotient the free algebra k [b1, . . . , bm] by the list of terms in QB.

3.6. Remark. This is always possible, since each Weil algebra is a finitely generated and
commutative algebra, and such algebras always have a presentation of this form.

3.7. Example.

1. k[x]/x2 is the Weil algebra with {1, x} as a basis for the underlying k-module and
equipped with the obvious multiplication, but with x2 identified as 0.

2. k[x]/x3 is the Weil algebra with {1, x, x2} as a basis for the underlying k-module
and equipped with the obvious multiplication, but with x3 identified with 0.

3. k[x, y]/x2, y2 is the Weil algebra with {1, x, y, xy} as a basis for the underlying k-
module and equipped with the obvious multiplication, but with x2 and y2 each
identified with 0.

We also note the following:

1. We shall always use presentations for which the augmentation ε : B → k sends each
generator bi to 0.

2. Recall that for a linear map h : X → Y between vector spaces, it suffices to define
how h acts on basis elements of V . Analogously, for an augmented algebra homo-
morphism f : B → C, it suffices to define how f acts on generators (then check that
it is suitably compatible with the relations).

3. For Weil algebras A = k[a1, . . . , am]/QA and B = k[b1, . . . , bn]/QB and a map
f : A→ B, f(ai) is a polynomial in the generators b1, . . . , bn with no constant term.

Now that we have defined the category Weil, we shall establish some facts about this
category. We begin with the following:

1. The category AugAlg has all limits and colimits.

2. Coproducts in AugAlg are given by ⊗.

which are well established and we shall not prove.

3.8. Lemma. k is a zero object of Weil.

Proof. For each Weil algebra A, the augmentation εA : A→ k and the unit ηA : k → A
are the unique maps to and from k respectively.
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3.9. Proposition. The category Weil has all finite products.

Proof. Since k is a zero object, it is the nullary product. For arbitrary Weil algebras A
and B, begin by taking the pullback

A×k B //

��

B

εb
��

A εA
// k

(or equivalently, the product) in AugAlg. Since both A and B are finitely dimensional
and have nilpotent augmentation ideals, then the same is true of A×k B. Thus it is also
a Weil algebra.

Thus Weil has all finite products.

3.10. Definition. Let NilAugAlg be the full subcategory of AugAlg containing all
augmented algebras whose augmentation ideals are nilpotent.

3.11. Proposition. The category NilAugAlg has all finite limits.

Proof. Let A be a finite category and consider an arbitrary diagram

R : A → NilAugAlg .

Since AugAlg has all limits, we can form a limiting cone

A NilAugAlg AugAlg .
R

∆X

γ

But since A is finite, the (finite) set {γa | a ∈ A} is jointly monic and each Ra
is nilpotent, then the augmentation ideal of X is necessarily nilpotent, and so X ∈
NilAugAlg.

Thus NilAugAlg has all finite limits.

3.12. Definition. For each n ∈ N, let Wn be the Weil algebra k[x]/xn+1.

3.13. Proposition. The set {Wn | n ∈ N} forms a strong generator for NilAugAlg.

Proof. We want to show that the set of functors

NilAugAlg(Wn, ) : NilAugAlg→ Set

for all n ∈ N jointly reflect isomorphisms.
Let f : A→ B be an arbitrary map of NilAugAlg for which

NilAugAlg(Wn, f) : NilAugAlg(Wn, A)→ NilAugAlg(Wn, B)



CLASSIFYING TANGENT STRUCTURES USING WEIL ALGEBRAS 293

is an isomorphism for all n ∈ N.
Let α be an element of A with f(α) = 0. In particular, α is an element of the

augmentation ideal ker(εA). Since this is nilpotent, then we can define

r = max{s ∈ N | αs 6= 0} .

Note also that αr+1 = 0. As such, we may define a map g : Wr → A given as g(x) = α.
Further, let z : Wr → A be the zero map (i.e. z(x) = 0).

Now, we have g, z ∈ NilAugAlg(Wr, A). Moreover, we clearly have f ◦ g = f ◦ z.
But since NilAugAlg(Wr, f) is an isomorphism, then we must have g = z, i.e. α = 0.
∴ ker(f) = {0}.
Now, let β be an arbitrary element of ker(εB). Since ker(εB) is nilpotent, then we can

define
ρ = max{σ ∈ N | βσ 6= 0} .

Note also that βρ+1 = 0. As such, we may define a map γ : Wρ → B given as γ(x) = β.
But now we have γ ∈ NilAugAlg(Wρ, B), and since NilAugAlg(Wρ, f) is an iso-

morphism, then there is a unique map h : Wρ → A such that

Wρ
h //

γ
  

A

f
��
B

commutes. This shows that f is surjective on elements. But this means that f is an
isomorphism in Vect.

Thus f is an isomorphism in NilAugAlg. Since NilAugAlg has all equalisers, then
the set {Wn | n ∈ N} forms a strong generator for NilAugAlg.

In particular, since each Wn ∈ Weil, this then says that the inclusion I : Weil ↪→
NilAugAlg preserves and reflects any existing (finite) limits.

3.14. Proposition. For an arbitrary A ∈ Weil, the functor A ⊗ : Weil → Weil
preserves finite connected limits.

Proof. Consider the diagram

Weil Weil

NilAugAlg NilAugAlg

AugAlg AugAlg .

A⊗

A⊗

A⊗

The inclusions all preserve and reflect (finite) limits, and A⊗ : AugAlg→ AugAlg
preserves connected limits.
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3.15. Proposition. The category Weil has all finite coproducts, and moreover, coprod-
uct is given by ⊗.

Proof. (Finite) coproducts in AugAlg are given by ⊗, and since Weil is a full subcat-
egory of AugAlg, it remains only to show that Weil is closed under (finite) ⊗.

Further, as k is a zero object, then it is the nullary coproduct. Now, since Weil
algebras are finitely dimensional, then any finite coproduct of them must also be finitely
dimensional. The nilpotency of the augmentation ideal is immediate.

3.16. Lemma. Let A and B be Weil algebras with presentations

A = k[a1, . . . , am]/QA

B = k[b1, . . . , bn]/QB.

Then:

• The product A×B has presentation

A×B = k[a1, . . . , am, b1, . . . , bn]/QA ∪QB ∪ {aibj|∀i, j} ;

• The coproduct A⊗B has presentation

A⊗B = k[a1, . . . , am, b1, . . . , bn]/QA ∪QB .

Proof. The proof is immediate.

Finally, let us define W to be the Weil algebra k[x]/x2. Then, the nth power and
copower of W , denoted W n and nW respectively, have presentations

W n = k[x1, . . . , xn]/{xixj| ∀i 6 j}
nW = k[x1, . . . , xn]/{xi2| ∀i} .

3.17. Definition. For Weil algebras A, B and C, the pullback

A⊗ (B × C)
A⊗πB //

A⊗πC
��

A⊗B
A⊗εB
��

A⊗ C
A⊗εC

// A

is a foundational pullback.
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3.18. Remark. Foundational pullbacks are a direct application of Proposition 3.14 to
Proposition 3.9, with products regarded as pullbacks over the zero object k.

The facts established above assume k is a field. However, we are more interested in
k = N, Z and 2 (which, again, we define in Definition 7.1). The notion of Weil algebras
in this slightly higher level of generality then becomes somewhat muddled. However, the
subcategory Weil1 of Weil we will use in our discussion will always consist of objects
having a presentation of the form

k[x1, . . . , xn]/ {cicj | ∀ ci ∼ cj} ,

for a symmetric, reflexive relation ∼ (although not all such presentations will yield an
object of Weil1), and we will still refer to these as Weil algebras. In particular, such Weil
algebras all have finitely generated and free underlying k-modules.

In particular, Proposition 3.14 still holds when restricting to Weil1 for these more
general k using the same arguments.

As we stated at the beginning of this section, the more general k is needed in order to
make our comparison with the definitions of [Rosický, 1984] and [Cockett and Cruttwell,
2014]. To reiterate, taking k = Z (as a ring) will ultimately return the abelian group
bundles of [Rosický, 1984]. However, we are more interested in taking k = N to ultimately
obtain the commutative monoid bundles of [Cockett and Cruttwell, 2014]. We will also
consider k = 2 (Definition 7.1), as this shall provide a convenient tool for our calculations.

4. Tangent Structure and Weil algebras

The tangent functor T is closely related to the Weil algebraW = k[x]/x2. For instance, the
tangent functor in synthetic differential geometry (see [Kock, 2006]) is the representable
functor ( )D, where D = Spec(W ).

Here, we will begin to describe a different relationship between Weil and tangent
structure. Regard coproduct ⊗ as a monoidal operation on Weil (with unit k).

4.1. Proposition. The (endo)functor

W ⊗ : Weil→Weil

can be used to define a Tangent Structure on Weil.

Proof. With T = W ⊗ , we first give the natural transformations required in order
to have a tangent structure on Weil. The names for the morphisms used below will be
deliberately chosen to coincide with those of tangent structure.
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Natural transformation Explanation
Projection εW ⊗ : T ⇒ idWeil εW : W → k is the augmentation for W
Addition +⊗ : T (2) ⇒ T T (2) is the functor W 2 ⊗ ,

+: W 2 → W ; x1, x2 7→ x
Unit ηW ⊗ : idWeil ⇒ T ηW : k → W is the (multiplicative) unit for W

Vertical lift l ⊗ : T ⇒ T 2 T 2 = T ◦ T is the functor 2W ⊗
l : W → 2W ; x 7→ x1x2

Canonical flip c⊗ : T 2 ⇒ T 2 c : 2W → 2W ; xi 7→ x3−i, for i = 1, 2

With these choices of natural transformations as well as the facts established in Section
3 (so that (W ⊗ )n = (nW ⊗ ) preserves the required pullbacks), it is a very routine
exercise to verify that this does in fact define a Tangent Structure on Weil.

We will also note that the following

W 2 (W⊗+)◦(l×W (ηW⊗W )) // 2W
ηW ◦(εW⊗εW )

//
W⊗εW //W

is an equaliser in Weil (the universality of vertical lift equaliser in Definition 2.6).
Note that the map (W ⊗+) ◦ (l×W (ηW ⊗W )), which we will denote as v, is given as

k[x1, x2]/x2
1, x

2
2, x1x2 → k[y1, y2]/y2

1, y
2
2

x1 7→ y1y2

x2 7→ y2 .

The map W ⊗εW : k[y1, y2]/y2
1, y

2
2 → k[z]/z2 sends y1 to z and y2 to 0, and ηW ◦ (εW ⊗

εW ) : k[y1, y2]/y2
1, y

2
2 → k[z]/z2 sends both y1 and y2 to 0.

This Tangent Structure on Weil relies on the object W , its (finite product) powers W n

and tensors of these. With this in mind, it makes sense to give the following definition:

4.2. Definition. Let Weil1 be the category consisting of:

1. Objects: The closure of the set {W n | n ∈ N} under finite ⊗.

2. Morphisms: All algebra homomorphisms compatible with units and augmentations.

4.3. Remark. This definition is valid for k = N, Z or 2 as well.

4.4. Remark. If we wish to use a particular k when discussing Weil1, we shall use “k-”
as a prefix, e.g. N-Weil1.

Recall that as a consequence of Lemma 3.16, the (finite product) power W n would
have presentation

k[x1, . . . , xn]/{xixj|∀i ≤ j} ,
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and that the presentation for a tensor A ⊗ B took a particular form. As such, a tensor
m
⊗
i=1

W ni of powers of W would have a certain presentation that we will not try to describe

explicitly right now (we shall see this in 6).
In general, however, such objects will have a presentation

k[x1, . . . , xn]/{xixj|∀xi ∼ xj}

for some symmetric, reflexive relation ∼ (although not all symmetric, reflexive relations
will yield an object of Weil1). Since we will always require x2

i = 0 in these presentations,
there is no loss of information if we omit the corresponding relation xi ∼ xi and take ∼
to merely be symmetric (and in fact, anti-reflexive).

However, such symmetric relations can be thought of as graphs.

4.5. Remark. We treat the relations as anti-reflexive so that the corresponding graph
will not have loops.

5. Graphs

We begin by defining some basic concepts relating to graphs that we will need to use.
These are all, for the most part, standard definitions that can be found in any introduc-
tory graph theory textbook (for example, see [Bondy and Murty, 1991]). The notation,
however, seems to vary depending on the text.

5.1. Definition. A graph G is a pair of sets (V,E), with V a finite set of “vertices” of
G, and E a set of unordered pairs of distinct vertices, called the “edges” of G.

5.2. Example. G =
(
{1, 2, 3, 4, 5, 6}, {(1, 2), (1, 3), (1, 6), (2, 3), (4, 5)}

)
is the graph

1

2 3

4

56

5.3. Remark. In more formal graph theory terms, we are actually describing simple
(undirected edges, no loops and at most one edge between any pair of vertices) finite
graphs.

5.4. Definition. For graphs G = (V,E) and G′ = (V ′, E ′), a graph homomorphism
h : G→ G′ is a function h : V → V ′ such that for distinct u, v ∈ V ,

(u, v) ∈ E ⇒ (f (u) , f (v)) ∈ E ′ or f(u) = f(v).
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5.5. Definition. Let Gph be the category of graphs and graph homomorphisms.

5.6. Definition. For a non-empty graph G = (V,E), we will say it is connected if for
any two distinct vertices u and v, there exist vertices v1, . . . , vs ∈ V with (vi, vi+1) ∈ E
for each i, with v1 = u and vs = v.

5.7. Definition. Given a graph G = (V,E), the complement of G is the graph Gc =
(V,Ec), where for any two distinct u, v ∈ V ,

(u, v) ∈ E ⇔ (u, v) /∈ Ec.

We now define two important binary operations on graphs. Let graphs G1 = (V1, E1)
and G2 = (V2, E2) be given.

5.8. Definition. The disjoint union of G1 and G2, denoted as G1 ⊗G2, is the graph

G1 ⊗G2 = (V1 t V2, E1 t E2) ;

where t denotes disjoint union.
Or, put simply, it is the graph given by simply placing G1 adjacent to G2 without

adding or removing any edges.

5.9. Definition. The graph join of G1 and G2, denoted G1 ×G2, is the graph

G1 ×G2 = (V1 t V2, Ẽ)

where Ẽ = E1 t E2 t (V1 × V2).

Or, put simply, it is the graph given by taking G1 ⊗G2, then adding in an edge from
each vertex in G1 to each vertex in G2. Equivalently, it can be defined as

G1 ×G2 = (Gc
1 ⊗Gc

2)c

5.10. Remark. The notation G1 × G2 is in no way intended to suggest the product of
G1 and G2 in the category Gph of graphs.

5.11. Remark. The use of ⊗ and × to denote the operations of disjoint union and
graph join respectively do not coincide with the notation used in graph theory. Graph
union is often denoted as G1 ∪ G2 or G1 + G2. Further, the graph join, sometimes
called “graph sum”, is denoted G1 ∨ G2, (to add to the confusion, some texts denote
this as G1 + G2; moreover the meaning of “graph sum” can also vary depending on the
literature). However, the notation {⊗,×} was chosen in place of {∪,∨} to correspond
with the notation for coproduct and product of Weil algebras.

5.12. Definition. A graph G is said to be complete if every pair (u, v) of distinct vertices
has an edge joining them (i.e. (u.v) ∈ E for all u 6= v).

Equivalently, G is the graph join of an appropriate number of instances of the single
point graph.
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5.13. Definition. A graph G is said to be discrete if the edge set E is empty.
Equivalently, G is the disjoint union of an appropriate number of instances of the

single point graph.
Equivalently again, G is discrete iff its complement Gc is complete.

5.14. Remark. In graph theory literature, sometimes discrete graphs are also called
“edgeless graphs” or “null graphs”.

5.15. Definition. We will give an iterative definition of cograph (complement-reducible
graph) as follows:

1. The empty graph (empty vertex set) and one point graph are cographs.

2. If G1 and G2 are cographs, so are G1 ×G2 and G1 ⊗G2.

5.16. Remark. Cographs are not in any way a dual notion to graphs. The prefix “co-”
is an abbreviation of “complement reducible”.

In fact, cographs have been studied extensively by graph theorists, and there are
various equivalent characterisations of them (for instance, see [Corneil et al., 1981]).

5.17. Remark. For example, given a graph G, the following are equivalent:

1. G is a cograph;

2. G does not contain the graph P4 (the path graph with four vertices) as a full sub-
graph (We shall not define P4 explicitly, but instead simply note that the definition
can be found in any introductory graph theory text).

.

6. Graphs and Weil algebras

In 4, we defined the category Weil1 (Definition 4.2, and noted that each object of this
category can be regarded as a graph.

Let us formalise this by first giving the following definition:

6.1. Definition. The functor
κ : Gph→Weil

is defined as follows:

1. On objects: For a graph G = (V,E), κ(G) is the Weil algebra k[v1, . . . , vm]/QE,
where V = {v1, . . . , vm}, v2

i ∈ QE for all i and for i 6= j, vivj ∈ QE ⇔ (vi, vj) ∈ E.

2. On morphisms: For a graph homomorphism h : G→ G′, κh : κ(G)→ κ(G′) is given
as

(κh)(vi) = h(vi) for all i ;

where we use the underlying function h : V → V ′ on the vertex sets.
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6.2. Remark. We shall leave as an exercise to the reader to verify that κh is indeed a
valid morphism of Weil algebras, and that this definition of κ is functorial, i.e. that it
preserves identities and composition.

Conversely, we have the following:

6.3. Definition. Given a Weil algebra X with presentation of the form

X = k[x1, . . . , xn]/{xixj | ∀ x1 ∼ xj} ,

let ΓX denote the graph induced by ∼; namely the graph with vertices the generators
x1, . . . , xn and an edge between xi and xj (for i 6= j) whenever xi ∼ xj.

6.4. Remark. With this convention, for a Weil algebra X with presentation as described
above, it is easy to see that κ(ΓX) = X, and for a graph G, we have Γκ(G) = G.

For example, we have

Weil algebra Presentation Graph

k k[ ]

W k[x]/x2 1

2W k[x1, x2]/x2
1, x

2
2

1 2

W 2 k[x1, x2]/x2
1, x

2
2, x1x2

1 2

3W k[x1, x2, x3]/x2
1, x

2
2, x

2
3

1

2 3

W 2 ⊗W k[x1, x2, x3]/x2
1, x

2
2, x

2
3, x1x2

1

2 3

W × 2W k[x1, x2, x3]/x2
1, x

2
2, x

2
3, x1x2, x1x3

1

2 3

W 3 k[x1, x2, x3]/x2
1, x

2
2, x

2
3, x1x2, x1x3, x2x3

1

2 3
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6.5. Remark. The object W × 2W is not contained in the category Weil1, but we shall
include it in the table anyway.

6.6. Proposition. For graphs G and G′, we have:

1. κ(G)⊗ κ(G) = κ(G⊗G′);

2. κ(G)× κ(G) = κ(G×G′).

Proof. This is a direct consequence of Lemma 3.16, Definition 5.8 and Definition 5.9.

To require precisely those Weil algebras given as the closure of {W n}n∈N under ⊗ is
thus to ask for those that correspond to disjoint unions of complete graphs.

6.7. Definition. We shall refer to such graphs as being piecewise complete (p.c. graphs).
Note that p.c. graphs are a subset of the cographs (as defined in Definition 5.15).

6.8. Remark. Although we are in this chapter interested in p.c. graphs, we shall often
speak in greater generality by discussing cographs.

Now that we have a description for the objects of our subcategory Weil1, we may now
revisit the idea mentioned towards the end of Section 3; namely that k need not be a field
and give formal discussion of the morphisms.

7. The morphisms of Weil1

We introduced the category Weil1 in Definition 4.2, and noted that it was worded in such
a way that k need not be a field. We noted towards the end of Section 3 (and at a few
other points) that we have a particular interest in the case where k = N.

However, we shall for now take k = 2 as a tool to help deal with our immediate
calculations.

7.1. Definition. Let 2 be the rig {0, 1}, with the usual multiplication, and addition given
by max; in particular 1 + 1 = 1.

We shall begin by showing that using the maps {εW ,+, η, l, c}, composition, ⊗ and
the universal property of foundational pullbacks (as given in Definition 3.17), we can
construct (in some appropriate sense) any map of 2-Weil1.

7.2. Remark. We will not need the universal property of ⊗ (the coproduct), but rather
we shall consider 2-Weil1 as a monoidal category with respect to ⊗ (with k as the unit).

We will need some extra constructions of graphs before we begin.

7.3. Definition. A clique U of G is a (possibly empty) subset of V for which any two
distinct vertices in U have an edge between them (or equivalently, the full subgraph of G
induced by U is complete).
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7.4. Definition. Conversely, an independent set U of G is a (possibly empty) subset of
V for which no two distinct vertices in U have an edge between them (or equivalently, the
full subgraph of G induced by U is discrete).

7.5. Remark. Given a graph G, an independent set U of G is also a clique of Gc.

We can actually use these notions of cliques and independent sets to form new graphs
from existing ones.

7.6. Definition. Given a graph G = (V,E), define Ind(G) to be the graph given by:

1. Vertices: the independent sets of G;

2. Edges: given any two distinct independent sets U1 and U2 of G, there is an edge
between them in Ind(G) when there exist x ∈ U1 and y ∈ U2 such that either there
is an edge between x and y in G or x = y (i.e. U1 ∩ U2 6= φ).

7.7. Definition. Given a graph G = (V,E), define Cl(G) to be the graph given by:

1. Vertices: the cliques of G;

2. Edges: given any two distinct cliques U1 and U2 of G, there is an edge between them
in Cl(G) whenever their union U1 ∪ U2 is also a clique of G (note that there is no
requirement for U1 and U2 to be disjoint).

7.8. Remark. In defining the graph Cl(G), there is often the additional requirement
that cliques U1 and U2 are disjoint for there to be an edge between them. If that were
the case, then we would have

Ind(G) = (Cl(Gc))c

7.9. Remark. As defined here, Cl : Gph → Gph is functorial and moreover can be
made into a monad. We shall not be needing this fact, so we shall not prove it.

7.10. Definition. Given a graph G = (V,E), define Ind+(G) to be the full subgraph of
Ind(G) where the vertices are the non-empty independent sets of G.

These tools now allow us to canonically express morphisms in 2-Weil1 in a pictorial
manner. Recall that to define a map between (Weil) algebras, it suffices to define how
the map acts on each of the generators. So, let a map f : A → B in 2-Weil1 be given,
where A and B have presentations

A = 2[a1, ..., am]/QA and B = 2[b1, ..., bn]/QB.

Then, for each generator ai of A, we can express f(ai) (uniquely) as a sum

f(ai) =
∑
b∈B

α
(i)
b b ;
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the sum being across all non-zero monomials b of B in the generators {b1, . . . , bn}, and

α
(i)
b ∈ 2 is a constant (taking value 0 or 1).

In fact, since we are using a presentation for which εA(ai) = 0 for all i, the sum can
in fact skip the trivial monomial (i.e. the constant).

We may also try to express f pictorially.

7.11. Example. Consider the map f : W → 3W given by x 7→ y1y2 + y1y3. We can
represent this in graph form:

1

2 3

where each term of f(x) is represented by circling the vertices that generate the term (so
the term y1y2 is represented by the ellipse encompassing the vertices 1 and 2). Note in
particular that {1, 2} and {1, 3} are independent sets of Γ3W .

We also note that we label the vertices 1, 2 and 3 instead of y1, y2 and y3 for conve-
nience.

This suggests that we can express the map f using the language of graphs.
In the following discussion, we shall not necessarily restrict the discussion to only the

p.c. graphs, but rather implicitly refer to all graphs.

7.12. Proposition. For the Weil algebra B = 2[b1, ..., bn]/QB with corresponding (p.c.)
graph ΓB, the set of non-zero monomials b of B in the generators {b1, . . . , bn} are (canon-
ically) in bijection with the independent sets of ΓB.

Proof. Since each generator bi of B squares to zero, then each non-zero monomial b can
be expressed (uniquely) as ∏

i∈I

bi ;

for some appropriate subset I ⊆ {b1, . . . , bn}. Since b 6= 0, then for distinct i, j ∈ I, we
must have bibj 6= 0, i.e. bibj /∈ QB. This equivalently means there is no edge between the
vertices bi and bj in ΓB. I is thus a (possibly empty) independent set of ΓB.

The reverse direction for the bijection is then obvious.

7.13. Remark. Using Proposition 7.12, we can equivalently say that to give a non-
constant monomial b is to give a vertex of Ind+(ΓB).

As such, we may now express f(ai) (uniquely) as

f(ai) =
∑

U∈Ind+(ΓB)

α
(i)
U bU
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over the non-empty independent sets U of ΓB

7.14. Notation. For a graph G, let a circle U of G simply mean an independent set of
G, but regarded pictorially as some shape encompassing the relevant vertices.

We may use this idea to express f : A→ B pictorially: start by taking the generator
a1. Then take the graph ΓB for B, and for each U with α1

U = 1, we add onto ΓB a circle
corresponding to U , and we do this for all U with α1

U = 1. Then repeat this process for
each generator ai, but (say) using a different colour for each different generator.

7.15. Example. The map f : 2W → 3W given by x1 7→ y1y2 + y2y3 and x2 7→ y1 + y1y3

may be represented as

1

2 3

where f(x1) is represented in red and f(x2) is represented in blue.

7.16. Notation. For a map f : A → B, let {U}f denote the graph ΓB together with a
set {(U, i) | ∀ αiU = 1}, all of this regarded pictorially as a set of coloured circles on ΓB.

7.17. Remark. For a map f : W → B, we will simply refer to a circle (U, i) of {U}f as
U (i.e. we omit the index i).

So, to any map f we can associate a graph with coloured circles. However, not all sets
of circles on the graph ΓB are permissible.

In order to investigate this idea further, we begin with the following:

7.18. Proposition. Consider maps of the form f : W → B. To give such an f is to
give a clique of Ind+(ΓB).

Proof. Let x be the generator of W . Recall from Proposition 7.12 that each summand
(monomial) of f(x) is a (non-empty) independent set of ΓB, i.e. a vertex of Ind+(ΓB).
We may thus regard f(x) as some subset Xf of the vertices of Ind+(ΓB).

Let distinct U1, U2 ∈ Xf be given (i.e. two distinct monomials of f(x)). Then, since
x2 = 0, either

1. U1 ∩ U2 6= φ (so that they have a common vertex which becomes squared in the
product bU1bU2), or

2. there exists bi ∈ U1 and bj ∈ U2 (with i 6= j) such that (bjbj′) is an edge of ΓB.
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In either case, each of the above conditions is equivalent to the independent sets U1

and U2 having an edge joining them in Ind+(ΓB). X is thus a clique of Ind+(ΓB). In
particular, f(x) corresponds to a vertex of Cl(Ind+(ΓB)).

Conversely, given a cliqueX of Ind+(ΓB), there is the obvious polynomial pX(b1, . . . , bn)
corresponding to X, and it is routine to check that fX(x) = pX(b1, . . . , bn) defines a valid
morphism fX : W → B.

7.19. Notation. For convenience, we shall let χ( ) denote Cl(Ind+( )).

We can take this one step further:

7.20. Proposition. To give a map f : A→ B is to give a graph homomorphism f̃ : ΓA →
χ(ΓB).

Proof. We know from Proposition 7.18 that each f(ai) corresponds to a vertex of χ(ΓB)
(we may view this as pre-composition with θi : W → A, with θi(x) = ai).

This gives us a function from the set {a1, . . . , am} of vertices of ΓA to the set of vertices
of χ(ΓB). We now verify that this function yields a valid graph homomorphism.

Suppose ai and aj are two distinct vertices of ΓA with an edge joining them.

(ai, aj) is an edge of ΓA

⇒ aiaj = 0 in A

⇒ f(ai)f(aj) = 0 in B .

This tells us that if bi and bj are each a monomial from f(ai) and f(aj) respectively,
then bibj = 0. Using the same idea as the proof for Proposition 7.18, this says that there
is an edge joining bi and bj in Ind+(ΓB).

This is true for all such pairs of monomials, and so f(ai) and f(aj), viewed as cliques
in Ind+(ΓB), together (i.e. taking the union of the two cliques) give a clique. As such,
when viewed as vertices of χ(ΓB), there is an edge joining f(ai) and f(aj).

Thus f : A→ B yields a unique graph homomorphism f̃ : ΓA → χ(ΓB).
The reverse direction is then obvious.

These ideas actually allow us to prove an interesting fact about χ.

7.21. Proposition. χ defines an endofunctor on the category Gph, and moreover, χ is
canonically a monad.

Proof. We first exhibit χ as an endofunctor. It is already well defined on objects. Let
G = (V,E) and G′ = (V ′, E ′) be arbitrary graphs and h : G → G′ some chosen graph
homomorphism.

Define χ(h) : χ(G)→ χ(G′) as follows:

1. For a vertex v ∈ V , regarded as the singleton clique of the singleton independent set
(so that it is a vertex of χ(G)), define (χh)(v) = h(v) (where h(v) ∈ V ′ is regarded
as a vertex of χ(G′) in the same way).
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2. For a non-empty independent set U of G (hence a vertex of Ind+(G), and thus a
singleton clique) viewed as a vertex of χ(G), define (χh)(U) as

∪
v∈U

h(v) ; if the function h restricted to domain U is injective,

and this defines an independent set of G′

The empty clique ; otherwise

;

if ∪
v∈U

h(v) does indeed define an independent set of G′, we again regard it as a

singleton clique of Ind+(G′), hence a vertex in χ(G′).

3. For a clique C of Ind+(G), define χ(C) as the clique of Ind+(G′) consisting of all
(χh)(U) not the empty clique, for all (non-empty) independent sets U ∈ C.

We leave as an exercise to the reader to show that this will preserve identities and com-
position, so that χ is functorial.

To show χ is a monad, we first give the unit η : 1Gph ⇒ χ by its components; ηG : G→
χ(G) sends each vertex v ∈ V to the singleton clique of the singleton independent set
{{v}}.

Using Proposition 7.20, it is easy to see that each ηG : G → χ(G) corresponds to the
identity idκ(G) : κ(G)→ κ(G).

The multiplication µ : χ2 ⇒ χ has components µG : χ2(G) → χ(G) given as follows:
Recall that

1. Vertices of G correspond to generators of κ(G) (Definition 6.1);

2. Non-empty independent sets U of G correspond to non-constant, non-zero monomi-
als of κ(G) (Proposition 7.12), and an edge in Ind+(G) is equivalent to the corre-
sponding monomials multiply to zero;

3. Cliques of such independent sets are polynomials squaring to zero (Proposition 7.18),
and an edge in χ(G) means that the product of the two corresponding polynomials
yields zero.

Using Definition 7.7 and Definition 7.10, we can then see that

1. A non-empty independent set of such a clique (i.e. a vertex of Ind+ (χ (G))) then
corresponds to a set X of polynomials for which the product of all polynomials in
this set X is not zero, or X contains only the zero polynomial itself (taking the
empty clique as a singleton). An edge between X and Y in this graph corresponds
to there being polynomials p ∈ X and q ∈ Y such that pq = 0 in κ(G);

2. A (possibly empty) clique of such an independent set (i.e. a vertex of χ2(G)) is a
family % of such sets of polynomials such that for any two distinct sets X and Y of
this family, there are polynomials p ∈ X and q ∈ Y such that pq = 0 in κ(G), and
an edge between vertices % and σ says that the union of the two families is also such
a family.
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Then, to give µG : χ2(G) → χ(G) is to associate each family of sets of polynomials
to a polynomial squaring to zero. Let % be one such family. Let X ∈ %, and suppose
X = {p1, . . . , pr}, where each pi is a polynomial of κ(G) squaring to zero.

With this notation, we define µG(%) to be the polynomial∑
X∈%

(∏
pi∈X

pi

)
.

Explicitly, for each set X ∈ %, multiply together all the polynomials in this set (recall
that unless X contains only the zero polynomial, then this product is non-zero). Then
add up all such resultant polynomials across all X ∈ %.

Now, each polynomial pi squares to zero, so each product∏
pi∈X

pi

squares to zero. Since % is a clique of Ind+ χ(G), then any two sets X, Y ∈ % therefore
are joined by an edge. As such, there exists p ∈ X and q ∈ Y with pq = 0 in κ(G). As
such, the product (∏

pi∈X

pi

)∏
qj∈Y

qj


must be zero. This is true for all pairs X, Y ∈ %.

Thus, the polynomial µG(%) squares to zero (hence is a vertex of χ(G)).
Finally, suppose σ is another vertex such that (%, σ) is an edge of χ2(G). This means

that % ∪ σ is another family. As such, µG(% ∪ σ) is well defined and moreover squares to
zero. In particular, this means that µG(%)µG(σ) = 0 in κ(G).

Therefore there must be an edge between µG(%) and µG(σ).
We shall leave verifying the axioms of the monad as an exercise for the reader.

Since χ is a monad, we can then consider the Kleisli category Gphχ. Moreover, we
can then define Gph′χ as the full subcategory whose objects are precisely the p.c. graphs.

7.22. Proposition. There exists an equivalence of categories

F : Gph′χ → 2-Weil1 .

Proof. The functor F is defined as:

1. On objects: F (G) = κ(G)

2. On morphisms: A map h : G 9 G′ of Gph′χ is a graph homomorphism h′ : G →
χ(G′), and this corresponds to a unique map h̃ : κ(G)→ κ(G′) of 2-Weil1 (Propo-
sition 7.20). Thus, take F (h) = h̃.

Using Proposition 7.20, F is clearly full and faithful. Using Definition 6.1, Definition
6.3, and the fact that Γκ(G) = G, then F is essentially surjective.
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8. Construction of maps

We shall show in this section that using the set {εW ,+, ηW , l, c} (as defined in Section
4), composition, ⊗ and the universal property of foundational pullbacks (as given in
Definition 3.17) of 2-Weil1, we are able to “construct” (in some appropriate sense) any
map f : A → B of 2-Weil1. We begin by expressing the maps {εW ,+, ηW , l, c} in the
form {U}f in Table 1 below:

Map Action on Generators Graph

εW : W → 2 x1 7→ 0 (k corresponds to the empty graph)

idW : W → W x 7→ x
1

+: W 2 → W x1 7→ x, x2 7→ x

1

ηW : 2→ W (2 has no generators) 1

l : W → 2W x 7→ x1x2

1 2

c : 2W → 2W x1 7→ x2, x2 7→ x1

1 2

Table 1:

Pictorially, given {U}f for some map f : A → B, we can naively interpret ‘post-
composition’ with the above maps as follows:

• εW corresponds to deleting a particular vertex in ΓB as well as any circles that go
through that vertex.
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• + corresponds to taking two vertices in ΓB joined by an edge and collapsing them to
a single vertex. Circles that had contained either vertex (but not both) now contain
the collapsed vertex instead.

• ηW corresponds to adding a new vertex to ΓB, but has no effect on any of the
existing circles.

• l corresponds to taking a single vertex of ΓB and splitting it into two vertices without
an edge joining them, and any circle U that contained the original vertex now contain
both of the new vertices

• c corresponds to switching labels of (unjoined) vertices, and does nothing to the
circles themselves.

These ideas will become clearer in subsequent discussion. We shall now precisely define
what it means to say that a map f : A→ B is “constructible”.

8.1. Definition. Let Ξ be a set given iteratively as follows:

1. The maps εW ,+, ηW , l, c are contained in Ξ.

2. Ξ contains all identities.

3. For all n ∈ N, each projection πi : W
n → W is contained in Ξ.

4. If f : X → Y and g : Y → Z are both in Ξ, then their composite g ◦ f : X → Z is
also in Ξ. Equivalently, Ξ is closed under composition.

5. If f : X → Y and g : A→ B are both in Ξ, then their tensor f ⊗g : X⊗A→ Y ⊗B
is also in Ξ. Equivalently, Ξ is closed under tensor.

6. For a foundational pullback
A //

��

B

��
C // D

in 2-Weil1, and for a commuting square

X
f //

g
��

B

��
C // D

with X ∈ 2-Weil1 and f, g ∈ Ξ, then the uniquely induced map h : X → A is also
in Ξ.

8.2. Definition. For a map f : A→ B of 2-Weil1, we shall say that f is constructible
if f ∈ Ξ.
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8.3. Lemma. For any Weil algebra A ∈ 2-Weil1, the unit ηA and augmentation εA are
both constructible.

Proof. The lemma is by definition true for A = W . We then simply note that εWn =
εW ◦ πi (for any i) and ηWn (induced using ηW and product diagrams regarded as foun-
dational pullbacks) are both constructible, and for X, Y ∈ 2-Weil1 with ηX , ηY , εX , εY
constructible, then ηX⊗Y = ηX ⊗ ηY , εX⊗Y = εX ⊗ εY are also constructible.

8.4. Corollary. Any zero map z : A→ B is constructible, for all A,B ∈ 2-Weil1.

Proof. For given A,B ∈ 2-Weil1, the zero map z : A→ B is the composite

A
εA // k

ηB // B .

8.5. Lemma. The only (non-trivial) products in 2-Weil1 are the product powers W n

Proof. For arbitrary X, Y ∈ 2-Weil1, the graph ΓX×Y for their product would need to
be connected. The only connected p.c. graphs are the complete ones, and so X×Y = W n

for some n.

8.6. Lemma. For arbitrary 0 < n′ < n in N, all projections

π′ : W n → W n′

are constructible.

Proof. Let π′ : W n → W n′ be a given projection. Without loss of generality, suppose
π′ preserves the first n′ generators of W n. Since each product can be regarded as a
foundational pullback (Definition 3.17), π′ is then constructed as idWn′ × εWn−n′ .

8.7. Corollary. Let

A⊗Wm+n A⊗π1 //

A⊗π2
��

A⊗Wm

A⊗εWm

��
A⊗W n

A⊗εWn

// A

be an arbitrary foundational pullback (recall from Lemma 8.5 that the only products in
2-Weil1 are product powers).

Then, each of the four maps in this pullback diagram are constructible.

Proof. This is an immediate consequence of Definition 8.1, Lemma 8.3 and Lemma 8.6.
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Clearly, any map that is constructible by definition must live in 2-Weil1. We shall
now sequentially build up in a different manner the maps of Ξ and show that in fact all
maps f : A→ B of 2-Weil1 are constructible.

8.8. Lemma. Any map f : W → nW with precisely one circle is constructible.

Let us begin with an example.

8.9. Example. The map f : W → 5W given by x 7→ x1x3x4 may be represented as

1 3 4

2 5

Define a map f̃ as the composite

W l // 2W
W⊗l // 3W

x 7−→ x1x2 7−→ x1x2x3 .

Clearly f̃ is constructible.
Then {U}f̃ is

1

2

3

i.e. the single circle includes all 3 vertices.
Now define a map g as the map

W ⊗ ηW ⊗W ⊗W ⊗ ηW : 3W → 5W

x1 7→ y1

x2 7→ y3

x3 7→ y4 .

Clearly, g is constructible.
Then the composite g ◦ f̃ is precisely the original map f . Thus f is constructible.

We generalise this idea to prove Lemma 8.8.
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Proof. Let f : W → nW with precisely one circle U be given. Let r = |U |. Define f̃ as
the composite

W l // 2W
W⊗l // . . .

(r−1)W⊗l // rW

Clearly, f̃ is constructible.
In an analogous manner to Example 8.9, define a constructible map g : rW → nW

with g ◦ f̃ = f . Thus f is constructible.

8.10. Lemma. All maps f : W → nW are constructible.

Proof. If there are no circles in {U}f (i.e. x 7→ 0), then the f is given by (say) the
composite

W ε // k
η //W

W⊗η // . . .
(n−1)W⊗η // nW

i.e. the zero map, hence f is constructible.
If f has one circle, we apply Lemma 8.8.
If f has more than one circle, then we prove this by induction. Let S(m) be the

statement “All maps f : W → nW with m circles or fewer are constructible, for all
n ∈ N”.

We know S(1) is true. Suppose that S(r) is true for some r ∈ N.
Let a map f : W → nW with precisely r + 1 circles be given. Explicitly, this means

that f(x) is a polynomial in the generators of nW (which we shall call y1, . . . , yn) with
precisely r + 1 monomial summands.

Recall that for f to be a valid map, since the codomain is nW (or equivalently, the
corresponding graph ΓnW is discrete), then any two distinct summands of f(x) must have
(at least) one generator yi in common. Let t and t′ be distinct summands, and without
loss of generality, suppose yn is a common generator.

Now define a map
f ′ : W → (n− 1)W ⊗W 2

where W 2 = 2[yn, ỹn]/y2
n, ỹn

2, ynỹn, with f ′(x) having the same expression as f(x), except
that the yn in term t′ is replaced with ỹn. It is a routine task to check that this is a valid
map. Furthermore, the composite

W
f ′ // (n− 1)W ⊗W 2 (n−1)W⊗+ // nW

will return the original map f . Clearly, the map (n − 1)W ⊗ + is constructible, so it
suffices to show that f ′ is constructible.

But the codomain of f ′, (n− 1)W ⊗W 2, is the pullback

(n− 1)W ⊗W 2(n−1)W⊗π1//

(n−1)W⊗π2
��

nW

(n−1)W⊗εW
��

nW
(n−1)W⊗εW

// (n− 1)W ,
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and moreover, this is a foundational pullback.
Thus, to prove that f ′ is constructible, it suffices to prove that each of the composites(

(n− 1)W ⊗ πi
)
◦ f ′ : W → nW ; i ∈ {1, 2}

is constructible. But each of these composites have a number of circles strictly fewer than
r+1. Since we assumed that S(r) was true, then both these composites are constructible,
hence f is constructible.

Thus S(r + 1) is true.
As such, all maps f : W → nW are constructible.

We can actually prove Lemma 8.10 more directly. Suppose we have an arbitrary map
f : W → nW with {Uf} given. For each i ∈ {1, . . . , n}, let mi be the number of circles
containing vertex i (or equivalently, the number of terms of f(x) containing the generator
yi). Then, in a similar manner as before, we can define a map

f ′ : W → Wm1 ⊗ · · · ⊗Wmn

in such a way that (+m1 ⊗ · · · ⊗ +mn) ◦ f ′ = f . Here, since + is an associative and
commutative operation, then +m : Wm → W is well defined, and +0 is the nullary sum
ηW .

Clearly, the map +m1⊗· · ·⊗+mn is constructible. As for f ′ : W → Wm1⊗· · ·⊗Wmn ,
we have the following

8.11. Proposition. For each n ∈ N, the object Wm1⊗· · ·⊗Wmn is a limit of a (canon-
ical) connected diagram of sW ’s.

Proof. This is clearly true for n = 1 (as Wm is the m-fold pullback of εW ).
Suppose this is true for n = r for some r ∈ N, i.e. for a given V = Wm1 ⊗ · · · ⊗Wmr ,

there is a (canonical) connected diagram

D D // 2-Weil1

with Dd = sdW for all d ∈ D and limD = V (the limit calculated using iterations of
foundational pullbacks).

Consider V ⊗Wmr+1 for some mr+1 ∈ N>0. Let

C C // 2-Weil1

be the mr+1-fold connected diagram of εW ’s (i.e. limC = Wmr+1).
We know from Proposition 3.14 that V ⊗ preserves Wmr+1 as a limit, i.e.

lim

(
C G // 2-Weil1

V⊗ // 2-Weil1

)
= V ⊗Wmr+1 .

For each c ∈ C, by again using Proposition 3.14 as well as the symmetry of ⊗, we have

lim

(
D H // 2-Weil1

⊗Cc// 2-Weil1

)
= V ⊗ Cc ,

and note that each Dd⊗ Cc is of the form sW for some s ∈ N.
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8.12. Lemma. Let an arbitrary object A = 2[a1, . . . , an]/QA of 2-Weil1 be given. Then
any map f : A → W given as f(ai) = x for some fixed i and f(aj) = 0 for all j 6= i is
constructible.

Proof. Since A ∈ 2-Weil1, then ΓA is a p.c. graph, or more generally, a cograph. We
then show that f is constructible recursively as follows:

1) If ΓA = {•} (the one point graph), then f is the identity and is thus constructible.

2) If ΓA = G⊗H with ai ∈ H, then f is the composite

A = κ(G)⊗ κ(H)
εκ(G)⊗κ(H)

// κ(H)
f ′ //W ;

for a unique map f ′, and it thus suffices to show that f ′ is constructible.

3) If ΓA = G×H with ai ∈ H, then f is the composite

A = κ(G)× κ(H)
πκ(H) // κ(H)

f ′ //W ;

for a unique map f ′, and it thus suffices to show that f ′ is constructible.

8.13. Lemma. Every map f : A→ nW with no intersecting circles is constructible.

Proof. Let A be the full subcategory of 2-Weil1 consisting of all objects A with the
property that any map A→ nW with no intersecting circles is constructible.

By Lemma 8.3, we have 2 ∈ A (since 2 is a zero object, the only map to any A is the
unit ηA), and by Lemma 8.10, we have W ∈ A.

For arbitrary m ∈ N≥2, let an arbitrary map f : W n → nW with no intersecting circles
be given. If f is the zero map, then by Corollary 8.4, it is constructible. Suppose then
that a is a generator of Wn for which f(a) 6= 0. Let a′ be any other generator of Wm.
Now, since aa′ = 0 by construction, then f(aa′) = f(a)f(a′) = 0.

But since the codomain of f is nW and f has no intersecting circles, then we must
have f(a′) = 0. This is true for all generators of Wm (other than a, of course). But this
means that f factors through the appropriate projection π : Wm → W preserving a (the
other map being one of the form described in Lemma 8.8), thus f is constructible. Thus
Wm ∈ A for all m ∈ N.

Now suppose that A1 and A2 are arbitrary objects of A. Let an arbitrary map f : A1⊗
A2 → nW with no intersecting circles is given. Then, with some appropriate post-
composition with c’s, we can write f = f1⊗ f2, for an appropriate pair f1 : A1 → rW and
f2 : A2 → (n − r)W neither of which have intersecting circles. Thus f is constructible.
Thus we have A1 ⊗ A2 ∈ A.

Now, since A is a full subcategory of 2-Weil1 containing Wm ∀ m ∈ N and is closed
under ⊗, then A is just 2-Weil1 itself. Thus any map A → nW with no intersecting
circles is constructible.



CLASSIFYING TANGENT STRUCTURES USING WEIL ALGEBRAS 315

8.14. Lemma. Every map f : A→ nW is constructible.

Proof. Let an arbitrary map f : A → nW be given. Using an analogous idea to that
described in the proof of Lemma 8.10, we can construct a map

f ′ : A→ Wm1 ⊗ · · · ⊗Wmn

as follows:

1) For each generator ai of A, take the polynomial f(ai) in the generators z1, . . . , zn of
nW

2) Let mj be the total number of terms across all the polynomials f(a1) containing zj
for j = 1, . . . , n

3) Define the map f ′ : A → Wm1 ⊗ · · · ⊗Wmn By specifying each f ′(ai) to be f(ai),
but in such a way that each generator of Wm1 ⊗ · · · ⊗Wmn is used exactly once (in
a similar fashion to the proof for Lemma 8.10)

8.15. Example. Consider the map f : 2W → 3W given as

x1 7→ y1y2 + y1y3

x2 7→ y2y3 .

Noting that each generator yi appears in exactly two monomials, then we have the
map f ′ : 2W → W 2 ⊗W 2 ⊗W 2 given as

x1 7→ y1y2 + y′1y3

x2 7→ y′2y
′
3

Then f is the composite

A
f ′ //Wm1 ⊗ · · · ⊗Wmn

+m1⊗···⊗+mn// nW ,

and so it suffices to show f ′ is constructible. But now, for each projection

π = πi1 ⊗ · · · ⊗ πin : Wm1 ⊗ · · · ⊗Wmn → nW,

the composite π ◦ f ′ : A→ nW has no intersecting circles, and is thus constructible using
Lemma 8.13, and we use a series of foundational pullbacks to recover f ′.

Before we introduce Theorem 8.17, we shall also require the following lemma:

8.16. Lemma. Let G be a cograph (recall that each p.c. graph is also a cograph) with at
least one edge (and hence at least two vertices). Then G can be expressed as (G1×G2)⊗H,
where G1 and G2 are non-empty cographs (H may be empty).

Proof. Let e be a chosen edge of G. Let G′ be the connected component of G containing
the edge e. Clearly, we can express G as a disjoint union G′⊗H (with H possibly empty).

Now, since G′ contains an edge, it cannot be the one point graph. Since it is connected,
it cannot be expressed (non-trivially) as G1⊗G2. Since it is a cograph, then by Definition
5.15, it can be expressed non-trivially as G1 ×G2.
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We now have the following:

8.17. Theorem. Every map f : A→ B in 2-Weil1 is constructible.

Proof. Consider the Weil algebra B. If ΓB has any edges then, using Lemma 8.16,
it can be expressed (non-trivially) as (G1 × G2) ⊗ H (with H possibly being the empty
graph). Correspondingly, B = (κ(G1)× κ(G2))⊗κ(H) and we thus have the foundational
pullback

B
π1⊗κ(H) //

π2⊗κ(H)

��

κ(G1)⊗ κ(H)

ε1⊗k[H]

��
κ(G2)⊗ κ(H)

ε2⊗κ(H)
// κ(H)

and so f : A → B is uniquely induced by the pair (πi ⊗ κ(H)) ◦ f ; i = 1, 2. As such, it
suffices to show that each of these is constructible.

Note now that the graphs Gi ⊗ H for the codomains each have strictly fewer edges
than ΓB. As such, we repeat this process until the codomains are all of the form nW ,
then directly apply Lemma 8.14.

9. Obtaining coefficients outside 2

We gave Theorem 8.17, which said that every map f : A→ B is constructible. However,
this was for the case of 2-Weil1, and so we limit the permissible maps by restricting the
coefficients to being either 0 or 1.

Consider k-Weil1 for an arbitrary rig k. For each t ∈ k, define ĝt : W → W to be the
map given as ĝt(x) = tx. Note that ĝ0 is the zero map and ĝ1 is the identity idW .

Define Ξk in the same way as Definition 8.1, with the added condition that ĝt is
contained in Ξk for all t ∈ k. Define the notion of a constructible morphism in the same
way.

9.1. Proposition. Every map g : A→ B of k-Weil1 is constructible.

Proof. (Sketch) Consider first (the analogue of) Lemma 8.8. Suppose we had a map
f : W → nW with f(x) given by a single monomial (with some arbitrary coefficient r ∈ k).
Let f ′ : W → nW be the map with f ′(x) being the same monomial, but with coefficient
one. Clearly, f ′ is constructible.

Then, the composite

W
ĝr //W

f ′ //W ,

yields f , and so f is constructible.
From there, the proofs for (the analogues of) Lemma 8.10 through to Lemma 8.14 as

well as Theorem 8.17 are identical.
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Recall, however, that we are ultimately interested in N-Weil1. We begin with the
following:

9.2. Proposition. Let ψ† : N→ 2 be the rig morphism

ψ†(n) =

{
0 ; n = 0
1 ; otherwise

.

The canonical functor
ψ : N-Weil1 → 2-Weil1

induced by the rig morphism above is bijective on objects and full.
Here, ψ sends each object N[x1, . . . , xr]/Q of N-Weil1 to its counterpart 2[x1, . . . , xr]/Q

in 2-Weil1. There is analogous action of ψ on morphisms.

Proof. Bijectivity on objects follows immediately from the fact that Definition 4.2 defines
the objects of k-Weil1 independently from the choice of k.

For any morphism f : A→ B of 2-Weil1, there is a corresponding map g : A→ B in
N-Weil1 given by the same action on generators as f . Clearly, we then have ψg = f .

Let us now work with N-Weil1. Let Ξ be defined as in Definition 8.1 (i.e. we do not
explicitly include in Ξ the maps ĝt for all t ∈ N). We first have the following:

9.3. Lemma. For each t ∈ N, the map ĝt is constructible.

Proof. First we note again that ĝ0 is the zero map and ĝ1 is the identity, and thus both
are constructible.

We shall show that all ĝt’s are constructible by induction. Let S(t) be the statement
“ĝt is constructible”. We have established that S(0) and S(1) are true. Suppose S(r) is
true.

We then have
W ĝr

!!

idW

!!

h

!!
W 2 π1 //

π2
��

W

εW
��

W εW
// k ,

so the map h is constructible. Then, the map ĝr+1 is clearly the composite

W
h //W 2 + //W ,

so that ĝr+1 is also constructible, so that S(r + 1) is true.
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9.4. Remark. We may try to give a similar construction in 2-Weil1, but note that for
all t ∈ N>0, we will have ĝt = idW , since 1 + 1 = 1 in 2.

With these “coefficient maps” ĝt being constructible along with Theorem 8.17, we now
have the following:

9.5. Proposition. Every map g : A→ B of N-Weil1 is constructible.

Proof. This is a direct consequence of Proposition 9.1 and Lemma 9.3.

10. Instructions for assembly

In Lemmas 8.10 and 8.14, there was an element of choice involved; namely given a map
f : A → nW (for the case of Lemma 8.14, say), the corresponding map f ′ : A → Wm1 ⊗
· · · ⊗ Wmn required a choice as to which circle would correspond to which projection.
Ultimately, this choice is inconsequential as different choices are (up to isomorphism)
equivalent.

However, for the purposes of what we wish to do, we will assume that for each
f : A→ nW , there is some pre-determined choice that has already been made regarding
the corresponding map f ′.

This then implicitly equips each map f : A → B of 2-Weil1 (and hence N-Weil1)
with a set of instructions for its construction.

11. The map Ω

We will now describe a certain construction Ω, a map in N-Weil1, which we shall require
in order to prove Proposition 12.13 later.

Let s ∈ N be given. For an arbitrary map g : B → sW , recall that g decomposes (as
described in the proof of Lemma 8.14) as

W β1 ⊗ · · · ⊗W βs

+β
��

B g
//

g′
77

sW .

By 10, the particular decomposition is fixed (i.e. g′ is uniquely determined by g).
One way we can view this decomposition involves the slice category N-Weil1/sW ; the

pair (g,+β) (again, g′ is uniquely determined by g) can be seen as an object of the arrow
category (N-Weil1/sW )2. We shall now extend this to a functor

τ : N-Weil1/sW → (N-Weil1/sW )2

whose composite with the domain functor d : (N-Weil1/sW )2 → N-Weil1/sW is the
identity.
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This amounts to giving, for each arrow

A

h !!

f // B

g
��

sW

of N-Weil1/sW , a morphism

Ω: W β1 ⊗ · · · ⊗W βs → W δ1 ⊗ · · · ⊗W δs ,

such that the diagram

A
f //

h′
��

B

g′

��
W δ1 ⊗ · · · ⊗W δs

Ω
//

+δ ''

W β1 ⊗ · · · ⊗W βs

+βww
sW

commutes, and satisfying the evident functoriality conditions.

11.1. Remark. We are, of course, taking h : A→ sW to decompose as

W δ1 ⊗ · · · ⊗W δs

+δ
��

A
h

//

h′
77

sW .

It now remains to specify Ω.
Since W β1⊗· · ·⊗W βs is a limit (Proposition 8.11), it then suffices to define each map

Ω(r1,...,rs) as shown below

W δ1 ⊗ · · · ⊗W δs

Ω(r1,...,rs)

**

Ω
��

W β1 ⊗ · · · ⊗W βs
(r1,...,rs)=πr1⊗···⊗πrs

// sW ,

where the Ω(r1,...,rs) are suitably compatible.
But to give Ω(r1,...,rs), it suffices to say where each generator of W δ1⊗· · ·⊗W δs is sent.

Let y1 be a generator of W δ1 (without loss of generality, let α1 ≥ 1). We shall refer to the
generators of sW as z1, . . . , zs. Observe that +β(y1) = z1.

Recall from 10 the construction of h′ : A→ W δ1 ⊗ · · · ⊗W δs . There is a unique circle
(U1, a) for some generator a of A with y1 ∈ U1 (and correspondingly, a unique circle (U1, a)
of h as well with z1 ∈ U1). Recall also that h = g ◦ f . Let

h(a) = U1 + U2 + . . . ,
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where each Ui is a monomial in the generators z1, . . . , zs. Similarly, let

f(a) = V1 + V2 + . . . ,

where each Vi is a monomial in the generators {bj} of B.
Then (ignoring coefficients), since g preserves addition and multiplication, we can

express (g ◦ f)(a) as

(g ◦ f)(a) = g(f(a))

= g(V1 + V2 + . . . )

= g(V1) + g(V2) + . . .

=

 ∏
bj∈V1

g(bj)

+

 ∏
bj∈V2

g(bj)

+ . . . .

But this needs to be equal to h(a). In particular, U1 must be somewhere in the
expression for (g ◦ f)(a). Without loss of generality, suppose U1 is contained in the first
term ∏

bj∈V1

g(bj).

Now, for each bj ∈ V1, we must be able to choose precisely one circle Qj in such a way
that ⋃

bj∈V1

Qj = U1

with the Qj’s pairwise distinct. This is because for each bj ∈ V1, g(bj) is a polynomial
in the generators z1, . . . , zn. Then, if the product of these polynomials (which in turn is
another polynomial) is to contain a particular monomial (namely U1), then this monomial
must have arisen as the product of one monomial from each of the factor polynomials.

Moreover, since z1 ∈ U1, then we also have z1 ∈ Qj for a unique j. Take j = 1 so that
Q1 is one of the terms of the polynomial g(b1).

⇒ Q1 is a circle of g corresponding to b1

⇒ In g′ : B → W β1 ⊗ · · · ⊗W βn , ∃! generator v of W β1 corresponding to the circle Q1

⇒ Define Ω(r1,...,rs)(y1) =

{
z1 ; (r1, . . . , rs) preserves v (in particular, r1 preserves v)
0 ; otherwise

and repeat for all generators of W β1 ⊗ · · · ⊗W βn .
In particular, note that since Ω can only assign a generator from any W δi to a generator

of the corresponding W βi , then we have Ω = Ω1⊗· · ·⊗Ωs, for appropriate maps Ωi : W
δi →

W βi .

11.2. Remark. We shall note here that in full formality, we should use the label Ωf,g

(or something to this effect), but we shall not be doing this.
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12. Back to Tangent Structure

We defined the category k-Weil1 in Definition 4.2 and in Section 8, we defined the notion
of a constructible morphism (Definition 8.2) and showed that any map of 2-Weil1 was
constructible (Theorem 8.17). We then said in Proposition 9.5 that in fact any map of
N-Weil1 was constructible, and moreover in 10 we noted that each map g : A → B was
equipped with a set of instructions for its construction.

We shall conclude by linking these ideas about Weil algebras back to Tangent Struc-
tures in an explicit manner.

We wish to construct a functor

F : N-Weil1 → End(M)

with certain properties (which we shall specify in due course). However, we first need to
establish some facts.

Suppose that a given categoryM is equipped with a Tangent Structure T (in the sense
of Definition 2.6). Regard End(M) as a monoidal category with respect to the operation
of composition ◦, and with unit the identity functor 1M.

12.1. Notation. To avoid confusion, when we want to regard composition as a monoidal
operation in End(M), we will use concatenation if the meaning is clear (otherwise we will
explicitly use ⊗), and save ◦ for actual composition. For example, if we have natural
transformations α : R⇒ S and β : S → U in End(M), then β ◦ α denotes the composite

R
α +3 S

β +3 U ;

whereas βα denotes the natural transformation

S ◦R βα +3 U ◦ S .

12.2. Definition. Let

F0 : ob(N-Weil1)→ ob(End(M))

be the function given as F0(N) = 1M, F0(Wm) = T (m) for all m ∈ N, and then recursively,
if A,B ∈ N-Weil1 with F0(A) = R, F0(B) = S, then F0(A⊗B) = R ◦ S.

12.3. Proposition. For any foundational pullback

A⊗ (B × C)
A⊗πB //

A⊗πC
��

A⊗B
A⊗εB
��

A⊗ C
A⊗εC

// A
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in N-Weil1 (recall from Lemma 8.5 that the only products in N-Weil1 are the powers W n

of W ), we have a corresponding pullback

F0(A⊗ (B × C)) //

��

F0(A⊗B)

��
F0(A⊗ C) // F0(A)

in End(M), which we may also equivalently express as

F0(A)F0(B × C) //

��

F0(A)F0(B)

��
F0(A)F0(C) // F0(A) .

We shall also refer to these as foundational pullbacks (in End(M)).

Proof. The square in End(M) being a pullback is a direct consequence of the axioms of
T

12.4. Definition. Let Ψ be a collection of pairs (f, α), where f : X → Y is a mor-
phism in N-Weil1 and α : F0(X) ⇒ F0(Y ) is a morphism in End(M) (i.e. a natural
transformation), given as follows:

We begin with the following pairs:

• Each element of {εW , ηW ,+, l, c} is paired with its obvious counterpart {p,+, η, l, c}.

• For each object A ∈ N-Weil1, the pair (idA, idF0(A)).

• For any given foundational pullback in N-Weil1, each map in this pullback is paired
with its obvious counterpart in the corresponding pullback in End(M) (in the sense
of Proposition 12.3).

This gives us a starting point for Ψ. Recall from 10 that any map h : A → B of
N-Weil1 is equipped with a (finite) sequential set of instructions for its construction. We
then iteratively add to Ψ as follows:

Let f, g and h be maps in N-Weil1, and suppose we already have pairs

(f, α), (g, β) ∈ Ψ .

• If the final step of the instructions of h was to obtain h as the composite g ◦ f , then
we add to Ψ the pair (h, β ◦ α). That is, we close Ψ under certain compositions.

• If the final step of the instructions of h was to obtain h as the tensor g ⊗ f , then
we add to Ψ the pair (h, βα). That is, we close Ψ under certain tensors.
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• If the final step of the instructions of h was to (uniquely) induce h using f and g as

A
h

  

f

  

g

  

B //

��

B1

��
B2

// C ;

where the pullback square is a foundational one, then we consider the diagram

F0(A)
α

%%

β

##

F0(B) //

��

F0(B1)

��
F0(B2) // F0(C)

in End(M) (where we use the foundational pullback in End(M) corresponding to
the one above).

If the exterior commutes, then by the universal property of the pullback, a unique
map γ : F0(A)→ F0(B) will be induced. In that case, add to Ψ the pair (h, γ).

If the exterior does not commute, then we will say that “h does not have a pairing
in Ψ”.

12.5. Definition. Let Φ be the collection of all maps h : A → B in N-Weil1 which do
not have a pairing in Ψ.

12.6. Lemma. Each coefficient map ĝt is paired with some (unique) natural transforma-
tion λt in Ψ.

Proof. We know that λ0 is the composite

T
p +3 1M

η +3 T

(since this was how ĝ0 was constructed) and λ1 is the identity idT (since ĝ1 was the
identity).

Since each ĝt is then constructed recursively as

W

W //

ĝt−1

==

idW !!

W 2

π1

OO

π2
��

+ //W

W ,

then each λt is constructed recursively in the same way.
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Clearly, Ψ and Φ are mutually exclusive and exhaustive collections. For now, let us
focus on Ψ.

12.7. Notation. When describing pairs in Ψ, if f is a map in N-Weil1, then we will use
f̃ to denote the corresponding natural transformation in End(M), i.e. we have (f, f̃) ∈ Ψ,
as we shall see below.

We will now sequentially show that the pairings of Ψ “preserve” (arbitrary) compo-

sition, i.e. if we have arbitrary pairings (f, f̃), (g, g̃), (h, h̃) ∈ Ψ such that h = g ◦ f in

N-Weil1, then we have h̃ = g̃ ◦ f̃ in End(M).
Explicitly, suppose we have

A
f //

h=g◦f

77B
g // C

in N-Weil1. We wish to show that

F0A
f̃ //

h̃

44F0B
g̃ // F0C

commutes in End(M), for all (f, f̃), (g, g̃), (h = g ◦ f, h̃) ∈ Ψ.
As with Section 8, we shall begin with the most basic case for “preservation” of

composition by the pairings in Ψ, and then sequentially build our way up to the general
case.

12.8. Proposition. For all f : qW → rW and g : rW → sW , neither of which having
intersecting circles, the diagram

T q
f̃ //

h̃

66T r
g̃ // T s

commutes in End(M).

Proof. First, since f and g have no intersecting circles, then h also has no intersecting
circles.

Since f has domain qW and has no intersecting circles, then it can be expressed in
the form (modulo some appropriate post-composition with c′s)

f = f1 ⊗ · · · ⊗ fq ⊗ ηq′W : W ⊗ · · · ⊗W ⊗ k → ξ1W ⊗ · · · ⊗ ξqW ⊗ q′W

(and f is constructed as such); where each fi is has a single circle and is either given as
εW if ξi = 0, or constructed as the composite

W
ĝai //W l // . . .

(ξi−1)W⊗l // ξiW

(as described in the proof of Lemma 8.8), for an appropriate coefficient map ĝai .
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12.9. Remark. Note that we also have(
q∑
i=1

ξi

)
+ q′ = m .

An analogous fact is true for g and h. The natural transformations f̃ , g̃ and h̃ are then
constructed in a corresponding manner.

Now, it can be shown that for all c, d ∈ N, the diagram

T
λc //

λcd
��

T l // T 2

λdT
��

T
l

// T 2

commutes in End(M) (recall that each λt is paired with the coefficient map ĝt in Ψ).
Together with the fact that the diagram

T l //

l
��

T 2

lT
��

T 2
T l
// T 3

commutes in End(M) (an axiom of T), then we have g̃ ◦ f̃ = h̃.

Thus h̃ = g̃ ◦ f̃

12.10. Proposition. For all f : A → rW and g : rW → sW , neither of which having
intersecting circles, the diagram

F0A
f̃ //

h̃

66T r
g̃ // T s

commutes in End(M).

Proof. First, we note that if f and g do not have intersecting circles, then neither does
h.

Consider f : A → rW . Using the arguments from the proof of Lemma 8.13, since f
has no intersecting circles, it must factor through some particular projection π : A→ qW
of A (as the final step in its construction), and the same is true for h.

Correspondingly, α and γ both factor through the corresponding projection π : F0A→
T q.

As such, it suffices to assume A = qW , and so F0A = T q. Then, we can apply
Proposition 12.8 directly.
∴ h̃ = g̃ ◦ f̃
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12.11. Proposition. For all arbitrary f : A → rW , and g : rW → sWwith no inter-
secting circles, the diagram

F0A
f̃ //

h̃

66T r
g̃ // T s

commutes in End(M).

Proof. Let {y1, . . . , yr} denote the generators of rW and {z1 . . . , zs} denote the genera-
tors of sW .

By the same argument as used in the proof for Proposition 12.8, then modulo appro-
priate post-composition with c’s, we can express g as

g = g1 ⊗ · · · ⊗ gr ⊗ ηr′W : W ⊗ · · · ⊗W ⊗ k → ν1W ⊗ · · · ⊗ νqW ⊗ r′W

(and g is constructed as such); where each gi : W → νiW has a single circle.
Without loss of generality, we shall assume that r′ = 0 and νi > 0 for all i. This

amounts to asking that no generator yi of rW is sent by g to zero, and that each generator
zj of sW belongs to exactly one of the r circles of {U}g.

This then defines a surjective function

ψ : {z1, . . . , zn} → {y1, . . . , ym} .

Without loss of generality, suppose that ψ(z1) = y1.
Suppose the maps h and f factorise as the composites

W δ1 ⊗ · · · ⊗W δs

+δ
��

W ϑ1 ⊗ · · · ⊗W ϑr

+ϑ
��

A
h

//

h′
77

sW A
f

//

f ′
77

rW .

(and are constructed as such, recall Lemma 8.14).

Note that correspondingly, f̃ and h̃ are given as composites

T (δ1) ⊗ · · · ⊗ T (δs)

+δ
��

T (ϑ1) ⊗ · · · ⊗ T (ϑr)

+ϑ
��

F0A
h̃

//

h̃′
77

T s F0A
f̃

//

f̃ ′
77

T r ,

noting that since +: T (2) → T is an associative, commutative and unital map, then there
is a well defined map

+(δi) : T (δi) → T

for each i, and finally, we define

+δ : = +(δ1) ⊗ · · · ⊗+(δs)
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in End(M). The same is true for +ϑ.
Firstly, this means that for the map h, there are precisely δ1 circles (say U1, . . . , Uδ1)

containing the generator z1. But given what we’ve established about g, and noting that
h = g ◦ f , then the z1 term in each of these Ui must arise as a result of the generator y1

(since ψ(z1) = y1). More explicitly, to each circle Ui of h containing z1 we can associate
a unique circle of f containing y1.

Conversely, for each circle Vj of f containing y1, we have g(Vj) 6= 0 (moreover, g(Vj)
is a single circle) and z1 ∈ g(Vj). Therefore the number of circles of f containing y1

(namely ϑ1) is the same as the number of circles of h containing z1 (namely α1). Thus, if
ψ(zi) = yj, then δi = ϑj.

We then define a map

Λ: W ϑ1 ⊗ · · · ⊗W ϑr → W δ1 ⊗ · · · ⊗W δs

induced using

rW
g // sW

W ϑ1 ⊗ · · · ⊗W ϑr

t

77

∃! Λ
//W δ1 ⊗ · · · ⊗W δs ,

a

77 (1)

where, for each fixed projection a = (a1, . . . , as), t is determined as follows:

• Consider a ◦ h′ : A→ sW . If this is the zero map, then t is also the zero map.

• If not, this means that there is at least one circle U of h (and hence h′) with each
of its generators preserved by a. Moreover, if h has multiple circles, then they must
be disjoint and each corresponds to a different generator of A (see proof of Lemma
8.14).

Without loss of generality, assume there is only one such circle U . Regard U as a
subset of {z1, . . . , zs}. Then we know ψ(U) (the image of U under ψ) is the unique
circle of f corresponding to U . Choose t (in the unique way) so that this circle ψ(U)
of f is preserved, but sends any yj /∈ ψ(U) to 0.

We shall also note that there is a corresponding natural transformation t̃ (i.e.
(
t, t̃
)
∈ Ψ,

we shall not prove this).
Now, it is fairly routine (albeit tedious) to show that Λ is paired with some unique

natural transformation Λ̃ in Ψ (i.e. that it exists). It can also be shown that the diagram

W ϑ1 ⊗ · · · ⊗W ϑr Λ //

+ϑ
��

W δ1 ⊗ · · · ⊗W δs

+δ
��

rW g
// sW
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commutes in N-Weil1 (and that the corresponding diagram commutes in End(M)). We
now have the following diagram

T r

g̃

��

T (ϑ1) ⊗ · · · ⊗ T (ϑr)

+ϑ

OO

Λ̃
��

F0A
h̃′ //

f̃

44

f̃ ′
55

h̃

22T (δ1) ⊗ · · · ⊗ T (δs)
+δ // T n ,

and to show the exterior commutes, it suffices to show that

T (ϑ1) ⊗ · · · ⊗ T (ϑr)

Λ̃
��

FA

f̃ ′
77

h̃′
// T (δ1) ⊗ · · · ⊗ T (δs)

commutes.
Since T (δ1)⊗· · ·⊗T (δs) is a limit with projections (a1, . . . , as), and since Λ (and hence

Λ̃) was given using Diagram (1), then it suffices to show that

a ◦ Λ̃ ◦ f̃ ′ = a ◦ h̃′

for all projections a = (a1, . . . , as).
Consider the diagram

F0A

ã◦h′

,,

t̃◦f ′

))
h̃′

��

f̃ ′ // T (ϑ1) ⊗ · · · ⊗ T (ϑr)

Λ̃
��

t̃

uu
T r

g̃

))

T (δ1) ⊗ · · · ⊗ T (δs)

a
��

T (δ1) ⊗ · · · ⊗ T (δs)
a

// T s

(again, we leave as an exercise to the reader to verify that all the necessary pairs in Ψ
exist and are well defined).

To show the commutativity of the exterior, we first note that the lower left triangle
and right square commute by construction, and further that it is routine to check that
the top triangle commutes. So all that remains is to verify the commutativity of the
innermost triangle.

But since t◦f ′ by definition has no intersecting circles, then we can apply Proposition
12.10 directly.
∴ h̃ = g̃ ◦ f̃
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12.12. Proposition. For all arbitrary f : A→ B, and g : B → sW with no intersecting
circles, the diagram

F0A
f̃ //

h̃

55F0B
g̃ // T s

commutes in End(M).

Proof. Using Lemma 8.16 and Proposition 6.6, we can see that if the graph ΓB contains
any edges, then B is part of a (foundational) pullback

B = B′ ⊗ (B1 ×B2)
B′⊗π1//

B′⊗π2
��

B′ ⊗B1

B′⊗εB1
��

B′ ⊗B2
B′⊗εB2

// B′ .

Further, recall the proof of Lemma 8.13. Since g : B → sW has no intersecting
circles, then if ΓB has any edges, we know that g must then factorise through one of B’s
(foundational) projections, say as

B
B′⊗π1 // B′ ⊗B1

γ // sW

(and moreover, this would be in the instructions for its construction). The same is thus
true of g̃. We shall simply denote the projection as π1 for convenience.

We now have
F0B

′F0B1

γ̃
��

F0A
f̃ //

h̃

44F0B
g̃ //

π̃1
99

T s ,

and note that the map π̃1 : F0B → F0B
′F0B1 is part of a foundational pullback in End(M)

(Proposition 12.3).

As such, this tells us that π̃1 ◦ f̃ = π̃1 ◦ f (Definition 12.4). It thus suffices to show
the commutativity of

F0B
′F0B1

γ̃
��

F0A

π̃1◦f
99

h̃

// sW .

But we know that since g has no intersecting circles, then neither does γ, and we can
thus repeat this iteratively until there are no more edges in B, i.e. we have B = rW and
apply Proposition 12.11 directly.
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12.13. Proposition. For all arbitrary f : A→ B and g : B → sW , the diagram

F0A
f̃ //

h̃

55F0B
g̃ // T s

commutes in End(M).

Proof. Recall from the proof of Lemma 8.14 that g factorises as the composite

W β1 ⊗ · · · ⊗W βn

+β
��

B g
//

g′
77

sW

(and is constructed as such). Thus, g̃ is constructed as the corresponding composite

T (β1) ⊗ · · · ⊗ T (βn)

+β
��

F0B g̃
//

g̃′
66

T n

Recall that we also said h̃ was constructed as the composite

T (δ1) ⊗ · · · ⊗ T (δs)

+δ
��

F0A
h̃

//

h̃′
77

T s .

We now have the following diagram

F0B

g̃′
�� g̃

��

T (β1) ⊗ · · · ⊗ T (βn)

+β

))
F0A

h̃′ //

g̃′◦f
55

f̃

33

h̃

22T (δ1) ⊗ · · · ⊗ T (δs)
+δ // T s ;

(2)

for which we wish to show the commutativity of the exterior.
We already know the bottom triangle as well as top right triangle commute by con-

struction. We begin with the innermost square

F0A
g̃′◦f //

h̃′
��

T (β1) ⊗ · · · ⊗ T (βn)

+β

��
T (δ1) ⊗ · · · ⊗ T (δs)

Ω̃

55

+δ
// FB ,

(3)
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and introduce the map Ω̃ (for Ω defined in 11, again, we shall not explicitly show explicitly

the existence of Ω̃). Recall that

Ω: W δ1 ⊗ · · · ⊗W δs → W β1 ⊗ · · · ⊗W βn

assigned each generator of the domain to a particular generator in the codomain, and
moreover we have Ω = Ω1 ⊗ · · · ⊗ Ωs for Ωi : W

δi → W βi .
First, it now becomes rather routine to show that

+δ = +β ◦ Ω̃

(i.e. the lower triangle in Diagram (3)). To show g̃′ ◦ f = Ω̃ ◦ h̃′ in End(M), note first
that g′ ◦ f = Ω ◦ h′ in N-Weil1 by design. So equivalently, we can show that

F0A
h̃′ //

Ω̃◦h′

22T (δ1) ⊗ · · · ⊗ T (δs) Ω̃ // T (β1) ⊗ · · · ⊗ T (βs)

commutes. But recall that T (β1) ⊗ · · · ⊗ T (βn) is a limit (constructed as iterations of
foundational pullbacks in End(M)) with projections r = (r1, . . . , rs). As such, it suffices
to show the commutativity of

F0A
h̃′ //

˜r◦Ω◦h′

33T (δ1) ⊗ · · · ⊗ T (δs) r◦Ω̃ // T s

for each r.
But noting that Ω = Ω1⊗· · ·⊗Ωs and r = πr1⊗· · ·⊗πrs , and noting the form of each

πri ◦ Ωi : T
(α1) ⊗ · · · ⊗ T (αn) → T from 11, then the commutativity of the upper triangle

in Diagram (3) above is immediate.
Hence, all that remains is to show the commutativity of the upper left triangle of

Diagram (2), namely the commutativity of

F0B

g̃′
��

F0A

f̃

44

g̃′◦f
// T (β1) ⊗ · · · ⊗ T (βs) .

Again, since T (β1) ⊗ · · · ⊗ T (βn) is a limit, it suffices to show the commutativity of

F0B

r◦g̃′=r̃◦g′
��

F0A

f̃
77

r̃◦g′◦f
// T s
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for each projection r.
Finally, note that by definition, each map

r ◦ g′ : B → nW

has no intersecting circles, so we may apply Proposition 12.12 directly.

12.14. Proposition. For all arbitrary f : A→ B and g : B → C, the diagram

F0A
f̃ //

h̃

44F0B
g̃ // F0C

commutes in End(M).

Proof. using the same argument as in the proof of Proposition 12.12, if the graph ΓC
contains any edges, then C is part of a (foundational) pullback

C = C ′ ⊗ (C1 × C2)
C′⊗π1 //

C′⊗π2
��

C ′ ⊗ C1

C′⊗εC1
��

C ′ ⊗ C2
C′⊗εC2

// C ′ .

Correspondingly, F0C is part of the pullback

F0C
π1 //

π2
��

F0C
′F0C1

��
F0C

′F0C2
// F0C

′ .

We now have
F0C1

F0A
f̃ //

h̃

44F0B
g̃ // F0C

π1
;;

π2 ##
F0C2

in End(M), and using the fact that πi ◦ g̃ = π̃i ◦ g for i = 1, 2 (and a corresponding fact
for h), it suffices to show the commutativity of

F0A
f̃ //

π̃i◦h

44F0B
π̃i◦g // F0Ci

for each i. Using this argument iteratively, it suffices to assume the graph ΓC has no
edges, i.e. C = sW and apply Proposition 12.13 directly.
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We have now shown that the pairings of the collection Ψ “preserve” arbitrary compo-
sitions. We now need to consider the collection Φ (Definition 12.5).

13. The Problem with Pullbacks

As we mentioned in Definition 12.4, we may have maps f, g, h ∈ N-Weil1 for which the
final step of the instructions for h is to uniquely induce it using f and g as

A
h

  

f

  

g

  

B //

��

B1

��
B2

// C ,

but the exterior of
F0A f̃

$$

g̃

""

F0B //

��

F0B1

��
F0B2

// F0C

does not commute, and so we cannot construct h̃, and said that h̃ is not well defined. We
then defined Φ to be the set of such “undefined” maps (Definition 12.5). We will now
show that this set Φ is in fact empty.

13.1. Proposition. The collection Φ is empty.

Proof. Suppose that Φ is non-empty. Then for each f ∈ Φ (with f : A → B a map
in N-Weil1), let n(f) be the number of vertices in the graph ΓB. Finally, let N(Φ) =
{n(f) | ∀f ∈ Φ}.

Since N(Φ) is a non-empty subset of N, then by the well ordering principle, it has a
least element. Choose a map h : A → B corresponding to this least element. Further,
suppose that the cograph for this codomain has at least one edge (if ΓB has no edges, i.e.

B = nW , then we construct h̃ directly using the methods in the proof of 8.14).
We then have the diagram

A
h

''

g=π2◦h
''

f=π1◦h

''
B = (B1 ×B2)⊗ C π1

//

π2

��

B1 ⊗ C
ε⊗C
��

B2 ⊗ C ε2⊗C
// C
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and noting that since ΓB has at least one edge, then ΓB1⊗C and ΓB2⊗C each have strictly

fewer vertices in their respective cographs than ΓB. Thus, f̃ and g̃ are both well defined.
We wish to show the commutativity of

F0A
f̃ //

g̃
��

F0B1 ⊗ F0C

��
F0B2 ⊗ C // F0C

so that h̃ can be induced using the foundational pullback in End(M).
Let ψ = (ε1 ⊗ C) ◦ f : A→ C in N-Weil1, i.e. the composite

A

ψ ##

f // B1 ⊗ C
ε1⊗C
��
C .

Since ΓC has strictly fewer vertices than ΓB, then ψ̃ is also well defined. But by Proposition
12.14, each of the triangles in the diagram

F0A

ψ̃ ((

f̃ //

g̃
��

F0B1 ⊗ F0C

��
F0B2 ⊗ C // F0C

commute in End(M), and thus the exterior commutes.

Therefore h̃ is well defined. Thus the original assumption is incorrect, i.e. Φ is an
empty set.

What we have shown then is that F0 and the pairings of Ψ together define precisely a
functor.

14. The Functor F and the universality of N-Weil1

We now have the following:

14.1. Theorem. Suppose we have a given category M. Regard End(M) as a monoidal
category with respect to composition and N-Weil1 as monoidal with respect to coproduct.

Then to give a Tangent Structure T to M is equivalent (up to isomorphism) to giving
a strong monoidal functor F : N-Weil1 → End(M) satisfying the following conditions:
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1) Given a product A = A1 × A2 in N-Weil1, regarded as a pullback of the augmenta-
tions, and an arbitrary Weil algebra B ∈ N-Weil1, then F preserves the pullback

B ⊗ A B⊗π1 //

B⊗π2
��

B ⊗ A1

B⊗ε1
��

B ⊗ A2 B⊗ε2
// B

i.e. it preserves all “foundational pullbacks” of N-Weil1 (as defined in Definition
3.17).

2) The equaliser

W 2 v // 2W
W⊗εW //

ηW ◦(εW⊗εW )
//W

as given in 4 is preserved.

Proof. Given such a functor F , the corresponding Tangent Structure is given as

T = (FW,FεW , FηW , F+, F l, F c) ,

and it can be readily verified that this satisfies all the necessary conditions to be a Tangent
Structure.

Conversely, suppose we have a Tangent Structure T. Then F0 : ob(N-Weil1) →
ob(End(M)) and Ψ give us our assignations for objects and morphisms, and Proposi-
tions 12.14 and 13.1 together give functoriality.

Moreover, F0 actually makes F monoidal (see Definition 12.2). F being strong monoidal
as well as the preservation of foundational pullbacks is then a direct consequence of the
fact that we are using composition as the monoidal structure of End(M) together with
Proposition 12.3.

Finally, preservation of the equaliser

W 2 v // 2W
W⊗εW //

ηW ◦(εW⊗εW )
//W

is trivial, since it is a condition of T that the corresponding fork in End(M) is also an
equaliser.

We have thus shown that to equip a categoryM with a Tangent Structure T is equiv-
alent to giving (up to a suitable isomorphism) a strong monoidal functor F : N-Weil1 →
End(M) satisfying some extra properties.

As such, N-Weil1 becomes an initial Tangent Structure in the sense that it charac-
terises any Tangent Structure T via this functor F .

We also note that this functor F only required that End(M) was a monoidal category
(with respect to composition and with unit 1M) and that certain pullbacks were preserved.
As a result, we make the following generalisation.
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14.2. Definition. Let (G,�, I) be a monoidal category. Regard the category N-Weil1
as monoidal with respect to coproduct and having unit N. A Tangent Structure G internal
to G is a strong monoidal functor

F : (N-Weil1,⊗,N)→ (G,�, I)

satisfying the following conditions:
1) F preserves foundational pullbacks
2) The equaliser

W 2 v // 2W
W⊗εW //

ηW ◦(εW⊗εW )
//W

is preserved

14.3. Corollary. A Tangent Structure on M (in the sense of Theorem 14.1) is the
same as a Tangent Structure internal to End(M) (in the sense of Definition 14.2).

In fact, Definition 14.2 actually gives a universal property of the category N-Weil1 in
relation to Tangent Structures. One way we might express this is that Tangent Structures
are simply models of N-Weil1 (regarded as a theory).
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Clemens Berger, Université de Nice-Sophia Antipolis: cberger@math.unice.fr
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