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MONOID-LIKE DEFINITIONS OF CYCLIC OPERAD

JOVANA OBRADOVIC

ABSTRACT. Guided by the microcosm principle of Baez-Dolan and by the algebraic
definitions of operads of Kelly and Fiore, we introduce two “monoid-like” definitions of
cyclic operads, one for the original, “exchangable-output” characterisation of Getzler-
Kapranov, and the other for the alternative “entries-only” characterisation, both within
the category of Joyal’s species of structures. Relying on a result of Lamarche on descent
for species, we use these monoid-like definitions to prove the equivalence between the
“exchangable-output” and “entries-only” points of view on cyclic operads.

Introduction

A species of structures S associates to each finite set X a set S(X) of combinatorial
structures on X that are invariant under renaming the elements of X in a way consistent
with composition of such renamings. The notion, introduced in combinatorics by Joyal in
[J81], has been set up to provide a description of discrete structures that is independent
from any specific format these structures could be presented in. For example, S(X) could
be the set of graphs whose vertices are given by X, the set of all permutations of X, the
set of all subsets of X, etc. Categorically speaking, a species of structures is simply a
functor € : Bij — Set, wherein Set is the category of sets and functions, and Bij is the
category of finite sets and bijections. Species can be combined in various ways into new
species and these “species algebras” provide the category of species with different notions
of “tensor product”. Some of these products allow to redefine operads internally to the
category of species, as monoids. A definition given in this framework is usually referred
to as algebraic. A definition of an operad as a collection of abstract operations of different
arities that can be suitably composed will be called componential in this paper.

Kelly [K05] has given an algebraic definition of a symmetric operad corresponding to
the original componential definition of May [May72]. This definition is referred to as the
monoidal definition of operads, since the involved product on species bears a monoidal
structure. The second definition, which characterises operads with partial composition,
has been recently established by Fiore in [F14]. The pre-Lie product of Fiore’s definition
is not monoidal, but the inferred structure arises by the same kind of principle as the one
reflecting a specification of a monoid in a monoidal category (which is why we call this
definition the monoid-like definition of operads). This is a typical example of what has
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been called the microcosm principle by Baez and Dolan in [BD97]. The principle tells
that certain algebraic structures can be defined in any category equipped with a categorified
version of the same structure, and the instance with monoids, presented in Table 1 below,
can serve as a guide when seeking the most general way to internalize different algebraic
structures.

MONOIDAL CATEGORY M MonoIb M e M
PRODUCT ®@: MxM-—-M wMeoM—M
UNIT 1eM n:1—-M
(z@x)@x dro r® (r® )
ASSOCIATIVITY gy (2QY)R2z—=2® (YR2) ) z’dJ M
TRT TR®T
i ew

i
LEFT UNIT Mil®zr =2
"
RIGHT UNIT pr:x®1 = Nl%
X

Table 1. A monoid in a monoidal category

In this paper we follow the microcosm principle in order to give two algebraic (monoid-
like) definitions of cyclic operads, introduced by Getzler-Kapranov [GK95]. The enrich-
ment of the symmetric operad structure determined by the definition of a cyclic operad
is provided by adding to the action of permuting the inputs of an operation, an action
of interchanging its output with one of the inputs, in a way compatible with operadic
composition. The fact that operations can now be composed along inputs that “used to
be outputs” and outputs that “used to be inputs” leads to another point of view on cyclic
operads, in which an operation, instead of having inputs and an (exchangeable) output,
now has “entries”, and it can be composed with another operation along any of them.
Such an entries-only componental definition is [Marl5, Definition 48]|. By contrast, we
refer to definitions based on describing cyclic operads as symmetric operads with extra
structure as exchangeable-output ones. One such definition is [Mar08, Proposition 42].

The algebraic definitions that we deliver correspond to these two approaches for defin-
ing cyclic operads via components. They are moreover given in a non-skeletal version,
which means that the entries/inputs of operations are labeled by arbitrary finite sets, as in
[Mar15, Definition 48], as opposed to the labeling by natural numbers in skeletal variants,
as in [Mar08, Proposition 42]. Therefore, we first propose a non-skeletal version of [Mar08,
Proposition 42]. We additionally give two proofs of the equivalence between the entries-
only and exchangeable-output approaches (which, to the author’s knowledge, has been
taken for granted in the literature), one by comparing the usual definitions in components
(Theorem 3.22), and the other one by comparing two algebraic definitions (Theorem 4.5).
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Since algebraic definitions are arguably more conceptual descriptions (that the compo-
nential ones) of what a cyclic operad is, we also point out Theorem 4.5 as the main result
of the paper. Together with the proof of the equivalence between the componential and
algebraic definitions of entries-only cyclic operads (Theorem 3.14), this makes a sequence
of equivalences that also justifies the algebraic definition of exchangeable-output cyclic
operads. An overview of the definitions that we introduce and the correspondences that
we make between them is given in Table 2 below.

ENTRIES-ONLY EXCHANGEABLE-OUTPUT

COMPONENTIAL Definition 3.2 Definition 3.16
Theorem 3.22

Theorem 3.14
Theorem 4.5

ALGEBRAIC Definition 3.8 Definition 3.23

Table 2. The outline of the paper

The plan of the paper is as follows. Section 1 is a review of the basic elements of the
theory of species of structures. In Section 2 we recall the existing algebraic definitions of
operads and indicate the microcosm principle behind them. Section 3 will be devoted to
the introduction of the algebraic definitions of cyclic operads (Definition 3.8 and Definition
3.23) and of the componential non-skeletal version of [Mar08, Proposition 42] (Definition
3.16). Here we also prove Theorem 3.14 and Theorem 3.22. In Section 4, we give the
proof of Theorem 4.5.

Notation and conventions. This paper is about non-skeletal cyclic operads with units,
introduced in Set.

We shall use two different notions of union. In Set, for finite sets X and YV, X +Y
will denote the coproduct (disjoint union) of X and Y (constructed in the usual way by
tagging X and Y, by, say, 1 and 2) and we shall use the notation ¥;c;X; (resp. ;e X;)
for the coproduct (resp. the Cartesian product) of the family of sets {X;|i € I}. In
order to avoid making distinct copies of X and Y before taking the union, we take the
usual convention of assuming that they are already disjoint. In Bij, we shall denote the
ordinary union of already disjoint sets X and Y with X UY.

If fi : X1 — Zy and f5 : Xy — Z, are functions such that X;NX, =0 and Z,NZ, = 0,
fiu fo: X1 UXy — Z; U Zy will denote the function defined as f; on X; and as f; on
Xo. If Zy = Zy = Z, we shall write [f1, fo] : X1 U Xs — Z for the function defined in the
same way. Accordingly, for the corresponding functions between disjoint unions, we shall
write fl +f2 . X1 —|—X2 — Zl +Z2 and [fl,fg] . X1 —|—X2 — Z.

A decomposition of a finite set X is a family {X;};c; of (possibly empty) pairwise
disjoint subsets of X such that their (ordinary) union is X.

For a bijection o : X’ — X and Y C X, we denote with o|¥ the corestriction of o on
o 1(Y).
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We shall work to a large extent with compositions of multiple canonical natural iso-
morphisms between functors. In order for such compositions not to look too cumbersome,
we shall often omit their indices.

1. The category of species of structures

The content of this section is to a great extent a review and a gathering of material coming
from [BLLOS]. Certain isomorphisms, whose existence has been claimed in [BLLOS|, will
be essential for subsequent sections and we shall construct them explicitly.

1.1. DEFINITION OF SPECIES OF STRUCTURES. The notion of species of structures that
we fix as primary corresponds to functors underlying non-skeletal cyclic operads.

1.2. DEFINITION. A species (of structures) is a functor S : Bij”’ — Set.

In the sequel, we shall refer to the functor category SetBY”™ as the category of species
and we shall denote it with Spec. For an arbitrary finite set X, an element f € S(X)
will be referred to as an S-structure.

Notice that if S is a species and o : Y — X a bijection, then S(o) : S(X) — S(Y) is
necessarily a bijection (with the inverse S(o1)).

1.3. CONVENTION. For f € S(X) and a bijection o : Y — X, we say that o renames
the variables of X to (appropriate) variables of Y. In particular, if o : X\{z}U{y} = X
is identity on X\{z} and o(y) = z, we say that o renames x to y, and if 7: X — X is
identity on X\{x, z} and 7(x) = z and 7(z) = x, we say that T exchanges x and z.

As an example of concrete species we give the following family, since it will be essential
for the treatment of operadic units in the subsequent sections. The species E,,, where
n > 0, called the cardinality n species, is defined by setting

{X} if X has n elements,
E.(X)= .
) otherwise.
An isomorphism between species is simply a natural isomorphism between functors.
If there exists an isomorphism from S to 7', we say that they S and T are isomorphic and
we write S ~ T.

1.4. OPERATIONS ON SPECIES OF STRUCTURES. We now recall operations on species and
their properties. Categorically speaking, every binary operation is a bifunctor of the form
Spec x Spec — Spec and every unary operation is a functor of the form Spec — Spec.
Every property of an operation holds up to isomorphism of species.

We start with the analogues of the arithmetic operations of addition and multiplica-
tion.
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1.5. DEFINITION. Let S and T be species, X an arbitrary finite set and o 1Y — X a
bijection. The sum-species of S and T is the species S + T defined as

(S+T)(X)=5(X)+T(X)

and
S(@)(f) i f € S(X)
(S+T)(0)(f) :{ T(o)(f) if f€T(X).

The product-species of S and T is the species S T defined as
(S-T)(X)= >, S(X1)xT(X),
(X1,X2)

where the sum is taken over all binary decompositions (X1, Xs) of X. The action of S-T
on o is given as

(5-T)(0)(f,9) = (S(e1)(f), T(02)(9)),

Xi j=1,2.

where o; = o

The isomorphisms from the following lemma are constructed straightforwardly.
1.6. LEMMA. The addition and multiplication of species have the following properties.

a) The operation of addition is associative and commutative.

b) The product of species is associative and commutative. The cardinality O species Ey
is neutral element for the product of species. Therefore, for all species S, S - Fy ~

E()SZS

1.7. CONVENTION. We extend the notation f1 + fo and [f1, f2] (see the paragraph “No-
tations and conventions” in Introduction) from functions to natural transformations. For
natural transformations ; : S; — T;, i = 1,2, 1 + 1y 1 S1+ S — T +T5 will denote the
natural transformation determined by (Y1 + 19)x = 1 x + Yax. For natural transforma-
tions k; : S; — U, i = 1,2, [ky, ko] : S1 + Se — U will denote the natural transformation
defined as [k1, kalx = |[K1x,Kax]. With i, and i, we shall denote the insertion natural
transformations iy : S — S+ T and i, : T'— S + T, respectively.

Next we recall the operation corresponding to the operation of substitution.

1.8. DEFINITION. Let S and T be species, X a finite set, o :' Y — X a bijection and
D(X) the set of all decompositions of X. The substitution product of S and T is the
species S o T defined as

(SoT)(X)= > (S(W)XHT(p)).
meD(X) peET

For an arbitrary h = (7, f, (9p)pex) € (S o T)(X), the action of SoT on o is defined by

(SoT)(o)(h) = (7, [, (9p)pe),
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where T is the decomposition of Y induced by o, the bijection o : T — 7 is induced by o,
f=8@)(f), and finally, for eachp € T, g5 = T(cP)(gp).

The basic properties of the substitution product are given in the following lemma.

1.9. LEMMA. The substitution product of species is associative and has the cardinality 1
species Fy as neutral element.

Next comes the analogue of the operation of derivation.

1.10. DEFINITION. The derivative of S is the species S defined as
(09)(X) = S(X U {xx}),
where xx & X. The action of 0S on o is defined as

(08)(o)(f) = S(a")(f),
where o 1 Y U{xy} = X U{xx} is such that o™ (y) = o(y) fory € Y and o™ (xy) = *x.
We shall refer to o as the O-extension of o.

We now introduce a natural isomorphism that will be used for the algebraic version
of the associativity axiom for entries-only cyclic operads. Let f € 00S(X) and let

ex t X U{xx, *xupex) ) — X U {xx, # X0y} )

be the bijection that is identity on X and such that ex (*x) = *xugey} (and ex (kxUgey}) =
xx). We define a natural transformation exg : 9(05) — 9(95S) as

exsx (f) = S(ex)(f)-

We shall refer to exg as the exchange isomorphism, since its components exchange the
two distinguished elements (arising from the two-fold application of the operation of
derivation).

The following lemma exhibits isomorphisms between species that correspond to the
rules of the derivative of a sum and the derivative of a product of the classical differential
calculus.

1.11. LEMMA. For arbitrary species S and T', the following properties hold:
a) O(S+T)~0S+IT, and
b) O(S-T)~(0S)-T+S-(0T).
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PROOF. a) The isomorphism A : 9(S +T) — 0S5 + 9T is the identity natural transfor-
mation.

b) We define an isomorphism ¢ : 9(S - T) — (0S) - T + S - (0T'). For a finite set X we

h
TS X)) = S (f.0) | F € S(X1) and g € T(Xa)),
05 - T)(X) = Yxt {9 |/ € (95)(X]) and g € T(XD)}, and
S-OTYX) = Yo xn il 9)]f € S(X]) and g € (OT)(Xb)},

where (X1, X») is an arbitrary decomposition of the set X U {xx}, and (X7, X)) is an
arbitrary decomposition of the set X.

If (f,g) € 0(S-T)(X), where f € S(X;) and g € T(Xs), and if xx € X, then
(X7, X%) = (Xi\{*x}, X2) is a decomposition of the set X and we set

ox(f,9) = (S()(f),9),

where o @ Xi\{*x} U {*x/} — X renames *x to xx;. We do analogously if xx € Xo.
To define the inverse of ¢x, suppose that (f,g) € (05 - T)(X), where f € (05)(X])
and g € T(X3). The pair (X] U {*x;}, X3) is then a decomposition of the set X U {xx }.
Let 7 : X] U {*x} — X] U {*x;} be the renaming of xx; to xx. The pair (X, Xy) =
(X{ U {*x}, X)) is now a decomposition of the set X U {xx} and we set
ox (f,9) = (S(r)(f),9) € O(S - T)(X).

We proceed analogously for (f, g) € (S -0T)(X). =

We shall also need the family of isomorphisms from the following lemma.

—~~

1.12. LEMMA. For alln>1, OFE, ~ E,,_;.

PROOF. For a finite set X we have

{XU{xx}} if|X]|=n-1, {X} it [ X|=n-1,
VEn(X) = { 0 otherwise, and  Ep—1(X) = () otherwise.
The isomorphism €, : 0F, — E,_; is defined as €, x(X U {*x}) = X, for | X| =n — L.
Otherwise, €,x is the empty function. [

Finally, we shall also use the following pointing operation on species.

1.13. DEFINITION. Let S be a species. The species S®, spelled S dot, is defined as follows
S*(X)=5(X) x X.
For a pair (f,x) € S(X) x X, the action of S® on a bijection o : Y — X is given by

S*(0)((f,2)) = (S(o)(f), 0" (x)).
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1.14. REMARK. Observe that the distinguished element of an S°®-structure belongs to
the underlying set X, as opposed to the distinguished element of a dS-structure, which
is always outside of X.

To summarise, we list below the isomorphisms between species that we shall use in
the remaining of the paper.

NAME REFERENCE DESCRIPTION
ASSOCIATIVITY OF - agru:(S-T)-U—=S-(T-U) ((f,9),h) — (f,(g,h))
COMMUTATIVITY OF - cgr:S-T—=T-5 (f,9)— (g9, 1)
LEFT UNITOR FOR - As:Ep-S— 8 {0y, ) f
RIGHT UNITOR FOR - ps:S-Ey—S (£, {0}) — f
EXCHANGE exg : 0(0S) — 9(99) f=SeE))
DERIVATIVE OF A SUM Agr:0(S+T)— 0S+0T Lemma 1.11 (a)
LEIBNIZ RULE ws:0(S-T)— (0S)-T+S-(0T) Lemma 1.11 (b)
€,-ISOMORPHISM €n :OF, — E,_1 Lemma 1.12

Table 3. Canonical isomorphisms

2. Symmetric operads

This part is a reminder on several definitions of symmetric operad. Our emphasis is on
the use of the microcosm principle of Baez and Dolan, which we illustrate by reviewing
Fiore’s definition in Section 2.2 below.

2.1. KELLY-MAY DEFINITION. Kelly’s monoidal definition [K05, Section 4] is the alge-
braic version of the original definition of an operad, given by May in [May72]. In the
non-skeletal setting, the operadic composition of May’s definition is given by morphisms

Yx vy, tS(X)x S(Yy) x---xS(Y,) - SN uU---UY,), (1)

defined for non-empty finite set X and pairwise disjoint finite sets Yi,...,Y,, where
n = |X|, and the unit id, € S({z}), defined for all singletons {z}, which are subject
to associativity, equivariance and unit axioms. Morphisms vxy, .y, are to be thought
of as simultaneous insertions of n operations into an n-ary one, wherefore this kind of
composition is referred to as simultaneous.

To arrive to Kelly’s definition, one first observes that Lemma 1.9 can be reinforced to
a stronger claim:

(Spec, o, E) is a monoidal category.

A monoid in this category is a triple (S, u,n), where S is a species and the natural
transformations p: So S — S and n: E; — S, called the multiplication and the unit of
the monoid, respectively, satisfy the coherence conditions given by the commutation of
the following two diagrams
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o id o o1id id o
(S08)0S - §0(S08) — . 505 Eios§ —"% 505" SoE,
MoidJ j” \JM/

SoS S S

in which a®, A\° and p° denote the associator, left and right unitor of (Spec,o, E}), re-
spectively.

An element (f,g1,...,9,) € S(X) x S(Y1) x -+ x S(Y,) determines the element
(7, [, (gi)1<i<n) € (S0 S) (Y1 U---UY,), where 7 = {Y1,...,Y,}. By defining (1) as

VXYY (Fy 915+ G0) = (7, fL 91,5 Gn),
and id, as 0y} ({2 }), the operadic axioms are easily verified by the naturality of 1 and laws
of the monoid. This gives a crisp alternative to the somewhat cumbersome componential
definition:

A symmetric operad is a monoid in the monoidal category (Spec, o, Ey).

The steps to derive the monoidal definition from above and, more generally, a monoid-
like definition of an arbitrary operad-like structure, starting from its componential char-
acterisation, can be summarised as follows. One first has to exhibit a product ¢ on Spec
that captures the type of operadic composition that is to be formalised (in the same way
as the (S o .S)-structure (7, f, (gi)1<i<n) corresponds to the configuration (f, g1, ..., gn) of
operadic operations). One then has to examine the properties of this product, primarily
by comparing species (SoT)oU and So(ToU), in order to exhibit an isomorphism whose
commutation with the multiplication p : S¢S — S expresses axioms of the operad-like
structure in question. Analogously, an appropriate isomorphism of species is needed for
each of the remaining axioms of such a structure (for example, the isomorphisms Ag and
p% account foot the unit axioms of an operad), except for the equivariance axiom, which
holds by the naturality of u. The operad-like structure is then introduced as an object S
of Spec, together with the multiplication p (and possibly other natural transformations,
like the unit 7 in the previous definition) that commutes in the appropriate way with
established isomorphisms.

2.2. FIORE-MARKL DEFINITION. In order to recover Fiore’s algebraic definition [F14,
page 8] by following the steps described above, we first recall the componential definition
based on partial composition products, cf. Markl [Mar08, Proposition 42].

In the definition below, for a species O : Bij”” — Set, a bijection 0 : Y — X and an
element f € O(X), we write f7 for O(o)(f)".

IThis convention is unambiguous in the framework with a fixed species and can be misleading other-
wise, as it does not carry the information about the species it refers to. Since it shortens significantly the
notation, we will nevertheless use it in the general setting whenever the relevant species is clear from the
context.
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2.3. DEFINITION. [COMPONENTIAL| A symmetric operad is a species O : Bij” — Set,
together with a distinguished element id, € O({x}) that exists for each singleton {x}, and
a partial composition operation

0, O(X) x O(Y) = O(X\{z} UY),

defined for arbitrary non-empty finite set X, an arbitrary set Y and x € X, such that
X\{z} NY = 0. These data satisfy the axioms given below.

Associativity. For f € O(X), g € O(Y) and h € O(Z), the following two equalities hold:
[A1] (fopg)oyh=(fo,h)o, g, where z,y € X, and
[A2] (foyg)o,h= fo,(go,h), wherex € X andy €Y.
Equivariance. For bijections o1 : X' — X and oy : Y =Y, and f € C(X) and g € C(Y),
the following equality holds:
[EQ] fo %51 () 972 = (f 0, g)°, where o = o[ XM=} U oy.
Unitality. For f € C(X) and x € X, the following two equalities hold:
(U1] id, oy f = f, and
(U2] fo,id, = f.
Moreover, the unit elements are preserved under the action of C(o), i.e.
(UP] id,° = id,, for any two singletons {x} and {u}, and a bijection o : {u} — {z}.

This definition is referred to as partial, since the morphisms o, are to be thought of
as insertions of one operation into (one input of) another operation.

2.4. REMARK. By the axioms [EQ] and [UP], it can be easily shown that, for f € O(X)
and a renaming o : X\{z} U {y} — X of x to y, we have f o, id, = f°.

Observe that the data out of which the composition f o, g is obtained consists of the
ordered pair (f,g), together with a chosen input = of f. This indicates that the product
of species that is supposed to capture partial composition must involve the product - :
Spec x Spec — Spec introduced in Definition 1.5, whereby the structures arising from
the left component of the tensor product should have a distinguished element among
the elements of the underlying set. Hence, a priori, there are two possible candidates
for the new product: S®-S and (9S) - S. However, the first one does not work: for
(f,g) € (S*-9)(X), the multiplication (S*-S)(X) — S(X) produces an element of S(X),
while the composition of f and g along some input z of f is an element of S(X\{xz}).
On the other hand, the elements of the set (0S5 - S)(X) are pairs (f,g) such that f €
S(X1U{xx,}) and g € S(X3), where (X, X3) is a decomposition of the set X. From the
operadic perspective, the composition of f o, «, 9 belongs to S(X), which agrees with the
form of the multiplication vy : (05 - S)(X) — S(X). Therefore, as the tentative product
of species we take the pre-Lie product S x T, defined as

SxT=05-T.
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The next step is to compare the species (S*T)*U and Sx(T*U). Chasing the associativity
fails in this case. However, there is a canonical natural pre-Lie isomorphism

Bsrp: (S*T)xU+S*x(U*T) = S*x(T+U)+ (S«xU)+T
determined by the isomorphisms
p1:(00S-T)-U— (00S-U)-T Br=alo(ex-c)oa,
By (S-0T)-U—3S-(T-U)  fs=a,
fs:0S-(0U-T)— (05-0U)-T B3 =a"l,

where «, ¢ and ex stand for appropriate instances of isomorphisms given in Table 2.
The pre-Lie isomorphism is the “smallest” isomorphism that captures both associativity
axioms for operads (3, accounts for [A1] and f, for [A2]).

For operadic units we shall need the isomorphisms exhibited in the following lemma.
2.5. LEMMA. For an arbitrary species S, 1 xS ~ S and Sx E; ~ S.

PRrROOF. We get the isomorphism A\§: By S — Svia By xS =0FE,- S~ FEy-S>~S,ie.
as A\§ = Ago (e - idg). The isomorphism p§ : S x By — S is defined analogously. n

By the microcosm principle, these data induce the following definition.

2.6. DEFINITION. [ALGEBRAIC] An operad is a triple (S,v,n1) of a species S, a morphism
v:S*S — S, called the multiplication, and a morphism n, : £y — S, called the unit,
such that

[0A1] vy 0 B = vy, where vy and vy are induced by v as follows:

- (S*xS) xS+ S*(S*S)— S is determined by

i 1 vei v
v (905 8) - S 1 (995 .5 +85-85) - 95 —2— L 995 5) .5 20 L 955 Y g,
Py -1 V-1 v
vz (8S-98) - S~ (995 - S +8S-9S) - 08 —2—" 1 9(8S - 8) - § 2, hs .5 Y s,
id-v

v13:0S-(85-8) =25 8S5.-5 2+ S, and

vt SH(S*kS)+ (S*xS)xS — S is determined by vyy = 111, Voy = 113 and
Vo3 = Vg, and
[0A2] n; satisfies coherence conditions given by the commutation of the diagram

N *idg idg x M
EixS ——— §x§ ——— S+ E;

X5 ‘ v [
S

Indeed, it can be shown that [0A1] accounts for [A1] and [A2]?, the naturality of v
ensures [EQ], [0A2] proves [U1] and [U2], are the naturality of n ensures [UP].

2 Actually, the equalities 191 0 8 = 111 and 192 0 8 = 115 are enough to prove associativity.
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2.7. CONVENTION. Henceforth, we shall restrict ourselves to constant-free operads, i.e.
operads for which the underlying species O is such that O(Q) = 0. This assumption
is necessary for establishing the equivalence between the algebraic definitions of cyclic
operads, as will become clear in Section 4 (Remark 4.4).

3. Cyclic operads
This section contains the algebraic treatment of cyclic operads.

3.1. ENTRIES-ONLY DEFINITION OF CYCLIC OPERADS. Starting from the entries-only
componential definition of cyclic operads, we follow the steps anticipated by the microcosm
principle and present its algebraic counterpart.

3.1.1. COMPONENTIAL DEFINITION. The condition O()) = ) that we imposed in Con-
vention 2.7 intuitively means that all operations of an operad have at least one input,
which, together with the output, makes at least two “entries” from the point of view
of cyclic operads. We revise below [Marl5, Definition 48], by restricting to the class of
constant-free cyclic operads and adding units.

3.2. DEFINITION. [ENTRIES-ONLY, COMPONENTIAL| A constant-free cyclic operad is a
species C : Bij”? — Set, such that C(0) = C({x}) = 0 for all singletons {x}, together with
a distinguished element id,, € C({x,y}) for each two-element set {x,y}, and a partial
composition operation

20y : C(X) x €(Y) — C(X\{z} UY\{y}),
defined for arbitrary non-empty finite sets X and Y and elements x € X andy € Y, such
that X\{z} UY\{y} = 0. These data must satisfy the axioms given below.
Parallel associativity. For f € C(X), g € C(Y) and h € C(Z), the following equality holds:

(A1) (f 204 g) worh = (fuo. h) 2049, where x,ue X, yeY, z€ Z.

Equivariance. For bijections oy : X' — X and oy : Y =Y, and f € C(X) and g € C(Y),
the following equality holds:

EQ) 7 5-14)%%; 1) 97 = (fuoy 9)7, where o = o1 [KMEH Y g VMUY
Unitality. For f € C(X) and x € X, the following equality holds:
(U1) idyy oo f=f.
Moreover, the unit elements are preserved under the action of (o), i.e.
(UP) id,,° = idy,, for any bijection o : {u,v} — {z,y}.

The lemma below gives basic properties of the partial composition operation.
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3.3. LEMMA. The partial composition operation zo, satisfies the laws listed below.
Commutativity. For f € C(X), g€ C(Y), x € X and y € Y, the following equality holds:
(Co) fg:oy g = g yOg f

Sequential associativity. For f € C(X), g € C(Y) and h € C(Z), the following equality
holds:

(A2) (f:coy g) w0z h = fa:oz (g uozh)y where T € X, Y,u € Y, z€e Z.
Unitality. For f € C(X) and x € X, the following equality holds:

(U2) f o, idy, . = f.
Equivariance. Let f € C(X),g € CY),z € X,y €Y, andleto: Z — X\{z} UY\{y}
be an arbitrary bijection. If 1y + X' — X, 7 Y = Y and 7 : Z — X'\{r; }(2)} U
Y'\{75 ()} are bijections such that o = (7|*M=H U | Y\M¥H) o 7, then

EQ’ (fa0y 9)7 = (fTa0y 7).
PrROOF. The commutativity law (C0) holds thanks to (U1) and (A1), as follows:

f 20y 9= (iday you [)20y 9= (idsy 204 g)your f=9gy0u [
We then use (C0) together with (A1) to derive the sequential associativity law (A2)?:

(fa:oy g) uozh = (gyo:c f) uozh = (guoz h) yoxf = f zoy(guoz h)
The unit law (U2) follows from (U1) by applying (CO) on its left side, and the variation
(EQ’) of the equivariance axiom follows easily by (EQ). [

Related to the implication (A1)4(C0)=-(A2) proved above, it is also true (and easily
checked) that (A2)+(C0)=-(A1). Therefore, (A2), (C0), (EQ), (U1), and (UP) provide
an equivalent (but not minimal) axiomatisation for ,o,.

3.3.1. ALGEBRAIC DEFINITION. Applying the microcosm principle relative to Definition
3.2 begins with the observation that the data out of which f o, g is obtained consists
of the pair (f,g) and chosen inputs = and y of f and g, respectively. The discussion we
had on page 10 for operads makes it easy to guess what combination of the product and
derivative of species is the “right” one in this case.

3.4. DEFINITION. Let S and T be species. The triangle product (or, shorter, the A-
product) of S and T is the species SAT defined as

SAT =08 -0T.
Therefore, for a finite set X,

(SAT>(X) = Z {(f7 g) | f S S(Xl U {*Xl})7g € T(XQ U {*Xz})}7

(X1,X2)

3Since parallel and sequential associativity are both essential for the notion of cyclic operad, for cyclic
operads without units the commutativity law has to be specified as an axiom (in order to make (A2)
derivable).



MONOID-LIKE DEFINITIONS OF CYCLIC OPERAD 409
and, for (f,g) € (SAT)(X) and a bijection o : Y — X,
(SAT)(0)(f.9) = (S(e7)(f),T(03)(9)).

where o1 = o|**, 0y = 0%, and o} are the d-extensions of o;, i = 1,2.

3.5. REMARK. The isomorphism cyg gy : 0S-01 — 0T -0S witnesses that the A-product
is commutative.

The next step is to exhibit an isomorphism that equates various ways to derive a A-
product of three species. Intuitively, in the language of species, the associativity axiom
(A1) can be stated as the existence of an isomorphism of the form (905 - 9T) - OU —
(00S - 0U) - OT. 1t turns out that the “minimal” isomorphism that compares (SAT)AU
and SA(TAU) and that includes the above isomorphism is

Ysrv i (SAT)AU +TA(SAU) + (TAU)AS — SA(TAU) + (SAU)AT + UA(SAT),

whose explicit description is as follows. By unfolding the definition of A, we see that
s, connects a sum of 6 species on the left with a sum of 6 species on the right. Here
is the list of the 6 constituents of v, together with their explicit definitions:

v : (005 -9T) - 9U — (09S - 9U) - OT y=alo(ex-c)oa,

Y2 : (08 -900T) - OU — 9S - (00T - OU v2 =como(c-id),

v3: 0T - (00S - 9U) — U - (00S - OT Y3 =covjoc,

Y4 : 0T - (08 - 90U) — S - (0T - 90U y4=(id-c)ocovyio(c-id)oc
Y5 : (00T - 9U) - 9S8 — 9OU - (9S - 90T 75 = (id - c) o co~yy, and

Y6 : (0T - 00U ) - S — (05 - 90U ) - OT v =co(id-c)oco~y o(c-id).

)
)
)
)

Notice that, having fixed 7, the pairing given by 3 is also predetermined, but there are
other ways to pair the remaining 4 summands from the left with the 4 summands from the
right. We made this choice in order for all ; to represent “parallel associativity modulo
commutativity”, but a different pairing could have been chosen as well.

What remains is to exhibit the structure on species that will account for operadic
units. The following lemma is essential.

3.6. LEMMA. For an arbitrary species S, EoAS ~ S® and SAFE, ~ S°.
PROOF. By the definition of the product A and of the species E5, we have

(E2AS)(X) =Y {({z.x@m}h N, f € Sz} U {xxym D} (2)

reX
We define \§ : E;AS — S°® as
Asx s ({2}, f) = (S(0)(f), ),
where 0 : X — X\{z} U {x\[s1} renames *x\(53 to . For X = 0, A\§ is the empty
function.
The isomorphism x% : SAFE; — S® is defined as k& = \§ o c. n
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3.7. REMARK. Since 0F, ~ FE;, we also have that F; - 0S5 ~ S°. The isomorphism
05 : S* — Ey - 0S is defined as (5" - idgs) "t o (AA)7L, ie. for f € S(X) and x € X, we

have
dosx(f, ) = ({x}, 5(a)(f)),
where o : X\{z} U {*x\{z1} = X renames = to *x\(z}.

These data are assembled by the microcosm principle as follows.

3.8. DEFINITION. [ENTRIES-ONLY, ALGEBRAIC| A constant-free cyclic operad is a triple
(S, p,ma) of a species S, such that S(0) = S({x}) = 0 for all singletons {x}, a morphism
p: SAS — S, called the multiplication, and a morphism ns : Ey — S, called the unit,
such that

(CA1) po o~y = p1, where p1 and py are induced from p as follows:

-p1: (SAS)AS + SA(SAS) + (SAS)AS — S is determined by

i -1, .

p11: (805 - 8S) - 8S L (895 - S + 85 - 99S) - 89S L% 9(95 - 8S) - 95 2% 95 .95 L S
. —1 . .

p12 : (0S - 905S) - 88 11 (905 - 9S + S - 90S) - 8S L% (S - 0S) - 98 22 95 .95 L5 5
idei id-o— 1 id-

p13 : 8S - (995 - S) L1 89S - (89S - S + 8S - 99S) L2 95 - 9(9S - 9S) L%, 95 .95 L5 8

P P § id-
p1a s 8S - (85 - 99S) 1L 95 . (89S - S + 8S - 99S) "L 95 . 9(9S - 8S) “L, 95 .95 L 8

p15s =p11 and  pie = p12
-p2: SA(SAS) + (SAS)AS + SA(SAS) — S is determined by pa1 = p11,
P22 = P23 = P13, P24 = P25 = P1a and pss = pi2, and

(CA2) ny satisfies the coherence condition given by the commutation of the diagram

n2Aids
FEoAS — SAS

S ——7 5
1S

where \§ and k& are the isomorphisms from Lemma 3.6, and m gy 1is the first projection.

3.9. CONVENTION. In the remaining of the paper we shall work only with constant-free
cyclic operads. To make things shorter, we shall refer to them simply as cyclic operads.

In the following lemma we prove the equality that represents the algebraic analogue
of the commutativity law (C0), which would follow anyhow after we prove the equiva-
lence between Definition 3.2 and Definition 3.8. Nevertheless, we do this directly since it
shortens significantly the proof of that equivalence.

3.10. LEMMA. For an arbitrary algebraic entries-only cyclic operad (S, p,n2), poc = p.
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PRrROOF. In Diagram 1 below, D; and D, commute by (CA2), D, and D,, commute by the
naturality of v, and D, commutes as it represents the equality ps; o y1 = p11.

For a finite set X, let (f,g) € (0S - 0S)(X), where f € 05(X;), y € 9S(X3) and
(X1, X3) is an arbitrary decomposition of X. Starting with (f,g), we chase Diagram 1
from the top left 35S - S to the bottom left 95 - 35, by going through the left “’border”
of the diagram, i.e. by applying the composition

_ . _ . —1 .
(O 00X oot oijo(Degt -id) o N7 - id. (3)
Cc
05 - 08 9S8 - 08
((Bex ' -id) o A*~1) id D, ((Beg ' -id) o A* 1) id
(¢~ Yoiy)-id a0 (¢~ Yoiy)-id

B(0E, - S) - 8S

(00 - 8S) - OS

(00Es - 8S) - S

A(OE; - 0S) - 8S

(00n2 - id) - id D,, (882 - id) - id
ONA - id D, (89S -8S) - 8S (89S - 8S) - 8S D, AN - id
(@poptoid)-id Dy (Bpoyp~toi)-id
a(5°®) - 08 ds - a8 s 95 - 08 a(S*) - 08
omy - id P P oy - id
Diagram 1.

We get the sequence

(f;9) = (({x0}, 1) 9) = (Lx0, %0 15 1) 9) = ((Bx0,xx0 ), ) 9) = ((Fx0 ), 9) = ()

Hence, (3) is the identity on 05 - 0S. By the equalities behind the commutations of
D, Dy, D,,, D; and D,, we now get the sequence of equalities

p = poid
= po((Om o o loijo(dey! -id)o N1 - id)
= po((Opogp=toijo (A, -id)o (Dey* -id) o N*1) - id) (Dy)

po((@poptoiq)-id) oy o((8dn2-id)o (dey" -id) o N*71) - id) (Dy)
= po((Opogptoigo (A, -id))-id) o~y o(((Deg’-id) o N*"1)-id) (Dy)
= po((Opogp=toijo(ddmy-id)o (Dey* -id)o N"1)-id)oc (Dy)
= po((OmodX oploijo(deyt -id)o N1 -id)oc (Dy)
= poc,
which proves the claim. [

As a consequence of Lemma 3.10, the verification of the axiom (CA1) comes down to
the verification of its instance ps; 0 y1 = p11.

3.11. COROLLARY. The equality pso~y = py holds if and only if the equality psy oy1 = p11
holds.

Together with the fact that k§ = A& oc, Lemma 3.10 is also used to prove the algebraic
analogue of the right unitality law (U2).



412 JOVANA OBRADOVIC

3.12. COROLLARY. The morphism ny : Ey — S satisfies the coherence condition given
by the commutation of the diagram

idgA
sa8 " SaE,
Pj J/{g‘
S S
1S

The following theorem ensures that Definition 3.8 does the job. In order to make its
statement concise (as well as the statements of Theorem 3.22 and Theorem 4.5 later), we
adopt the following convention.

3.13. CONVENTION. We say that two definitions are equivalent if, given a structure as
specified by the first definition, one can construct a structure as specified by the second
definition, and vice-versa, in such a way that going from one structure to the other one,
and back, leads to a structure isomorphic to the starting one. If the latter transformations
results exactly in the initial structure (rather than an isomorphic one), we say that the
corresponding definitions are strongly equivalent.

3.14. THEOREM. Definition 3.2 (entries-only, componential) and Definition 3.8 (entries-
only, algebraic) are strongly equivalent definitions of cyclic operads.

PrOOF. We define transformations in both directions and show that going from one
structure to the other one, and back, leads to the same structure.

[COMPONENTIAL = ALGEBRAIC] Let € : Bij”” — Set be an entries-only cyclic operad
defined in components. For a finite set X, a decomposition (X7, Xs) of X, f € 0C(X;)
and g € 0C(Xs), px : (0C-9C)(X) — C(X) is defined as

px(f,9) = faxOux, 9-
For a two-element set, say {z,y}, the morphism 7 : Ey — C is defined as 1,y : {z,y} —

id,,. Otherwise, nx is the empty function. We now verify the axioms.

(CA1) We prove the equality ps; 01 = p11 by chasing Diagram 2, obtained by unfolding
the definitions of the three morphisms involved. The axiom (CA1) will then follow by
Corollary 3.11.

. -1
(80S - 0S) - 9S —=— 008 - (8S - 9S) ——= 908 - (8S - 9S) ——— (89S - 9S) - DS

(tploil)'idJ J(WIOiz)'id

d(9S - 9S) - 08 ———— 9S - DS S 98- 98 «———— 0(9S-985) - 08
p - id P P dp - id

Diagram 2.
Let ((f,9),h) € ((00S -0S) - 05)(X), and suppose that

fe0oS(X)), gedS(X)), hedS(Xy), (f,g) € (00S-05)(X1),
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where (X7, X{) is a decomposition of X; and (X, X5) is a decomposition of X.
By chasing the diagram to the down-right, we get the following sequence:

7_-‘- 7_+ T+
(£r9),h) = (7590, k) = (P Oy 91 2 (P w300y 9) 2x, Oy B

The first step here corresponds to the application of (p=! o 4;) - id on ((f,g),h), and,
therefore, it involves the renaming 71 : X7 U {*x,} — X] U {#x/} of xx; to *x,, i.e. the
action of 9S(r) = S(r7) on f € OS(X] U {*x1}) = S(X] U {*x:} U {*x700,1}), where

7,7 is the d-extension of 7. Therefore,

F e 0S(X1 U {xx,}) = S(XT U {x,} U {oxqueny 1)

and

(f7.9) € D(DS - 9S)(X1) = (95 - D) (X, U {xx,}).
The action of dp on ( le+ ,g) composes le+ and g along the corresponding distinguished
entries *x sy, } and *xy (while carrying over the distinguished element *y, from the pair
to the composite of its components), and, finally, the action of p on ( le+ . Oy I h)
results in the partial composition of the two components along *x, and *x,.

The sequence on the right-down side consists of the sequence

((f,9),h) = (f,(g,h) = (f5,(hg) = ((f5h),9),

arising from the action of 7, = a~' o (ex - ¢) o a, where
€ X{ U {*Xi’ *X{U{*Xi}} — X{ U {*Xi’ *X{U{*Xi}}

exchanges *x; and *x/y(«,,}, followed by the sequence
1

(5, h)eg) = (((f)2,h).g)

= <((f€)T2+*XiU{* h),g) ((fs)T;*X{u{*

*X3 h) *XiUXQO*XY 9>

Oy o
Xluxy,) X2 X'uxy)
1 2 1 2

corresponding to the action of py;. Similarly as before, the action of (¢! o) - id on

((f¢,h), g) involves the renaming 75 : X7 U {*x1ux,} — X7 U {*x7} of *x: to *x7ux,, e

the action of dS(my) = S(m57) on f° € IS(X] U {*x1}) = S(X] U {#x:} U {*x1000,31 1),
1

where 75" is the 9-extension of 7. This results in

(F9)72 € DS(X] U frxqux,}) = (X U {xxjuxs } U U] Uy oy 1)

i.e.

(/) h) € D(DS - S)(X} U X,) = (8S - 0S)(X] U Xo U {¥x0x,}).

The application of dp on ((f5)72+, h) composes (fE)T2+ and h along *x7uqs,, uxy) and *y,
1

(and carries over the distinguished element *x/x, to the composition). Finally, the ap-
plication of p on ((fs)J Xl e O h, g) composes the two components along *y/ux,
1 2
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and x Xy

The claim follows by the sequence of equalities

+ +
(le *Xiu{*xl}o*X{’ g) #x1 O x h = (le *x; O¥xy h) *Xiu{*xl}o*xi’ g (AD
+
- (((fTIEU *xiu{*xguxz}o*?@ h) *X{uXQO*Xi' g GO
= () *XiU{*XiuXQ}O*)Q h) *Xiuxzo*xi/ 9>

. / /
where o : XTU{*x70x,, *x70(x 2}} — XjU{x,, % xqUfey, } | TEDAIMES *x, 60 * 70

X{ux Xiqu}

and *x7u x, ) PO *x1ux,. The last equality in the sequence holds by the equality 7;f o0 =
+

T, OE.

(CA2) The commutation of the diagram

(nAids)x
(E2AS)(X) ————— (SAS)(X)

>‘§XJ JPX

S*(X) S(X)

T1SX

for X = () follows since (E2AS)(0) = 0 and since there is a unique empty function with
codomain S(X). If X # 0, then for ({z, %11}, f) € (E2,AS)(X) (see (2)), by chasing the
down-right side of the diagram, we get

({.17, *{:E}}af) = (.fgvx) = fJa

where o renames *x\ () to x. By going to the right-down, we get

<{x7 *{2}}7 f) = (de,*{zp f) = idx,*{z} *(2}O% X\ {2} f-
The equality f7 = id f follows easily by (U1) and (EQ).

[ALGEBRAIC = COMPONENTIAL] Suppose that S : Bij?” — Set is an algebraic cyclic
operad, let X and Y be non-empty finite sets, let x € X and y € Y be such that
X\{z} nY\{y} = 0, and let f € S(X) and g € S(Y). Then (f,z) € S*(X) and
(g9,y) € S*(Y). Therefore, for

({z}, f7) =4d(f,x) € By - 05(X) and ({y},97°) =d(g,y) € E1-0S(Y),

where § is the isomorphism from Remark 3.7, we have that f' € 9S(X\{z}) and ¢°* €
0S(Y\{y}). We define ,0, : C(X) x C(Y) = C(X\{z} UY\{y}) as

fxoy g = p(fm’gaz)'

For a two-element set, say {z,y}, the distinguished element id,, € S({x,y}) is Ny ({2, ¥}).
We move on to the verification of the axioms.

(A1) Let f and g be as above, and let v € X\{z}, h € S(Z) and z € Z. We use the

T (o) *(2}7* X\ (2}
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naturality of p and the commutation of Diagram 2 to prove the equality (f ;0, ¢) 0. h =
(fuos h) z0, g. Since it is not evident by which element we should start the diagram
chasing in order to reach (f .o, ¢) 0. h, we shall first express this composition via p,
and then reshape the expression we obtained towards an equal one, “accepted” by the
diagram.

Firstly, we have that

(f w0y g,u) = (p(f7',97%),u) € S*(X\{z} UY\{y}) and (h,2) € 5°(2).
By applying the isomorphism ¢ from Remark 3.7 on these two elements, we get
({u}’ (f 29y g)m) = 5(f zOy g7u) and <{Z}) hm) = 5(h’ 2)7

where 1 @ X\{z, w}UY \{y}U{xx\ (e uyori 3} = X\ {2 UY \{y} renames u to *x\ (zupuv\ ()
and kg : Z\{2} U {*2 (-1} = Z renames 2 to *z\ (.. Therefore,

(fz0y 9) € 0S(X\{z,u}UY\{y}) and ~A"™ €0S(Z\{z}),

and the left hand side of the equality (A1) becomes

(f 20y 9) w0z b = p(p(f7*, g7%)™, h"?).

Next, notice that the shape of p(f7, g72)" € S(X\{z,u} UY\{y} U {*x\{zujur\{s} })
makes the element p(p(f7, g72)"*, h"?) not explicitly reachable in Diagram 2. However,
p(f7, g7*)" is the result of chasing to the down-left the diagram below

(SAS)(k1)

(SAS)(X\{z} UV \{}) (SAS)(X\{z} UY"\{y})
PX\{z}uY\{y} J Jpx’\{w}UY\{y}
S(X\{a} U Y \{u)) S S(X\{a} UY ()

where X' = X\{u} U {*x\{zujuv\{y} }, starting with (f7,¢g?2). This diagram commutes
as an instance of the naturality condition for p. Let us chase it to the right. Firstly, we
have that

(SAS)(k1)(f7,97) = ((08)(n)(f7), (95)(12)(97*)) = (S (f7), S (3 )(97))

where v;" and v; are the d-extensions of vy : X\{z,u}U{*x\{zyuv\(y} — X\{z},
which renames u to *x\(zujuv\{y}, and the identity v, : Y\{y} — Y \{y}, respectively.
Therefore, the result of chasing the diagram on the right is p(( f‘”)”fr ,g7?). Consequently,
we have that

(f 20y 9) w0 b = p(p((F7)7, g%2), h"2).
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On the other hand, chasing Diagram 2 in order to reach (f 0, ¢),0,h will certainly
include considering the element ({u}, (f7)*") = §(f°",u), where a* is the d-extension of
a: X\{z,u} U {:x\fzp} = X\{x}, which renames v to *x\{s,.}. Therefore,

()" € 99S(X\{x,u}),
and, consequently,

((f7)°" . 97) € (9S - 90S)(X\{w,u} UY\{y}).
Furthermore, this chasing will include the element

e () g7) = (((f7)), 97) € (S - 9S),

where 7% is the 0-extension of 7 : X\{z,u} U {*x\(zyuv\y3} = X\ {2, u} U {*x\(z,u} }
that renames *x\ {z.u} 10 *x\ {z,ulUv\{y}-
As a consequence of the equality i = a™ o 7, we get the equality

ciyat\tT oo Ko
(f w0y g)uoz = p(p(((f7)* )", 97), "),
in which the right hand side is the result of chasing Diagram 2 to the down-left, starting
with
(((f7)",9%), h™2) € (905 - 2S) - 0S)(X\{z,u} UY\{y} U Z2\{z}).
The remaining of the proof of (A1) now unfolds easily: the sequence obtained by

chasing Diagram 2 to the right-down, starting with (((f7)*", g°2), h*?), consists of

(727, g72), b2y e ((F7)°7, (972, ) o> (((F7)°0)%, (B2, 972)) w5 ((((F71)°7)F, h™2), g72),

arising from the action of v, = a™! o (ex - ¢) o a, where

e X\{z, ub U {5x\fouds # X0\ @) Ul x oy} = X MY U U {30 (wuds #3000} Uxs oy 1

exchanges *x\(,,4} and X\ {2} Uk x oy b2 followed by

(7)) hm2),972) = (((((f7)*T))T h2), g72)
= (7)) ), 972) = p(p((((F7)7)F)=T hm2), g72),

where w* is the 0-extension of the renaming w : X\ {z, u} U{*x\(zujuz\ (21} = X\ {2, u}U
{x\fzur } of *x\ 2,0 t0 *x\ {z,u3uz\ (). Similarly as we did for the left side of (A1), it can
be shown that p(p((((f7)*"))*", h*2),¢°%) = f 40, (guo- h), which completes the proof
of (A1).

(EQ) Let f and g be as above and suppose that 01,0, and o are as in (EQ). Then
(for o7 (z) € S*(X') and (g7, 05 (y)) € S*(Y"), and we have

fUI Ul_l(x)ocr;l(y) 902 = p((fgl>717 (gUz)Tz),
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where 7, renames o; ' (z) to *xn\(or ()} a0d T2 renames a5 ' (y) to *yn (o3} ON the
other hand, we have that

(f 204 9)7 = p(f™,9™)°,

where x1 renames x to *x\ [} and Ky renames y to *y\ . The equality p((f7)™, (972)™) =
p(fr, g")7 follows easily by chasing the diagram

(SAS)(o) . .
(SAS)(X\{z} UY\{y}) (SAS)X"\{v; ()} UY"\{rs " (v)})
PX\{z}uY\{y} J le’\{ul1(z>}uw\{u21<y>}
SX\{z}uY\{y}) e SXN\{r @)UY\ {15 (1)})

which is an instance of the naturality of p, starting with (f**, g"2).
(U1) For f € S(X) and z,y € X we have

idw:y yOu [ = p(id;’y, fTQ) = p(id*{z}727 fT2)7

where 7 renames y to *,) and 7, renames x to *x\ (. The right hand side of the previous
equality is the result of chasing to the right-down the diagram

(E.A8)(X) _mAks)x (SAS)(X)

AQ‘XJ JPX

5°(X) S(X)

T1SX

which commutes by (CA2), starting with ({z, (5} }, f). By chasing it to the down-right
we get exactly f, which completes the proof of (U1).

(UP) The preservation of units follows directly by the naturality of 7.
[COMPONENTIAL = ALGEBRAIC = COMPONENTIAL] That the transition

Def. 3.2 — Def. 3.8 o1 o9 W o1 o9
fﬂﬁoy g TN p(f 7.9 ) f *X\{z}o*y\{y} g 9

from the composition morphism ,o, of an entries-only cyclic operad € defined in compo-
nents, to the composition by means of the multiplication p, and back, leads to the same
composition operation follows by the axiom (EQ) of €.

[ALGEBRAIC = COMPONENTIAL = ALGEBRAIC] For the transition

Def. 3.8 — Def. 3. Def. 3.2 — Def. 3.
pX(f’ g) W—) f*Xlo*X2 g W—) pX(fTI’gT2)’

we have that px(f,g) = px(f™, g™), since 71 and 7 are identities. It is also easily seen
that both transitions preserve units, which makes the proof complete. [
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3.15. EXCHANGEABLE-OUTPUT DEFINITION OF CYCLIC OPERADS. In this part, we first
transfer Markl’s skeletal exchangeable-output definition [Mar08, Proposition 42] to the
non-skeletal setting, by introducing a non-skeletal version of the cycle 7, = (0,1,...,n)
that enriches the operad structure to the structure of cyclic operads. We then deliver the
algebraic counterpart of the obtained non-skeletal definition.

3.15.1. COMPONENTIAL DEFINITION. The symmetric group S,, whose action (in the
skeletal operad structure) formalizes the permutations of the inputs of an n-ary operation,
together with the action of 7,,, generates all possible permutations of the set {0, 1,...,n}.
Hence, they constitute the action of S, 1, which involves the action of exchanging the
output of an operation (now denoted with 0) with one of the inputs. Observe that S,
can equivalently be generated by extending the action S, with transpositions of the form
(10), for 1 < i < n. In the non-skeletal setting, where the inputs of an operation
should be labeled with arbitrary letters, rather than with natural numbers, we mimic
these transpositions with actions of the form D? : O(X) — O(X), where x € X denotes
the input of an operation chosen to be exchanged with the output. Here is the resulting
definition.

3.16. DEFINITION. [EXCHANGEABLE-OUTPUT, COMPONENTIAL|] A cyclic operad is a
(componential) symmetric operad O, enriched with actions

DY :0(X) = 0(X),
defined for all x € X and subject to the axioms given below, wherein, for each of the
azioms, we assume that f € O(X).
Preservation of units.
(DID) DY(id,) = id,.
Inverse. Forz € X,
(1) DYDY(f) = f.
Equivariance. For x € X and an arbitrary bijection o : Y — X,
(DEQ) D, (f)° = Dy1() (f7).
Exchange. For z,y € X and a bijection o0 : X — X that renames x to y and y to x,
(DEX) D2(f)° = DA(D(S)).
Compatibility with operadic compositions. For g € O(Y), the following equality holds:
(DC1) Dy (f ox g) = Dy (f) 0x g, where y € X\{x}, and

(DC2) D,)(f ox g) = Dy(9)™ oy DY(f)7, where y € Y, oy : Y\{y} U{v} =Y isa
bijection that renames y to v and o9 : X\{z} U{y} — X is a bijection that
renames x to y.

3.17. CONVENTION. For f € O(X), x € X andy & X\{z}, we write DY (f) for DJ(f)°,
where o : X\{z} U{y} — X renames z to y.
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Notice that D2, (f) = D2(f). Other simple properties of actions D,, are given in the
following two lemmas.

3.18. LEMMA. For f € O(X) and x € X, the following properties hold.
a) Fory & X\{z},
(DID)’ Dy, (id,) = idy, and
(DIN)> Dy, (D, (f) = [.
b) For the renaming o : X\{z} U{y} = X of x to y,
(DEQ)” Dy, (f7) = D5, ()7
c) For g € O(Y),
(DC1)’ Dy, (f oug) = Dy, (f) 0z g, where y € X and u & X\{y}.

3.19. LEMMA. Composition. For x,y € X and z & X\{z,y},
(DCO) D3, (Dy.(f)) = Dg.(f).
PROOF. Since DY (f) = D,(f)? = (D.(f)°)?2, where o : X\{z} U {2z} — X renames z

to z, o1 : X — X renames x to y and y to z, and o5 : X\{z} U {2z} — X renames y to z
and x to y, by (DEX) we have

DY.(f) = (DY(DY(1))™.

For the left-hand side we have DY (Dy.(f)) = (DJ(Dy(f)™))™, where 7 : X\{y} U
{z} = X renames y to z and 7o : X\{z}U{z} — X\{y}U{z} renames z to y. Therefore,
by (DEQ),

Dy, (Dy.(f)) = (DF(Dy (f))™)™ = (D3 (D, (f))™™.

The conclusion follows from the equality o9 = 71 0 7. n

We make some preparations for the proof that Definition 3.16 is equivalent to Defini-
tion 3.2 (see Convention 3.13). For an exchangeable-output cyclic operad O and a finite
set X, we introduce an equivalence relation ~ on the set > _ O(X\{z}) of (ordered)
pairs (z, f), where x € X and f € O(X\{z}): = is the reflexive closure of the family of

equalities
(@, f) = (y, Dya(f)), (4)
where y € X\{z} is arbitrary.

3.20. REMARK. By (DIN)’ and (DCO) it follows that, for each € X, an equivalence

class
[(z, Al € Y 0(X\{2})/~

zeX

has a unique representative of the form (z,_), i.e. if (z, f) =~ (z, g), then f = g.

In the next remark we exhibit a property of &~ that we shall also need for the proof of
the equivalence.
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3.21. REMARK. By (DC1’) and (DCO), we have that (y, Dy.(f) 0z 9) = (2, D.x(f) 0z 9).

3.22. THEOREM. Definition 3.16 (exchangeable-output, componential) and Definition 3.2
(entries-only, componential) are equivalent definitions of cyclic-operads.

PROOF. The proof steps are the same as in the proof of Theorem 3.14, except that we
now show that the transition from one structure to the other one, and back, leads to an
isomorphic structure.

[ENTRIES-ONLY = EXCHANGEABLE-OUTPUT| Let € : Bij”” — Set be an entries-only
cyclic operad. For a finite set X and a bijection ¢ : Y — X, the species O¢ : Bij”” — Set,
underlying the corresponding exchangeable-output cyclic operad, is defined as

Oe(X) = 8C(X) and O¢(0) = 9C(0) = C(o).

For f € O¢(X) and g € Oe(Y), the partial composition operation o, : O¢(X) X Oe(Y) —
Oe(X\{z} UY) is defined by setting

Jorg=f72% 9 (5)

where 0 : XU{*x\{z3uy } = XU{*x} renames *x to *x\z;3uy. The distinguished element
id; € Oc({7}) is defined as id, . Finally, for f € O¢(X) and x € X U {*x}, the action
D% : 0e(X) — O¢(X) is defined by setting

Dye(f) = €(o)(f),

where 0 : X U {*x} — X U {*x} exchanges = and *yx. We verify the axioms.
[A1] Let f and g be as above and let y € X and h € O¢(Z). The sequence of equalities

(f oz 9) oyh = (f7 20xy 9)7 yOiz N
= ((f7)™ 20sy 97) yOxs h (EQ)
= ((f7)™ youy h)20sy g (A1)
= (["youz 1) z0sy g (EQ)
= (foyh)org

where
e 0: X U{xx\(sjuy} — X U {xx} renames *x t0 *x\(z}uy,

o 7 X\{z} UY U {3x\(zyjuvuz) — X\{z} UY U {5x\(sjuy} renames *x\(3uy to
*X\{z,y}UYUZ>

= T‘X\{x}U{*X\{z}UY} Uidgy,

Y .
™ = 7" = ZdYU{*y}u and

K X U{sx\(zyuz) — X U {xx} renames xx to *x\{z1uz-
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verifies [A1] for O¢. The axiom [A2] follows similarly.
[EQ] For arbitrary bijections o7 : X’ — X and 05 : Y/ — Y we have

fm+ O51(z) ga2+ = (fn ) () Oxy ga2+ »
= (/7 ) — 1(g+ L)) Oxy 9%
= ([ 29y 9)" (EQ)
= (s 9)° i (EQ)’
= (foug)”

where
o 7 X U sy (ot (mpuyrt = XU {rxe} renames 0 t0 % (o1 g3y s
o v: X U{*x\[zjuv} — X U{*x} renames *x to *x\(z}uy
o k= (of or) Mt Yo, and
o 0 =0 [NMo Uy,
Observe that x = (v|X\ =W x} Uidy) oo™, which justifies the application of (EQ)’ to get

the equality (f 0., 9)" = (f” 2% 9)7"
[U1] By the axioms (UP) and (U1) for C, for f € O¢(X) we have

idy Oy f= ng *yr Y Oux f= Z'dyy*x yOxx =1

where o : {y,*x} — {y,*{,} renames g, to *x. Analogously, the axioms [U2] and
[UP] for O¢ follow thanks to the corresponding laws of € (see Lemma 3.3 and the axiom

(UP)).

Concerning the axioms of the actions DY¢(f), (DID), (DIN), (DEQ), and (DEX) follow
easily by functoriality of €. The axioms (DC1) and (DC2) additionally require the axiom
(EQ) of C.

(DC1) Let f € Oe(X),g9 € Oe(Y), 2 € X and y € X\{z}. We need the following
bijections:

o 0: X\{z}UY U{xx\({zyuy } = X\{2}UY U{*x\(s}uy }, which exchanges y and * x\ (z3uv
o v: X U{*x\[{zjuv} — X U{*x}, which renames *x to *x\ (z}uy

o o' XU {*x\{zjuv} = X U{*x\(sjuy}, which exchanges y and *x\ {zjuy, and

e 7: X U{xx} — X U{xx}, which exchanges y and *x.

Observe that 7 ov = v oo’ and o = o/ MeIVxv@ov}t U idy. We now have

Dg(f 0p ) = (" 204 9)7 = (fy)alzo*y 9= ()" 20 9= D;Du(f) Oz g

(DC2) Let f,g and x be like above and let y € Y instead. Let o; and oy be as in
Definition 3.16. We shall need the following bijections:

71 Y\{y} U{v, #y\(yjuge} = Y U {*y} that renames y to *y\ y)ufe} and xy to v,
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o 7 X\{7} U{y, *x\{ayuqy}} — X U {xx} that renames x to *x\ {z;3u(y} and *x to y,

o 7: Y \{ytU{v, xx\(myuv} = Y\{5}U{v, %y (y3ufer } that renames #y\ (1050} 10 *x\ (z30v

o r1: X\{2}U{y, *¥x\(zs)uyr ) — XU{*x\(zuy } that renames z to *x\ (z1uqyy and *x\ {230y
to vy,

o r2: Y\{y} U{v,*x\(z;yuy} — Y U {*y} that renames y to *x\ 30y and *y to v,

o X\{2}UY U{*x\ (zjuy } = X \{2}UY U{*x\ (z3uy } that exchanges y and * x\ {710y, and
v: XU {*X\{$}Uy} — X U {*x} that renames *xx to * X\ {z}UY -

Observe that 79 = vok; and kg = 107, and 0 = ml\x\{”ﬁ}u{*x\{w}w} U ko|Y. This gives us

gtoy [

= (9") w0 oy [

= P (97)7 (co)
(F)™ sxvgayogny Ov 972

(f" 204y 9)° (EQ)
= DJ(f oz 9).

Dy ()7 oy DY(f)2

[EXCHANGEABLE-OUTPUT = ENTRIES-ONLY| Suppose that O : Bij”” — Set is an
exchangeable-output cyclic operad. The species Cy : Bij?” — Set, underlying the cyclic
operad in the entries-only fashion, is defined as

€o(X) = 30 O(X\{#})/~.

reX

Accordingly, for [(z, f)]~ € Co(X) and a bijection 0 : Y — X,

Co(0)([(z, =) = [(0 ! (2), O(a M) ()]~

For [(u, f)]~ € Co(X) and [(v,g)]~ € Co(Y), the partial composition operation ,o, :
Co(X) x Co(Y) = Co(X\{z} UY\{y}) is defined as follows:

[(z, Do (f) 02 )]s if u=2xand v =y,

_ [(Z,sz(f) Og Dyv(g))]%a if u =2 and v 7éy>

[, Plxzoul(v: 9)l= = [(u, f op 9)]~s if u+#xandv=y,
[(U,fOx DZ’J”(Q))]%: 1fu7éx andv 7£?J7

where z € X\{z} is arbitrary.

For a two-element set, say {x,y}, the distinguished element id, , € Co({z,y}) will be
the equivalence class [(x,id,)]~ (notice that, by (DPU), (z,id,) ~ (y, id,)).

Verifying that ;o, is well-defined requires checking that different representatives of the
classes that are to be composed lead to the same resulting class. Suppose, say, that (u, f)
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and (v, g) are such that « = z and v # y and let s € X\{z} and w € Y'\{v} be arbitrary.
Then, if, say, w = y, we have

[($; Dsa(f)]~ 20y (4, Dyo(9))]~ = (5, Dsa(f) 02 Dyu(9))]
and (2, D, (f) 0z Dyu(9)) = (8, Dsy(f) 0z Dyy(g)) by Remark 3.21. If w # y, then
[(s, Dsr(f))]z zOy [(w7 Dwv(Q))]% = [(Sv Dsm(f) Og Dyw(Dwv(g)))]%v

and, by (DCO) and Remark 3.21, we have

(Sv Dsa:(f) Oz Dyw(Dwfu(g))) = (Sv Dsa:(f) O Dyv(g)) ~ (zaDZCE(f) Oz Dyv(g))

From Remark 3.21 it also follows that different choices of z € X\{z} from the first two
cases in the definition of [(u, f)]~0,[(v, g)]~ lead to the same result. In the remaining of
the proof, we shall assume that (x, f) and (v, g) satisfy the conditions u # = and v = y.
We check the axioms.

(A1) Let [(u, f)l~ € Co(X), [(y,9)l~ € Co(Y), [(w, h)]x € Co(Z), x € X, y € Y and
w € Z. We prove the instance of associativity that requires the use of (DC2) and (DID),
namely

([(u, Hlx 2oy [(¥: 9)x) wow [(w, )]~ = ([(w, )]~ wow [(w, h)]<) w0y [(y, 9)]~-

Since O(0) = 0 and g € O(Y'\{y}) (resp. h € O(Z\{w})), we have that Y\{y} # 0 (resp.
Z\{w} # 0). Suppose that X\{z,u} = 0. For the expression on the left side of the
equality we then have

([(uw, M= 20y [, 9)]x) wow [(w, M)]x = [(2, Dzu(f 02 9) 0 b)),
where we chose z € Y\{y}. On the other hand, we have
([(u, N~ wow [(w, h)lx) 20y [, 9)]x = (v, Dua(Dau(f) 0w h) 0z 9)]~,
where we chose v € Z\{w}. The associativity follows if we prove that
Dy:(Deu(f 02 g) 0w h) = Dow(Dau(f) 0u h) 0z g-
For this we use (DC2), followed by (DID), on both sides of the equality. We get
Dy(h) oy Duz(Dzu(f 02 g)) = Do(h) 04 (f 05 9)
on the left side and
(Do (h) 00 Dua(Dru(f))) 02 g = (Do(h) 0u f) 05 g

on the right side, and the conclusion follows by the axiom [A1] for O. If X\{x,u} # 0
and z € X\{z,u}, the associativity follows more directly by (DC1), by choosing v = z.
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(EQ) Let [(u, f)]~ € Co(X), [(v,9)]~ € Co(Y), and let 01 : X' — X and 09 : Y = YV
be bijections. Let oy (z) = 2/, o7 (u) = v’ and o5 (y) = 3. We prove that

Co(o1)([(u, )l=) w0y Colo2)([(y,9)]=) = Cola)([(u, f)]xa0y [(¥; 9)]~),

where 0 = o1 | M7 U 0| Y\, Let of = o Moy} We have

([(w, lxzoy (1. 9)0)7 =

u/a le Oy’ gTQ)]% [EQ]

~

~—~~ Y~ o~ —~ —~
s
Q
=
>
—
-~
e
<
o
Q
q
»
>~<
—
~
<
<
=

where 71 = | "M U g |* and 7, = o[V MV = |V MY,
(U1) For [(u, f)]~ € Co(X), by [U1], we have

(UP) For [(y,id.)]~ € Co({z,y}), and a renaming o : {u,v} — {z,y} of x to v and y
to v,

Co(0)(idyy) = Co(0)([(y: id.))~) = (07 (y), O(o] ) (idy)]x = [(v, idu)]x = idy.

[THE ISOMORPHISM OF CYCLIC OPERADS € AND Cy, (AND O AND Og, )] To complete the
proof, it remains to show that species € and Co, (resp. O and O¢,) are isomorphic, and
that the exhibited isomorphism transfers the partial composition f ,o, g (resp. f o, g)
to the partial composition of the images of f and g (under the same isomorphism), as
well as that it preserves units. Categorically speaking, we are proving the isomorphism
of cyclic operads (whose precise definition we give in Section 4). The isomorphism-of-
species part, which is the same as in the proof of the equivalence of algebraic definitions,
will be formally established in Section 4.2 (Lemma 4.3), as a consequence of the cate-
gorical equivalence given by Lamarche in [Lam15] (which will be recalled in Section 4.1).
The components ¢ey : Co. (X) = C(X) and Yoy : O(X) = O, (X) of the isomorphisms
¢e : Co, — C and 9o : O — Og,, respectively, are defined as follows:

I
4
.
S

o dex([(u, f)lx) = f*, where £ : X — X\{u} U {*x\(u} } renames *x\ (.} to u, and,
® Yox(f) = [(xx, f)l~

As for the corresponding partial composition translations, for [(u, f)|]x € Coe(X),
[(y,9)]~ € Coe(Y) and z € X\{u} we have

[(w; N~ 20y [(4;9)lx = [(w, f 0w )]~ = [, 7 00uyy,, 9))n = [0, 7 20y 97,
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where o+ X\{u} U {xx\(uayonify3 } = X \{ub U {#x\(uy } renames xx\ (uy 10 *x\ fuzyun\ ()
and 75 : Y — Y\{y} U {*y\,1} renames *y\ g,y to y. Notice that for the last equality
above we use the axiom (EQ) of both Gy, and €. The claim follows since

(bCX([(ua fa zOy 972)]z) = (fg zOy 97-2)’i = le zOy 97'27

where £ : X\{z} UY\{y} = X\{z,u} UY\{y} U {*x\[zijuv\{y} } TEDAMES * X\ (5 0}Uv\ {1}
touand 7 : X — X\{u}U{*x\(u)} renames u to *x\ (3, wherein the last equality above
holds by the axiom (EQ) of C.

For f € O(X) and g € O(Y), we have

Yox(f) oz Yoy (9) [(ex; )~ 0x [(+y, )]~
=[x, N7 w0uy [(#v,9)]
= [(x\faors F)] w0y [(3v,9)]~
= [txvayoy, f o 9)l~
= Yox(foz9),
where 0 : X U {*x\(zyuy } = X U {*x} renames *x to *x\(zjuy.
For the unit elements, we have ¢ey, ,,([(7,idy.,,)]x) = iy, = 1ay, Where £ :
{z,y} — {y,*} renames xgy to @, and Yo,y (ids) = [(*¥a), ids)]x = [(a:,z'd*{z})]z,
which completes the proof of the theorem. [

3.22.1. ALGEBRAIC DEFINITION. If we think about the algebraic variant of Definition
3.16, it is clear that its cornerstone should be an ordinary operad, i.e. a triple (S, v, ;)
specified by Definition 2.6, and that the goal is to enrich this structure by a natural
transformation which “glues together” the actions D, : S(X) — S(X) and encompasses
the coherence conditions these actions satisfy. We give the definition below.

3.23. DEFINITION. [EXCHANGEABLE-OUTPUT, ALGEBRAIC] A cyclic operad is a quadru-
ple (S,v,m, D), such that (S,v,n1) is an (algebraic) operad, and the natural transforma-
tion D : 0S — 0S satisfies the following laws:

(DO) Do 7785’ — 77857
(D1) D? = idyg,
(D2) (0D o ex)® = idyas,

as well as the laws (D3) and (D4) given by commutative diagrams

(exodDoex)-id D-D
9(08) - S 0(0S) - S 95908 — 9598
V3 J J V3 and v J c
oS oS a8 oS 98- 9S8
D D V4

respectively, where v3 and vy are induced from v as follows:
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vy : 905 - S~y 995 . S + 05 - 905 —2—— 9(9S - 9S) — 8S, and
Vi 05 -0S — 995 - S + 08 - 905 —F—— 9(S - 9S) —2 5.

That Definition 3.23 is equivalent to Definition 3.16 will follow after the proof of the
equivalence between Definition 3.23 and Definition 3.8 in the next section (see Table 2).
As for a direct evidence, we content ourselves by showing the correspondence between
D and the D,’s, which we shall use in Section 4.1. Given D : 9S — 05, one defines
D,:S(X)— S(X) as

DIZS(U_l)ODX\{w}OS(J), (6)
where 0 : X\{2}U{*x\(23} — X renames x to *x\(,}. In the opposite direction, we define
Dx : 05(X) — 05(X) via D, as Dx = D,,. The correspondence between the axioms

of D and the ones of D, is given in Table 4 below. In particular, (0D o ex)® = idgps
corresponds exactly to the law (DCO) (that holds thanks to (DEQ) and (DEX)).

D Dy

D o n?8 = po3 (DID)

D? = idgg (DIN)

(0D o ex)? = idgas (DEQ), (DEX)

COMMUTATIVE SQUARE (DC1)

COMMUTATIVE PENTAGONE (DC2)
Table 4

3.24. REMARK. Notice that, since ex o 0D o ex = 9D o ex o 9D, the diagram obtained
by replacing (ex o 0D o ex) - id with (0D o exo dD) - id in (D3) also commutes.

4. The equivalence established

This section deals with the proof of the equivalence between the two algebraic definitions
of cyclic operads, Definition 3.8 and Definition 3.23. Based on the equivalence between
the category of species which are empty on the empty set and the category of species with
descent data, established by Lamarche in [Lam15], this equivalence holds for constant-free
cyclic operads, i.e. cyclic operads for which the underlying species S is such that S(0)) =
S({x}) = 0 (in the entries-only characterisation) and S() = 0 (in the exchangeable-
output characterisation), as we indicated in Section 2.2.

4.1. DESCENT THEORY FOR SPECIES. The equivalence of Lamarche comes from the
background of descent theory. In the case of species, one starts with the question

Can we “reconstruct” a species T, given 0T ?

Intuitively, given the morphism 07 : Bij”” — Bij” in Cat, defined as 01 (X) = X U{xx},
the idea is to recover a morphism 7 : Bij°’ — Set from S = 0T by “descending” along
ot.
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Bij”” ———— Set

3* J J idSet

Bij”” ———— Set
T

Such a reconstruction is clearly not possible without an additional data, called the descent
data, that compensates the loss of information caused by the action of the functor 0 :
Spec — Spec.

Lamarche [Lam15] defines a descent data as a pair (S, D) of a species S and a natural
transformation D : S — 995, such that D? = idyg, and (0D o exg)® = idgss, and he
proves that the assignment O : Spec/y — Spec’, defined as

T — (0T, exr),

is an equivalence of categories'. Here Spec/y denotes the category of species S such that
S(0) = 0 and Spec™ denotes the category of descent data. For (S, D) € Spec™, the
inverse functor [ : Spec™ — Spec/y is defined as

/ (8, D)(X) = 3 S(X\{2})/=.

reX
where & is defined as in (4), whereby the actions D, are defined via D as in (6).

4.2. THE MAIN THEOREM. Let Spec/y .y be the subcategory of Spec/y of species S
such that S(0) = S({z}) = 0, for all singletons {z}, and let Spec™ /y be the subcategory
of Spec’ of descent data with species S such that S(f) = (). The next result is a direct
consequence of the equivalence of Lamarche from Section 4.1.

4.3. LEMMA. The assignment 0 : Spec/y .4 — Spec/; , defined in the same way as in
4.1, is an equivalence of categories.

Let COen(Spec/p +1) be the category of entries-only cyclic operads (5, p,n2) such
that S is an object of Spec/y 1.}, and let COcx(Spec/;) be the category of exchangeable-
output cyclic operads (S, v,n;, D) such that (S, D) is an object of Spec®/y. In both of
these categories, the (iso)morphisms are natural transformations (natural isomorphisms)
between underlying species which preserve the cyclic-operad structure.

The main result of this work is the proof that the equivalence of Lamarche carries over,

via Lemma 4.3, to an equivalence between the two algebraic definitions of cyclic operads,
formally given as the categorical equivalence between the two categories introduced above.

4Lamarche proves this equivalence in a skeletal setting, by considering functors of the form S : Fin®? —
Set, where Fin denotes the category of finite cardinals and permutations. The non-skeletal version that
we present is an easy adaptation of his result.
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4.4. REMARK. The reason for restricting the equivalence of Lamarche to the one of
Lemma 4.3 (and, therefore, to the equivalence of constant-free cyclic operads) lies in the
fact that, given a species S from Spec/y, the constraint S()) = () makes the component
pg : (0S - 0S)(0) — S() of the multiplication p : S - S — S the empty function, in
which case the condition S({*p}) = () is needed in order for the domain of py to also be
the empty set. Therefore, in the context of cyclic operads, we have to consider Spec/p 1.}
instead of Spec/y, and, consequently, Spec/ a instead of Spec™.

4.5. THEOREM. The categories COen(Spec/y .y) and COex(Spec/y) are equivalent.

Proor. We follow the same steps as we did for the previous two theorems. The precise
definitions of the functors and natural transformations that constitute the equivalence are
cumbersome, but easy to derive from the transitions we make below.

[EXCHANGEABLE-OUTPUT = ENTRIES-ONLY| Given a cyclic operad O = (T, v, m7*, DT)
from COex(Spec/;), by Lemma 4.3 we know that (T, D7) ~ (95, exg), for some species
S from Spec/p ;. Together with the definitions of ¥” and 17, this equivalence gives rise
to an operad (95, 125,175, exg) such that O ~ (95,128, 1,25, exg). Since [(0S, exg) ~ S,
defining a cyclic operad over the species [T amounts to defining a cyclic operad Gy =
(S, p,5,me%) over the species S. We define Cy below, whereby we shall write p for p,5 and
12 for nys.

For X =0, px : (0S5 - 05)(X) — S(X) is the empty function. For X # (), defining
px amounts to defining p'y : 9(0S - 95)(X) — 9S(X). We set p' = [p], pb] o ¢, where
Py 1005 -0S — 0S8 and pl, : 9S - 00S — 0S are determined as

Pl 00808 =4 995 08 —L5 0S8 and gl =ploc.

Defining 7 amounts to defining dn, : 0Fy — 0S5, for which we set Ony = 1195 0 €5. We
verify the axioms.

(CA1) By Corollary 3.11, the axiom (CA1) for Cy comes down to the equality py; 0y, =
p11, whereas poy 0 1 = py1 follows from Opay 0 Oy; = dp11. We prove the latter equality.

In Diagram 4, the triangle 7" is the diagram whose commutation we aim to prove and
the diagrams L and R are obtained by unfolding the definitions of dp;; and dps;. We then
express O(p' - id) in L and R as ([p}, pb] - id) 0 I(p - id). Since d(¢p - id) o I(¢p~' - id) = id
and 9([p}, ph] - id) 0 O(i - id) = I(p} - id), we transformed Diagram 4 into Diagram 5, in
which L' and R’ commute.
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8((88S - 8S) - 8S) 8((88S - 8S) - 8S)
9(i - id) a(i - id)
dp11 9p21
9((89S - 89S + 95 - 8OS) - 9S) ((09S - 9S + S - 99S) - 9S)
(e~ ~zd)J p’ Jawrl,id)
a(p’ - id) a(p’ - id)
8(8(dS - 89) - 8S) 8(85 - 8S) 8(8(8S - 8S) - 8S)

a(lpY, po] - id)
A(¢p - id) (¢ - id)

2((90S - 8S + S - 8AS) - 8S)

Diagram 4.

2((90S - 8S) - 8S) a((9dS - 8S) - 8S)

x}/

9(/’1 - id) a(P1 - id)

(88 - 9S)
Diagram 5.

Therefore, the equality that needs to be proven is Aodvy; = A, where A = p'00(p)-id). By
implementing p' = [p}, ph] o ¢ in A and then by using the equalities [0p] - id, p} - Qid] o p =
pod(p)-id) and did = id, A is reformulated as A = [B, C] o ¢, where B = p) o (0p] - id)
and C = pho(p)-id). By setting I' = pody; 0}, the equality Aodvy; = A reformulates

s [B,C] = [B,C]oT. Since T' can be expressed by the commutation of Diagram 6°,
by setting D = Bo (¢! -id) o (i;-id) and E = Bo (¢! -id) o (i, - id), the equality
[B,C] = [B,C] ol is proven if the following three equalities hold:

D = Do(a 'o(dex-c)oa), E = Co(a 'o(ex:c)oa) and C = FEo(a 'o(ex-c)oa).

Oex-c+ex-c+ex-c

8095 - (8S - S) + 8IS - (89S - HS) + 8IS - (8S - DOS) 8095 - (0S5 - 8S) + 8OS - (89S - BS) + 8IS - (8S - BHS)

a+a+ o a_1+a_1+a_1
(0988 - 88) - 8S + (89S - 99S) - 89S + (89S - 8S) - dAS (8995 - 8S) - 89S + (89S - 99S) - 89S + (89S - 8S) - S

A+ id AT 4id
(0988 - S + 8IS - 8S) - S + (89S - HS) - 89S (8985 - S + 8IS - §HS) - BS + (89S - 8S) - 9SS
@ - id + id e 1 id + id
r
(985S - 8S) - 8S + (98S - S) - AS 8(93S - 8S) - 89S + (985S - 8S) - 89S

5 In the top horizontal arrow of Diagram 6, the first ex - ¢ maps the second summand on the left to
the third one on the right, and the second ex - ¢ maps the third summand on the left to the second one
on the right.
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Diagram 6.

Therefore, the first equality that needs to be proven is

pro(0p)-id)o (o~ -id)o (iy-id) = pi o (8p) - id) o (¢~ " -id) o (i;-id) o (o' o (Jex-c)oa),

and the outer part of Diagram 7 corresponds exactly to this equality once the definition of
P’ (via v) is unfolded. The rest of the arrows show that the outer part indeed commutes.

Notice that

e J; and J, commute since they are the commuting squares from Remark 3.24 and
Definition 3.23, respectively, once the definition of v3 is unfolded and D is set to be

ex,

e K commutes as it represents the equality v9; o 51 = 17 (see Definition 2.6), and

e [}, 1., and M commute as they represent naturality conditions for ¢ and «.

(000S - 8S) - 9S LN 0098 - (05 - 0S) Oex - e 0008 - (05 - 09) . (000S - 9S) - 98
(cpfloil)n'd (@710i1)~id
8(99S - S) - 8S M 8(99S - S) - 8S
d(ex - id) - id O(ex - id) - id
(¢~ oid)-id a lo(dex - c)oa’ e loip)id
(098 - 8S) - S —————— (9005 - 85) - 0§ —————— (9905 - 05) - 05 ————— O(DDS - 0S) - IS
ov - id (Oex 0 ex 0 Jex) - id ‘/ L ‘ (ex 0 Dex o ex) - id ov - id
alo(ex-c)oa’
00S - 6S Jl (008S - 8S) - 8S (0098 - 8S) - 8S Jr 008 - oS
ex - 1id (gploil)-idJ ‘(Lploil)~id ex - id
908 - 6S Ov - 8(005 - S) - 8S K 8(005 - 0S) - 8S Ov - 998 - 6S
s}

The second equality is p} o (0p] - id) o (éll@g

T

', - id) = pho () -id)oa o (ex - c)oa,

and the corresponding diagram is (the outer part of) Diagram 8. This diagram commutes

because

e [ is the commuting pentagon from Definition 3.23, once the definition of v, is un-
folded and D is set to be ex, and

e J commutes as it corresponds to the equality v99 0 o = 15 (see Definition 2.6).
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(995 - 90S) - 0S — 2 995 - (995 - 9S) —Z°, 995 - (9S - DOS) —2— (905 - 9S) - DS

(p~Loir)-id (ex - id)-id
d(80S - . _ 905 - (808 - 8S) e | s (05 - 008) — (095 - 9S) - 998
O(ex-id) - id 095 - : c v-id
(<P71 o ip)-id «
8(99S - 88) - 88 """ (o065 - 00s) 8S\ 95 - 90S
(ex - ex)-id l 89S - (098 - 9S)
ov -id i . ¢
(89S - 88S) - 8S \
ex - id
005 - 99 I i | J 995 - 08
(905 - 885) os — 2 995 (905 - 8S)
ex - id Z'd.D ex - id
T odp)- zd
508 K / e
Diagram 8.

The last equality is pho (p} - id) = pj o (9p) -id)o(p~'-id)o (i, 1d)oa"to(ex-c)oaq,

and it follows from the second one since (ex-c)™' =ex-c.

(CA2) By similar analysis as we did for (CA1), it can be shown that (CA2) follows
from the equalities

pro (00 - id) = O 0 IN o (¢~  00y) : DDE, - DS — DS (7)

and

pa o (One-id) = Om 00N o (¢ ' oi,) : OB, - 00S — O8S. (8)

In Diagram 9, the inner triangle represents the equation (7). It commutes by the
commutations of the three diagrams that surround it (easy to check) and from the com-
mutation of the outer triangle, which represents the left triangle from the axiom (0A2).
The equality (8) is verified by a similar diagram, whose outer part will commute as the
right triangle from (0A2).
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. id
OE, - 08 o 905 - 08

M-id

00F, - 0S8

\91 o1

A(DEs - S)

Diagram 9.

[ENTRIES-ONLY = EXCHANGEABLE-OUTPUT] Given a cyclic operad C = (S, ps,n25), we
define O¢ = (95, 1,79, m?9, exg) by introducing 1,25 : 95 * S — 95 (v for short) as

v 098 05— 995 .95 s 905 - S + AS - 99S —F——s 8(9S - BS) ~2 98,

and n,95 : By — 0S (m for short) as g = 05 o 62_1. We now indicate how to verify the
axioms.

[0A1] The verification of [0A1] for O¢ uses equalities (Dex o ex)® = idgps and
Ops 0 Oy = dp;. The outer part of Diagram 10 represents the equality 1o, 0 1 = vq1
(once the definition of v via p is unfolded). The proof that it commutes uses

e the commutation of the diagram F, where ¢ = (¢~ oi;) o ((p "t o4;)-id)o ((ex-id)-

id) o ((Oex - id) - id), which follows by the equality Jex o ex o Jex = ex o Jex o ex,
e the commutation of the diagram G, which represents the equality 0ps; 0 0y1 = 9p11,
e the commutations of F| and F3, which are simple “renaming” diagrams, and

e the commutations of R and Ry, which follow by the naturality of p.

The outer part of Diagram 11, which represents the equality vo9 0 85 = 115, commutes by
e the commutation of the diagram FE, where ¢; = ¢ ' od;0 (pt oo (ex-id)) - id
and ¢y = o' o4, o (ex - id), which follows by the naturality of v, (notice that
v2 = (id - (ex - id)) o ),
e the commutation of GG, which represents the equality Opss 0 02 = Op12, and
e the commutations of I}, F5, Ry and Ry, which are of the same kind as in Diagram 10.
Notice that the equality o3 o B3 = 113 also follows by the commutation of Diagram 11.

[0A2] The commutation of the left triangle from [0A2] follows by replacing v in
Diagram 9 with its definition via p and by setting p; = dp o ¢! 04;. The commutation
of the right triangle follows analogously, relative to the diagram that arises in the proof
of the equality (8).
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(0008 - 85 —— 0908 - (05 - 0S) ————— 0998 - (05 - 0S) (000S - (98
o) -id e loip)-id
0(098S - 85 (008 - 85
d(ex - id) - ¥ 6(ex id) -
0(098S - 85 0(008S - 65
“loiqp)-id “1oi)
00(0S - 85 8005 -95) - 08) — 1, o((905 -05) - 9%) 0(0S - 65
ex - 1d ex id
00(0S - 9S) - 98 . pton) Zd)é)((w‘l o) - id) - 99(9S - 9S) - S
Bap»idl °u / laap»id
008 - 08 Ry d(a(8S - 8S) - 8S) G d((98 - 88) - 9S) Ry 008 - 0S
a(asl- ag) — ’ os R a(asl. 25)
ap dp
Diagram 10.
(00S - 90S) - 98 a 098 - (00S - 0S)
(eo’loir)»idl lid-(ex-id)
0(008 - 9S) -0 098 - (00S - 0S)
a(ex»z’d)»idl 1 E lz‘d‘wlom
0(00S - 0S) - 0S ¢2 0085 - 9(0S - 0S)
B(W_loil)»idl lexwd

Ov2

00(0S -05)-0S Fy a((8S - 99S) - 8S) ——————— 9(9S - (995 - 3S)) Fy, 00S-0(0S-08)

ex»idl

00(9S - 9S) - 08

a(id - (™" 0dy))
o1 (¢t 0iy) - id)

aap-idl °% lgo*lo”
a(id - dp)
905 -90S Ry 2((25 - 85) - 95) G 2(2S - (95 - 89)) 0(0S - 0S)
d(0S - 99) a8
9p
Diagram 11.

[THE ISOMORPHISM OF CYCLIC OPERADS C AND Cp, (AND O AND Og, )| As it was the
case in the proof of Theorem 3.22, the isomorphism at the level of the underlying species
exists by Lemma 4.3. The first isomorphism of cyclic operads follows from the equalities®
OnyS = Oy 0 €, 0 € and Ops = p:/gs. As for the second equality, since P:,gs op !l =

6These would be isomorphisms rather than equalities if we considered the sequence S — 95 — [9S
instead of S — 05 — S.
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(P95 Payes], it follows from equalities 9p* o o toi = Piyps and 9ps o o toi, = P25 -
We have
p’lygs =v5% o (ex - idys) = Op® o @ lodo(ex-idyg) o (ex-idgg) = OpS ot og

and
Loidjo(ex-idgg) o (ex - idgg) o c

Loi, = 0psSoptoi,.

Phygs = viSol(ex-idgg)oc = OpSop”

1

= JpSop rojjoc = OpSodcop”

The second isomorphism follows from the equalities” 9n?% = 9(n?° o €) o €, and

vy, = Opyog@ toijo(ex-id)

= [vo(ex-idgg),vo(ex-idyg)oc]opop?

oo (ex-id)

= vo(ex-idgg)o(ex-id) = wv.

Conclusion

Given a category C equipped with a bifunctor ¢ : C x C — C that does not bear
a monoidal structure, a question of finding the “minimal” associativity-like and unit-
like isomorphisms can be asked, which leads to categorifications of monoid-like algebraic
structures in a way analogous to the one illustrated in Table 1 in Introduction. If such
isomorphisms (and unit-like objects) are established, we could say that C (together with
the additional structure) is a monoidal-like category and define in a natural way a monoid-
like object in C - this is what the microcosm principle is about. In this paper we exhibited
one such monoidal-like category: (Spec, A, F5), which allowed us to deliver the algebraic
definition of entries-only cyclic operads (Definition 3.8):

A cyclic operad is a monoid-like object in the monoidal-like category (Spec, A, Es),

represented more explicitly in Table 4.

MONOIDAL-LIKE CATEGORY Spec  MONOID-LIKE OBJECT S € Spec

PRODUCT A : Spec x Spec — Spec p:SAS — S
UNIT FEs € Spec Ne: By — S
ASSOCIATIVITYS vs1.u : (SAT)AU + TA(SAU) + (TAU)AS (ca1)
— SA(TAU) + (SAU)AT + UA(SAT)
LEFT UNIT? A EbAS — S* (CA2)
RIGHT UNIT? k& : SAEy — S° Corollary 3.12

Table 4. A cyclic operad defined internally to the monoidal-like category of species.

"Like before, these would be isomorphisms if we considered the sequence S — fS — 8f S.
8 Actually, the “minimal” associativity-like isomorphism.
9 Analogously, the “minimal” unit-like isomorphism.
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We also introduced the algebraic definition of exchangeable-output cyclic operads (Def-
inition 3.23), by first upgrading the structure (Spec,«), exhibited by Fiore, into the
monoidal-like category (Spec,*, E;), and then by endowing the monoid-like objects of
this category, i.e. operads (see Table 5), with a natural transformation that accounts for
the “input-output interchange”.

MONOIDAL-LIKE CATEGORY Spec MONOID-LIKE OBJECT S € Spec
PRODUCT * : Spec x Spec — Spec v:Sx85—>S5
UNIT FE, € Spec m:FE— S
AssoctATIVITY' 0 Bsau s (S*T) U+ S (U«T) (0A1)
= S*(T+xU)+(S+xU)*xT
LEFT UNIT s:EixS =S (012)
RIGHT UNIT ps:SxEy — S

Table 5. An operad defined internally to the monoidal-like category of species

The main correspondence that we established is the equivalence between these two
algebraic definitions, which consolidates the equivalence between the two points of view
on cyclic operads.

Future work will involve establishing the notion of weak Cat-cyclic-operad, i.e. a cyclic
operad enriched over the category Cat of small categories, by replacing in Definition 3.2
the category Set with Cat and the equations given by the axioms with isomorphisms
in Cat. We presume that the task of formulating the coherence conditions for these
isomorphisms represents a further categorification of the notion of monoid-like object in
(Spec, A, E5). This work is motivated by the article [DP15] of Dosen and Petri¢, where
they introduced the notion of weak Cat-operad.
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