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A FUNCTORIAL APPROACH TO DEDEKIND COMPLETIONS AND
THE REPRESENTATION OF VECTOR LATTICES AND
(-ALGEBRAS BY NORMAL FUNCTIONS

G. BEZHANISHVILI, P. J. MORANDI, B. OLBERDING

ABSTRACT. Unlike the uniform completion, the Dedekind completion of a vector lattice
is not functorial. In order to repair the lack of functoriality of Dedekind completions,
we enrich the signature of vector lattices with a proximity relation, thus arriving at
the category pdv of proximity Dedekind vector lattices. We prove that the Dedekind
completion induces a functor from the category bav of bounded archimedean vector
lattices to pdv, which in fact is an equivalence. We utilize the results of Dilworth [14]
to show that every proximity Dedekind vector lattice ®© is represented as the normal
real-valued functions on the compact Hausdorff space associated with ®. This yields a
contravariant adjunction between pdv and the category KHaus of compact Hausdorff
spaces, which restricts to a dual equivalence between KHaus and the proper subcategory
of pdv consisting of those proximity Dedekind vector lattices in which the proximity
is uniformly closed. We show how to derive the classic Yosida Representation [40],
Kakutani-Krein Duality [24, 26], Stone-Gelfand-Naimark Duality [35, 16], and Stone-
Nakano Theorem [35, 32] from our approach.

1. Introduction

Among completions of vector lattices and f-algebras, uniform completions and Dedekind
completions are the most studied. Let bawv be the category of bounded archimedean vector
lattices and let ubav be the full subcategory of bawv consisting of uniformly complete
objects of bav (see Section 2 for the definitions). The uniform completion A of A € bav
extends to a functor bav — ubav which is left adjoint to the inclusion functor ubav —
bav.

The uniform completion functor can conveniently be described by utilizing the Yosida
Representation of bounded archimedean vector lattices. For A € bav, let Y(A) be the
compact Hausdorff space of maximal ¢-ideals of A. The Yosida Representation Theorem
[40] asserts there is an embedding of A into the vector lattice C(Y (A)) of continuous
real-valued functions on Y (A). By the Kakutani-Krein Theorem [24, 26], this embedding
is an isomorphism iff A is uniformly complete. The assignment A — Y (A) induces a
functor Y from bawv to the category KHaus of compact Hausdorff spaces and continuous
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maps. Composing this with the functor C' : KHaus — wbav, induced by X » C(X),
yields the uniform completion functor.

By contrast, Dedekind completion is not functorial, at least not with respect to vector
lattice homomorphisms (see Remarks 2.14 and 4.16). Specifically, a vector lattice homo-
morphism a : A - B in bav need not lift to a vector lattice homomorphism D(A) - D(B),
where D(-) indicates Dedekind completion. Some authors [2, 39, 34] have attempted to
remedy the lack of functoriality for the Dedekind completion by restricting to the non-
full subcategory of bav consisting of the same objects but whose morphisms are normal
homomorphisms (i.e., preserve existing joins, and hence existing meets). The normal ho-
momorphisms in baw lift to normal homomorphisms in bav (see Theorem 7.6), so this
repairs the lack of functoriality of the Dedekind completion, but at the expense of a more
rigid notion of morphism.

Our approach is to work with the category bav and not sacrifice any of its morphisms.
To do so we view the image of D(-) as residing in a category enriched with a proximity re-
lation. More formally, let A, B € bav and let o : A — B be a vector lattice homomorphism.
Then the lift of a to D(«) : D(A) — D(B), given by

D(a)(z) =\/{a(a):ae A & a<z},

is a function that extends a but need not be a vector lattice homomorphism. Our first
goal is to describe axiomatically D(«). We do this by considering proximity-like relations
on D(A) and D(B) induced by A and B, respectively. Proximity-like relations have a
long history in topology (see, e.g., [31]), and have been extended to the point-free setting
[13, 3, 18, 4]. In [5], they were further generalized to the setting of idempotent generated
algebras. In this paper, we define the concept of proximity on Dedekind vector lattices,
thus obtaining a new object (D, <), a proximity Dedekind vector lattice consisting of a
Dedekind complete object D in bav and a proximity relation < on D. Our axiomatization
of the maps D(«) then suggests the notion of a proximity morphism between proximity
Dedekind vector lattices. We show that if a: A - B is a morphism in bav, a mapping
f: D(A) - D(B) has the property that 5 = D(«) iff 5 is a proximity morphism that
extends «. It follows that D(«) is the unique proximity morphism extending «. With
these objects (the proximity Dedekind vector lattices) and morphisms (the proximity
morphisms), we obtain a category, which we denote pdv, although composition has to
be defined carefully. Thus, while Dedekind completion does not induce a functor from
bav to bav, it induces a functor from bav to pdv. In fact, we prove that the functor
D : bav — pdv is an equivalence.

Having thus interpreted Dedekind completion in a categorical context, we turn next
to the issue of representation for the objects in bav and pdv. The classical Yosida Rep-
resentation [40] of bounded archimedean vector lattices by real-valued functions on com-
pact Hausdorff spaces can be expressed functorially as having a contravariant adjunction
Y : bav - KHaus and C': KHaus — bav such that each A € bav embeds in C(Y (A))
and each X € KHaus is homeomorphic to Y (C(X)). On the one hand, the embedding
A - C(Y(A)) yields the Yosida Representation of each A € bav by means of real-valued
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functions on Y (A). On the other hand, the homeomorphism X — Y (C(X)) yields the
Kakutani-Krein Duality [24, 26] between KHaus and the image of C'oY in bav. In this
paper we show that a similar situation arises between pdv and KHaus by building an
appropriate contravariant adjunction X : pdv - KHaus and 91 : KHaus — pdv, which
is based on Dilworth’s work [14], rather than that of Yosida-Kakutani-Krein. In fact, the
Yosida-Kakutani-Krein theory follows directly from our results.

While Kakutani-Krein Duality implies uniformly complete objects in bav are isomor-
phic to the continuous real-valued functions on compact Hausdorff spaces, the Stone-
Nakano theorem [35, 36, 32| yields that Dedekind complete such objects are isomorphic
to the continuous real-valued functions on extremally disconnected compact Hausdorff
spaces. As was pointed out in [17], the Dedekind completion D(A) of A can also be real-
ized by continuous real-valued functions, albeit on a different space than Y (A). Namely,
if A € bav, then D(A) is isomorphic to C' (m), where Y (A) is the Gleason cover of
Y (A).

By relaxing the restriction that the representation involves continuous functions, Dil-
worth [14] gave a representation of the Dedekind completion of the lattice C*(X) of
bounded continuous functions on a completely regular space X as the lattice N(X) of
bounded normal functions on X. We develop N(-) into a functor 9t : KHaus — pdv
that for each X ¢ KHaus produces the proximity Dedekind vector lattice (X)) :=
(N(X),<c+(x)), whose proximity <c«(x) is given by f <c«(x) g iff there is h € C*(X)
such that f < h < g. Note that since X is compact, C*(X) = C(X). We describe the
image of 91 in pdv and show that there is a functor X : pdv — KHaus such that the pair
(M, X) yields a contravariant adjunction between KHaus and pdwv, which restricts to a
duality between KHaus and the image of 91 in pdv.

Putting all this together we obtain a setting for pdv that closely parallels that of bav.
Each © := (D, <) € pdv is represented by normal functions on the compact Hausdorff
space X (D), and each X ¢ KHaus is homeomorphic to X(91(X)). The embedding
D - N(X (D)) is an isomorphism in pdv iff the set of reflexive elements of ® is uniformly
complete, and the image of 91 in pdv is dually equivalent to KHaus.

Having established representation and duality for pdv, we show how the classical
Yosida Representation and Kakutani-Krein Duality for bav follow from our results. This
gives an alternative view on uniform completion from a perspective in which Dedekind
complete objects play the primary role. We also show how to derive the Stone-Nakano
Theorem, and prove that a vector lattice homomorphism is normal iff the continuous map
between the corresponding Yosida spaces is skeletal. This yields an alternate proof of a
result of Rump [34] for compact Hausdorff spaces. In the last section of the paper, we
show how multiplication can be incorporated into the picture so that the primary category
of interest becomes pd¥, the category of proximity Dedekind ¢-algebras with proximity /-
algebra morphisms. We show pd# is a full subcategory of pdv, and we prove there is a con-
travariant adjunction with KHaus from which we derive Stone-Gelfand-Naimark Duality
[35, 16] between KHaus and the category of uniformly complete bounded archimedean
(-algebras.
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2. Preliminaries

In this section we recall all the needed definitions and facts to make the article self-
contained. We use [9] and [27] as our basic references. Throughout all groups are assumed
to be abelian.

2.1. DEFINITION.

(1) A group A with a partial order < is an f-group if (A,<) is a lattice and a < b implies
a+c<b+c forall a,b,ce A.

(2) An l-group A is a vector lattice if A is an R-vector space and for each 0 < a€ A and
0<AeR, we have Aa > 0.

(3) An l-group A is archimedean if for each a,b e A, whenever n-a <b for each n € N,
then a < 0.

(4) An l-group A has a strong order unit if there is u € A such that for each a € A there
isneN witha<n-u.

(5) A wvector lattice is bounded if it has a strong order unit.

We will often use basic properties of vector lattices without mention. For example, if
A is a vector lattice, {a; :i € [} is a family in A for which ¢:=V;a; exists in A, be A, and
0< A eR, then

(see, e.g., [27, Thms. 12.2, 13.1]). The dual statement for each of these equations also
holds.

2.2. CONVENTION. We assume that all vector lattices are bounded and archimedean and
all vector lattice homomorphisms are unital (preserve the designated strong order unit).

2.3. NoTATION. We denote by bav the category of bounded archimedean vector lattices
and unital vector lattice homomorphisms. For each A € bav, we denote the designated
strong order unit of A by 1.

The objects in bav can be viewed as normed spaces in the usual way. Let A € bav. If
a € A, then the positive and negative parts of a are defined as a* = av0 and a~ = (-a) v 0,
and we have a = a* —a~. Also, the absolute value of a is defined as |a| = a v (-a), and we
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have |a| = a™ + a™ (see, e.g., [27, Def. 11.6, Thm. 11.7]). The wuniform norm on A is given
by
lla|| = inf{\ e R : |a] < A}.

Since A is bounded and archimedean, ||| is a well-defined norm on A.

2.4. DEFINITION. A wvector lattice A is uniformly complete if it is complete with respect
to the uniform norm.

2.5. EXAMPLE. For a compact Hausdorff space X, let C(X) denote the vector lattice
of continuous (necessarily bounded) real-valued functions. Then C'(X) € ubav (see, e.g.,
[27, Thm. 43.1, p. 282]). The sup norm on C'(X), which, by the completeness of the reals,
coincides with the uniform norm on C'(X), is defined by setting, for each f e C'(X),

|If1| = sup{|f(z)] : x € X}
2.6. DEFINITION. Let A be a vector lattice.

(1) A is Dedekind complete if every subset of A bounded above has a least upper bound,
and hence every subset of A bounded below has a greatest lower bound.

(2) A is a Dedekind vector lattice if A is Dedekind complete.

2.7. REMARK. A Dedekind complete bounded vector lattice is archimedean [9, Cor. 2,
p. 313] and uniformly complete [27, Thm. 42.6, p. 280].

If A € bav, then there is up to isomorphism a unique Dedekind complete vector lattice
D(A) € bav such that A embeds as a vector lattice in D(A) and A is join dense in D(A);
see [11, Thm. 1.1].

2.8. DEFINITION. For A € bav, we call D(A) the Dedekind completion of A. Throughout
this paper we will identify A with its image in D(A).

2.9. REMARK. The Dedekind completion D(A) of A can be constructed as the set of
normal ideals of A; see, e.g., [9, Ch. V.9]. Nakano [33, §30] uses the dual of this description.

2.10. NOTATION. Let ubav denote the full subcategory of bav consisting of uniformly
complete objects of bav and let dbav denote the full subcategory of ubav consisting of
Dedekind complete objects of bawv.

An (-ideal of a vector lattice A is a subgroup I of A satisfying a € I and |b| < |a| imply
bel. An (-ideal of A is necessarily a subspace of A [9, Lem. 1, p. 349]. An (-ideal [ is
proper if I #+ A, and it is mazimal if it is maximal among proper f-ideals of A. If M is a
maximal (-ideal of A, then A/M = R [9, Thm. XV.2.2]. As a consequence, if av: A - B is
a morphism in bav and M is a maximal (-ideal of B, then a~'(M) is a maximal (-ideal

of A.



1100 G. BEZHANISHVILI, P. J. MORANDI, B. OLBERDING

2.11. REMARK. Let M be a maximal ¢-ideal of A € bav and let a ¢ M. Since A/M =R, it
is totally ordered, so a+M >0+ M or a+M < 0+ M. We show that a+M >0+M iff a= € M
and a* ¢ M. If a= e M and a* ¢ M, then a+ M =a*+ M >0+ M. Conversely, suppose
a+M > 0+M. Because A/ M is totally ordered, M is a prime ideal. Therefore, as a*Aa™ =0
[9, Thm. XIII1.4.7], either at € M or a= € M. If a*t € M, then a+ M =-a-+ M <0+ M, a
contradiction. Thus, a* ¢ M and a= € M. A similar argument shows that a + M <0+ M
iff ate M and a™ ¢ M.

Let A, B € bav. We recall that a monomorphism « : A - B is essential if for each
nonzero (-ideal I of B, the ideal a™'(I) of A is nonzero (see, e.g., [10]). If a: A - B is
essential, then we call B an essential extension of A, and if « is the inclusion, then we
call A an essential vector sublattice of B. We say that A is dense in B if for each b e B
with 0 < b there is a € A with 0 <a <b (see, e.g., [11, Sec. 2]).

2.12. PROPOSITION. Let A € bav, B € dbav, and A be a vector sublattice of B. The
following conditions are equivalent.

1) A is dense in B.

2

A is essential in B.

4) A is meet dense in B.

(1)
(2)
(3) A is join dense in B.
(4)
)

(5) B is isomorphic to the Dedekind completion of A.

PROOF. (1)=(2). Let I be a nonzero (-ideal of B. Then there is b € B with 0 < b and
be I. Since A is dense in B, there is a € A with 0 < a < b. Because [ is convex, a € [.
Therefore, I n A # (0). Thus, A is essential in B.

(2)=(4). This is proved in [8, Thm. 3.2].

(3)<>(4). Suppose A is join dense in B. If b€ B, then -b is the join of {a € A:a < -b},
and so b is the meet of {-a€ A:a<-b} ={ce A:b<c}. Thus, A is meet dense in B. A
similar argument gives the converse.

(3)<=>(5). This is obvious since (3)<«>(4).

(3)=(1). Let 0 <be B. By (3) we may write b as the join of {a € A:a <b}. Note that
if @ <b, then a <av0<b. Therefore, we may write b=V{ae A:0<a<b}. Since b> 0,
there is a € A with 0 < a <b. Thus, A is dense in B. [

2.13. REMARK. For A, B € bav, if A is a uniformly dense vector sublattice of B, then
A is dense in B. To see this, let 0 < b e B. Since A is uniformly dense in B, there is a
sequence {a,} in A such that a,, - b and 0 < a,, <b. Since b > 0, we must have a,, >0 for
some n. Therefore, 0 < a, < b, showing that A is dense in B.

As we pointed out in the introduction, taking the uniform completion extends to a
functor bav — ubav which is left adjoint to the inclusion functor ubav — bav. On the
other hand, taking the Dedekind completion is not functorial. For example, as we will
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see in Remark 4.16, the join lift D(a) : D(A) - D(B) of a vector lattice homomorphism
a: A - B need not be a vector lattice homomorphism. More generally, there does not
exist a functor from bav to dbav that behaves similarly to D in the sense made precise
in the next remark.

2.14. REMARK. Motivated by a similar observation in [8, Sec. 3], we claim there does
not exist a functor F': bav — bawv such that the following conditions hold:

(i) F(A)=D(A) for all A € bav;

(ii) There is a natural transformation 7 : 1pe, - F whose component maps 14 : A —
F(A) are the inclusion mappings A - D(A);

(iii) The induced natural transformation F' - F o F' is componentwise epic.

To see this, since F' satisfies (i) and (iii), [1, Lem. 3.3] yields that each n4 is an epi-
morphism. Choose A € bav such that A is not uniformly dense in D(A). (For such
an example, see Remark 8.17.) This implies that the inclusion A - D(A) is not an
epimorphism (see Remark 8.17). Therefore, 14 is not an epimorphism. The obtained
contradiction shows that no such functor F' exists.

To repair this lack of functoriality of D, in the next section we introduce proximity
relations into the category dbawv and obtain a different categorical setting from dbav in
which Dedekind completion becomes functorial.

3. Proximity vector lattices

Let A € bav and let D(A) € dbav be the Dedekind completion of A. We define <4 on
D(A) by setting
r<uyiff Jae A with zx<a<y.

As we will see in Lemma 3.3, the relation <4 satisfies the following conditions.

3.1. DEFINITION.

(1) Let D e dbav. We call a binary relation < on D a proximity if the following axioms
are satisfied:

P1
P2

(P1) 0<0 and 1<1.

(P2)

(P3) a<b<c<d implies a<d.
(P4)

(P5)

(P6)

a < b implies a <.

P4
P5
P6

a<b,cimplies a<bAc.
a < b implies there is c€ D with a < c < b.

a >0 implies there is 0 <be D with b < a.
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(P7) a<b implies =b < —a.
(P8) a<b and c<d implya+c<b+d.
(P9) a <b implies Aa < A\b for 0 < X e R.

(2) Suppose < is a proximity on D € dbav. We call a € D reflexive if a < a, and we call
< reflexive if (P5) is strengthened to the following aziom:

(SP5) a < b implies there is a reflexive c € D such that a < ¢ <b.

(3) We call a pair © := (D, <) a proximity Dedekind vector lattice if D € dbav and < is
a reflexive proximity on D.

(4) For a proximity Dedekind vector lattice ©, let R(D) denote the reflexive elements of
D.

3.2. REMARK.

(1) Motivated by the work of de Vries [13], the notion of proximity on idempotent gen-
erated algebras was introduced in [5]. An important distinction with Definition 3.1
is that Axiom (SP5) does not occur in [5, Def. 4.2]. Nevertheless, there is a close
connection between the two approaches, which will be addressed in [6].

(2) If L is a lattice and < is a binary relation satisfying (P2), (P3), (P4), (P5) and
the additional condition that a,b < ¢ implies a v b < ¢, then < is a called a Katétov
relation in [19, Sec. 6]. Conditions (P4) and (P7) imply this additional condition
involving join, so a proximity is a special case of a Katétov relation. While our
notion of proximity has its roots in de Vries duality, Katétov relations give a lattice-
theoretic framework for the study of the Katétov-Tong and Stone insertion theorems
for normal and extremally disconnected spaces, respectively [19, Sec. 6 and 7]. We use
the Katétov-Tong Theorem to interpret an important proximity for us in Remark 4.14
and Theorem 6.6.

3.3. LEMMA. Suppose A € bav. Then D(A) := (D(A),<4) is a prozimity Dedekind vector
lattice and A = R(D(A)).

PROOF. Clearly D(A) € dbav and it is straightforward to verify that all the proximity
axioms hold. For example, we see that (P6) holds because A is (isomorphic to) an essential

vector sublattice of D(A) (see Proposition 2.12). That A = R(D(A)) is clear from the
definition of <4. n

3.4. REMARK. As an immediate consequence of Lemma 3.3, we obtain that D € dbav
implies (D, <) is a proximity Dedekind vector lattice.

3.5. LEMMA. If ® = (D,<) is a proximity Dedekind vector lattice, then R(D) is an
essential vector sublattice of D, and hence D is isomorphic to the Dedekind completion of

R(D).
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PROOF. Let A = R(®). That A is a vector sublattice of D easily follows from the
proximity axioms. For example, if a,be A, then a <a and b<b, so a+b<a+0b by (P8),
and hence a + b e A. All other statements follow for similarly simple reasons. To see that
A is an essential vector sublattice of D, let a € D with a > 0. By (P6), there is 0 <be D
with b < a. Since < is reflexive, (SP5) implies there is ¢ € A with b < ¢ < a. Therefore, by
(P2), 0 < ¢ < a, which proves A is a dense vector sublattice of D. Thus, Proposition 2.12
yields that A is essential in D and D is isomorphic to the Dedekind completion of A. =

Let A, B € bav and let a: A - B be a vector lattice homomorphism. Define D(«) :
D(A) - D(B) by setting
=\{a(a):ae A & a<x}.

While in general D(«) is not a vector lattice homomorphism, it satisfies the following
conditions, as we will see in Lemma 3.9

3.6. DEFINITION. Let ® = (D,<) and € = (E,<) be proximity Dedekind vector lattices.
We call a map a: D - E a proximity morphism provided, for all a,be D, ce€ R(®), and
0<AeR, we have:

(M1) a(0) =0 and a(1) = 1.
(M2) a(anb)=ala)Aal(d).
(M3) If a<b, then —a(-a) < a(b).
(M4) a(b) = V{a(a) : a <b}.
(M5) a(avc)=ala)va(c).
(M6) a(a+c)=ala)+alc).

(M7) a(Aa) = Aa(a).

3.7. REMARK.

(1) Proximity morphisms for idempotent generated algebras were introduced in [5], and
were motivated by [13]. Axioms (M5)—(M7) of Definition 3.6 appear to be stronger
than the corresponding axioms in [5, Def. 6.4]. However, as we will show in [6], the
two definitions are equivalent in the setting of idempotent generated algebras.

(2) In general, a proximity morphism need not be a vector lattice homomorphism; see
Example 4.12. It follows from a recent result of Toumi [38, Thm. 4] that if A, B € bav
and a: A —» B is a lattice homomorphism preserving the R-action of positive scalars,
then « is a vector lattice homomorphism. In light of Toumi’s theorem and (M1), (M2),
and (M7), we conclude that a proximity morphism is a vector lattice homomorphism
iff a(avb)=a(a)va(b) for all a,be D. Thus, the lack of a join axiom is what gives
the notion of a proximity morphism its subtlety.
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3.8. LEMMA. Suppose © = (D,<), & = (E,<) are prozimity Dedekind vector lattices and
a: D — E is a proximity morphism. Then « restricts to a (unital) vector lattice homo-
morphism R(D) - R(¢).

PROOF. Let a € R(®). Then a < a. Applying (M3) gives —a(-a) < a(a). By (M1) and
(M6), 0 = a(0) = a(a+ (-a)) = a(a) + a(-a). Therefore, —a(-a) = a(a). This implies
that a(a) < a(a), and so a(a) € R(€). Thus, the restriction o|g(p) is a well-defined map
R(®) - R(€). By (M6) and (M7), a|g(o) is a linear transformation, by (M2) and (M5),
it is a lattice homomorphism, and by (M1), it is unital. Consequently, a|g(o) is a unital
vector lattice homomorphism. [

3.9. LEMMA. Suppose ®© = (D,<), & = (E,<) are proximity Dedekind vector lattices and
a: R(D) - R(€) is a vector lattice homomorphism. Define B: D — E by

=\V{a(a):ae R(D) & a<z}.
Then B is a prozimity morphism such that B|ro) = @

PROOF. It is clear that /3 is well defined and restricts to o on R(®). We verify the axioms
of a proximity morphism.

(M1): We have 5(0) =0 and B(1) =1 since 0,1 € R(®) and 3 extends a.

(M2): If 2,y € D, then

B(z) A B(y) = V{a(a): a<x} VA{ab):b<y}

—v{a< yiasebsy)
—\/{a(aAb) a<z, by}

- \V{a(e):e<ny)

= B(z ry).

(M3): Let x <y. By (SP5) and (P2), there is a € R(®) with z < a < y. By definition,
a(a) < B(y). Moreover, —a < —z, so a(-a) < B(-z). Therefore, —a(a) < B(-z), so
-B(-x) < afa). As a(a) € R(€), this yields -5(-z) < 5(y).

(M4): By definition, 8(z) = V{a(a) : a < z}. From a € R(D) it follows that a < z is
equivalent to a < z. Therefore, since (a) = a(a), we see that (x) = V{B(y) : y < x}.

(M6): We have

Bla+x)=\{a(b) b<a+x}—\/{ab' ~a<w)}
—\/{a c+a):c<x}=\{alc)+ala):c
+V{a(e .ch}—a(a)+ﬂ(x):ﬂ(a

(M5): We first observe that for any x,y € D, we have
B(z) + B(y) = V{a(a) :a <z} + \{a(d): b<y}
=\V{a(a) +a(d):a<z,b<y} =\/{a(a+b):a<z,b<y}
<V{a(e):e<z+y} =Bz +y).
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Therefore, () +5(y) < B(x+y). Since a+x =avr+anz (see, e.g., [9, p. 293]), applying
(M2), (M6), and the previous inequality yields

Blava)+pB(a)np(x) = pBlave)+Ban)

<Blavrz+anz)=L(a+x)

=p(a) + B(x) = B(a) v B(x) + B(a) A ().

Thus, f{avz) < B(a) v B(x). The reverse inequality is obvious since f3 is order preserving

by (M2), s0 f(a v z) = B(a) v A(x).
(M7): Let 0 < AeR. For x € D, we have

50w) = V{ale) 0 < Ae} = Via(a) : X la < 2}
=V { a(b) :b<z}=A3(x).

Thus, £ is a proximity morphism. n

From Lemmas 3.8 and 3.9, we obtain the following characterization of proximity mor-
phisms.

3.10. THEOREM. Suppose ® = (D, <), € = (E,<) are proximity Dedekind vector lattices
and B: D - E is a map such that B(R(D)) ¢ R(€). Set « = flgo). Then [ is a proximity
morphism iff o is a vector lattice homomorphism and 5(x) = V{a(a) : a € R(D),a <z}
forall x e D.

PRrOOF. First suppose that § is a proximity morphism. By Lemma 3.8, a is a vector
lattice homomorphism. Let z € D. By (M4), 5(x) = V{8(y) : y < x}. By (SP5) and
(P2), there is a € R(®) with y < a < x. Since  is order preserving and o = S|geo), we
see that B(y) < a(a) < B(x). Therefore, B(x) = V{a(a) : a € R(D),a < z}. Conversely,
suppose « is a vector lattice homomorphism and §(z) = V{a(a) :a € R(D),a < x}. Then
by Lemma 3.9, 3 is a proximity morphism. m

3.11. COROLLARY. Suppose A, B € bav and a: A - B is a vector lattice homomorphism.
Then a map B : D(A) - D(B) is a prozimity morphism extending o iff f(x) = V{a(a) :
a<z} for all e D(A).

We next show that proximity Dedekind vector lattices and proximity morphisms form
a category in which composition of two morphisms need not be function composition.

3.12. THEOREM. Proximity Dedekind vector lattices with proximity vector lattice mor-
phisms form a category pdv, where the composition (s x B1 of proximity morphisms
B1: (D1, <1) = (D2,<2) and o : (Da,<2) - (D3, <3) is defined by

(B2 1) (y) = \V{Bo(Bi()) s <1y}
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PROOF. Set A; = R(D;,<;). Since <; is reflexive, (£ * £1)|a, = 52|, © fi1]a,- Therefore,
by Lemma 3.8, (2 * 51)|a, is a vector lattice homomorphism A; - Az. Moreover, we
may describe 8y x B as (B2 * B1)(y) = V{B2(Bi(a)) : a € A1,a < y}. Consequently, by
Lemma 3.9, 55 *x B is a proximity morphism.

The only nontrivial step remaining to prove is associativity. Suppose (; : (D1, <1) —
(Da,<2), B2t (Do, <2) = (Ds,<3), and B3 : (D3, <3) = (D4, <4) are proximity morphisms.
Then B3 x (B2 * 1), (B3 * B2) * 1 = (D1,<1) = (D4, <4) are proximity morphisms. They
both restrict to the same vector lattice homomorphism o on A;. Therefore, they agree,
since for all y € Dy, by the definition of *, we have

(B3 * (B2 % B1))(y) = V{e(a) sae Ay,a <y} = ((Bs  B2) * 1) (y).-

3.13. REMARK. As follows from the proof of Theorem 3.12, if 3, f5 are proximity mor-
phisms, then 5 » 3 restricted to the reflexive elements is simply function composition.

We will see in Example 4.18 that set-theoretic composition of proximity morphisms
need not be a proximity morphism as it may fail to satisfy (M4). Although the compo-
sition in pdwv is not function composition, isomorphisms in pdv are structure preserving
bijections, as we will show next.

3.14. PROPOSITION. Let © = (D,<), € = (E,<) be objects of pdv and 5 : D — FE be a
morphism of pdv. Then [ is an isomorphism in pdv iff B is a vector lattice isomorphism
such that x <y in ® iff f(x) < B(y) in €.

PROOF. The “<” direction is straightforward. For the converse, we first note that as in
the verification of (M5) in the proof of Lemma 3.9, we have 5(a) + 5(-a) < f{a+ (-a)) =
B(0) = 0. Therefore, 5(a) < —5(-a). Thus, by (M3), if a < b, then f(a) < S(b). Now,
since : D — FE is a proximity isomorphism, there is a proximity morphism g’ : £ - D
satisfying §’ * 5 =Idp and 8 » 8/ =Ide. Set A= R(D) and B = R(€). Then « := 8|4 and
o/ := (3’| are vector lattice homomorphisms by Lemma 3.8. It follows from Remark 3.13
that (8’ x f)|lo = o/ cv and (B * f')|e = o a’. So a and o are inverses of each other,
and hence A, B are isomorphic vector lattices. Since D, E are isomorphic to Dedekind
completions of A, B, there is a unique vector lattice isomorphism from D to E extending
« (see, e.g., [27, pp. 185-186]), which is /3 since it preserves arbitrary joins. Thus, § is a
vector lattice isomorphism. Its inverse is the unique vector lattice isomorphism extending
o'. Hence, it is f’. Therefore, § and (' are inverse vector lattice isomorphisms. Since
they both preserve proximity, we conclude that z <y in @ iff 5(z) < 5(y) in €. n

We next show that taking Dedekind completion and reflexive elements yield functors
that provide a category equivalence of bav and pdwv.

3.15. THEOREM. Define R : pdv — bav that sends © = (D,<) € pdv to R(D), and a
proximity morphism o : D — E to the restriction R(«) = a|go). Then R is a well-defined
covariant functor.

PRrROOF. Apply Lemmas 3.5, 3.8 and Remark 3.13. [
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3.16. THEOREM. Define © : bav — pdv that sends A € bav to ©(A) = (D(A),<4), and
a vector lattice homomorphism o : A - B to D(«) : D(A) - D(B) given by D(«a)(x) =
V{a(a):a<x}. Then ® is a well-defined covariant functor.

PRrROOF. By Lemma 3.3 and Corollary 3.11, © is well defined. It is clear that ® sends
identity maps to identity maps. Let a; : A; - Ay and as : Ay - A3 be morphisms in
bav. Then D(ay o0 o) and D(as) » D(«y) are proximity morphisms which agree on A;
by Remark 3.13. Therefore, D(agoa;) = D(ag) » D(c1) by (M4). Thus, ® is a functor. m

3.17. THEOREM. The functors ©, R yield an equivalence of bav and pdv.

PROOF. Let (D, <) € pdv. By Lemma 3.5, A := R(D,<) is an essential vector sublattice
of D, and hence (D,<) 2 (D(A),<4). We next show that © is full and faithful. Let
B:(D(A),<4) - (D(B),<p) be a proximity morphism and « = §|4. By Corollary 3.11,
B = D(«). Therefore, ® is full. Next, suppose that 51,5 : (D(A),<a) = (D(B),<p) are
proximity morphisms with 1|4 = 52|4 := a. Then, for each x € D(A), we have

Bi(r) = V{a(a) :ae A a<a} = Ba(z),
so f1 = f2. Thus, ® is faithful. Consequently, ® is an equivalence of categories by [28,
Thm. IV .4.1]. [

3.18. REMARK. Our focus throughout this section has been on vector lattices. Proximity
Dedekind /-groups with strong order unit can be defined as in Definition 3.1 by omitting
axiom (P9). Similarly, proximity morphisms between proximity Dedekind ¢-groups can
be defined by omitting (M7) from Definition 3.6. With these modifications, it is straight-
forward to see that the obvious /-group analogues of the results in this section hold with
little or no modification to their proofs. However, the notion of essential ¢-subgroup (e.g.,
in Lemma 3.5) should be replaced with that of dense ¢-subgroup.

4. Normal functions and the Dilworth functor

We next develop a representation of proximity Dedekind vector lattices, which relies on
Dilworth’s representation of the Dedekind completion of C'(X) for a compact Hausdorff
space X [14].} We will see in Section 7 that our representation is closely related to Yosida’s
representation of bounded archimedean vector lattices [40].

For a set X, let B(X) denote the set of bounded functions X — R. It is straightforward
to see that B(X) € dbav, where the operations on B(X) are defined pointwise.

If X is compact Hausdorff, then there are two operators on B(X), the lower and
upper limit function operators, that are fundamental in Dilworth’s treatment of normal
functions.? Danet, points out in [12] that these operators are typically called the Baire
operators on B(X) in honor of Baire, who was the first to introduce them.

n fact, Dilworth’s representation works in the more general setting of completely regular spaces, but
in this paper we are only interested in compact Hausdorff spaces.

2 Again, these operators can be defined in the more general setting of completely regular spaces, but
we restrict our attention to compact Hausdorff spaces.
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4.1. NOTATION. Let X be a compact Hausdorff space. For each x € X, let .4, be the
collection of open neighborhoods of z. For each f e B(X) and x € X, define

f*(w)=[§:1%§/g§f(y) and f*(x)=Uig%Syg§f(y)'

The Baire operators can also be interpreted as joins and meets, a fact that we collect
in the next lemma, along with several other properties needed in later sections.
4.2. LEMMA. (Dilworth [14, Lems. 3.1 and 4.1]) Let X be a compact Hausdorff space,
and let f,g € B(X).
(1) fu=V{geC(X):g9< f}, where the join is taken in B(X).

(2) f*=N{geC(X):g2> [}, where the meet is taken in B(X).
(3) If f<g, then f, < g, and f* < g*.
(4) fu < f<f* (f)s = for and (f*)* = f*.

4.3. REMARK. Recall (see, e.g., [14, Sec. 3]) that a real-valued function f is lower semi-
continuous if f~1(\,+o00) is open for each A € R. If f is bounded, this is equivalent
to f = f.. One can define upper semicontinuous functions similarly. Let LSC(X) and
USC(X) be the posets of lower semicontinuous and upper semincontinuous functions on
X, respectively. Then the order preserving functions

(=) :LSC(X) - USC(X) and (-), : USC(X) — LSC(X)
form a Galois correspondence; that is, for f € USC(X) and g € LSC(X), we have
Jo<gift f<g*

Dilworth’s representation of the Dedekind completion of C'(X) is in terms of normal
functions, the definition of which we recall next.

4.4. DEFINITION. Let X be compact Hausdorff and f € B(X). The function f# :=(f*).
is the normalization of f, and f is normal if f = f#.

Using Remark 4.3, it is easy to see that f# is a normal function for each f e B(X).

4.5. NOTATION. For a compact Hausdorff space X, we denote by N(X) the set of all
normal functions in B(X).

4.6. REMARK. Dilworth worked with normal upper semicontinuous functions, which cor-
respond to normal filters in the lattice C'(X). Our preference is to work with lower
semicontinuous functions instead because they correspond to normal ideals of C'(X).

4.7. PROPOSITION. If X is compact Hausdorff, then N(X) € dbav, where the operations
on N(X) are given by the normalization of the pointwise operations. In fact, N(X) is
the Dedekind completion of C(X).

ProOOF. That N(X) is the Dedekind completion of C'(X) with respect to normalized
pointwise joins and meets was proved by Dilworth [14, Thm. 4.1]. That N(X) is a vector
lattice under the specified operations is proved by Danet, in [12, Thm. 5.1, Cor. 6.2]. =
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4.8. REMARK. Let f e B(X), ce C(X), and 0 < A € R. By the formulas for the Baire
operators, it is easy to see that (c+ f)* = c+ f*, (c+ f)« = ¢+ fu, (Af)* = Af*, and
(Af)« = Afe. From this it follows that in N(X) addition by ¢ e C(X) and multiplication
by 0 < X € R are pointwise.

4.9. REMARK. Let A € bav. If A is a uniformly dense vector sublattice of C'(X), then by
Remark 2.13, A is dense in C'(X). Therefore, since C'(X) is dense in N (X ), we see that
A is dense in N(X). Thus, by Proposition 2.12, N(X) is isomorphic to the Dedekind
completion of A.

4.10. REMARK. Several other interpretations of D(C(X)) and N(X) have been given.
Hardy [20, Sec. 2| has shown that N(X) is a direct limit of the bounded continuous
functions over dense G subsets of X; the operations on N(X) induced by the pointwise
operations in the components of the direct limit coincide with those of Proposition 4.7 |20,
p. 162]. In [39, Sec. 3|, van Haandel and van Rooij show that D(C(X)) is isomorphic as a
vector lattice to the vector lattice of bounded Baire functions on X modulo the ¢-ideal of
Baire functions whose cozero sets are small. Viewing N(X) as an f-algebra (see Section
8), N(X) can be identified with the f-algebra of bounded elements of the complete ring
of quotients of C'(X); see Hardy [20, Prop. 2.3] and Fine, Gillman, and Lambek [15]. In
addition, Dilworth [14, Thm. 6.1] showed D(C(X)) is isomorphic as a lattice to C(Y),
where Y is the Gleason cover of X; that this is also an isomorphism of vector lattices was
proved by Gierz [17, p. 448]. To see that it is also an isomorphism of (-algebras, consult
for example [8, Cor. 3.2]. Finally, a pointfree approach to N(X) was recently developed
by Carollo, Garcia, and Picado [29, 30].

4.11. EXAMPLE. In general, N (X)) is not closed under pointwise operations. To see this,
for U ¢ X, let xy be the characteristic function of U. It is straightforward to see that
(xv)* = xg and (xv)« = Xme(v). Therefore, (xu)# = X1ut(T)- Thus, xy € N(X) iff U is
regular open. Now, let X =[0,1], U = [0,1), and V = (1,1]. Then xy, xv € N(X). The
pointwise sum of xy and xy is the characteristic function of U uV', which is not a normal
function. In fact, the sum of these functions in N(X) is 1. The same example shows that

the join xy Vv xy is not the pointwise join of these two functions.

Proposition 4.7 suggests the question of whether N can be extended to a contravariant
functor KHaus — dbav. If 0 : Y — X is a continuous map between compact Hausdorff
spaces, recall that C'(o) : C(X) - C(Y), defined by C(0)(f) = f o0, is a morphism in
bav. Tt is natural to define N(c): N(X) - N(Y) by N(o)(f) = (foo)#*. If feC(Y),
then N(o)(f) = C(o)(f). The next example shows that N(o) is not a vector lattice
homomorphism, and so this assignment does not define a functor.

4.12. EXAMPLE. Let X =[0,1], Y =[0,3], and 0:Y - X be given by

5 if0<z<l,
o(r)=4 5 ifl<z<2,
17‘1 if 2<x<3.
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3
2
1 1
1
2
0 = 0
Y X

It is obvious that o is continuous. Let U = [0,3) and V = (3,1]. Then xy,xv € N(X),

N(o)(xv) = X[o,1), and N(o)(xv) = x(23]- Therefore, while xy + xv = 1 in N(X), so
N(o)(xv+xv)=1in N(Y), we see that N(o)(xv)+N(o)(xv) = X[01)u(z,3 # 1 in N(Y).
Thus, N(o) does not preserve addition, and so is not a vector lattice homomorphism.
The same example shows that N (o) does not preserve binary joins.

This lack of functoriality for N can be repaired if we add proximity to the structure
of N(X). A natural proximity to work with in this setting is <¢(x)-

4.13. LEMMA. If X is compact Hausdorff, then M(X) = (N(X),<¢c(x)) € pdv.

PROOF. By Proposition 4.7, N(X) € dbav and N(X) is the Dedekind completion of
C(X). Therefore, by Lemma 3.3, M(X) € pdv. =

4.14. REMARK. By the celebrated Katétov-Tong Theorem [25, 37|, for f,g € N(X), we
have

f<emxygiff f*<g.
4.15. LEMMA. Let X,Y e KHaus and 0:Y — X be a continuous map. Then

=V{C(o)(c) : ce C(X),c< [}

PROOF. Let f e N(X). By [14, Lem. 4.1], f is the pointwise join of those ¢ € C'(X) with
¢ < f. Therefore, using sup for pointwise joins, we have

N(o)(f)=(foo)*

(sup{ce C(X):c< floo)*
(sup{coo:ceC(X),c< f}*
(UP{C( )(c) :ce C(X),c< f})*
VA{C(o)(c):ceC(X),c< f}.
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4.16. REMARK. Let 0:Y — X be a continuous map between compact Hausdorff spaces.
By Proposition 4.7, N(X) = D(C(X)), and by Lemma 4.15, D(C(c)) = N(o).

c<f<> — C(E/)
NX)— Y Ny)
D(CH<X>> M>D<0H(Y)>

It then follows from Example 4.12 that D : bav - dbav is not a functor.

4.17. THEOREM. Define M : KHaus — pdv by sending X ¢ KHaus to M(X) and
0:X->Y toN(o):N(Y) > N(X). Then M is a well-defined contravariant functor.

PROOF. By Lemma 4.13, 91(X) € pdv. By Lemmas 3.9 and 4.15, if ¢ is continuous, then
N(o) is a proximity morphism. It is clear that if ¢ is an identity map, then so is N (o).
It remains to prove that N preserves composition. Let 0 : X - Y and p:Y — Z be
continuous maps. Suppose f € N(Z). By Lemma 4.15,

N(poo)(f)=V{co(poo):ceC(Z),c<f}.
On the other hand,
(N () * N(p))(f) = VAN (o) (N(p)(9)) : g € N(Z), 9 < f}
=VAN(0)(N(p)(c)) : ce C(Z),c< f}
=\{(cop)oo:ceC(Z),c< f}.
Thus, N(poo)=N(o)« N(p). =

We conclude this section by showing that function composition of proximity morphisms
may not be a proximity morphism, thus fulfilling the promise from Section 3.

4.18. EXAMPLE. Let X =[0,2]=Z and Y =[0,1]. Defineo: X - Y by o(z) =z ifzeY
and o(x) = 1 otherwise. Also, define p:Y — Z by p(x) = x.

2 2
1 - 1
0 0
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Clearly both o and p are continuous. By Theorem 4.17, 9(Z),M(Y ), N(X) € pdv and
N(p),N(o) are proximity morphisms.
We first show that N(o) o N(p) # N(poo). Let f = xp01). Then f e N(Z) and
( )(f) X[o,1]- Therefore, (N(c)oN(p))(f) = X[0,2- On the other hand, N(poc)(f) =
. Thus, N(O’) o N(p) iN(poa)

Next we show that N (o)oN(p) does not satisfy (M4). For f = x1o.1y, we have f € N(Z)
and N(a)(N(p)(f)) = X[0,21- On the other hand, if ce C(Z) with 0 <c < f, then ¢(1) = 0.
Therefore, N(o)(N(p)(c)) = 0 on [1,2], and it follows that N(o)(N(p)(c)) < X[oa) €
N(X). Thus, the join in N(X) of all such functions is bounded by x[,1). Consequently,

VAN (@) (N(p)(9)) :9€ N(Z), 9 <c(z) [} =\ {N(a)(N(p)(c)):ce C(Z),c< f}
< X10,1) < X[o,21 = N () (N(p)([f))-

This yields that N(o)oN(p) does not satisfy (M4), and hence is not a proximity morphism.

5. The end functor

In the previous section we constructed the contravariant functor 91: KHaus — pdv. In
this section we construct a contravariant functor in the other direction. Let ® = (D, <) €
pdv. We will describe the dual space of ® by means of maximal round ideals of ©.

5.1. DEFINITION. Let © = (D, <) € pdv and let I be an (-ideal of D.
(1) I is a round ideal of © if for each x € I, there exists y € I with |x|<y.

(2) I is an end ideal of ® if I is a mazimal proper round ideal. Let X (D) be the set of
end ideals of ©.

Suppose © = (D, <) € pdv. A Zorn’s lemma argument shows that each proper round
ideal of D is contained in an end of D. For S ¢ D, let

S ={aeD:3be S with |a| < |b]}.

Also, for A € bav, let Y (A) denote the set of maximal ¢-ideals of A.

5.2. LEMMA. Let © € pdv and let A= R(®). Then the following hold for all P € X (D)
and M,N e Y (D).

3

(1)

(2) {M =y{N iff MnA=NnA.
(3) P is generated as an (-ideal by P n A.
(4)

Pn A is a maximal (-ideal of A.
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PROOF. (1). Since M is an (-ideal, {M € M, so {MnAc MnA. For the reverse inclusion,
let a € M n A. This intersection is an ¢-ideal of A, so |a| € M n A. Because |a| < |a|, we see
that a € {M. Thus, ae {M n A.

(2). Suppose that M nA=NnA. If z € {M, then |z| <y for some y € M. Then
there is a € A with |z| < @ <y. This implies a €e M n A = N n A. Therefore, |z| < a yields
x € {N. Reversing M and N gives the other inclusion, so {M = {N. Conversely, suppose
that {M ={N. Then {M nA={NnA so MnA=NnAby (1).

(3). Suppose x € P is nonzero. Then there is y € P with |z| < y. Therefore, there is
a € A with |z] <a<y. Since P is convex, a € P, so a € Pn A. The inequality |z]| < a shows
that x lies in the f-ideal of D generated by P n A.

(4). Suppose [ is a proper f-ideal of A with Pn A c I. Let J be the f-ideal of D
generated by I; that is, J = {b € D : Ja € I with |b| < a} (see, e.g., [27, p. 96]). Since
A = R(D), it is clear that J is a round ideal of ©. By (3), P is generated as an ¢-ideal
by Pn A, so PcJ. Since P is an end, P = J, which yields I ¢ Pn A. This proves that
P n A is a maximal /-ideal. ]

5.3. LEMMA. If © € pdv, then X(®)={{M: M eY(D)}.

PROOF. Let A = R(D), let P e X (D), and let M € Y(D) with P € M. By Lemma 5.2(4),
PnA=MnA. Therefore, by Lemma 5.2(3), P={de D:3ae MnA with |d| <a} = {M.
Thus, X(®)c {{M: M eY(D)}.

To prove the reverse inclusion, let M € Y(D). Then

{M ={deD:3aeMn A with |d| < a},

so that {M is the (-ideal of D generated by M n A. Now {M is round, so there is an
end P such that {M ¢ P. By Lemma 5.2(1), MnAc PnA. Therefore, MNnA=PnA
since M €Y (D). By Lemma 5.2(3), P is generated as an (-ideal by M n A, which forces
yM = P. This proves that {{M : M e Y (D)} c X(D). =

5.4. REMARK. Let D € pdv and set A= R(D).
(1) For each M € Y(A), thereis P e X(®) with Pn A= M. To see this, since D has a
strong order unit, if M is a maximal f-ideal of A, then the f-ideal of D generated by

M is proper, and so is contained in a maximal ¢-ideal N of D. Let P = { N. Then
Pe X(®) by Lemma 5.3, and PnA=NnA=M by Lemma 5.2(1).

(2) We have N X (D) = (0). Indeed, NY (D) = (0) by [40, Lem. 4]. Since { M ¢ M for
each M e Y(D), we get N X (D) = (0) by Lemma 5.3.

For each d € D, let ¢(d) = {P € X(D) : 3¢ > 0 with e < |d| and e ¢ P}. Clearly
w(d) = ¢(|d]).
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5.5. LEMMA. Let © € pdv and set A= R(D).

(1) = X(D) and ¢(0) = @.

If d,e e D, then o(d) np(e) = (|d| Ale]).

If de D, then o(d) = U{¢(a) :|a| < |d|}.

The sets {p(d) :d e D} and {¢(a):a € A} both form a basis of the same topology on
X (D).

(1)
(2)
(3) Ifae R(D), then p(a) = {P e X(D):a¢ P}.
(4)
(5)

PROOF. (1). This is clear since each end is a proper ideal, so contains 0 but not 1.

(2). Since ends are (-ideals, it is clear that if |d| < |d’|, then ¢(d) ¢ ¢(d"). Therefore,
o(|d| A le]) € p(d) np(e). For the reverse inclusion, let P € ¢(d) np(e). Then there are
d' e’ >0 with d' < |d|, ¢’ < |e|, and d’,e’ ¢ P. Therefore, there are a,be A with d’ < a < |d|
and e’ < b < |e|. It follows that a,b ¢ P. Since Pn A is a maximal ¢-ideal of A, and hence
a prime ideal, anb ¢ Pn A. Thus, d' Ae’ ¢ P. Since d’' A e’ < |d| A |e|, we conclude that
P e p(ld| nlel).

(3). Let a € A. Since a < |al, it follows that a ¢ P iff P € ¢(a), so (3) holds.

(4). One inclusion is clear. For the other inclusion, let P € ¢(d). Then there is e > 0
with e < |d| and e ¢ P. Therefore, there is a € A with e < a < |d|. Thus, a ¢ P, so P € p(a).

(5). By (1) and (2), the set {¢(d) : d € D} forms a basis for a topology on X(®). By
(4), {p(a):ae A} is also a basis for the same topology. =

5.6. THEOREM. If D € pdv, then X (D) is a compact Hausdorff space.

PROOF. We first show that X (®) is compact. Suppose that we have an open cover of
X(®). We may assume that the cover consists of basic open sets. So, say X (D) =
U; v(a;), where each a; € A = R(®). If the a; generate a proper f-ideal of A, then
they lie in a maximal (-ideal M of A. By Remark 5.4(1), there is an end P of © such
that M = Pn A. Since P € U; p(a;), we have a; ¢ P for some i, which means a; ¢ M.
The obtained contradiction proves that the f-ideal in A generated by the a; is A. This
means there is a finite number of the a; and b; € A with 1 < |bjay + -+ + bya,|. Then
1 < |billar] + - + |bu]|an|- Let @ € X (®). If all a; € @, then 1 € @), a contradiction. Thus,
X(®) =p(ar)u--uep(a,), proving compactness.

We next show that X (®) is Hausdorff. Let P, @ be distinct elements of X (®). By
Lemma 5.2, there isa e A with 0<a,ae P,and a¢ Q. Let M =PnAand N =QnA.
Then M, N are maximal (-ideals of A with a € M and a ¢ N. Since A/M and A/N are
isomorphic to R, there is 0 < A € R with a + N = A+ N. Therefore, if b = a — \/2, then
b+N>0+N and b+ M <0+ M. Thus, b= ¢ M and b* ¢ N (see Remark 2.11). Since
b* Ab™ =0, we have P € p(b7), Q € p(b*), and p(b*) np(b™) = (b* Ab™) = p(0) = @ by
Lemma 5.5. Consequently, we have separated P, with disjoint open sets, so X (D) is
Hausdorft. [
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5.7. LEMMA. Let ©,€ € pdv and let o : ® — € be a proximity morphism. Define
X(a): X(€) > X (D) by X(a)(P) = a1 (P). Then X(a) is a well-defined continuous
map.

PROOF. For P € X(€&) let I := ya~!(P). To see that [ is an (-ideal, let x,y € I. Then |z| <
x' and |y| <y’ for some /. y" with a(z'),a(y’) € P. Therefore, there are a,be A = R(D)
with |z] <a <" and |y| < b <y’ Thus, |[r+y|<|z|+]|y| < a+b. By Lemma 3.8, a] is a
vector lattice homomorphism, so

a(a+b) =a(a) +a(b) < az’) +a(y').

Since a(x') + a(y’) € P, we see that a(a+b) € P, and hence zxy € I. If x,y € D with
|z| < |y| and y € I, then it is clear from the definition that z € I. Therefore, I is an (-ideal.
It is clearly round. Set B = R(€). By Lemma 5.2(4), N := Pn B e Y(B). Thus, as a4
is a vector lattice homomorphism, a='(N) € Y(A), so by Lemma 5.3, {a~!(N) € X (D).
But {a !(N) ¢ {a~!(P) = I. Therefore, to see that I is an end, we only need to show
that I is proper. If not, then 1 € I, so 1 < d for some d with a(d) € P. Since 1 < d, we
have 1 = a(1) < a(d), which implies 1 € P, a contradiction. Thus, I is proper, and hence
is an end. This shows X («) is well defined.

If Qe X(€)and ae A, then Q € X(a)(p(a)) iff a(Q) € p(a) iff a ¢ {a 1 (Q) iff
a(a) ¢ Q. Therefore, X(a) ' (p(a)) = p(a(a)), and hence X («) is continuous. =

5.8. THEOREM. Define X : pdv - KHaus by sending © € pdv to X (D) and :D - &
to X(B): X(€) > X (D). Then X is a well-defined contravariant functor.

PROOF. By Theorem 5.6, X(®©) € KHaus for each © € pdv; also, by Lemma 5.7, X
sends proximity morphisms to continuous maps. It is clear that X sends identity maps
to identity maps. It remains to prove that if 5, : ®; - Dy and [y : Dy - D3 are
proximity morphisms, then X (fs « 81) = X(51) 0 X(52). Let Q € X(®3). We need to
prove that §(82 x £1)71(Q) = 4671 (651 (Q)). Since the proximities are reflexive and the
restriction of 5 x B; to the reflexive elements is function composition (see Remark 3.13), it

is straightforward to see that { (52 + £1)"H(Q) = {671 (551(Q)) = {67 (15;1(Q)), as desired.

Consequently, we have two contravariant functors 91 : KHaus — pdv and X : pdv —
KHaus. In the next section we will see that these two functors yield a contravariant
adjunction between pdv and KHaus that restricts to a dual equivalence between KHaus
and a full subcategory of pdv, which we will describe explicitly.

6. Contravariant adjunction and duality

In this section we show that the functors 91 : KHaus — pdv and X : pdv -~ KHaus
yield a contravariant adjunction, which restricts to a dual equivalence between KHaus
and the image of 9o X. We characterize this image as those (D, <) € pdv, where < is
uniformly closed in the product D x D.
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6.1. THEOREM.

(1) For X e KHaus, define e : X - X(OM(X)) by e(z) ={f e N(X) :|f|]*(z) =0}. Then
€ is a well-defined homeomorphism.

(2) lKHaus ~ X oM.

PROOF. (1). To see that ¢ is well-defined, let 2 € X and let f, g € e(z). Because (-)* is
order preserving, |f £g|* < (|f|+|g|)*. Since the sum of upper semicontinuous functions is
upper semicontinuous, |f|* +|g|* is upper semicontinuous. Therefore, as |f|+|g| < |f|* +|g]*,
we have (|f|+[g]))* < |fI* +|g|*. Thus, |f £g|* <|f|* +|g|*. Because f,g € e(x), we have
|fI*(x) =0 =|g|]*(x). Consequently, |f+g[*(z) =0, and so f+gee(x). Next, suppose that
|f| <lg]l and g € e(x). Then 0 < |f[*(z) < |g|*(x) = 0. Therefore, |f|*(x) =0, so f € e(x).
This shows that £(x) is an f-ideal of N(X). To see that (z) is round, let f € ¢(x). Then
|f]*(x) = 0. By the definition of |f|*, if € > 0, then there is an open neighborhood U of z
with U < |f|"!(-¢,¢€), so |f| is continuous at x. Hence, by [37, Thm. 2], there is ¢ € C'(X)
with |f|]* < ¢ and ¢(x) = 0. Therefore, c € e(x) and |f| < ¢. Thus, (z) is round.

To see that e(z) is an end, suppose that I is a round ideal properly containing e(z).
Take f € I ~e(x). Then |f[*(z) > 0. Since I is round, there is g € I with f < g.
Consequently, there is ¢ € C'(X) with f < c¢<g. Since [ is convex, ¢ € I. This means that
I nC(X) properly contains e(z) nC(X) = M, == {f € C(X) : f(z) =0}. But M, is a
maximal ideal of C'(X). Therefore, I nC(X) = C(X), and so 1 € I. Thus, I = N(X).
This proves that £(x) is an end of N(X).

To see that € is onto, suppose P is an end of 9(X). By Lemma 5.2(4), PnC(X) is
a maximal ¢-ideal of C'(X'). Therefore, there is x € X with PnC(X) = M,. Let f e e(x).
Then, by the argument above, there is ¢ € M, with |f|* < ¢. Since ¢ € P, we see that
f € P. This yields e(x) € P. As g(x) is an end, we conclude that P =¢&(x). To see that ¢
is 1-1, suppose z € X. Then e(z) nC(X) = M,, and so if = # y, then e(z) # (y) because
M, # M,.

Finally, since both X and X (91(X)) are compact Hausdorff, to prove that ¢ is a
homeomorphism it is sufficient to show that ¢ is continuous. For this we observe that if
feC(X), then

e (e(f)) ={reX: fée(r)}={xeX:|f]"(z) >0} = X\ [f]7(0)

is open.

(2). We show that ¢ yields a natural equivalence between lgpaus and X o 9%, For
X e KHaus we will write ex for the homeomorphism X - X(0M(X)). Let 0: X - Y be
a continuous map with X,Y € KHaus. We need to show that the following diagram is
commutative.

|
XOUX)) < mmy X (UY)
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Let z € X. For c e C(Y), we have c € ey (o(z)) iff |c|(o(x)) = 0 iff |c(o(z))| = 0. This
happens iff |c o o|(x) = 0, which happens iff |[N(o)(c)|(x) = 0, which is equivalent to
N(o)(c) € ex(z). Therefore, ¢ € ey (o(x)) iff c € (N(0))'(ex(x)). On other hand, if
p = X(N(0)), then since p(ex(z)) = {N(0) ' (ex(x)), we have by Lemma 5.2(1) that
plex(x)) nC(Y) = N(0)H(ex(x)) nC(Y). Thus, ey (o(x)) nC(Y) = p(ex(x)) nC(Y),
so ey (o(x)) = p(ex(x)) by Lemma 5.2(3). "

6.2. THEOREM.

(1) For © € pdv, there is a vector lattice isomorphism [ : D — N(X (D)) in bav such
that d < e implies B(d) <c(x (o)) B(e).

(2) If R(®) € ubav, then [ is a proximity isomorphism.
(3) There is a natural transformation 1,4, > 9o X.

PROOF. (1). Let a € A = R(®). We define a real-valued function f, on X(®) by
fa(P) = A, where X\ € R satisfies A+ P = a+ P. To see that f, is well defined, by
Lemma 5.2(4), if P € X(D), then Pn A is a maximal f-ideal of A, and A/(P n A)
embeds as a vector lattice in D/P. But, A/(P n A) is isomorphic to R, and so a + P is
in the image of R - D/P. If (A, ) is an open interval in R, then Remark 2.11 implies
that f-1(\, p) = o((a = A)*) no((p —a)*), which is open in X(®). Therefore, f, is
continuous. It is also straightforward to see that the map a : A - C(X (D)) sending
a to f, is a morphism in bawv, and it is injective by Remark 5.4(2). The image of A
separates points since if P # (), then Pn A and ) n A are distinct maximal ¢-ideals of A
by Lemma 5.2, so there is a € A with a € (Pn A) N~ (Q n A). Therefore, f,(P) + f.(Q).
Thus, by the Stone-Weierstrass Theorem, a(A) is a uniformly dense vector sublattice of
C(X(®)). Consequently, by Lemma 3.5 and Remark 4.9, both D and N(X (D)) are
Dedekind completions of A. So, a extends to an isomorphism §: D — N(X (D)) in bav
(see, e.g., [27, pp. 185-186]). From this (1) follows since < on D is a reflexive proximity
and a(A) c C(X(9)).

(2). Suppose A = D(®) is uniformly complete. By (1), a: A - C(X(D)) is 1-1 and
a(A) is uniformly dense in C(X(®D)). Therefore, v is an isomorphism in bav. From
this it is clear that d < e iff 8(d) <c(x (o)) B(€), and so § is a proximity isomorphism by
Proposition 3.14.

(3). Let f:® — € be a proximity morphism. We denote by o the proximity
morphism © - MN(X (D)) defined in (1). We need to show that the diagram

D i ¢
Bﬁj jﬁ@
N(X (D)) e N (@)

is commutative. Let A = R(®) and B = R(€¢). By Theorem 3.10, proximity morphisms
are determined by their action on reflexive elements, so by Remark 3.13 it is enough



1118 G. BEZHANISHVILI, P. J. MORANDI, B. OLBERDING

to show that fe(B(a)) = N(X(53))(Bo(a)) for each a € A. We have Be(B(a)) = fs(a)-
On the other hand, fo(a) = fi, so N(X(5)) sends f, to f, o X(B). Let Q € X(€)
and set P = X(8)(Q) = {671(Q). If A € R with a -\ € P, then f,(P) = \. Since
a-XeA, wesee that a - A e 371(Q), so f(a) - A € Q. Therefore, fz(,)(Q) = A. Thus,

(fao X(B)NQ) = fa(P) = X = faa)(Q). This yields fz(q) = fa o X(3), as desired. =

6.3. REMARK. Our use of the Stone-Weierstrass Theorem in the proof of Theorem 6.2(1)
is crucial. For more on the role that this theorem plays in our approach to bounded
archimedean vector lattices and f-algebras, see [7]. The use of the Stone-Weierstrass
Theorem here also highlights a difference between the f-group and vector lattice cases:
If G is an (-group and Y (G) is the Yosida space of G, then although the image of G in
C(Y (GQ)) separates points, G need not be uniformly dense in C(Y (G)).

6.4. REMARK. The proof of Theorem 6.2 gives a different type of functorial representation
of objects in pdv. Let © = (D,<),€ = (FE,<) € pdv with A= R(®) and B = R(€). Sup-
pose 3 : D — € is a proximity morphism. Then there are isomorphisms v: D - N (X (D))
and n: £ - N(X¢) in bav such that y(A) € C(X(®)) and n(B) € C(X(€)). It is ob-
vious that (N(X (D)), <)), (N(X(€)),<yp)) € pdv, that v: D - (N(X (D)), <y(4)),
n: €= (N(X(€)),<,p)) are proximity isomorphisms, and that the following diagram
commutes:

D b ¢

(N(X(D)), <5)) (N(X(€)), <n(m))

N(X(8))

This makes it possible when working with objects and morphisms in pdv to reduce to
the case that the object is of the form (N(X),<), where the reflexive elements of < are
in C'(X). This differs from the representation afforded by 9o X, which always produces
proximity Dedekind vector lattices with closed proximities, which we define next.

6.5. DEFINITION. Let © = (D, <) € pdv. We call < a closed proximity provided the graph
of < is uniformly closed in the product topology on D x D.

6.6. THEOREM. Let © = (D,<) € pdv and let A = R(®). Then < is a closed proximity
iff A€ ubav.

PROOF. Suppose that < is a closed proximity. If {a,} is a sequence of elements in A
converging to a € D, then since a, < a, for all n, the fact that < is closed implies that
a < a, and hence a € A. Therefore, A is uniformly closed in D. Since D is a complete
metric space with respect to the uniform norm and A is uniformly closed in D, it follows
that A is uniformly complete. Thus, A € ubav.

Conversely, suppose A € ubav. By the proof of Theorem 6.2(2), A is isomorphic to
C(X (D)) and D is isomorphic to (N(X(D)),<c(x(0)))- We may thus identify A with
C(X(®)) and D with N(X(®D)). Let {(fn,gn)} be a sequence in D x D such that f, < g,
for all n and {(fn,gn)} converges to (f,g) € D x D. Then f, — f and g, — g. Therefore,
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for € > 0, there is a positive integer M such that | f,, - f|| < ¢ for each n > M. This implies
fao—e< f< fu+e, and hence fr—e < f* < fr+e. Thus, |f - f*| < e, which proves
fr— f*. Since f, < gn, there is ¢, € A such that f, <c, < ¢g,. Because ¢, is a continuous
function, f* < ¢,, so f* < g, for each n. Since the partial order on N (X (D)) is pointwise,
if x € X, then f*(x) < g,(x) for each n. Because uniform convergence implies pointwise
convergence, we get f*(x) < g(x) for each x, and so f* < ¢g. Applying the Katétov-Tong
Theorem (see Remark 4.14) then yields f < g. Thus, < is a closed proximity. [

6.7. DEFINITION. Let cpdv be the full subcategory of pdv whose objects are prorimity
Dedekind vector lattices with a closed proximity.

6.8. COROLLARY. The equivalence bav — pdv restricts to an equivalence ubav — cpdv.

PRrROOF. Apply Theorems 3.17 and 6.6. ]
6.9. COROLLARY. The image of the functor 91: KHaus — pdv is cpdv.

PROOF. For X ¢ KHaus, since R(91(X)) = C'(X), which is uniformly complete, 91(X) €
cpdv by Theorem 6.6. n

6.10. THEOREM. The functors X : pdv - KHaus and N : KHaus - pdv yield a
contravariant adjunction, which restricts to a dual equivalence between cpdv and KHaus.

cpdu© pdv

~ K

KHaus

PROOF. By Theorem 6.1(2) we have a natural isomorphism lggaus = X ©9%. By Theo-
rem 6.2(3), there is a natural transformation 1,4, - 910 X, which restricts to a natural
isomorphism 1.pgy = 910 X by the proof of Theorem 6.6. Thus, 91 and X yield a con-
travariant adjunction between pdv and KHaus which restricts to a dual equivalence
between cpdv and KHaus. [

6.11. DEFINITION.

(1) Let © = (D,<) € pdv. We call the proximity < trivial if < is equal to <, and we call
D trivial if < is trivial.

(2) Let tpdv be the full subcategory of pdv consisting of trivial objects of pdv.

(3) Let ED be the full subcategory of KHaus consisting of extremally disconnected objects
of KHaus.

If ® =(D,<) e tpdv, then D = R(®), so R(®) is uniformly complete by Remark 2.7,
and hence ® € ecpdv by Theorem 6.6. Thus, tpdv is a full subcategory of cpdv.
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6.12. COROLLARY.
(1) The equivalence bav - pdv restricts to an equivalence dbav — tpdv.
(2) The functors M and X yield a dual equivalence between tpdv and ED.

PROOF. (1). If A € dbav, then ©(A) = A and <4 is equal to <4, so D(A) € tpdv. If
D =(D,<) € tpdv, then R(D) = D € dbav. Now apply Theorem 3.17.

(2). Let ® = (D,<) € tpdv. Since tpdv ¢ cpdv, Theorem 6.2(2) implies that © 2
(M(X (D)), <c(x(@)))s 50 <c(x(0)) is equal to <. This yields that C(X (D)) = N(X (D)),
so X(®) € ED by [14, Cor. to Thm. 3.2]. Conversely, if X € ED, then C(X) = N(X) by
[14, Cor. to Thm. 3.2}, so <¢(x) is the partial order < on N(X'). Therefore, M(X) € tpdv.
Now apply Theorem 6.10. [

7. Yosida Representation and Kakutani-Krein Duality

In this section we apply our analysis of the functors 91, X, R, and © to show how the
classical Yosida Representation and Kakutani-Krein Duality can be derived in our setting.

7.1. DEFINITION. [27, §45] Let A € bav. The Yosida space of A is the set Y(A) of
maximal (-ideals of A equipped with the topology whose closed sets are the sets of the form

{MeY(A):IcM is an (-ideal of A}.

Lemma 5.2(3) and Remark 5.4(1) show there is a bijection X (D(A)) - Y (A) given
by P~ PnA. That this is a homeomorphism is clear by Lemma 5.5(5). Thus, X (D(A))
and Y (A) are homeomorphic. From this and Theorem 5.6 we deduce the classical fact
that the Yosida space Y(A) of each A € bav is compact Hausdorff [40]. This observation
suggests a functor from bav to KHaus, which we define next. We clarify the relationship
between this functor and the functor X in Lemma 7.3.

7.2. NOTATION.

(1) We denote by Y : bav -~ KHaus the contravariant functor that sends A € bav to
Y (A) and a morphism A - B in bawv to the induced continuous map Y (B) — Y (A).

(2) We denote by C': KHaus — bav the contravariant functor that sends X ¢ KHaus
to C'(X) and a continuous map X — Y to the induced morphism C(Y) - C(X) in
bav.

The following diagram illustrates the functors we consider in this section.
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Lemma 7.3 relates the functors Y and C to 91, X,®, and R. Using this lemma and
the fact from Theorem 3.17 that ® o R 2 1,4, and R o® & 144, the reader can deduce
additional relationships. However, note that in general the diagram does not commute,
since ® is not isomorphic to oY (the former has image pdv while the latter has image
cpdv).

7.3. LEMMA. Dt2®Do(C and X 2Y o R.

PrOOF. First we claim that 91 2 ® o C. Suppose X € KHaus. By Proposition 4.7,
N(X) is the Dedekind completion of C'(X). Thus, M(X) 2 (DoC)(X). lf 0:Y - X is
continuous, Lemma 4.15 implies that the following diagram commutes, so it follows that

MDDl
N(o)

N(X) N(Y)
(90 C)(X) e (D0 O)(Y)

Next we show that X Y o R. For each © € pdv, let np : X(®D) - Y(R(®D)) be defined
by P~ PnR(®). As noted before Notation 7.2, g is a homeomorphism. If §: 0 — € is
a proximity morphism, let A= R(®), B = R(€), and a = R(3). We consider the diagram

e |ro

oY)

Let P e X(€). Then (Y(a)one)(P)=Y(a)(PnB)=a'(PnB). On the other hand,
(o o X(B))(P)=no(4 B7H(P)) = (§ B7H(P))nA=p"(P)nA=a(PnB).

Thus, the diagram commutes, and since 7¢e and 7o are homeomorphisms, we have X

Y o R.

m IR

7.4. THEOREM.

(1) (Yosida Representation [40]) If A € bav, then there is an injective homomorphism
va: A= C(Y(A)) in bav such that the image of ya is uniformly dense in C(Y (A)).
In fact, the functors C and Y yield a contravariant adjunction.

(2) (Kakutani-Krein Duality [24, 26]) The functors C and Y restrict to a duality between
ubav and KHaus.

(3) (Stone-Nakano Theorem [35, 36, 32]) The functors C and Y restrict further to a
duality between dbav and ED.
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PROOF. (1). By Theorem 6.2(3), there is a natural transformation 1,4, - 910 X. By
Theorem 3.17, R and ® form a category equivalence, so there is a natural transformation
lpgwy TRoD 2 Rolpg,0®D - RoMoXo®D. By Lemma 7.3, X 2Y o R. Therefore, there
is a natural transformation lpe, > Ro9No (Y oR)o®D 2 RoMoY. Since RoN = C,
we obtain a natural transformation 7 : 1pe, — C oY. By the proof of Theorem 6.2(1),
for each A € bav, the component map 4 : A - C(Y(A)) is injective and the image is
uniformly dense in C(Y(A)). Moreover, by Theorem 6.1(2) and Lemma 7.3, 1kgaus
XoNMzYoRoNz2Y oC. It follows that Y and C' form a contravariant adjunction.

(2). By Corollary 6.8, the functors R and ® restrict to an equivalence between ubav
and epdv. By Theorem 6.10, the functors 9T and X restrict to a dual equivalence between
cpdv and KHaus. Therefore, X o ® and R o1 yield a dual equivalence between ubav
and KHaus. By Lemma 7.3, X o ® 2Y o Ro® 2Y and RoM2 Ro®Do(C 2 (. Thus, Y
and C' yield a dual equivalence between ubav and KHaus.

(3). By Corollary 6.12(1), the functors R and © further restrict to an equivalence
between dbav and tpdv. By Corollary 6.12(2), the functors 91 and X further restrict
to a dual equivalence between tpdv and ED. Therefore, X o ® and R o1 yield a dual
equivalence between dbav and ED. By the proof of (2), X o® %Y and Ro = C. Thus,
the restrictions of Y and C' yield a dual equivalence between dbav and tpdv. [

7.5. REMARK. In light of Theorem 7.4, we make explicit now an idea that underlies our
approach in this article. The classical Yosida representation A - C(Y (A)) of Theorem 7.4
can be viewed as a functorial representation of uniform completion via continuous func-
tions. Instead of focusing on uniform completion and making the Yosida representation
the primary tool, we have instead emphasized the Dedekind completion and what can be
termed the Dilworth representation: A — N(Y (A)). However, neither Dedekind comple-
tion nor the Dilworth representation extends to a functor from bav to dbav. So we have
adjusted the Dilworth representation to A - (X (®(A))) and worked in pdv rather
than dbav. In this way, both the Dilworth representation and Dedekind completion be-
come functorial. Corollary 6.8 and Theorem 7.4 are examples of how uniform completion
and the Yosida representation can be encompassed by this approach.

We conclude this section by two more applications of our approach that connect skele-
tal maps with normal homomorphisms. For topological spaces X,Y we recall that a
continuous map o : X - Y is skeletal provided F' nowhere dense in Y implies that o= (F)
is nowhere dense in X. We also recall that o is quasi-open if U nonempty open in X
implies that Int f(U) # @. It is well known that each skeletal map is quasi-open and that
the two concepts coincide in KHaus.

For A, B € bav we recall that a map a : A - B is a normal homomorphism if it is
a morphism in bawv that preserves all existing joins (and hence all existing meets). The
next theorem relates the two concepts.

7.6. THEOREM. Let A, B € bav and let a: A - B be a morphism in bav. The following
are equivalent.

(1) « is a normal homomorphism.
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(2) D(«) is a normal homomorphism.
(3) Y(a):Y(B) > Y(A) is skeletal.

PROOF. (1) = (2). This follows from [2, Thm. 1].

(2) = (3). Set 0 = Y(«a). By Theorem 7.4(1), we may assume that A ¢ C(Y(A)),
Bc C(Y(B)), and o = C(0)|a. We also identify D(A) = N(Y(A)), D(B) = N(Y(B)),
and D(a) = N(o). To show o is skeletal, it is sufficient to show that if U is open dense
in Y (A), then 0=1(U) is dense in Y (B). Since Y (A) is compact Hausdorff, we may write
U =U; Vi with each V; regular open. Therefore, xyv, € N(Y (A)) (see Example 4.11). The
pointwise join of the xy, is xuy. So V;xv, = (xv)* = Xme() = 1- Since N (o) is a normal
homomorphism, V; N(o)(xv,) = 1. For each i we have N(o)(xv;) = (xv; °c 0)* = xw,,
where W, = Int (0‘1(%)). Thus, V;xw, =1. Let W =U;W,. Then 1=V, xw, = X1nt (77
Therefore, W is dense in Y (B) (see Example 4.11). We claim that this forces o=1(U) to
be dense in Y(B). To see this, let V' be open in Y(B). Then there is i with V nW; = @.
Therefore, V no=1(V;) #+ @. Since V is open, Vno1(V;) # @. Thus, Vno 1 (U) # @, and
so 071(U) is dense. Consequently, o is a skeletal map.

(3) = (1). Set 0 = Y(«). By Theorem 7.4(1), we may assume that A ¢ C'(Y(A)),
BcC(Y(B)), and a=C(0)|a. So a(a) =aoo for all a e A. Suppose a =V;a; in A. We
claim that a(a) = V; a(a;). Since A;(a - a;) =0, by setting b; = a — a;, we have A;b; = 0.
It is then sufficient to prove that A; a(b;) = 0. As « is order preserving and «(0) = 0, we
have that 0 is a lower bound for the a/(b;) in B. Suppose 0 is not the greatest lower bound
for the a(b;) in B. Then there is ¢ € B such that 0 < ¢ < «a(b;) for all i. Since Y(B) is
compact Hausdorff and the open set Coz(c) = {y € Y(B) : ¢(y) # 0} is nonempty, there is
a nonempty regular open subset V' of Y (B) whose closure V is contained in Coz(c). Let

=inf{c(y) :y € V}. Since V is compact, A € {c(y) :y € V}, and so, since V ¢ Coz(c), we
have 0 < A. L
Let U = Int (O’(V)). Since o is skeletal, and hence quasi-open, U is nonempty. As U

is regular open in Y (A), we have A\xy € N(Y (A)). We claim Axy < a; for each i. Since
0 < a;, it suffices to show that A < a;(u) for all we U. Let ue U. Since Y (A) and Y (B)
are compact Hausdorff, o is a closed map, and so U c o(V) c o (V) Therefore, there is

y € V such that o(y) = u. The fact that b < a(a;) implies

A <b(y) < (a(ai))(y) = ai(o(y)) = ai(u),

which shows that Axy < a;. Thus, 0 < Axy < A;a; =0, a contradiction which shows that 0
is the greatest lower bound of the a(a;). Consequently, « is a normal homomorphism. m

The next corollary gives a different proof for compact Hausdorff spaces of a result due
to Rump for the category of topological spaces with skeletal maps [34, Cor. 2, p. 167].

7.7. COROLLARY. Let KHaus,, denote the category of compact Hausdorff spaces and
skeletal maps, and let EDy;, denote the full subcategory consisting of extremally discon-
nected spaces. Then EDg is a coreflective subcategory of KHausgy,.
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PROOF. By Theorems 7.4(1) and 7.6, there is a contravariant adjunction between KHausy
and the category bawv,,, of bounded archimedean vector lattices and normal homomor-
phisms. By Theorem 7.4(3), the image under the functor KHausg, - bav,,, of EDg;
is the full subcategory dbawv,,. of bav,,.. Since dbav,,, is a reflective subcategory of
bav,,, [2], we conclude that EDyy is a coreflective subcategory of KHausgy. =

8. Proximity Dedekind /-algebras

The Yosida representation, along with the fact that for X a compact Hausdorff space
C(X) is not only a vector lattice but an f-algebra, means that multiplication is present
in a natural way on a number of the objects we consider. In this section we show how to
incorporate multiplication into the categorical picture developed in the previous sections.

8.1. CONVENTION. We assume that all rings are commutative and unital.

8.2. DEFINITION.

(1) A ring A with a partial order < is an f-ring if A is an l-group and 0 < a,b implies
0<ab.

(2) An l-ring A is an (-algebra if A is a vector lattice and an R-algebra.
(3) An l-ring A is bounded if 1 is a strong order unit.
(4) An l-algebra A is a Dedekind f-algebra if A is Dedekind complete.

8.3. NOTATION. Denote by baf the category of bounded archimedean /(-algebras and
unital /-algebra homomorphisms.

8.4. ExaMPLE. Let X ¢ KHaus.

(1) C(X) € bal, where multiplication is defined pointwise. In fact, C'(X) is a uniformly
complete object of bat.

(2) N(X) e bal. Since N(X) is the Dedekind completion of the ¢-algebra C'(X), we have
that N(X) is an f-algebra (apply [32, Sec. 31] and [23, Lem. 1]; see [8, Thm. 3.1})
with respect to the binary operation - which is first defined for all 0 < f, g € N(X) by

fog=\{ab:0<a,be C(X),a< f,b< g},
and then is extended to all f,g e N(X) by

frg=frg"+f g -(fTg+f 9.
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(3) The multiplication - on N(X) is in fact the normalization of the pointwise multiplica-
tion. To see this, let f,g € N(X) and let ® denote pointwise multiplication in B{X).
First suppose f,g > 0. We use sup for pointwise joins in B(X). By Lemma 4.2(1),
f=sup{aeC(X):0<a< f}and g=sup{be C(X):0<b<g}. A short calculation
shows that f® g=sup{ab:a,be C(X),0<a< f,0<b<g}. Therefore,

frg=\{ab:0<a,beC(X),a< f,b<g}
= (sup{ab:0<a,be C(X),a< f,b<g})*

= (fog)”,
which implies that for 0 < f,g e N(X), we have f-g=(f®g)".

Now let f,g € N(X) be arbitrary. We write & for the pointwise addition in B(X),
and + for the addition in N(X) obtained by normalization of pointwise addition.
There are 0 < A\, u € R with 0 < f+ A, g + . Since addition of a scalar is the same in
both B(X) and N(X) (see Remark 4.8), we have

(F+N)(g+u)=((f+No(g+u)*=((fog) ®rge uf ® )"
=(fog)* +Xg+nf+Au

On the other hand, (f +X)-(g+ ) = fg+ Ag+ pf + Au. Comparing this with the
equation above, we get fg=(f®g)7.

By forgetting multiplication and designating 1 as the strong order unit, we identify
baf as a subcategory of bav. It can be deduced from [22, Thm. 5.4] that baf is a full
subcategory of bav. In our context, this also follows easily from the Yosida representation.

8.5. PROPOSITION. We have ubav € baf € bav, where € represents that the first category
s a full subcategory of the second.

PROOF. Let A € ubav. By Theorem 7.4(2), the embedding v4 : A - C(Y(A)) is an
isomorphism. Since C(Y (A)) € ba£, this isomorphism allows us to define a multiplication
on A so that A € baf. To complete the proof it suffices to show that every vector
lattice homomorphism between objects in baf is an (-algebra homomorphism. Let « :
A - B be a vector lattice homomorphism with A, B € baf. As noted in the proof of
Theorem 7.4(1), there is a natural transformation 7 : 1ps, = C' o Y. Thus, we have the
following commutative diagram in baw:

A = B

C(Y(4)) 55 C(Y(B))

Since A and B are f-algebras, the vector lattice homomorphisms 4 and v are easily seen
to be f-algebra homomorphisms. Because C'(«) is a morphism in baf, commutativity of
this diagram implies that a preserves multiplication, and so « is a morphism in baf. =
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8.6. COROLLARY. Let A € bav. If A € bak, then there is a unique multiplication on A
such that A € bak.

PROOF. Suppose - and ® are two multiplications on A, each of which make A € baf. Let
14 : A - A denote the identity map. Then 1, is a vector lattice isomorphism. Since
(A, +,-), (A, +,®) € bal, Proposition 8.5 implies that 1, is an isomorphism of (-algebras.
Thus, - and ® define the same binary operation on A. [

In [7] the full subcategory of uniformly complete objects in baf is denoted ubal.

By Proposition 8.5, ubaf = ubav. Thus, Theorem 7.4 and Proposition 8.5 yield Stone-
Gelfand-Naimark Duality [35, 16] (for a history of this theorem, see for example [7]):

8.7. COROLLARY. (Stone-Gelfand-Naimark Duality) The functors C and Y induce a con-
travariant adjunction between bal and KHaus. This adjunction restricts to a dual equiv-
alence between ubafl and KHaus.

By Theorem 3.17, ® : bav — pdv is an equivalence. We describe next the image under
® of baf in pdv. To distinguish the proximities we defined earlier and those below, we
will refer to a proximity on a Dedekind vector lattice as a vector lattice proximity. We
note that if D € dbav, then D € ubav = ubaf, and so D is a Dedekind /-algebra. We let
dbat be the full subcategory of ubaf consisting of Dedekind (-algebras.

8.8. DEFINITION. Let D € dbav and < be a vector lattice proximity on D.

(1) We call < an (-algebra proximity if, in addition to (P1)—(P9), < also satisfies
(P10) a,b,c,d >0 with a <b and c < d imply ac < bd.

(2) We call a pair ® = (D, <) a proximity Dedekind ¢-algebra if D is a Dedekind (-algebra
and < is a reflexive L-algebra proximity on D.

(3) Suppose © and € are proximity Dedekind (-algebras and o : D — & is a proximity
vector lattice morphism. We call o a proximity ¢-algebra morphism if in addition to
(M1)—(M7) we also have

(M8) afca) = alc)a(a) for allae D and 0 < ce R(D).

8.9. REMARK. To show that o : ® — € is a proximity f-algebra morphism, it is sufficient
to verify (M8) only for a > 0 in ©. For, suppose that a(ca) = a(c)a(a) for all 0 < c € R(D)
and 0 <a e D. Let be D. Since D is bounded, there is A € R with b+ A > 0. Therefore,
a(c)a(b+ ) = a(c(b+ X)) = acb+ Ae). By (M1), (M6), and (M7) this simplifies to
a(c)(a(b) + A) = a(cb) + Aafc). Thus, a(c)a(b) = a(cb), and so (M8) holds.

8.10. LEMMA.
(1) Let ® € pdv. Then © is a proximilty Dedekind (-algebra iff R(D) € bal.
(2) Let Aebav. Then ©(A) = (D(A),<4) € pdl iff Ae bal.
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PROOF. (1). Suppose ® = (D, <) is a proximity Dedekind (-algebra. By Lemma 3.5,
R(®D) € bav, so it suffices to show that it is closed under multiplication. If a,b € R(D)
with 0 < a,b, then a < a and b < b imply that ab < ab by (P10), so ab € R(®). Now, for
arbitrary a,b € R(D), there are scalars A,y with a + \;b+ p > 0. By the previous case,
(a+N)(b+u) e R(D). Therefore, ab+ (pa + b+ M) € R(D). Since pa + A\b+ A € R(D),
this implies ab € R(D). Thus, R(D) € bal.

Conversely, if R(®) € baf and a,b,c,d € D with a,b,c,d >0, a < b, and ¢ < d, then
there exist r,s € R(®) with a <7 <b and ¢ < s <d. Therefore, since all elements involved
are in the positive cone of D, we have ac < rs < bd. As R(D) is a ring, rs € R(®), and so
ac < bd. This verifies (P10), and hence ® is a proximity Dedekind (-algebra.

(2). This follows from (1) since A = R(D(A)). "

8.11. ExaMPLE. If X € KHaus, then ® = (N(X),<¢(x)) is a proximity Dedekind ¢-
algebra. To see this, by Example 8.4(2), N(X) is a Dedekind ¢-algebra. By Lemma 4.13,
® e pdv. Since R(D) = C(X), Lemma 8.10(1) implies that © is a proximity Dedekind
(-algebra.

8.12. THEOREM. A proximity vector lattice morphism between proximity Dedekind (-
algebras is a prozimity {-algebra morphism. Thus, the proximity Dedekind (-algebras with
proximity £-algebra morphisms form a full subcategory of pdv.

PROOF. Let ®, & be proximity Dedekind /-algebras, and let §: ® — & be a proximity
vector lattice morphism. It is sufficient to show that /5 satisfies (M8). Let A = R(D),
B = R(€¢), X = X(D), and Y = X(¢). By Lemma 8.10(1), A, B € baf. Therefore, by
Proposition 8.5, R(5) : A — B is a morphism in baf. By Remark 6.4, we may assume
without loss of generality that ® = (N(X),<4) and € = (N(Y),<p), together with A ¢
C(X)and BeC(Y). Let0<ae Aand f € N(X). By Remark 8.9, we may assume f > 0.
Since 3 is a proximity vector lattice morphism, we have 5(f) = V{8(b) :be A,0<b< f}.
As Ac C(X) and S is order preserving, B(f) = V{B8(b):0<b< f,be C(X)}. Applying
the functor Ro9to X to 3, we see that J restricts to a vector lattice homomorphism from
C(X) to C(Y).

First suppose that a > 1. Then a~! € C(X). Therefore, if ¢ € C(X), then ¢ < af iff
a~lc< f. Thus,

Blaf) =\/{B(c):0<ceC(X),c<af}
=\V{B(c):0<c (X),a‘lcgf}
—\/{B(a)ﬁ( ) (X),Osdsf}

a) (V{(d):0<d< f})

VA
( )B(f),

where the third equality follows from the fact noted above that the restriction of £ to
C(X) is a morphism in baf, and the fourth equality holds by [23, Lem. 1] since 3(a) is
positive.
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Next, let a > 0. By the previous paragraph,

B((L+a)f)=B(1+a)B(f)=(1+p(a))B(f)=B(f)+B(a)B([).
On the other hand, S((1+a)f) = B(f +af). Therefore,

Bf +af)=B(f)+B8(a)5(f).

As noted in the proof of (M5) in Lemma 3.9, 5(f) + 5(g) < B(f +g) for all ge N(X). In
particular, A(f) + B(af) < B(f +af) = B(f) + Ba)B(]). s0 Blaf) < B(a)B(f). For the

reverse inequality, we have

B(a)B(f) = Bla) (V{B(b) :be A,0<b< f}) =\V{B(ab) : 0<be A b< f}
<\V{B(c):ce A,0<c<af} =p(af).

Thus, B(af) = 8(a)B(f). This shows that (M8) holds for 3, completing the proof. n

From Theorem 8.12 we obtain as an analogue of Theorem 3.10 a characterization of
proximity f-algebra morphisms in terms of how they lift reflexive elements.

8.13. COROLLARY. Suppose © = (D,<),& = (E,<) are proximity Dedekind (-algebras
and B: D — E is a map such that B(R(D)) ¢ R(€). Set o = B|reoy. Then the following
are equivalent.

(1) B is a proximity €-algebra morphism.

(2) « is a vector lattice homomorphism and (x) = V{a(a) : a € R(D),a < x}.

(3) « is an L-algebra homomorphism and B(x) = V{a(a) :a € R(D),a < z}.

PROOF. Apply Theorems 3.10 and 8.12. [

8.14. COROLLARY. Suppose A,B € bal and o : A - B is an (-algebra homomorphism.
Then a map (: D(A) - D(B) is a proximity (-algebra morphism extending o iff 5(x) =
V{a(a):a <z} for all x € D(A).

8.15. DEFINITION. We denote by pd¥€ the category of proximity Dedekind (-algebras with
proximity £-algebra morphisms. Let epd¥ be the full subcategory of pd€ whose objects are
prozimity Dedekind (-algebras with a closed proximity. Let tpd£ be the full subcategory of
cpdl whose objects are proximity Dedekind £-algebras with a trivial proximity.

8.16. COROLLARY. The restrictions of the functors ®, R yield an equivalence baf — pd¥,
which restricts to an equivalence ubal — cpdfl, which further restricts to an equivalence

dbaf — tpdl.

PRrOOF. By Lemma 8.10 and Corollary 8.13, R restricts to a functor from pd¥£ to baf and
D restricts to a functor from baf to pd€. Thus, the first assertion of the corollary follows
from Theorem 3.17, the second from Corollary 6.8, and the third from Corollary 6.12(1).m
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8.17. REMARK. Returning to the discussion at the end of Section 2, we clarify further
why for A € bav the inclusion mapping ¢4 : A — D(A) need not be an epimorphism in
bav. By Proposition 8.5, ba¥ is a full subcategory of bawv, so it suffices to consider when
the inclusion mapping ¢4 : A - D(A) is an epimorphism in baf. By [7, Prop. 3.3], t4 is
an epimorphism iff A is uniformly dense in D(A). Thus, choosing X to be the interval
[0,1] and A = C'(X), we have that A is uniformly complete, and so A is uniformly closed
in D(A) = N(X). Since C(X) ¢ N(X) (as the characteristic function of every proper
nonempty regular open set is in N (X') but not in C'(X)), it follows that A is not uniformly
dense in D(A), and hence ¢4 is not an epimorphism.

The table below lists all of the categories we have considered in this paper.

CATEGORY DESCRIPTION
bav bounded archimedean vector lattices
ubav uniformly complete objects in bav
dbav Dedekind complete objects in bav
pdv proximity Dedekind vector lattices
cpdv objects in pdv with a closed proximity
tpdv objects in pdv with a trivial proximity
ba’t bounded archimedean ¢-algebras
ubal uniformly completely objects in batf
dba’t Dedekind complete objects in baf
pdf proximity Dedekind (-algebras
cpdfl objects in pd€ with a closed proximity
tpdl objects in pd€ with a trivial proximity
bav,,, objects in bav with normal homomorphisms
dbav,,,, objects in dbav with normal homomorphisms
KHaus compact Hausdorff spaces
ED extremally disconnected objects in KHaus
KHausy;, | objects in KHaus with skeletal maps
ED,, objects in ED with skeletal maps

The following picture summarizes the connections between some of the categories we
have considered in the paper.
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bav pdv
/ /
KHaus ubav cpdv
ED dbav tpdv
bal pd?
7 I
ubal cpdl
<_/ /
dbat tpd/

8.18. REMARK. In [7], we studied several reflectors and coreflectors in the category baf.
In doing so, we sought to individuate the full subcategory ubaf in baf by its categorical
properties. For example, it turns out that ubaf is the smallest reflective full subcategory
of baf. These considerations were motivated by the goal of unraveling the algebraic,
topological, and analytic properties that all play a role in the uniform completion functor
in baf. In the sequel [8], we considered categorical properties of dbaf, and showed,
for example, that the objects in dbaf are the injective objects in the category baf, thus
finding a categorical characterization of dbaf inside baf. The present paper continues this
sequence of ideas by finding a functorial description of Dedekind completion to accompany
the well-known description of the uniform completion functor. As with the classical case
of uniform completion, we have given a corresponding representation and duality theory
for Dedekind completions.

In [7] we also considered an important mono-coreflective full subcategory of baf con-
sisting of the R-algebras generated by their idempotents. These algebras, which we termed
Specker algebras, have a purely algebraic description and play a role, for those algebras
in baf whose Yosida space is a Stone space, that is roughly analogous to that played by
piecewise polynomials in C([0,1]). In [6], we use Specker algebras to give an algebraic
foundation for issues involving both uniform and Dedekind completions inside baf. In
doing so we bring the Boolean algebras of idempotents of Dedekind ¢-algebras to the fore-
front. When equipped with an appropriate proximity, the Boolean algebra of idempotents
becomes a de Vries algebra. Extending this proximity to the Specker algebra generated
by these idempotents involves working with finitely-valued normal functions on the dual
compact Hausdorff space. Taking limits then yields the algebra of all normal functions
equipped with a proximity as in the sense of the present paper. The resulting proxim-
ity Dedekind f-algebra thus gives a unified setting for de Vries duality and Katétov-like
insertion theorems. Finitely-valued normal functions were studied in depth in [5], and
in [6] we draw on that paper and the present article to help complete our picture of a
categorical and algebraic features of uniform and Dedekind completions in baf.
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