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TANNAKA THEORY OVER SUP-LATTICES AND DESCENT FOR
TOPOI

EDUARDO J. DUBUC AND MARTÍN SZYLD

Abstract. We consider locales B as algebras in the tensor category s` of sup-lattices.
We show the equivalence between the Joyal-Tierney descent theorem for open localic

surjections shB
q−→ E in Galois theory and a Tannakian recognition theorem over s`

for the s`-functor Rel(E)
Rel(q∗)−→ Rel(shB) ∼= (B-Mod)0 into the s`-category of discrete

B-modules. Thus, a new Tannaka recognition theorem is obtained, essentially different
from those known so far. This equivalence follows from two independent results. We
develop an explicit construction of the localic groupoid G associated by Joyal-Tierney to
q, and do an exhaustive comparison with the Deligne Tannakian construction of the Hopf
algebroid L associated to Rel(q∗), and show they are isomorphic, that is, L ∼= O(G).
On the other hand, we show that the s`-category of relations of the classifying topos
of any localic groupoid G, is equivalent to the s`-category of L-comodules with discrete
subjacent B-module, where L = O(G).

We are forced to work over an arbitrary base topos because, contrary to the neutral
case which can be developed completely over Sets, here change of base techniques are
unavoidable.

1. Introduction

Galois context. In [2, Exposé V section 4], “Conditions axiomatiques d’une theorie de
Galois” (see also [7]), Grothendieck interprets Artin formulation of Galois Theory as a
theory of representation for suitable categories A furnished with a functor (fiber functor)

into the category of finite sets A F−→ S<∞ ⊂ S. He explicitly constructs the group G of

automorphisms of F as a pro-finite group, and shows that the lifting A F̃−→ βG<∞ into the
category of continuous (left) actions on finite sets is an equivalence. The proof is based
on inverse limit techniques. Under Grothendieck assumptions the subcategory C ⊂ A of

non-empty connected objects is an atomic site and the restriction C F−→ S<∞ ⊂ S is a
point (necessarily open surjective). The SGA1 result in this language means that the
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lifting

A ⊂ E F̃ //

F
""

βG

��
S

is an equivalence. Here E is the atomic topos of sheaves on C, F is the inverse image of
the point, and βG is the topos of all continuous (left) actions on sets, the classifying topos
of G (A becomes the subcategory of finite coproducts of connected objects).

Neutral Galois context. Joyal-Tierney in [12] generalize this result to any pointed
atomic topos. They viewed it as a descent theorem, G is now a localic group, and βG,
as before, is the topos of continuous (left) actions on sets, i.e., the classifying topos of
G. Dubuc in [6] gives a proof based, as in SGA1, on an explicit construction of the
(localic) group G of automorphisms of F (which under the finiteness assumption is in fact
a profinite group). Given any pointed atomic topos S −→ E, the lifting (of the inverse
image functor) is an equivalence.

General Galois context. More generally, Joyal-Tierney in [12] consider a localic point
shH −→ E (H a locale in S) over an arbitrary Grothendieck topos E −→ S over S, with

inverse image E F−→ shH. They obtain a localic groupoid G and a lifting into βG, the
classifying topos of G:

E F̃ //

F !!

βG

||
shH

and prove the following: Given a localic open surjective point shH −→ E , the lifting (of
the inverse image functor) is an equivalence.

This is a descent theorem for open surjections of topoi. When H = Ω, shH = S, then
the point is open surjective precisely when the topos is atomic. Thus this particular case
furnishes the theorem for the neutral Galois context.

Tannakian context. Saavedra Rivano [16], Deligne [4] and Milne [5] interpret Tannaka
theory [20] as a theory of representations of (affine) K-schemas.

General Tannakian context. Deligne in [4, 6.1, 6.2, 6.8] considers a field K, a K-

algebra B, and a linear functor X T−→ B-Modptf , from a linear category X into the
category of projective B-modules of finite type (note that these modules have a dual
module). He constructs a cogèbröıde L sur B and a lifting

X T̃ //

T $$

Cmdptf (L)

ww
B-Modptf
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into the category of L-comodules (called representations of L) whose subjacent B-module
is in B-Modptf . He proves the following: if X is tensorielle sur K ([4, 1.2, 2.1]) and T
is faithful and exact, the lifting is an equivalence.
Neutral Tannakian context. If B = K, B-Modptf = K-V ec<∞,

X T̃ //

T $$

Cmd<∞(L)

ww
K-V ec<∞

In this case L is a K-coalgebra. Joyal-Street in [10] give an explicit coend construction
of L as the K-coalgebra of endomorphisms of T , and they prove: if X is abelian and T is
faithful and exact, the lifting is an equivalence.

Tannakian context over V. The general Tannakian context can be developed for a
cocomplete monoidal closed category, abbreviated cosmos, (V , ⊗, K) and V-categories
X ([18] [13], [17]). Although the constructions of Tannaka theory and some of its results
regarding for example the reconstruction theorem (see [3], [13]) have been obtained, it
should be noted that no proof has been made so far of a recognition theorem of the
type described above for a cosmos V essentially different to the known linear cases. In
particular, these results can’t be applied to obtain a recognition theorem over the cosmos
s` since in this case the unit of the tensor product is not of finite presentation.

In appendix A we develop the Tannakian context for an arbitrary V in a way that
isn’t found in the literature, following closely the lines of Deligne in the linear case [4].
Consider an algebra B in V , a category B-Mod0 of B-modules admitting a right dual,

and a V-category X furnished with a V-functor (fiber functor) X T−→ B-Mod0. We
obtain a coalgebra L in the monoidal category of B-bimodules (i.e, a B-bimodule with a
coassociative comultiplication and a counit, a cogèbröıde agissant sur B in the K-linear
case) and a lifting

X T̃ //

T ##

Cmd0(L)

xx
B-Mod0

where Cmd0(L) is the V-category of discrete L-comodules, that is, B-modules in B-Mod0

furnished with a co-action of L. Adding extra hypothesis on C and T , L acquires extra
structure:

(a) If X and T are monoidal, and V has a symmetry, then L is a B ⊗B-algebra.

(b) If X has a symmetry and T respects it, then L is commutative (as an algebra).

(c) If X has a duality, then L has an antipode.

On the relations between both theories. Strong similarities are evident to the
naked eye, and have been long observed between different versions of Galois and Tannaka
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representation theories. However, these similarities are just of form, and don’t allow to
transfer any result from one theory to another, in particular Galois Theory and Tannaka
theory (over vector spaces) remain independent.

Observing that the category of relations of a Grothendieck topos is a category enriched
over sup-lattices, we take this fact as the starting point for our research: The Galois
context should be related to the Tannakian context over the cosmos s` of sup-lattices.

In [8] we developed this idea and obtained an equivalence between the recognition
theorems of Galois and Tannaka in the neutral case over the category of Sets. In this
paper we develop the general case. We are forced to work over an arbitrary base topos
because here change of base techniques become essential and unavoidable.

The content of the paper.

Notation. Following Joyal and Tierney in [12], we fix an elementary topos S (with sub-
object classifier Ω), and work in this universe using the internal language of this topos, as
we would in naive set theory (but without axiom of choice or law of the excluded middle).
The category V = s`(S) = s` is the symmetric cosmos of sup-lattices in S.

In particular, given X ∈ S and elements x, x′ ∈ X, we will denote Jx=x′K = δ(x, x′) ∈
Ω, where δ is the characteristic function of the diagonal X

4−→ X×X. Recall that a sup-
lattice structure corresponds to an Ω-module structure, and that Ω is the initial locale.
Given a locale H we think of Ω as a sub-locale of H, omitting to write the inclusion.

We use the elevators calculus described in Appendix B to denote arrows and write
equations in symmetric monoidal categories.

A reference above an “≤” or an “=” indicates the previous result that justifies the
assertion.

Section 2. This section concerns a single elementary topos that we denote S. For a locale
G in S, we study G-modules and their duality theory. For any object X ∈ S, we show

how GX is self-dual. We consider relations with values in G, that is, maps X × Y λ−→ G,
that we call `-relations, and we study the four Gavin Wraith axioms [21] expressing when
an `-relation is everywhere defined, univalued, surjective and injective. We establish in
particular that univalued everywhere defined relations correspond exactly with actual
arrows in the topos. Finally, we introduce two type of diagrams, the � and ♦ diagrams,
which express certain equations between `-relations, and that will be extensively used to
relate natural transformations with coend constructions (not with the usual end formula).

Section 3. This section is the most technical section of the paper. Given a locale P in S we
consider the geometric morphism shP

γ−→ S and show how to transfer statements in the
topos shP to equivalent statements in S. Recall that Joyal and Tierney develop in [12] the

change of base for sup-lattices and locales. In particular they show that s`(shP )
γ∗−→ P -

Mod is a tensor s`-equivalence that restricts to a s`-equivalence Loc(shP )
γ∗−→ P -Loc. We

further these studies by examining how `-relations behave under these equivalences. We
examine the correspondence between relations γ∗X × γ∗Y −→ ΩP in shP and `-relations
X × Y −→ P = γ∗ΩP in S. We also consider `-relations in shP and the four Gavin
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Wraith axioms, and establish how they transfer to formulae in S. We also transfer the
formulae which determine the self-duality of ΩX

P .

Section 4. In this section we introduce the notions of �- and ♦-cones in a topos and study
how they relate. This allows us to consider natural transformations between functors in
terms of their associated cones of relations. Concerning the existence of the large coends
needed in the Tannakian constructions, we show that cones defined over a site of a topos
can be extended uniquely to cones defined over the whole topos.

Section 5. In this section we establish the relation between the Galois concept of ac-
tion of a groupoid and the Tannaka concept of comodule of a Hopf algebroid. Given a

localic groupoid G: G
G0

×
G0

G // G
∂0 //

∂1
// G0ioo (we abuse notation by using the same let-

ter G for the object of arrows of G), we consider its formal dual localic Hopf algebroid

L: L
B
⊗
B
L Loo i∗ // B

∂∗0

oo

∂∗1oo
, L = O(G), B = O(G0). We establish the equivalence be-

tween discrete G-actions (i.e, actions on an etale family X −→ G0, O(X) = Yd = γ∗Ω
Y
B,

Y ∈ shB), and discrete L-comodules (i.e, a comodule structure Yd
ρ−→ L⊗B Yd on a B-

module of the form Yd). We also show that comodule morphisms correspond to relations
in the category of discrete actions. All this subsumes in the establishment of a tensor s`-
equivalence Rel(βG) ∼= Cmd0(O(G)) between the tensor s`-categories of relations of the
classifying topos of G and that of O(G)-comodules whose underlying module is discrete.

Section 6. In this section we establish the relation between Joyal-Tierney’s Galoisian con-
struction of localic categories (groupoids) G associated to a pair of inverse-image functors

E
F //

F ′
// F , and Deligne’s Tannakian construction of cogèbröıdes (Hopf algebroids) L as-

sociated to the pair of s`-functors Rel(E)
Rel(F )//

Rel(F ′)
//Rel(F) . Using the results of sections

2 and 3 we show that Joyal-Tierney’s construction of G satisfies a universal property
equivalent to the universal property which defines L. An isomorphism O(G) ∼= L follows.

Section 7. A localic point of a topos shB
q−→ E , with inverse image E F−→ shB, determines

the situation described in the following commutative diagram, where the isomorphisms
labeled “a” and “b” are obtained in sections 5 and 6.

βG //

��

Rel(βG)
∼= a //

##

Cmd0(L)

{{

E

F
��

//

F̃

cc

Rel(E)

T
��

T̃
55

Rel(F̃ )
ii

shB //Rel(shB) ∼=b (B-Mod)0
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Here T = Rel(F ), L is the Hopf algebroid of the Tannakian context over s`, and G
is the localic groupoid of Joyal-Tierney’s Galois context. Observe that the triangle on
the left is the one of the Galois context, and the triangle on the right is the one of
the Tannakian context. It follows the equivalence between the Joyal-Tierney recognition
theorem for the inverse image functor F of a localic point, and the Tannaka recognition
theorem for the s`-functor T = Rel(F ). When the point is open surjective, the first
holds, yielding the validity of a Tannaka recognition theorem for s`-categories of the form
Rel(E). By the results in [15] this theorem can be interpreted as a recognition theorem
for a bounded complete distributive category of relations A furnished with an open and

faithful morphism A T−→ (B-Mod)0.
We end the paper by considering the possible validity of a recognition theorem for

general s`-enriched categories, and conjecture that it may hold for any bounded complete

s`-category A furnished with an open and faithful s`-functor A T−→ (B-Mod)0.

2. Preliminaries on `-relations in a topos

We begin this paper by showing how the results of [8, sections 2 and 3], which are devel-
oped in Set, can also be developed in S without major difficulties. This is done with full
details in [19, chapters 2 and 3], and we include here only the main results that we will
need later.

The following lemma will be the key for many following computations (for a proof see
[19, Lemma 2.11]).

2.1. Lemma. If H is a Ω-module (i.e. a sup-lattice), then any arrow f ∈ HX satisfies

∀ x, y ∈ X δ(x, y)·f(x) = δ(x, y)·f(y); i.e. Jx=yK·f(x) = Jx=yK·f(y). �

A relation between X and Y is a subobject R ↪→ X × Y or, equivalently, an arrow

X×Y λ−→ Ω. We have a category Rel = Rel(S) of relations in S. A generalization of the
concept of relation, that we will call `-relation, is obtained by letting Ω be any sup-lattice
H (we omit to write the ` for the case H = Ω).

2.2. Definition. Let H ∈ s`. An `-relation (in H) is an arrow X × Y λ−→ H.

2.3. Assumption. In the sequel, whenever we consider the ∧ or the 1 of H, we assume
implicitly that H is a locale.

2.4.. The following axioms for `-relations are considered in [21] (for relations), see also
[8] and compare with [9] and [14, 16.3].

2.5. Definition. An `-relation X × Y λ−→ H is:

ed) Everywhere defined, if for each x ∈ X,
∨
y∈Y

λ(x, y) = 1.

uv) Univalued, if for each x ∈ X, y1, y2 ∈ Y , λ(x, y1) ∧ λ(x, y2) ≤ Jy1 =y2K.



858 EDUARDO J. DUBUC AND MARTÍN SZYLD

su) Surjective, if for each y ∈ Y ,
∨
x∈X

λ(x, y) = 1.

in) Injective, if for each y ∈ Y , x1, x2 ∈ X, λ(x1, y) ∧ λ(x2, y) ≤ Jx1 =x2K.

2.6. Remark. Notice the symmetry between ed) and su), and between uv) and in).
Many times in this paper we will work with axioms ed) and uv), but symmetric statements
always hold with symmetric proofs.

2.7. Remark. Axiom uv) is equivalent to:
uv) for each x ∈ X, y1, y2 ∈ Y , λ(x, y1) ∧ λ(x, y2) = Jy1 =y2K · λ(x, y1).

2.8. Definition. We say that an `-relation X × Y λ−→ H is an

• `-function if it is uv) and ed),

• `-op-function if it is in) and su),

• `-bijection if it is simultaneously an `-function and an `-op-function.

2.9.. On the structure of HX. We fix a locale H. HX has the locale structure given
pointwise by the structure of H. The arrow H⊗HX ·−→ HX given by (a ·θ)(x) = a∧θ(x)

is a H-module structure for HX . We have a H-singleton X
{}H−→ HX defined by {x}H(y) =

Jx=yK.

2.10. Proposition. [19, 2.45] For each θ ∈ HX , θ =
∨
x∈X

θ(x)·{x}H . This shows how any

arrow X
f−→M into a H-module can be extended uniquely to HX as f(θ) =

∨
x∈X

θ(x)·f(x),

so the H-singleton X
{}H−→ HX is a free-H-module structure.

2.11. Remark. A H-module morphism HX −→ M is completely determined by its

restriction to ΩX as in the diagram ΩX ↪ // HX f //M

X{−}

VV

{−}H

OO

f

II

2.12. Lemma. [19, 2.46] The H-singleton arrow Y
{−}H−→ HY determines a presentation

of the H-locale HY in the following sense:

i) 1 =
∨
y∈Y

{y}H , ii) {x}H ∧ {y}H ≤ Jx=yK.

Given any other arrow Y
f−→ L into a H-locale L such that:

i) 1 =
∨
y

f(y), ii) f(x) ∧ f(y) ≤ Jx=yK,

there exists a unique H-locale morphism HY f−→ L such that f({y}H) = f(y).
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2.13. Remark. The previous lemma can be divided into the following two statements:

given any arrow Y
f−→ L into a H-locale, its extension as a H-module morphism to HY

preserves 1 if and only if equation i) holds in L, and preserves ∧ if and only if equation
ii) holds in L.

2.14.. The inverse and the direct image of an `-relation. We have the correspon-
dence between an `-relation, its direct image and its inverse image given by proposition
2.10:

X × Y λ−→ H an `-relation

HY λ∗−→ HX a H-Mod morphism

HX λ∗−→ HY a H-Mod morphism

λ∗({y}H)(x) = λ(x, y) = λ∗({x}H)(y)

(2.1)

λ∗({y}H) =
∨
x∈X

λ(x, y) · {x}H , λ∗({x}H) =
∨
y∈Y

λ(x, y) · {y}H

Since the locale structure of HX is given pointwise, remark 2.13 immediately implies

2.15. Proposition. [19, 2.50] In the correspondence (2.1), λ∗ respects 1 (resp ∧) if and
only if λ satisfies axiom ed) (resp. uv)). In particular an `-relation λ is an `-function if

and only if its inverse image HY λ∗−→ HX is a H-locale morphism.

2.16. Remark. We can also consider H = Ω in 2.10 to obtain the equivalences

X × Y λ−→ H an `-relation

ΩY λ∗−→ HX a s` morphism

ΩX λ∗−→ HY a s` morphism

(2.2)

A symmetric reasoning shows that λ is an `-op-function if and only if λ∗ is a locale
morphism.

2.17.. Arrows versus functions. Consider an arrow X
f−→ Y in the topos S. We

define its graph Rf = {(x, y) ∈ X × Y | f(x) = y}, and denote its characteristic function

by X × Y
λf−→ Ω, λf (x, y) = Jf(x)=yK.

2.18. Remark. Using the previous constructions, we can form commutative diagrams

S
λ(−) //

P

66Rel (−)∗ // s` S
λ(−) //

Ω(−)

55Rel (−)∗ // s`op

In other words, P (f) is the direct image of (the graph of) f , and Ωf is its inverse
image. We will use the notations f∗ = P (f) = (λf )∗ , f ∗ = Ωf = (λf )

∗.
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The relations which are the graphs of arrows of the topos are characterized as follows,
for example in [14, theorem 16.5].

2.19. Proposition. Consider a relation X×Y λ−→ Ω, the corresponding subobject R ↪→
X × Y and the span X

p←− R
q−→ Y obtained by composing with the projections from the

product. There is an arrow X
f−→ Y of the topos such that λ = λf if and only if p is an

isomorphism, and in this case f = q ◦ p−1.

We will now show that p is an isomorphism if and only if λ is ed) and uv), concluding
in this way that functions correspond to actual arrows of the topos. Even though this is a
folklore result (see for example [15, 2.2(iii)]), we include a proof because we couldn’t find
an appropriate reference.

2.20. Remark. Let Y
f−→ X. For each subobject A ↪→ X, with characteristic function

X
φA−→ Ω, by pasting the pull-backs, it follows that the characteristic function of the

subobject f−1A ↪→ Y is φf−1A = φA◦f . This means that the square

Sub(X)

f−1

��
a

φ(−)

∼=
// [X,Ω]

f∗

��
a

Sub(Y )

Imf

OO

φ(−)

∼=
// [Y,Ω]

∃f

OO

is commutative when considering the arrows going downwards, then also when considering
the left adjoints going upwards.

2.21. Proposition. In the hypothesis of proposition 2.19, λ is ed) if and only if p is epi,
and λ is uv) if and only if p is mono.

Proof. For each α ∈ ΩX ,
∨
y∈Y λ(−, y) ≤ α if and only if ∀x ∈ X, y ∈ Y , λ(x, y) ≤ α(x),

which happens if and only if λ ≤ π1
∗(α). It follows that ∃π1(λ) =

∨
y∈Y λ(−, y).

Now, by remark 2.20 applied to the projection X × Y
π1−→ X, we have φImπ1 (R) =

∃π1(λ), in particular R
p−→ X is an epimorphism if and only if ∃π1(λ)(x) = 1 for each

x ∈ X. It follows that λ is ed) if and only if p is epi.

Also by remark 2.20, the characteristic functions of (X×π1)−1R and (X×π2)−1R are
respectively λ1(x, y1, y2) = λ(x, y1) and λ2(x, y1, y2) = λ(x, y2).

Then axiom uv) is equivalent to stating that for each x ∈ X, y1, y2 ∈ Y ,

λ1(x, y1, y2) ∧ λ2(x, y1, y2) ≤ Jy1 =y2K,

i.e. that we have an inclusion of subobjects of X × Y × Y

(X × π1)−1R ∩ (X × π2)−1R ⊆ X ×4Y .

But this inclusion is equivalent to stating that for each x ∈ X, y1, y2 ∈ Y , (x, y1) ∈ R and
(x, y2) ∈ R imply that y1 = y2, i.e. that p is mono.
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Combining proposition 2.21 with 2.19, we obtain

2.22. Proposition. A relation λ is a function if and only if there is an arrow f of the
topos such that λ = λf .

2.23. Remark. A symmetric arguing shows that a relation λ is an op-function if and
only if λop corresponds to an actual arrow in the topos.

Then a relation λ is a bijection if and only if there are two arrows in the topos such
that λ = λf , λ

op = λg. Then we have that for each x ∈ X, y ∈ Y ,

Jf(x)=yK = λf (x, y) = λ(x, y) = λop(y, x) = λg(y, x) = Jg(y)=xK,

i.e. f(x) = y if and only if g(y) = x, in particular fg(y) = y and gf(x) = x, i.e. f and g
are mutually inverse. In other words, bijections correspond to isomorphisms in the topos
in the usual sense.

2.24.. An application to the inverse image. As an application of our previous results,
we will give an elementary proof of [12, IV.2 Prop. 1]. The geometric aspect of the concept
of locale is studied in op. cit. by considering the category of spaces Sp = Locop [12, IV,
p.27]. If H ∈ Loc, we denote its corresponding space by H, and if X ∈ Sp we denote its

corresponding locale (of open parts) by O(X). If H
f−→ L, then we denote L

f−→ H, and

if X
f−→ Y then we denote O(Y )

f−1

−→ O(X).

We have the points functor Sp
| |−→ S, |H| = Sp(1, H) = Loc(H,Ω). It’s not hard to

see that a left adjoint (−)dis of | | has to map X 7→ Xdis = ΩX , f 7→ f ∗ (see [12, p.29]).
Combining propositions 2.15 and 2.22, we obtain that a relation λ is of the form λf

for an arrow f if and only if its inverse image is a locale morphism. Then we obtain:

2.25. Proposition. [cf. [12, IV.2 Prop. 1]] We have a full and faithful functor S (−)dis−→
Sp, satisfying (−)dis a | |, that maps X 7→ Xdis = ΩX , f 7→ f ∗.

2.26.. The self-duality of HX. We show now that HX is self-dual as a H-module. We
then show how this self-duality relates with the inverse (and direct) image of an `-relation.

2.27. Remark. Given X, Y ∈ S, HX ⊗
H
HY is the free H-module on X × Y , with the

singleton given by the composition of X × Y <{−}H ,{−}H>−−−−−−−−−→ HX ×HY with the universal
bi-morphism HX ×HY −→ HX ⊗

H
HY (see [12, II.2 p.8]).

2.28. Proposition. [19, 2.55] HX is self-dual as a H-module, with H-module morphisms

H
η−→ HX ⊗

H
HX , HX ⊗

H
HX ε−→ H given by the formulae

η(1) =
∨
x∈X

{x}H ⊗ {x}H , ε({x}H ⊗ {y}H) = Jx=yK.
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2.29. Proposition. [19, 2.56] Consider the extension of an `-relation λ as a H-module

morphism HX ⊗
H
HY λ−→ H, and the corresponding H-module morphism HY µ−→ HX

given by the self-duality of HX . Then µ = λ∗.

2.30. Corollary. [19, 2.57] Taking dual interchanges direct and inverse image, i.e.

HX λ∗=(λ∗)∨−−−−−→ HY , HY λ∗=(λ∗)∨−−−−−→ HX .

2.31.. ♦ and � diagrams. As we mentioned before, the definitions and propositions
of [8, section 3] can also be developed in an arbitrary elementary topos S without major
difficulties. Consider the following situation (cf. [8, 3.1]).

2.32.. Let X × Y λ−→ H, X ′ × Y ′ λ′−→ H, be two `-relations and X
f−→ X ′, Y

g−→ Y ′

be two maps, or, more generally, consider two spans, X
p←− R

p′−→ X ′, Y
q←− S

q′−→ Y ′,
(which induce relations that we also denote R = p′◦pop, S = q′◦qop), and a third `-relation

R× S θ−→ H. These data give rise to the following diagrams in Rel(S):

�(f, g) ♦ = ♦(R, S) ♦1 = ♦1(f, g) ♦2 = ♦2(f, g)

X × Y
λ
))

f×g
��

≥ H ,

X ′ × Y ′ λ′

55

X × Y
λ

""
X × Y ′

R×Y ′ %%

X×Sop 99

≡ H ,

X ′ × Y ′
λ′

<<

X × Y
λ

""
X × Y ′

f×Y ′ %%

X×gop 99

≡ H ,

X ′ × Y ′
λ′

<<

X × Y
λ

""
X ′ × Y

X′×g %%

fop×Y 99

≡ H ,

X ′ × Y ′
λ′

<<

2.33. Remark. The diagrams above correspond to the following equations:

� : for each a ∈ X, b ∈ Y, λ(a, b) ≤ λ′(f(a), g(b)),

♦ : for each a ∈ X, b′ ∈ Y ′,
∨
y∈Y

JySb′K · λ(a, y) =
∨
x′∈X′

JaRx′K · λ′(x′, b′),

♦1 : for each a ∈ X, b′ ∈ Y ′, λ′(f(a), b′) =
∨
y∈Y

Jg(y)=b′K · λ(a, y),

♦2 : for each a′ ∈ X ′, b ∈ Y, λ′(a′, g(b)) =
∨
x∈X

Jf(x)=a′K · λ(x, b).

The proof that the Tannaka and the Galois constructions of the group (or groupoid)
of automorphisms of the fiber functor yield isomorphic structures is based on an analysis
of the relations between the � and ♦ diagrams.

2.34. Proposition. Diagrams ♦1 and ♦2 are particular cases of diagram ♦. Also, the
general ♦ diagram follows from these two particular cases: let R, S be any two spans
connected by an `-relation θ as above. If ♦1(p′, q′) and ♦2(p, q) hold, then so does ♦(R, S).
This last statement is actually a corollary of the more general fact, observed to us by A.
Joyal, that ♦ diagrams respect composition of relations.
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Either ♦1(f, g) or ♦2(f, g) imply the �(f, g) diagram, and the converse holds under
some extra hypothesis, in particular if λ and λ′ are `-bijections (see [19, 3.8, 3.9] for
details).

2.35.. Assume (in 2.32) that λ and λ′ are `-bijections, and that the �(p, q) and �(p′, q′)
diagrams hold. Then, if θ is an `-bijection, we obtain from �(p, q) and �(p′, q′) the
diagrams ♦2(p, q) and ♦1(p′, q′), which together imply ♦(R, S) (see 2.34).

The product `-relation λ � λ′ is defined as the following composition (where ψ is the
symmetry)

X ×X ′ × Y × Y ′ X×ψ×Y
′

−→ X × Y ×X ′ × Y ′ λ×λ
′

−→ H ×H ∧−→ H.

When R, S are relations, it makes sense to consider θ the restriction of λ�λ′ to R×S.
For this θ, �(p, q) and �(p′, q′) hold trivially, and the converse of the implication in 2.35
holds. We summarize this in the following proposition.

2.36. Proposition. Let R ⊂ X×X ′, S ⊂ Y ×Y ′ be any two relations, and X×Y λ−→ H,

X ′ × Y ′ λ′−→ H be `-bijections. Let R × S θ−→ H be the restriction of λ � λ′ to R × S.
Then, ♦(R, S) holds if and only if θ is an `-bijection.

3. The case E = shP

3.1.. Assume now we have a locale P ∈ Loc := Loc(S) and we consider E = shP .
We recall from [12, VI.2 and VI.3, p.46-51] the different ways in which we can consider
objects, sup-lattices and locales in E .

1. We consider the inclusion of topoi shP ↪→ SP op given by the adjunction # a i. A
sup-lattice H ∈ s`(shP ) yields a sup-lattice iH ∈ SP op , in which the supremum of a
sub-presheaf S −→ iH is computed as the supremum of the corresponding sub-sheaf
#S −→ H (see [12, VI.1 Proposition 1 p.43]). The converse actually holds, i.e. if
iH ∈ s`(SP op) then H ∈ s`(shP ), see [12, VI.3 Lemma 1 p.49].

2. We omit to write i and consider a sheaf H ∈ shP as a presheaf P op H−→ S that is a
sheaf, i.e. that believes covers are epimorphic families. A sup-lattice structure for

H ∈ shP corresponds in this way to a sheaf P op H−→ s` satisfying the following two
conditions (these are the conditions 1) and 2) in [12, VI.2 Proposition 1 p.46] for
the particular case of a locale):

a) For each p′ ≤ p in P , the s`-morphism Hp
p′ : H(p) −→ H(p′), that we will

denote by ρpp′ , has a left adjoint Σp
p′ .

b) For each q ∈ P , p ≤ q, p′ ≤ q, we have ρqp′Σ
q
p = Σp′

p∧p′ρ
p
p∧p′ .
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Sup-lattice morphisms correspond to natural transformations that commute with
the Σ’s.

When interpreted as a presheaf, ΩP (p) = P≤p := {q ∈ P | q ≤ p}, with ρpq = (−)∧ q
and Σp

q the inclusion. The unit 1
1−→ ΩP is given by 1p = p.

3. If H ∈ s`(SP op) the supremum of a sub-presheaf S −→ H can be computed in SP op

as the global section 1
s−→ H, sq =

∨
p≤q

x∈S(p)

Σq
px, see [12, VI.2 proof of proposition 1,

p.47].

4. Locales H in shP correspond to sheaves P op H−→ Loc such that, in addition to the
s` condition, satisfy Frobenius reciprocity: if q ≤ p, x ∈ H(p), y ∈ H(q), then

Σp
q(ρ

p
q(x) ∧ y) = x ∧ Σp

qy

Note that since ρΣ = id, Frobenius implies that if q ≤ p, x, y ∈ H(q) then we have
Σp
q(x ∧ y) = Σp

q(ρ
p
qΣ

p
q(x) ∧ y) = Σp

qx ∧ Σp
qy, in other words that Σ commutes with ∧.

5. There is an equivalence of tensor categories (s`(shP ),⊗)
γ∗−→ (P -Mod,⊗P ) given

by the direct image ([12, VI.3 Proposition 1 p.49]). Given H ∈ s`(shP ) and p ∈ P ,
multiplication by p in γ∗H = H(1) is given by Σ1

p ρ
1
p ([12, VI.2 Prop. 3 p.47]).

The pseudoinverse of this equivalence is P -Mod
(̃−)−→ s`(shP ), M 7→ M̃ defined by

the formula M̃(p) = {x ∈M | p · x = x} for p ∈ P .

6. The equivalence of item 5 restricts to an equivalence Loc(shP )
γ∗−→ P -Loc, where

the last category is the category of locale extensions P −→M ([12, VI.3 Proposition
2 p.51]).

3.2.. We will now consider relations in the topos shP and prove that `-functionsX×Y −→
P in S correspond to arrows γ∗X −→ γ∗Y of the topos shP .

The unique locale morphism Ω
γ−→ P induces a topoi morphism S ∼= shΩ

γ∗

))
⊥ shP
γ∗

ii .

Let’s denote by ΩP the subobject classifier of shP . Since γ∗ΩP = P , we have the corre-
spondence

X × Y λ−→ P an `-relation

γ∗Y × γ∗X ϕ−→ ΩP a relation in shP

3.3. Proposition. In this correspondence, λ is an `-function if and only if ϕ is a func-
tion. Then, by proposition 2.22, `-functions correspond to arrows γ∗X

ϕ−→ γ∗Y in the
topos shP , and by remark 2.23 `-bijections correspond to isomorphisms.
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Proof. Consider the extension λ̃ of λ as a P -module, and ϕ̃ of ϕ as a ΩP -module, i.e.

in s`(shP ) (we add the (̃−) to avoid confusion). We have the binatural correspondence

between λ̃ and ϕ̃:

X × Y

λ

((
{−}P⊗{−}P

// PX ⊗
P
P Y

λ̃

// P

γ∗X × γ∗Y

ϕ

55
{−}⊗{−}// Ωγ∗X

P ⊗ Ωγ∗Y
P

ϕ̃ // ΩP

given by the adjunction γ∗ a γ∗. But γ∗(Ω
γ∗X
P ) = (γ∗ΩP )X = PX and γ∗ is a tensor

functor, then γ∗(Ω
γ∗X
P ⊗ Ωγ∗Y

P ) = PX ⊗
P
P Y and γ∗( ϕ̃ ) = λ̃.

Now, the inverse images λ∗, ϕ∗ are constructed from λ̃, ϕ̃ using the self-duality of
Ωγ∗X
P , PX (see proposition 2.29), and since γ∗ is a tensor functor that maps Ωγ∗X

P 7→ PX

we can take η, ε of the self-duality of PX as γ∗(η′), γ∗(ε′), where η′, ε′ are the self-duality
structure of Ωγ∗X

P . It follows that γ∗(ϕ
∗) = λ∗, then by 3.1 (item 6) we obtain that ϕ∗ is

a locale morphism if and only if λ∗ is so. Proposition 2.15 finishes the proof.

3.4. Remark. Though we will not need the result with this generality, we note that

proposition 3.3 also holds for an arbitrary topos over S, H h−→ S, in place of shP .

Consider P = h∗ΩH, the hyperconnected factorization

H q //

h ��

shP

γ
}}
S

(see [12, VI.

5 p.54]) and recall that q∗ΩH ∼= ΩP and that the counit map q∗q∗ΩH −→ ΩH is, up to
isomorphism, the comparison morphism q∗ΩP −→ ΩH of remark 4.11 (see [22, 1.5, 1.6]).
The previous results imply that the correspondence between relations X×Y −→ ΩP and
relations q∗X× q∗Y −→ ΩH given by the adjunction q∗ a q∗ is simply the correspondence
between a relation R ↪→ X × Y in shP and its image by the full and faithful morphism
q∗, therefore functions correspond to functions. Since by proposition 3.3 we know that

the same happens for shP
γ−→ S, by composing the adjunctions it follows for H h−→ S.

3.5. Notation. Let p ∈ P , we identify by Yoneda p with the representable presheaf
p = [−, p]. If q ∈ P , then [q, p] = Jq ≤ pK ∈ Ω. In particular if a ≤ p then [a, p] = 1.

Given X ∈ shP , and a ≤ p ∈ P , x ∈ X(p), consider X(p)
Xp
a−→ X(a) in S. We will denote

x|a := Xp
a(x).

Consider now a sup-lattice H in shP , we describe now the sup-lattice structure of
the exponential HX . Recall that as a presheaf, HX(p) = [p × X,H], and note that if

θ ∈ HX(p), and a ≤ p, by notation 3.5 we have X(a)
θa−→ H(a).
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3.6.. θ corresponds to X
θ̂−→ Hp, X(q)

θ̂q−→ Hp(q) ∼= [q ∧ p,H] ∼= H(q ∧ p) by the expo-
nential law, under this correspondence we have θ̂q(x) = θq∧p(x|q∧p). This implies that
θ ∈ HX(p) is completely characterized by its components θa for a ≤ p. From now on

we make this identification, i.e. we consider θ ∈ HX(p) as a family {X(a)
θa−→ H(a)}a≤p

natural in a. Via this identification, if q ≤ p, the morphism HX(p)
ρpq−→ HX(q) is given

by {X(a)
θa−→ H(a)}a≤p 7→ {X(a)

θa−→ H(a)}a≤q.

3.7. Lemma. Let X ∈ shP , H ∈ s`(shP ). Then the sup-lattice structure of HX is given
as follows:

1. For each p ∈ P , HX(p) = {{X(a)
θa−→ H(a)}a≤p natural in a} is a sup-lattice

pointwise, i.e. for a family {θi}i∈I in HX(p), for a ≤ p,
(∨

i∈I θi
)
a

=
∨
i∈I (θi)a

2. If q ≤ p the morphisms HX(q)
Σpq --
⊥mm
ρpq

HX(p) are defined by the formulae (for θ ∈

HX(p), ξ ∈ HX(q)): Fρ) ( ρpq θ)a(x) = θa(x) for x ∈ X(a), a ≤ q.

FΣ) (Σp
q ξ)a(x) = Σa

a∧q ξa∧q (x|a∧q) for x ∈ X(a), a ≤ p.

Proof. It is immediate from 3.6 that ρpq satisfies Fρ).
We have to prove that if Σp

q is defined by FΣ) then the adjunction holds, i.e. that

A : Σp
q ξ ≤ θ if and only if B : ξ ≤ ρpq θ.

By FΣ), A means that for each a ≤ p, for each x ∈ X(a) we have Σa
a∧q ξa∧q (x|a∧q) ≤ θa(x).

By Fρ), B means that for each a ≤ q, for each x ∈ X(a) we have ξa(x) ≤ θa(x).
Then A implies B since if a ≤ q then a∧ q = a, and B implies A since for each a ≤ p,

for each x ∈ X(a), by the adjunction Σ a ρ for H, Σa
a∧q ξa∧q (x|a∧q) ≤ θa(x) holds in H(a)

if and only if ξa∧q (x|a∧q) ≤ ρaa∧q θa(x) holds in H(a∧ q), but this inequality is implied by
B since by naturality of θ we have ρaa∧q θa(x) = θa∧q (x|a∧q).

3.8. Remark. If X ∈ shP , H ∈ Loc(shP ), the unit 1 ∈ HX is a global section given by

the arrow X −→ 1
1−→ ΩP −→ H, which by 3.1 item 2 maps 1p(x) = p for each p ∈ P ,

x ∈ X(p).

3.9.. For the remainder of this section, the main idea (to have in mind during the
computations) is to consider some of the situations defined in section 2 for the topos
shP , and to “transfer” them to the base topos S. In particular we will transfer the four
axioms for an `-relation in shP (which are expressed in the internal language of the topos
shP ) to equivalent formulae in the language of S (proposition 3.23), and also transfer the
self-duality of ΩX

P in s`(shP ) to an self-duality of P -modules (proposition 3.25). These
results will be used in section 5.
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Consider X ∈ shP , H ∈ s`(shP ) and an arrow X
α−→ H. We want to compute

the internal supremum
∨
x∈X

α(x) ∈ H. This supremum is the supremum of the subsheaf

of H given by the image of α in shP , which is computed as #S ↪→ H, where S is the
sub-presheaf of H given by S(p) = {αp(x) | x ∈ X(p)}. Now, by 3.1 item 1 (or, it can be
easily verified), this supremum coincides with the supremum of the sub-presheaf S ↪→ H,

which by 3.1 item 3 is computed as the global section 1
s−→ H, sq =

∨
p≤q

x∈X(p)

Σq
pαp(x).

Applying the equivalence γ∗ of 3.1 item 5 it follows:

3.10. Proposition. Let X
α−→ H as above. Then at the level of P -modules, the element

s ∈ H(1) corresponding to the internal supremum
∨
x∈X

α(x) is
∨
p∈P

x∈X(p)

Σ1
pαp(x).

3.11. Definition. Given X ∈ shP , recall that we denote by ΩP the object classifier of
shP and consider the sup-lattice in shP , ΩX

P (which is also a locale). We will denote
by Xd the P -module (which is also a locale extension P −→ Xd) corresponding to ΩX

P ,
in other words Xd := γ∗(Ω

X
P ) = ΩX

P (1). Given p ∈ P , x ∈ X(p) we define the element
δx := Σ1

p{x}p ∈ Xd.

Consider now θ ∈ Xd, that is θ ∈ ΩX
P (1), i.e. X

θ−→ ΩP in shP . Let α be X
θ·{−}−→ ΩX

P ,

α(x) = θ(x) · {x}. Then proposition 2.10 states that θ =
∨
x∈X

α(x) (this is internally in

shP ). Applying proposition 3.10 we compute in Xd:

θ =
∨
p∈P

x∈X(p)

Σ1
p(θp(x) · {x}p) =

∨
p∈P

x∈X(p)

θp(x) · Σ1
p{x}p =

∨
p∈P

x∈X(p)

θp(x) · δx.

We have proved the following:

3.12. Proposition. The family {δx}p∈P,x∈X(p) generates Xd as a P -module, and further-

more, for each θ ∈ Xd, we have θ =
∨
p∈P

x∈X(p)

θp(x) · δx.

3.13. Remark. Given q ≤ p ∈ P , x ∈ X(p), by naturality of X
{−}−→ ΩX

P we have
{x|q}q = ρpq{x}p.

3.14. Lemma. For p, q ∈ P , x ∈ X(p), we have q · δx = δx|p∧q . In particular p · δx = δx.

Proof. Recall that multiplication by a ∈ P is given by Σ1
a ρ

1
a, and that ρ1

a Σ1
a = id. Then

p · δx = Σ1
p ρ

1
p Σ1

p {x}p = Σ1
p {x}p = δx, and

q · δx = q · p · δx = (p ∧ q) · δx = Σ1
p∧q ρ

1
p∧q Σ1

p {x}p =

= Σ1
p∧q ρ

p
p∧q ρ

1
p Σ1

p {x}p = Σ1
p∧q ρ

p
p∧q {x}p

3.13
= Σ1

p∧q {x|p∧q}p∧q = δx|p∧q .
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3.15. Corollary. For X, Y ∈ shP , p, q ∈ P , x ∈ X(p), y ∈ Y (q), we have

δx ⊗ δy = δx|p∧q ⊗ δy|p∧q .

Proof. δx ⊗ δy = p · δx ⊗ q · δy = q · δx ⊗ p · δy = δx|p∧q ⊗ δy|p∧q .

3.16. Definition. Consider now X ×X δX−→ ΩP in shP , for each a ∈ P we have

X(a)×X(a)
δXa−→ ΩP (a)

3.1, item 2.
= P≤a.

If x ∈ X(p), y ∈ X(q) with p, q ∈ P , we denote

Jx=yKP := Σ1
p∧qδXp∧q(x|p∧q, y|p∧q) ∈ P.

This shouldn’t be confused with the internal notation Jx= yK ∈ ΩP in the language
of shP introduced in section 2, here all the computations are external, i.e. in S, and x, y
are variables in the language of S.

3.17. Lemma. [cf. lemma 2.1] For p, q ∈ P , x ∈ X(p), y ∈ X(q), Jx=yKP · δx = Jx=
yKP · δy.

Proof. Applying lemma 2.1 to X
{}−→ ΩX

P it follows that for each p, q ∈ P , x ∈ X(p),
y ∈ X(q),

δXp∧q(x|p∧q, y|p∧q) · {x|p∧q}p∧q = δXp∧q(x|p∧q, y|p∧q) · {y|p∧q}p∧q

in ΩX
P (p∧q), where “·” is the p∧q-component of the natural isomorphism ΩP⊗ΩX

P
·−→ ΩX

P .
Apply now Σ1

p∧q and use that “·” is a s`-morphism (therefore it commutes with Σ) to
obtain

Jx=yKP · δx|p∧q = Jx=yKP · δy|p∧q .
Then, by lemma 3.14,

Jx=yKP · q · δx = Jx=yKP · p · δy,
which since Jx=yKP ≤ p ∧ q is the desired equation.

3.18.. Let X, Y ∈ shP,H ∈ Loc(shP ), then we have the correspondence

X × Y λ−→ H an `-relation

ΩX
P ⊗ ΩY

P
λ−→ H a s`-morphism

Xd ⊗P Yd
µ−→ H(1) a morphism of P -Mod

The following propositions show how µ is computed from λ and vice versa.

3.19. Proposition. In 3.18, for p, q ∈ P , x ∈ X(p), y ∈ Y (q),

µ(δx ⊗ δy) = Σ1
p∧qλp∧q(x|p∧q, y|p∧q).

Proof. µ(δx ⊗ δy)
3.15
= λ1(δx|p∧q ⊗ δy|p∧q) = λ1 Σ1

p∧q ( {x|p∧q}p∧q ⊗ {y|p∧q}p∧q ) =

= Σ1
p∧q λp∧q ( {x|p∧q}p∧q ⊗ {y|p∧q}p∧q ) = Σ1

p∧q λp∧q ( x|p∧q , y|p∧q ).
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3.20. Corollary. Applying ρ1
p∧q and using ρ1

p∧q Σ1
p∧q = id, we obtain the reciprocal

computation
λp∧q ( x|p∧q , y|p∧q ) = ρ1

p∧q µ(δx ⊗ δy).

3.21. Remark. In 3.18, if λ = δX : X ×X −→ Ω, then µ(δx1 ⊗ δx2) = Jx1 =x2KP (recall
3.16).

3.22. Lemma. In 3.18, for each p, q, r ∈ P , x ∈ X(p), y ∈ Y (q),

r · µ(δx ⊗ δy) = Σ1
p∧q∧r ρ

p∧q
p∧q∧r λp∧q ( x|p∧q , y|p∧q ) = Σ1

p∧q∧r λp∧q∧r ( x|p∧q∧r , y|p∧q∧r ).

Proof. The second equality is just the naturality of λ. To prove the first one, we compute:

r · µ(δx ⊗ δy)
3.19
= Σ1

r ρ
1
r Σ1

p∧q λp∧q ( x|p∧q , y|p∧q )
3.1 item 2.b)

=

= Σ1
r Σr

p∧q∧r ρp∧qp∧q∧r λp∧q ( x|p∧q , y|p∧q ) = Σ1
p∧q∧r ρp∧qp∧q∧r λp∧q ( x|p∧q , y|p∧q ).

The following proposition expresses the corresponding formulae for the four axioms of

an `-relation X × Y λ−→ H in shP (see definition 2.5), at the level of P -modules.

3.23. Proposition. In 3.18, λ is ed), uv), su), in) resp. if and only if:

• ed) for each p ∈ P , x ∈ X(p),
∨
q∈P

y∈Y (q)

µ(δx ⊗ δy) = p.

• uv) for each p, q1, q2 ∈ P , x ∈ X(p), y1 ∈ Y (q1), y2 ∈ Y (q2),

µ(δx ⊗ δy1) ∧ µ(δx ⊗ δy2) ≤ Jy1 =y2KP .

• su) for each q ∈ P , y ∈ Y (q),
∨
p∈P

x∈X(p)

µ(δx ⊗ δy) = q.

• in) for each p1, p2, q ∈ P , x1 ∈ X(p1), x2 ∈ X(p2), y ∈ Y (q),

µ(δx1 ⊗ δy) ∧ µ(δx2 ⊗ δy) ≤ Jx1 =x2KP .

Proof. By proposition 2.15 and remark 2.13, λ is ed) if and only if
∨
y∈Y

λ∗(y) = 1 in HX .

By proposition 3.10 and remark 3.8, this is an equality of global sections
∨
q∈P

y∈Y (q)

Σ1
qλ
∗
q(y) = 1

inHX(1) =
M

[X,H]. Then λ is ed) if and only if for each p ∈ P , x ∈ X(p),
∨
q∈P

y∈Y (q)

(Σ1
qλ
∗
q(y))p(x)

= p in H(p). But by FΣ) in lemma 3.7 we have

( Σ1
q λ
∗
q(y) )p(x) =

M
Σp
p∧q ( λ∗q(y) )p∧q (x|p∧q) = Σp

p∧q λp∧q ( x|p∧q , y|p∧q ),

where last equality holds by definition of λ∗.
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We conclude that λ is ed) if and only if for each p ∈ P , x ∈ X(p),∨
q∈P

y∈Y (q)

Σp
p∧q λp∧q ( x|p∧q , y|p∧q ) = p in H(p).

Since ρ1
p Σ1

p = id, this holds if and only if it holds after we apply Σ1
p. Then, proposition

3.19 yields the desired equivalence.

We now consider axiom uv):
λ is uv) if and only if for each p, q1, q2 ∈ P , x ∈ X(p), y1 ∈ Y (q1), y2 ∈ Y (q2),

ρp∧q1p∧q1∧q2 λp∧q1 (x|p∧q1 , y1|p∧q1) ∧ ρp∧q2p∧q1∧q2 λp∧q2 (x|p∧q2 , y2|p∧q2) ≤
ρq1∧q2p∧q1∧q2 δY q1∧q2 (y1|q1∧q2 , y2|q1∧q2).

We apply Σ1
p∧q1∧q2 and use that it commutes with ∧ to obtain that this happens if and

only if

Σ1
p∧q1∧q2 ρ

p∧q1
p∧q1∧q2 λp∧q1 (x|p∧q1 , y1|p∧q1) ∧ Σ1

p∧q1∧q2 ρ
p∧q2
p∧q1∧q2 λp∧q2 (x|p∧q2 , y2|p∧q2) ≤

Σ1
p∧q1∧q2 ρ

q1∧q2
p∧q1∧q2 δY q1∧q2 (y1|q1∧q2 , y2|q1∧q2),

which by lemma 3.22 (see remark 3.21) is equation

q2 · µ(δx ⊗ δy1) ∧ q1 · µ(δx ⊗ δy2) ≤ p · Jy1 =y2KP ,

but since qi · δyi = δyi (i = 1, 2), this is equivalent to the equation

µ(δx ⊗ δy1) ∧ µ(δx ⊗ δy2) ≤ p · Jy1 =y2KP .

This equation is equivalent to the desired one since the right term is smaller or equal
than Jy1 =y2KP , and multiplying by p the left term doesn’t affect it.

3.24. Definition. In 3.18, we say that µ is ed), uv), su), in) if it satisfies the corre-
sponding condition of proposition 3.23 above. We say that µ is an `-function if it is ed)
and uv), and that µ is an `-bijection if it is ed), uv), su) and in).

Note that µ has each of the properties defined above if and only if λ does.

Consider now the self-duality of ΩX
P in s`(shP ) given by proposition 2.28. Applying

the tensor equivalence s`(shP )
γ∗−→ P -Mod it follows that Xd is self-dual as a P -module,

(see definition A.2 and remark A.3). We will now give the formulae for the η, ε of this
duality.

3.25. Proposition. The P -module morphisms P
η−→ Xd ⊗

P
Xd, Xd ⊗

P
Xd

ε−→ P are

given by the formulae η(1) =
∨
p∈P

x∈X(p)

δx ⊗ δx, ε(δx ⊗ δy) = Jx = yKP for each p, q ∈ P ,

x ∈ X(p), y ∈ X(q).
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Proof. The internal formula for η given in the proof of proposition 2.28, together
with proposition 3.10 yield the desired formula for η. The internal formula for ε, to-
gether with our definition of the notation Jx=yKP yield that for each p, q ∈ P , x ∈
X(p), y ∈ X(q), we have εp∧q({x|p∧q}p∧q ⊗ {y|p∧q}p∧q) = Jx=yKP in ΩP (p ∧ q). Apply
Σ1
p∧q, use that it commutes with the s`-morphism ε and recall remark 3.8 to obtain

ε1(δx|p∧q ⊗ δy|p∧q) = Jx=yKP in P , which by corollary 3.15 is the desired equation.

3.26.. A particular type of `-relation. Assume P is a coproduct of two locales,
P = A⊗B. Then the inclusions into the coproduct yield projections from the product of
topoi
shA

π1←− sh(A⊗B)
π2−→ shB. Consider now X ∈ shA, Y ∈ shB, H ∈ Loc(sh(A ⊗ B)).

We can consider an `-relation π∗1X × π∗2Y
λ−→ H, and the corresponding (A⊗B)-module

morphism (π∗1X)d ⊗
A⊗B

(π∗2Y )d
µ−→ H(1).

To compute (π∗1X)d, note that Xd is the A-module corresponding to the locale of open
parts of the discrete space Xdis (recall corollary 2.25). By [12, VI.3 Proposition 3, p.51],
A −→ Xd is the morphism of locales corresponding to the etale (over A) space Xdis = ΩX

A .
Then we have the following pull-back of spaces (push-out of locales)

(π∗1X)dis //

��

Xdis

��

A⊗B // A

(π∗1X)d Xd
oo

A⊗B

OO

Aoo

OO

which shows that (π∗1X)d = Xd ⊗B, and similarly (π∗2Y )d = A⊗ Yd. Then we have

(π∗1X)d ⊗
A⊗B

(π∗2Y )d = (Xd ⊗B) ⊗
A⊗B

(A⊗ Yd) ∼= Xd ⊗ Yd,

where the last tensor product is the tensor product of sup-lattices in S, i.e. as Ω-modules.
The isomorphism maps δx⊗ δy 7→ (δx⊗ 1)⊗ (1⊗ δy), then we have the following instance
of proposition 3.23.

3.27. Proposition. Let X ∈ shA, Y ∈ shB,H ∈ Loc(sh(A ⊗ B)), and an `-relation

π∗1X × π∗2Y
λ−→ H. Consider the corresponding (A⊗B)-module morphism Xd ⊗ Yd

µ−→ H(1).
Then λ is ed), uv), su), in) resp. if and only if:

• ed) for each a ∈ A, x ∈ X(a),
∨
b∈B

y∈Y (b)

µ(δx ⊗ δy) = a.

• uv) for each a ∈ A, b1, b2 ∈ B, x ∈ X(a), y1 ∈ Y (b1), y2 ∈ Y (b2),

µ(δx ⊗ δy1) ∧ µ(δx ⊗ δy2) ≤ Jy1 =y2KB.

• su) for each b ∈ B, y ∈ Y (b),
∨
a∈A

x∈X(a)

µ(δx ⊗ δy) = b.
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• in) for each a1, a2 ∈ A, b ∈ B, x1 ∈ X(a1), x2 ∈ X(a2), y ∈ Y (b),

µ(δx1 ⊗ δy) ∧ µ(δx2 ⊗ δy) ≤ Jx1 =x2KA.

4. � and ♦ cones

In this section we generalize the results of [8, 4.], in two ways, both needed for our purpose.
Like before, we work over any arbitrary topos S instead of over Set, and we develop a
theory of � and ♦ cones for two different functors F, F ′ instead of just one. As in the
previous section, we omit the proofs when they are easily obtained adapting the ones in
op. cit.

4.1.. Recall that the category Rel(E) of relations of a topos E is a s`-category. An

inverse image E F // S of a geometric morphism respects products and subobjects, thus

it induces a s`-functor Rel(E)
T=Rel(F )−−−−−−→ Rel(S). On objects TX = FX, and the value of

T in a relation R ↪→ X × Y in E is the relation FR ↪→ FX × FY in S. In particular,
for arrows f in E , T (Rf ) = RF (f) (see 2.17), or, if we abuse the notation by identifying
f with the relation given by its graph, T (f) = F (f). It is immediate from the definition
that for every relation R in E we have T (Rop) = (TR)op.

Consider now two geometric morphisms with inverse images E
F //

F ′
// S , and their

respective extensions to the Rel categories Rel(E)
T //

T ′
//Rel(S) .

4.2. Definition. Let H be a sup-lattice in S. A cone λ (with vertex H) is a family of

`-relations FX × F ′X λX−→ H, one for each X ∈ E. Note that, a priori, a cone is just
a family of arrows without any particular property. This isn’t standard terminology, but
we do this in order to use a different prefix depending on which diagrams commute. Each

arrow X
f−→ Y in E and each arrow X

R−→ Y in Rel(E) (i.e relation R ↪→ X × Y in E),
determine the following diagrams:
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�(f) = �(F (f), F ′(f)) ♦(R) = ♦(TR, T ′R)

FX × F ′X
λX

''
F (f)×F ′(f)

��

≥
H

FY × F ′Y
λY

77

TX × T ′X
λX

''
TX × T ′Y

TR×T ′Y ))

TX×T ′Rop 55

≡ H

TY × T ′Y
λY

77

♦1(f) = ♦1(F (f), F ′(f)) ♦2(f) = ♦2(F (f), F ′(f))

FX × F ′X
λX

$$
FX × F ′Y

F (f)×F ′Y ((

FX×F ′(f)op 66

≡ H

FY × F ′Y
λY

::

FX × F ′X
λX

$$
FY × F ′X

FY×F ′(f) ((

F (f)op×F ′X 66

≡ H

FY × F ′Y
λY

::

λ is a �-cone if the �(f) diagrams hold, and λ is a ♦-cone if the ♦(R) diagrams hold.
Similarly we define ♦1-cones and ♦2-cones if the ♦1(f) and ♦2(f) diagrams hold. If H is
a locale and the λX are `-functions, `-bijections, we say that we have a cone of `-functions,
`-bijections.

The propositions 2.34 and 2.36 yield the following corresponding results for cones.

4.3. Proposition. A cone FX × F ′X λ−→ H is a ♦-cone if and only if it is both a ♦1

and a ♦2-cone.

4.4. Proposition. A cone FX × F ′X λ−→ H of `-bijections is a �-cone if and only if
it is a ♦-cone.

4.5.. Cones and natural transformations. In order to express the universal property
defining the groupoid of [12, VIII.3 Theorem 2] as a universal property of �-cones (see
theorem 6.6), it is necessary to relate cones with natural transformations and to analyze
their behavior through topoi morphisms. The following proposition shows that ♦1-cones
of functions correspond to natural transformations.

4.6. Proposition. Consider a family of arrows FX
θX−→ F ′X, one for each X ∈ E.

Each θX corresponds by proposition 2.22 to a function FX × F ′X
ϕX=λθX−−−−−→ Ω yielding in

this way a cone ϕ. Then θ is a natural transformation if and only if ϕ is a ♦1-cone.

Proof. By proposition 2.29 (recall also remark 2.18) we have that the correspondence

between `FX
P (θX)=(ϕX)∗−−−−−−−−→ `F ′X and `FX ⊗ `F ′X ϕX−→ Ω is given by the self-duality of

F ′X. As with every duality, this correspondence is given by the following diagrams in the
monoidal category s` (we omit to write the `, and think of these diagrams as diagrams of
relations):
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ϕX :

FX

θX

F ′X

F ′X F ′X

ε

θX :

FX

η

FX F ′X F ′X

ϕX

F ′X

Also, the naturality N of theta and the ♦1 diagrams (recall from corollary 2.30 that

f op = f∧) can be expressed as follows: for each X
f−→ Y ,

N(f) :

FX

F (f)

FY

θY

F ′Y

=

FX

θX

F ′X

F ′(f)

,

F ′Y

♦1(f) :

FX

η

F ′Y

FX F ′X F ′X

F ′(f)

F ′Y

FX F ′X F ′Y F ′Y

ϕX ε

=

FX

F (f)

F ′Y

FY F ′Y

ϕY

N(f)⇒ ♦1(f) : replace θ as in the correspondence above in N(f) to obtain

FX

η

FX F ′X F ′X

F ′(f)ϕX

F ′Y

N(f)
=

FX

F (f) η

FY F ′Y F ′Y

ϕY

F ′Y

Compose with ε and use a triangular identity to obtain ♦1(f).
♦1(f)⇒ N(f) : replace ϕ as in the correspondence above in ♦1(f) to obtain

FX

F (f)

F ′Y

FY

θY

F ′Y

F ′Y F ′Y

ε

♦1(f)
=

FX

θX η

F ′Y

F ′X F ′X F ′X

F ′(f)

F ′Y

ε

F ′Y F ′Y

ε

4
=

FX

θX

F ′Y

F ′X

F (f)

F ′Y

F ′Y F ′Y

ε

Compose with η and use a triangular identity to obtain N(f).
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4.7.. Consider now the previous situation together with a topos over S,

HJJ

h∗ a h∗

��
E

F //

F ′
// S

By proposition 4.6, a natural transformation h∗FX
θX−→ h∗F ′X corresponds to a ♦1-cone

of functions h∗FX × h∗F ′X ϕX−→ ΩH in H. As established in 4.1, h∗ can be extended to
Rel = s`0 as a tensor functor (therefore preserving duals), then using the naturality of

the adjunction h∗ a h∗ it follows that h∗FX × h∗F ′X ϕX−→ ΩH is a ♦1-cone if and only if

FX × F ′X λX−→ h∗ΩH is a ♦1-cone (in S). We have:

4.8. Proposition. A family of arrows h∗FX
θX−→ h∗F ′X (one for each X ∈ E) is a

natural transformation if and only if the corresponding cone FX × F ′X λX−→ h∗ΩH is a
♦1-cone.

Combining propositions 4.8 and 3.3 we obtain the following corollary for the case
H = shP (which by remark 3.4 also holds for an arbitrary H as in 4.7):

4.9. Corollary. Given

shPJJ

γ∗ a γ∗




E

F //

F ′
// S

, the adjunction γ∗ a γ∗ yields a bijective cor-

respondence between ♦1-cones of `-functions (resp `-bijections) FX × F ′X
λX−→ P and

natural transformations (resp. isomorphisms) γ∗F
ϕ

=⇒ γ∗F ′.

4.10.. Consider finally the previous situation together with a morphism F −→ H of topoi
over S, as in the following commutative diagram:

H
a∗

,,ll
a∗

F

E
F //

F ′
// S

h∗

``

  
h∗ f∗

II

		

f∗

Consider the locales in S of subobjects of 1 in H, resp. F , H := h∗ΩH, L := f∗ΩF .
Since a∗ is an inverse image, it maps subobjects of 1 to subobjects of 1 and thus induces

a locale morphism H
a∗−→ L.
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4.11. Remark. Consider the comparison morphism a∗ΩH
φ1−→ ΩF , which is the charac-

teristic function of the subobject 1 ↪→ a∗ΩH given by a∗(t). Let A ↪→ X be a subobject
in H. We will apply (the first part of) remark 2.20 with f = a∗(φA), to the subobject
1 ↪→ a∗ΩH. Since a∗ preserves pull-backs, a∗A = f−11. We obtain that φa∗A = φ1◦a∗(φA).

4.12. Proposition. In the situation of 4.10, for X, Y ∈ S, if X×Y λ−→ H corresponds

to the relation h∗X × h∗Y ϕ−→ ΩH via the adjunction h∗ a h∗, then X × Y λ−→ H
a∗−→ L

corresponds to the relation f ∗X × f ∗Y a∗(ϕ)−→ a∗ΩH
φ1−→ ΩF via the adjunction f ∗ a f∗.

Proof. The adjunction f ∗ a f∗ consists of composing the adjunctions h∗ a h∗ and a∗ a a∗,
then we have:

a∗h∗X × a∗h∗Y a∗(ϕ)−−−→ a∗ΩH
φ1−→ ΩF

h∗X × h∗Y ϕ−→ ΩH
ψ1−→ a∗ΩF

X × Y λ−→ H
h∗(ψ1)−−−−→ L,

where ψ1 corresponds to φ1 in the adjunction a∗ a a∗. So we have to check that
h∗(ψ1) = a∗. Let a subobject U ↪→ 1. This subobject can be considered in H = h∗ΩH =

[1,ΩH] via its characteristic function φU . Now, h∗(ψ1)(φU) is the composition 1
φU−→

ΩH
ψ1−→ a∗ΩF in h∗a∗ΩF , and the corresponding arrow 1 −→ ΩF is given by the adjunc-

tion a∗ a a∗. But this arrow is 1
a∗(φU )−−−−→ a∗ΩH

φ1−→ ΩF , which by remark 4.11 is φa∗U , and
we are done.

4.13. Corollary. In the hypothesis of 4.10, consider a natural transformation

h∗FX
θX−→ h∗F ′X and the corresponding ♦1-cone FX × F ′X λX−→ H obtained in proposi-

tion 4.8. Then the ♦1-cone with vertex L corresponding by proposition 4.8 to the horizon-

tal composition ida∗ ◦ θ of natural transformations, whose components are f ∗FX
a∗(θX)−−−−→

f ∗F ′X, is FX × F ′X λX−→ H
a∗−→ L.

Proof. Each h∗FX
θX−→ h∗F ′X corresponds to a relation h∗FX × h∗F ′X

ϕX−→ ΩH,

which corresponds to FX × F ′X λX−→ H via the adjunction h∗ a h∗. Denote by RX ↪→
h∗FX × h∗F ′X the subobject corresponding to ϕX .

The subobject corresponding to f ∗FX
a∗(θX)−−−−→ f ∗F ′X, is a∗RX ↪→ f ∗FX × f ∗F ′X,

whose characteristic function (use remark 4.11) is the relation f ∗FX × f ∗F ′X
a∗(ϕX)−−−−→

a∗ΩH
φ1−→ ΩF . Proposition 4.12 (with X = FX, Y = F ′X) finishes the proof.

4.14.. Cones over a site. Consider a topos E over S, and a small site of definition C
for E . We will show that ♦-cones defined over C can be uniquely extended to ♦-cones
defined over E . This will provide existence theorems for constructions defined by universal
properties quantified over large (external) sets, see proposition 6.9.
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Let C F−→ S be (the inverse image of) a point of the site, and Cop X−→ S be a sheaf,
X ∈ E . Let ΓF −→ C be the (small) diagram (discrete fibration) of F , recall that it
is a cofiltered category whose objects are pairs (c, C) with c ∈ FC, and whose arrows

(c, C)
f−→ (d,D) are arrows C

f−→ D that satisfy F (f)(c) = d. Abuse notation and

denote also by F , E F−→ S, the inverse image of the corresponding morphism of topoi.
Recall the formulae:

FX = X ⊗C F =

∫ C

XC × FC ∼= lim−−−−−−→
(c,C)∈ΓF

XC
ρ←−

∐
C∈C

XC × FC (4.1)

By Yoneda we have E(C,X)
∼=−→ XC, and under this identification we have,

for C
f−→ X and c ∈ FC, F (f)(c) = ρ(f, c) ∈ FX,

(4.2)
for E

h−→ C in C, X(h)(f) = fh.

4.15. Remark. Let a ∈ FX. Since ρ is an epimorphism, there exist C, f ∈ XC and
c ∈ FC such that F (f)(c) = a.

4.16. Remark. Let C,D ∈ C, f ∈ XC, c ∈ FC, g ∈ XD, d ∈ FD, be such that
F (f)(c) = F (g)(d), i.e. ρ(f, c) = ρ(g, d). Since the category ΓF is cofiltered, by con-

struction of filtered colimits there exist E, e ∈ FE and E
h−→ C, E

`−→ D such that
F (h)(e) = c, F (`)(e) = d and X(h)(f) = X(`)(g), i.e. fh = g`.

The following is the key result for the existence theorems in section 6.

4.17. Proposition. Consider a small site of definition C of the topos E. Then suitable
cones defined over C can be extended to E, more precisely:

1) Let TC × T ′C λC−→ H be a ♦1-cone (resp. ♦2-cone, resp. ♦-cone) defined over C.
Then, H can be uniquely furnished with `-relations λX for all objects X ∈ E in such a
way to determine a ♦1-cone (resp. ♦2-cone, resp. ♦-cone) over E extending λ.

2) If H is a locale and λC (C ∈ C) is a ♦1-cone of `-functions (resp. ♦2-cone of
`-opfunctions, resp. ♦-cone of `-bijections), so is λX (X ∈ E).

Proof. 1) Recall that T = F on C. Let X ∈ E , then TX = FX, T ′X = F ′X, and let

(a, b) ∈ TX × T ′X. By (4.1), (4.2) and remark 4.15 we can take C
f−→ X and c ∈ TC

such that a = T (f)(c) = F (f)(c) (see 4.1). If λX were defined so that the ♦1(f) diagram
commutes, the equation

(1) λX(a, b) =
∨

y∈T ′C

JT ′(f)(y)=bK · λC(c, y)

should hold (see (2.33)). We define λX by this equation. This definition is independent

of the choice of c, C, and f . In fact, let D
g−→ X and d ∈ TD be such that a = T (g)(d).
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By remark 4.16 we can take (e, E) in the diagram of T (or F ), E
h−→ C, E

`−→ D such
that T (h)(e) = c, T (`)(e) = d and fh = g`. Then we compute∨
y∈T ′C

JT ′(f)(y)=bK ·λC(c, y)
♦1(h)
=

∨
y∈T ′C

∨
w∈T ′E

JT ′(f)(y)=bK ·JT ′(h)(w)=yK ·λE(e, w) =

=
∨

w∈T ′E

JT ′(fh)(w)=bK · λE(e, w).

From this and the corresponding computation with d, D, and `, it follows:∨
y∈T ′C

JT ′(f)(y)=bK · λC(c, y) =
∨

y∈T ′D

JT ′(g)(y)=bK · λD(d, y).

Given X
g−→ Y in E , we check that the ♦1(g) diagram commutes: Let (a, b) ∈ TX×T ′Y ,

take C
f−→ X, c ∈ TC such that a = T (f)(c), and let d = T (g)(a) = T (gf)(c). Then

λY (d, b) =
∨

z∈T ′C

JT ′(gf)(z)=bK·λC(c, z) =
∨

z∈T ′C

∨
x∈X

JT ′(f)(z)=xK·JT ′(g)(x)=bK·λC(c, z) =

=
∨

x∈T ′X

JT ′(g)(x)=bK ·
∨

z∈T ′Z

JT ′(f)(z)=xK · λC(c, z) =
∨

x∈T ′X

JT ′(g)(x)=bK · λX(a, x).

Clearly a symmetric argument can be used if we assume at the start that the ♦2

diagram commutes. In this case, λX would be defined by taking C
f−→ X and c ∈ T ′C

such that b = T ′(f)(c) and computing:

(2) λX(a, b) =
∨
y∈TC

JT (f)(y)=aK · λC(y, c).

If the TC × T ′C λC−→ H form a ♦-cone (i.e. a ♦1-cone and a ♦2-cone), definitions (1)
and (2) coincide. In fact, since they are independent of the chosen c, it follows they are
both equal to:∨

C
f−→X

∨
c∈TC

∨
y∈T ′C

JT (f)(c)=aK · JT ′(f)(y)=bK · λC(c, y) =∨
C

f−→X

∨
c∈T ′C

∨
y∈TC

JT ′(f)(c)=bK · JT (f)(y)=aK · λC(y, c).

2) It suffices to prove that if λC (C ∈ C) is a ♦1-cone of `-functions, so is λX (X ∈ X ).

Let X ∈ E , a ∈ TX, b1, b2 ∈ T ′X. Take as in item 1) C
f−→ X and c ∈ TC such that

a = T (f)(c).

ed)
∨

b∈T ′X

λX(a, b) =
∨

b∈T ′X

∨
y∈T ′C

JT ′(f)(y)=bK · λC(c, y) =
∨

y∈T ′C

λC(c, y)
ed)
= 1.
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uv) λX(a, b1)∧λX(a, b2) =
∨

y1,y2∈T ′C

JT ′(f)(y1)=b1K·JT ′(f)(y2)=b2K·λC(c, y1)∧λC(c, y2)
uv)

≤∨
y1,y2∈T ′C

JT ′(f)(y1)=b1K · JT ′(f)(y2)=b2K · Jy1 =y2K ≤∨
y1,y2∈T ′C

JT ′(f)(y1)=b1K·JT ′(f)(y2)=b2K·JT ′(f)(y1)=T ′(f)(y2)K ≤ Jb1 =b2K.

4.18. Assumption. For the rest of this section we consider a small site C (with binary
products and 1) of the topos E, and cones defined over C.

4.19.. Compatible cones. We now introduce the notion of compatible cone. Any
compatible ♦-cone which covers a commutative algebra H will force H to be a locale, and
such a cone will necessarily be a cone of `-bijections (and vice versa):

4.20. Definition. Let H be a commutative algebra in s`, with multiplication ∗ and unit
u. Recall that the product is a map H ⊗H ∗−→ H, and that u ∈ H induces a linear map
Ω

u−→ H.
Let TC×T ′C λC−→ H be a cone. We say that λ is compatible if the following equations

hold:

[C1] ∀ a ∈ TC, a′ ∈ T ′C, b ∈ TD, b′ ∈ T ′D, λC(a, a′) ∗ λD(b, b′) =
λC×D((a, b), (a′, b′))

[C2] λ1 = u.

Given a compatible cone, consider the diagonal C
∆−→ C×C, the arrow C

π−→ 1, and
the following ♦1 diagrams (see 2.32):

TC×T ′C
λC

((

TC×T ′C
λC

""
TC×(T ′C×T ′C)

TC×∆op
44

∆×(T ′C×T ′C) **

≡ H, TC×1

TC × πop
99

π × 1 $$

≡ H.

(TC×TC)×(T ′C×T ′C)
λC×C

66

1×1
λ1

<<

expressing the equations: for each a ∈ TC, b1, b2 ∈ T ′C,

♦1(4) : λC×C((a, a), (b1, b2)) =
∨

x∈T ′C

J(x, x)=(b1, b2)K · λC(a, x),

♦1(π) : λ1 =
∨

x∈T ′C

λC(a, x).
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4.21. Lemma. Let TC × T ′C λ−→ H be a compatible ♦1-cone (or ♦2-cone, or ♦-cone)
with vertex a commutative algebra H. Then, for each a ∈ TC, b1, b2 ∈ T ′C,

1. λC(a, b1) ∗ λC(a, b2) = Jb1 =b2K · λC(a, b1).

2. u =
∨

x∈T ′C

λC(a, x).

Proof. 2. is immediate from [C2] and ♦1(π) above. To prove 1. we compute

λC(a, b1) ∗ λC(a, b2)
[C1]
= λC×C((a, a), (b1, b2))

♦1(4)
=

∨
x∈T ′C

Jx=b1K · Jx=b2K · λC(a, x)
2.1
=

=
∨

x∈T ′C

Jx=b1K · Jb1 =b2K · λC(a, b1) = Jb1 =b2K · λC(a, b1).

4.22. Proposition. Let λ be a compatible ♦-cone with vertex a commutative algebra
(H, ∗, u) such that the elements of the form λC(a, b), a ∈ TC, b ∈ T ′C are sup-lattice
generators of H. Then H is a locale and ∗ = ∧.

Proof. By the results of [12, III.1, p.21, Proposition 1], it suffices to show that for all
w ∈ H,

(L1) w ∗ w = w and (L2) w ≤ u.

It immediately follows from equations 1. and 2. in the lemma above that (L1) and
(L2) hold for w = λC(a, b). Then clearly (L2) holds for any supremum of elements of this
form. To show (L1) we do as follows:

w ∗ w ≤ w ∗ u = w always holds, and to show ≥, if w =
∨
i∈I

wi satisfying wi ∗ wi = wi

we compute: ∨
i∈I

wi ∗
∨
i∈I

wi ≥
∨
i∈I

wi ∗ wi
(L1)
=
∨
i∈I

wi.

4.23. Proposition. Consider a cone λ with vertex a locale H.

1. If λ is a ♦1-cone, then λ is compatible if and only if it is a ♦1-cone of `-functions.

2. If λ is a ♦2-cone, then λ is compatible if and only if it is a ♦2-cone of `-op-functions.

3. If λ is a ♦-cone, then λ is compatible if and only if it is a ♦-cone of `-bijections.

Proof. We prove 1, 2 follows by symmetry and adding 1 and 2 we obtain 3.
(⇒): Since ∧ = ∗ and 1 = u in H, equations 1. and 2. in lemma 4.21 become the

axioms ed) and uv) for λX .
(⇐) u = 1 in H, so equation [C2] in definition 4.20 is axiom ed) for λ1. To prove

equation [C1] we consider the projections C ×D π1−→ C, C ×D π2−→ D. The ♦1(π1) and
♦1(π2) diagrams express the equations:

For each a ∈ TC, b ∈ TD, a′ ∈ T ′C, λC(a, a′) =
∨

y∈T ′D

λC×D((a, b), (a′, y)),
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For each a ∈ TC, b ∈ TD, b′ ∈ T ′D, λD(b, b′) =
∨

x∈T ′C

λC×D((a, b), (x, b′)).

Taking the infimum of these two equations we obtain for each a ∈ TC, b ∈ TD, a′ ∈
T ′C, b′ ∈ T ′D:

λC(a, a′) ∧ λD(b, b′) =
∨

x∈T ′C

∨
y∈T ′D

λC×D((a, b), (a′, y)) ∧ λC×D((a, b), (x, b′)) =

uv)λC×D
=

∨
x∈T ′C

∨
y∈T ′D

J(a′, y)=(x, b′)K · λC×D((a, b), (a′, y))
2.1
= λC×D((a, b), (a′, b′))

Also, sup-lattice morphisms of cones with compatible domain are automatically locale
morphisms:

4.24. Proposition. Let λ be a compatible cone with vertex a locale H such that the
elements of the form λC(a, a′), a ∈ TC, a′ ∈ T ′C are sup-lattice generators of H. Let
λ be another compatible cone with vertex a locale H ′. Then, any sup-lattice morphism
H

σ−→ H ′ satisfying σλC = λC is a locale morphism.

Proof. Equation [C2] in definition 4.20 implies immediately that σu = u′ (i.e. σ preserves
1).

Equation [C1] implies immediately that the infima ∧ between two sup-lattice gener-
ators λC(a, a′) and λD(b, b′) is preserved by σ, which suffices to show that σ preserves ∧
between two arbitrary elements since σ is a sup-lattice morphism.

Combining the previous proposition with proposition 4.23 we obtain

4.25. Corollary. Let λ be a ♦-cone of `-bijections with vertex a locale H such that the
elements of the form λC(a, b), a ∈ TC, b ∈ T ′C are sup-lattice generators of H. Let λ be
another ♦-cone of `-bijections with vertex a locale H ′. Then, any sup-lattice morphism
H

σ−→ H ′ satisfying σλC = λC is a locale morphism.

5. The equivalence Cmd0(O(G)) = Rel(βG)

5.1.. We fix throughout this section a localic groupoid G (i.e. groupoid object in
Sp = Locop), with subjacent structure of localic category (i.e. category object in Sp)
given by ([12, VIII.3 p.68])

G
G0

×
G0

G ◦ // G
∂0 //

∂1
// G0ioo

We abuse notation by using the same letter G for the object of arrows of G. We denote
by L = O(G), B = O(G0) their corresponding locales of open parts, and think of them

as (commutative) algebras in the monoidal category s`. The locale morphisms B
s=∂−1

0 //

t=∂−1
1

// L

furnish L with a structure of B-bimodule. We establish, following [4], that B acts on the
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left via t and on the right via s. This is consistent with the pull-back G ×G0 G above
which is thought of as the pairs {(f, g) ∈ G×G | ∂0(f) = ∂1(g)} of composable arrows,
in the sense that O(G×G0 G) = L⊗B L (the push-out corresponding to the pull-back is
the tensor product of B-bimodules).

In this way, the unit G0
i // G corresponds to a counit L

e−→ B, and the multipli-

cation (composition) G ×G0 G
◦−→ G corresponds to a comultiplication L

c−→ L ⊗B L.
Therefore L is a coalgebra in the category B-bimod, i.e. a cogèbröıde agissant sur B
([4, 1.15]). In other words, a localic category structure for G is the same as a cogèbröıde
structure for L.

We define a localic Hopf algebroid as the exact formal dual structure of a localic

groupoid. The inverse G
(−)−1

−→ G of a localic groupoid corresponds to an antipode L
a−→ L.

As was observed by Deligne in [4, p.117], the structure of cogèbröıde is the subjacent
structure of a Hopf algebroid which is used to define its representations (see definition
A.12), exactly like the subjacent localic category structure of the groupoid is the subjacent
structure required to defineG-spaces as Sp-valued functors, namely, actions of the category
object on an internal family X −→ G0 (see definition 5.3).

5.2.. The category βG. Groupoid objects G in Sp act on spaces over G0, X −→ G0, as
groupoids (or categories with object of objects G0) act on families over G0 in sets, defining
an internal functor. We consider G ×G0 X, the pull-back of spaces over G0 constructed
using ∂0, as a space over G0 using ∂1:

5.3. Definition. An action of a localic groupoid G in a space over G0, X −→ G0, is a

morphism G×G0 X
θ−→ X of spaces over G0 such that the following diagrams commute.

A1 :

G
G0

×
G0

G
G0

×
G0

X
◦×X //

G×θ
��

G
G0

×
G0

X

θ

��
G

G0

×
G0

X
θ // X

A2 :

G
G0

×
G0

X θ // X

G0

G0

×
G0

X

i×X

OO

∼=

??

We denote the action as G
θy X, omitting sometimes the θ. An action morphism

between two actions G
θy X, G

θ′y X ′ (which corresponds to a natural transformation
between the functors) is a morphism f of spaces over G0 such that the following diagram
commute.

AM :

G
G0

×
G0

X θ //

G×f
��

X

f

��
G

G0

×
G0

X ′ θ
′
// X ′
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5.4. Remark. The reader can easily check that these definitions are equivalent to the
ones of [12, VIII.3, p.68].

5.5. Remark. Recall from [12, VI.3 p.51, Proposition 3] (see also proposition 2.25 and
3.1, item 5), that the functor

shB
(−)dis−−−→ Sp(shB)

γ∗−→ B-Locop

Y � // (Yd → B),

where Yd = γ∗(Ω
Y ) = γ∗O(Ydis) (recall definition 3.11), yields an equivalence of categories

shB −→ EtB, where EtB is the category of etale spaces over B, i.e. X
p−→ B satisfying

that p and the diagonal X
4−→ X ×B X are open (see [12, V.5 p.41]).

5.6. Definition. An action G y X is discrete if X −→ G0 is etale, i.e. in view of
last remark if X = Yd (or equivalently O(X) = Yd) with Y ∈ shB. We denote by βG the
category of discrete actions of G.

5.7.. Consider s`0(shB) the full subcategory of s`(shB) with objects of the form ΩY
B.

Then we have the equivalence : Rel(shB)
(−)∗−→ s`0(shB). Consider also the restriction of

the equivalence s`(shB) ∼= B-Mod to s`0(shB) ∼= (B-Mod)0, where the latter is defined
as the full subcategory of B-Mod consisting of the B-modules of the form Yd. Combining
both we obtain the equivalence Rel(shB) ∼= (B-Mod)0, mapping Y ↔ Yd.

The objective of this section is to prove that this equivalence lifts to an equivalence of
categories Rel(βG) ∼= Cmd0(L) (for the definition of Cmd0(L) see A.12).

5.8.. The equivalence at the level of objects. Consider an etale space X −→ G0,

where O(X) = Yd, with Y ∈ shB. A (discrete) action G
θy X corresponds to a B-locale

morphism Yd
ρ−→ L⊗B Yd satisfying C1, C2 in definition A.12. Therefore, to establish an

equivalence between discrete actions G
θy X and comodules Yd

ρ−→ L⊗B Yd it suffices to
prove:

5.9. Proposition. Every comodule structure Yd
ρ−→ L ⊗B Yd is automatically a locale

morphism (when L is a localic Hopf algebroid).

Next we prove this proposition (see 5.10 below for a clarifying diagram). In order to
do this, we will work in the category of B⊗B-modules. Since B is commutative, we have
an isomorphism of categories B-bimod ∼= B⊗B-mod, but we consider the tensor product
⊗
B⊗B

of B⊗B-modules via the inclusion B⊗B-mod ↪→ B⊗B-bimod, not to be confused

with the tensor product ⊗B as B-bimodules. Via this isomorphism, L is a B⊗B-module

whose structure is given by B ⊗B (t,s)−→ L.
We first notice that L ⊗

B
Yd ∼= L ⊗

B⊗B
(B ⊗ Yd), and via extension of scalars (using

the inclusion B −→ B ⊗ B in the first copy), ρ corresponds to a morphism Yd ⊗ B
ρ−→
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L ⊗
B⊗B

(B ⊗ Yd) of B ⊗B-modules. From the equivalence of tensor categories recalled in

section 3.1 items 5,6, with P = B⊗B, ρ corresponds to a morphism ϕ in s`(sh(B⊗B)),
ρ = γ∗(ϕ), and ρ is a locale morphism if and only if ϕ is so.

From the results of 3.26, Yd ⊗ B = (π∗1Y )d = γ∗(Ω
π∗1Y
B⊗B), and similarly B ⊗ Yd =

γ∗(Ω
π∗2Y
B⊗B), where ΩB⊗B is the subobject classifier of sh(B ⊗B). Then

L ⊗
B⊗B

(B ⊗ Yd)
3.1
= γ∗(L̃

(1)

⊗ Ω
π∗2Y
B⊗B)

(2)
= γ∗(L̃

π∗2Y ),

where L̃ is as in 3.1 item 5, γ∗L̃ = L, the tensor product marked with (1) is as sup-

lattices in sh(B ⊗ B) and the equality marked with (2) holds since L̃ ⊗ Ω
π∗2Y
B⊗B and L̃π

∗
2Y

are the free L̃-module in π∗2Y (see proposition 2.10).

Then ϕ is Ω
π∗1Y
B⊗B

ϕ−→ L̃π
∗
2Y , therefore by remark 2.16 there is an `-relation π∗1Y ×

π∗2Y
λ−→ L̃ in the topos sh(B ⊗ B) such that ϕ = λ∗ and, to see that ρ is a locale

morphism, we can prove that λ is an `-op-function.

5.10.. We schematize the previous arguing in the following correspondence

Yd
ρ−→ L ⊗

B
Yd B-module morphism B-locale morphism

Yd ⊗B
ρ−→ L ⊗

B⊗B
(B ⊗ Yd) (B ⊗B)-module morphism (B ⊗B)-locale morphism

Ω
π∗1Y
B⊗B

ϕ−→ L̃π
∗
2Y s` morphism in sh(B ⊗B) locale morphism

π∗1Y × π∗2Y
λ−→ L̃ `-relation in sh(B ⊗B) `-op-function

5.11. Proposition. [cf. [8, 5.9]] The `-relation π∗1Y × π∗2Y
λ−→ L̃ corresponding to a

comodule structure Yd
ρ−→ L⊗B Yd, where L is a localic Hopf algebroid, is an `-bijection.

Proof. We will use the analysis of this particular kind of `-relations that we did in section
3.26. We have seen that λ corresponds to a B-bimodule morphism Yd ⊗ Yd

µ−→ L. We
have also seen, in proposition 3.27, which conditions in µ are equivalent to the `-bijection
axioms.

Since any duality induces an internal-hom adjunction and ΩY is self-dual, µ corre-
sponds to ρ via the duality of modules described in A.2. Then by lemma A.14, the B1
and B2 subdiagrams in the following diagram are commutative. Also, the pentagon sub-
diagram D is commutative by definition of the localic groupoid G, where a is the antipode
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corresponding to the inverse of G.

B2

Yd ⊗ Yd
Yd⊗ η⊗Yd //

µ

��

ε

{{

Yd ⊗ Yd ⊗
B
Yd ⊗ Yd

B1 µ⊗
B
µ

��
B

t

##
s

##

L

D

c //eoo L ⊗
B
L

a⊗L
��

L⊗ a
��

L L ⊗
B⊗B

L.∧oo

(5.1)

To prove axiom ed), let b0 ∈ B, x ∈ Y (b0). Chasing δx ⊗ δx in diagram (5.1) all the
way down to L using the arrow L⊗a we obtain (recall our formulae for η, ε in proposition

3.25)
∨
b∈B

y∈Y (b)

µ(δx⊗δy)∧aµ(δy⊗δx) = b0, which implies the inequality
∨
b∈B

y∈Y (b)

µ(δx⊗δy) ≥ b0,

i.e. ≥ in ed) in proposition 3.27, but the inequality ≤ always holds.
To prove axiom uv), let b0, b1, b2 ∈ B, x ∈ Y (b0), y1 ∈ Y (b1), y2 ∈ Y (b2). Chasing

δy1 ⊗ δy2 , but this time using the arrow a⊗ L, we obtain∨
c∈B

w∈Y (c)

aµ(δy1 ⊗ δw) ∧ µ(δw ⊗ δy2) = Jy1 =y2KB,

then in particular (1) aµ(δy1 ⊗ δx) ∧ µ(δx ⊗ δy2) ≤ Jy1 =y2KB.

To deduce uv) from (1) we need to see that aµ(δy1 ⊗ δx) = µ(δx ⊗ δy1). Since a2 = id,
it is enough to prove ≤:

aµ(δy1 ⊗ δx)
3.14
= aµ(δy1 ⊗ b0 · δx) = aµ(δy1 ⊗ δx) ∧ b0

ed)
= aµ(δy1 ⊗ δx) ∧

∨
b∈B

y∈Y (b)

µ(δx ⊗ δy)

=
∨
b∈B

y∈Y (b)

aµ(δy1 ⊗ δx) ∧ µ(δx ⊗ δy)
(1)
=

∨
b∈B

y∈Y (b)

aµ(δy1 ⊗ δx) ∧ µ(δx ⊗ δy) ∧ Jy1 =yKB
3.17
=

= aµ(δy1 ⊗ δx) ∧ µ(δx ⊗ δy1).
Axioms su) and in) follow symmetrically.

We have finished the proof of proposition 5.9. For future reference, we record the
results of this section:

5.12. Proposition. Given a localic groupoid G over G0, with subjacent cogèbröıde L sur
B, and Y ∈ shB, the following structures are in a bijective correspondence:

a. Discrete actions G
θy Yd.
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b. `-relations π∗1Y ×π∗2Y
λ−→ L̃ with a corresponding B-bimodule morphism Yd⊗Yd

µ−→
L such that the following diagrams commute:

B1 :

Yd ⊗ Yd
µ //

Yd⊗ η⊗Yd
��

L

c

��
Yd ⊗ Yd ⊗

B
Yd ⊗ Yd µ⊗

B
µ
// L ⊗

B
L

B2 :

Yd ⊗ Yd
µ //

ε
##

L

e
��
B

c. Comodule structures Yd
ρ−→ L⊗B Yd.

5.13. Remark. In the case where G is a localic group, actions Aut(X) −→ G defined as
in [6, 7.2], also correspond to the previous structures (see [8, 5.9]).

5.14. Notation. We fix until the end of this paper the following notation: we use the
symbols θ, ρ, λ, µ only for the arrows in the correspondence above, adding a (−)′ if
necessary.

5.15. Remark. In [4], the structure considered is the opposite of A.12, i.e. right comodules

Yd
ρ−→ Yd ⊗B L (see note A.9). By considering the inverse image λ∗ we obtain that this

structure is also equivalent to the other three, and so are the right discrete actions Yd x G.
This situation is analogous to the correspondence between right and left actions of a group
given by x · g = g−1 · x.

5.16.. The equivalence at the level of arrows. We start this section with some
results in order to better understand the category Rel(βG). We begin with a proposition
that relates action morphisms with ♦2-cones as in section 4.

5.17. Proposition. Given two discrete actions G ×G0 Yd
θ−→ Yd, G ×G0 Y

′
d

θ′−→ Y ′d, a

space morphism Yd
f−→ Y ′d is an action morphism if and only if the corresponding arrow

Y
g−→ Y ′ in shB satisfies

♦2(g) :

Y ′

gop

Y

Y Y

G

λ

=

Y ′ Y

g

Y ′ Y ′

G

λ′

i.e. :

Y ′d

g∧

Yd

Yd Yd

L

µ

=

Y ′d Yd

g

Y ′d Y ′d

L

µ′

Proof. f−1 (the formal dual of f) is the B-locale morphism Yd
g∧−→ Yd, which is computed

with the self-duality of Yd (see 2.25 and 2.28), and the correspondence between θ and µ
in proposition 5.12 is also given by this duality, i.e.
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f−1 = g∧ :

Y ′d
η

Y ′d Yd
g

B Yd

Y ′d Y ′d B Yd

B

ε

B Yd

θ−1 = ρ :

Y ′d
η

Y ′d Y ′d B Y ′d

L

µ

B Y ′d

Then the commutativity of the diagram AM in definition 5.3, expressing that f is an
action morphism, is equivalent when passing to the formal dual to the equality of the left
and right terms of the equation (and therefore to the equality marked with an (*))

Y ′d
η

Y ′d Y ′d B Y ′d
η

L

µ′

B Y ′d Yd
g

B Yd

L B Y ′d Y ′d B Yd

L B B

ε

B Yd

4
=

Y ′d
η

Y ′d Yd
g

B Yd

Y ′d Y ′d B Yd

L

µ′

B Yd

(∗)
=

Y ′d
η

Y ′d Yd
g

B Yd
η

Y ′d Y ′d B Yd Yd B Yd

B

ε

B L

µ

B Yd

But the equality (*) is ♦2(g) composed with η, to recover ♦2(g) compose with ε.

5.18. Corollary. Using propositions 5.17 and 5.12, we can think of the category βG of
discrete actions of G in a purely algebraic way (without considering spaces over G0) as

follows: an action is a B-bimodule morphism Yd ⊗ Yd
µ−→ L satisfying B1, B2, and an

action morphism is an arrow Y
g−→ Y ′ in shB such that ♦2(g) holds.

5.19. Remark. Since µ is an `-bijection, ♦2(g) holds if and only if �(g) does, therefore
definition 5.3 coincides with [6, definition 7.4] for the case of a localic group.

5.20. Remark. Since the forgetful functor βG
F−→ shB, G y Yd 7→ Y , is left exact, a

monomorphism of discrete G-actions Z
g−→ Y is also a monomorphism in shB.

5.21. Lemma. Given two actions Yd⊗Yd
µ−→ L and Zd⊗Zd

µ′−→ L and a monomorphism
Z

g−→ Y of actions, for each δz, δw generators of Zd, we have µ′(δz⊗δw) = µ(δg(z)⊗δg(w)).

Proof. µ(δg(z) ⊗ δg(w))
5.17
=

∨
b∈B

x∈Y (b)

Jg(x)=g(z)KB · µ′(δx ⊗ δw)
5.20
=

=
∨
b∈B

x∈Y (b)

Jx=zKB · µ′(δx ⊗ δw)
3.17
= µ′(δz ⊗ δw).
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5.22. Lemma. Given an action Yd ⊗ Yd
µ−→ L and a monomorphism Z

f−→ Y , if the
restriction of the action to Z is an `-bijection, then it is an action. This is the only
possible action on Z that makes f a morphism of G-actions.

Proof. Unicity is clear from the previous lemma. We have to check B1 and B2 in
proposition 5.12 for Zd ⊗ Zd

µ−→ L. The only one that requires some care is B1. By
hypothesis we have for b0, b

′
0 ∈ B, x ∈ Y (b0), w ∈ Y (b′0),

cµ(δx ⊗ δw) =
∨
b∈B

y∈Y (b)

µ(δx ⊗ δy) ⊗
B
µ(δy ⊗ δw)

(we specify in the notation if the tensor product is over B).

We have to see that when x ∈ Z(b0), w ∈ Z(b′0), this equation still holds when restrict-
ing the supremum to Z. In fact, in this case we have

∨
b∈B

y∈Y (b)

µ(δx ⊗ δy) ⊗
B
µ(δy ⊗ δw)

3.14
=

∨
b∈B

y∈Y (b)

b0 · µ(δx ⊗ δy) ⊗
B
µ(δy ⊗ δw) · b′0

ed), su)
=

=
∨
b∈B

y∈Y (b)

∨
b1∈B

z1∈Z(b1)

∨
b2∈B

z2∈Z(b2)

µ(δx ⊗ δz1) ∧ µ(δx ⊗ δy) ⊗
B
µ(δy ⊗ δw) ∧ µ(δz2 ⊗ δw)

uv), in), 3.17
=

=
∨
b∈B
z∈Z(b)

µ(δx ⊗ δz) ⊗
B
µ(δz ⊗ δw).

We are ready to prove the equivalence between the categories Rel(βG) and Cmd0(L).

5.23. Theorem. For any localic groupoid G as in 5.1, there is an equivalence of cate-
gories making the square commutative (both U are forgetful functors):

Rel(βG)
∼= //

Rel(U)

��

Cmd0(L)

U
��

Rel(shB)
(−)∗ // s`0(shB)

γ∗ // (B-Mod)0.

Note that the commutativity of the square means that the identification between rela-

tions R ⊂ Y × Y ′ in shB and B-module morphisms Yd
R−→ Y ′d lifts to the upper part of

the square.
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Proof. Since the equivalence (B-Mod)0
∼= Rel(shB) maps Yd ↔ Y , proposition 5.12

yields a bijection between the objects of Cmd0(L) and Rel(βG).
We have to show that this bijection respects the arrows of the categories (note that

the composition of two relations corresponds to the composition of their direct images).
Using the lemma 5.22, it is enough to see that for Y , Y ′ any two objects of βG, and
R ⊂ Y × Y ′ a relation in shB, the restriction θ of the product action λ � λ′ to R is
a bijection if and only if the corresponding B-module map R : Yd → Y ′d is a comodule
morphism.

We claim that the diagram expressing that R : Yd → Y ′d is a comodule morphism is
equivalent to the diagram ♦(R,R) in 2.32. The proof follows then by proposition 2.36.

The comodule morphism diagram is the equality

Yd

R η

Y ′d Y ′d B Y ′d

L

µ′

B Y ′d

=

Yd
η

Yd Yd B Yd

R

L

µ

B Y ′d

(5.2)

while the diagram ♦ is

Yd
η

Y ′d

Yd Yd B Yd

R

Y ′d

Yd Yd B Y
′
d Y ′d

L

µ

B B

ε

=

Yd

R

Y ′d

Y ′d Y ′d

L

µ′

(5.3)

Proof of (5.2) =⇒ (5.3):

Yd
η

Y ′d

Yd Yd B Yd

R

Y ′d

Yd Yd B Y
′
d Y ′d

L

µ

B B

ε

(5.2)
=

Yd

R η

Y ′d

Y ′d Y ′d B Y ′d Y ′d

L

µ′

B B

ε

(4)
=

Yd

R

Y ′d

Y ′d Y ′d

L

µ′

Proof of (5.3) =⇒ (5.2):
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Yd

R η

Y ′d Y ′d B Y ′d

L

µ′

B Y ′d

(5.3)
=

Yd
η η

Yd Yd B Yd

R

Y ′d B Y ′d

Yd Yd B Y
′
d Y ′d B Y ′d

L

µ

B B

ε

B Y ′d

(4)
=

Yd
η

Yd Yd B Yd

R

L

µ

B Y ′d

6. The Galois and the Tannakian contexts

6.1.. The Galois context associated to a topos. Consider an arbitrary topos over S,
E −→ S. In [12, VII.3 p.59-61], the following is proved. There is an open spatial cover of

E (referred also as a “surjective localic point”), i.e. an open surjection of topos X q−→ E
with X = shG0 for a G0 ∈ Sp. We use in this section the notation of [12] for sheaves on
a space, shG0 = sh(O(G0)).

As we mentioned in the introduction, Joyal and Tierney consider the localic point
shG0

q−→ E as a (general) Galois context, as follows. In VIII.3 p.68-69, they show that

the pseudo-kernel pair of q, X ×
E
X

p1 //

p2
// X satisfies that there is a localic groupoid

G = G
G0

×
G0

G ◦ // G
∂0 //

∂1
// G0ioo such that

X ×
E
X

p1 //

p2
// X = shG

∂∗0 //

∂∗1

// shG0 (6.1)

Joyal and Tierney use this to prove the equivalence E ∼= βG (see theorem 7.2) via
descent techniques. They don’t construct G, and they don’t need to, since their proof
relies solely on the fact that open surjections are effective descent morphisms ([12, VIII.2]).

They make nevertheless the remark (p.70 of op. cit.) that in the case X = S q−→ E ,
with E an atomic topos, G is the spatial group of automorphisms of the inverse image
F = q∗ of the point. This idea was developed by Dubuc in [6, proposition 4.7], who
explicitly constructed G = `Aut(F ) in this case, and described it as a universal �-cone
of `-bijections. In [8, section 6], it is shown that this universal property is satisfied by the
(neutral) Tannakian coend End∧(T ), where T = Rel(F ).

Our work in this section is a generalization of these results, since we show that the
equation (6.1) above describes G as a universal �-cone of `-bijections (theorem 6.6),
and that the (non-neutral) Tannakian coend End∧(T ) satisfies this property (proposition
6.11). In this way an explicit construction of the groupoid G is obtained.
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Equation (6.1) means that shG
∂∗0 //

∂∗1

// shG0 satisfy the universal property that defines

the pseudo-kernel pair of q, i.e.

E q∗ //

q∗

��

shG0

∂∗0

��

f∗0

��

∼=
ϕ

��

(for each F , f ∗0 , f ∗1 , f ∗0 q∗
ψ

=⇒ f ∗1 q
∗,

∼=
ψ

�


there exists a unique `∗ such that

shG0 ∂∗1

//

f∗1
00

shG
∃!`∗

&&

`∗∂∗i = f ∗i and id`∗ ◦ ϕ = ψ)

F

(6.2)

6.2.. Take, as in section 5, B = O(G0). By 3.1, items 5,6, (B⊗B)-localesB ⊗B g=(g0,g1)−−−−−→ A

correspond to locales Ã ∈ Loc(sh(B⊗B)), γ∗Ã = A and the following diagram commutes.

shB
g∗0 //

π∗1 %%

shÃ shB
g∗1oo

π∗2yy
sh(B ⊗B)

g∗

OO (6.3)

Consider also the following commutative diagram

shÃ

sh(B ⊗B)

g∗

OO

S

γ∗

ff

γ∗

OO

Since the composition of spatial morphisms is spatial (see for example [22, 1.1]), then

shÃ is spatial (over S), i.e. shÃ ∼= sh(γ∗ΩÃ). But γ∗ΩÃ = γ∗g∗ΩÃ = γ∗Ã = A.

In the sequel, we make no distinction between shA and shÃ. (6.4)

6.3.. Recall from [12, VI.5 p.53-54] the fact that there is a left adjoint F to the full and

faithful functor Locop(S) = Sp(S)
sh
↪→ Top/S, that maps E p−→ S to F (E) = p∗(ΩE).
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6.4. Lemma. The universal property defining the pseudo-push out (6.2) is equivalent to
the following universal property for localic topoi:

E q∗ //

q∗

��

shG0

∂∗0

��

g∗0

��

∼=
ϕ

�


(for each A, g∗0, g
∗
1, g
∗
0q
∗ φ

=⇒ g∗1q
∗,

∼=
φ

�	

there exists a unique a∗ such that

shG0 ∂∗1

//

g∗1
00

shG
∃!a∗ ((

a∗∂∗i = g∗i and ida∗ ◦ ϕ = φ)

shA

(6.5)

Proof. Of course (6.2) implies (6.5). To show the other implication, given F , f ∗0 , f ∗1 , ψ
as in (6.2), consider F as a topos over sh(G0×G0) via F f=(f0,f1)−→ sh(G0×G0) and apply
F as in 6.3. Then O(F (F)) = f∗ΩF is a locale in sh(G0 × G0). Take A = γ∗f∗ΩF the

corresponding locale over B ⊗ B, B ⊗ B
g=(g0,g1)−→ A, i.e. Ã = f∗ΩF , then we have the

commutative diagram (6.3).

The hyperconnected factorization of f is

F

f %%

η // shA

gxx
sh(G0 ×G0)

, where η is

the unit of the adjunction described in 6.3. η is hyperconnected (see [12, VI.5 p.54]),

in particular η∗ is full and faithful (see [22, 1.5]). Then η∗g∗0q
∗ ψ

=⇒ η∗g∗1q
∗ determines

uniquely g∗0q
∗ φ

=⇒ g∗1q
∗ such that idη∗ ◦ φ = ψ and applying (6.5) we obtain

E q∗ //

q∗

��

shG0

∂∗0

��
g∗0

��

f∗0

��

∼=
ϕ
~�

∼=
φ

�	shG0 ∂∗1

//

g∗1 ..

f∗1 11

shG

∃!a∗
%%
shA

η∗

  
F

Now, by the adjunction described in 6.3, since taking sheaves is full and faithful, we
have a bijective correspondence between morphisms a∗ and `∗ in the following commuta-
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tive diagram:

F shA
η∗oo

shG

a∗

OO
`∗

gg

sh(G0 ×G0)

f∗

__

∂∗

OO g∗

__ (6.6)

To finish the proof, we have to show that under this correspondence the conditions
of (6.2) and (6.5) are equivalent. The equivalence between l∗∂∗ = f ∗ and a∗∂∗ = g∗ is
immediate considering (6.6), and the equivalence between idl∗ ◦ ϕ = ψ and ida∗ ◦ ϕ = φ
follows from idη∗ ◦ φ = ψ using that η∗ is full and faithful.

6.5.. Consider a B ⊗B-locale A as in 6.2. We have the correspondence

g∗0q
∗ φ

=⇒ g∗1q
∗ a natural isomorphism

by (6.3)

g∗π∗1q
∗ φ

=⇒ g∗π∗2q
∗ a natural isomorphism

by 4.9

A ♦1-cone π∗1q
∗X × π∗2q∗X

αX−→ Ã of `-bijections (in sh(B ⊗B))
by 4.3, 4.4

A � -cone π∗1q
∗X × π∗2q∗X

αX−→ Ã of `-bijections (in sh(B ⊗B))

In particular for L = O(G), the locale morphisms B
s=∂−1

0 //

t=∂−1
1

// L induce a locale morphism

B ⊗B γ=(b,s)// L , and ∂∗0q
∗ ϕ

=⇒ ∂∗1q
∗ correspond to a �-cone π∗1q

∗X × π∗2q∗X
λX−→ L̃ of `-

bijections.

6.6. Theorem. Given the previous data, (6.2) is a pseudo-push out if and only if λ is
universal as a �-cone of `-bijections (in the topos sh(B ⊗B)) in the following sense:

π∗1q
∗X × π∗2q∗X

λX

''

αX

&&
π∗1q
∗(f)×π∗2q∗(f)

��

≥
L̃ ∃!a // Ã.

π∗1q
∗Y × π∗2q∗Y

λY

77

αY

99

(a is a locale morphism)

(6.7)

Proof. By lemma 6.4 it suffices to show that (6.5) is equivalent to (6.7). We have shown
in 6.5 that ϕ, φ in (6.5) correspond to λ, α in (6.7).

Since taking sheaves is full and faithful, a morphism L̃
a−→ Ã of locales in sh(B ⊗B)

corresponds to the inverse image shL
a∗−→ shA (recall (6.4)) of a topoi morphism over
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sh(B ⊗ B), i.e. a∗ as in (6.5) satisfying a∗∂∗i = f ∗i , i = 0, 1. It remains to show that
aλX = αX for each X in (6.7) if and only if ida∗ ◦ ϕ = ψ in (6.5).

In the correspondence between a and a∗ above, L̃
a−→ Ã is given by the value of a∗ in

the subobjects of 1 (L̃ = γ∗ΩshL, Ã = f∗ΩshA), then we are in the hypothesis of 4.10 as
the following diagram shows

shL
a∗

--mm
a∗

shA

E
π∗1q
∗
//

π∗2q
∗
// sh(B ⊗B),

γ∗

cc

##

γ∗ f∗

DD

��

f∗

and the proof finishes by corollary 4.13.

6.7. Remark. From proposition 5.12, we have that for eachX ∈ E , π∗1q
∗X×π∗2q∗X

λX−→ L̃

is equivalent to a discrete action G ×G0 Xdis
θ−→ Xdis. In this way we can construct a

lifting E q̃∗−→ βG. This is the lifting E φ−→ Des(q) of [12, VIII.1 p.64], composed with the

equivalence Des(q)
∼=−→ βG given by the correspondence in 6.5 for each X (see [12, VIII.3

proof of theorem 2, p.69]).

6.8.. The Tannakian context associated to a topos. For generalities and notation
concerning Tannaka theory see appendix A. Consider the fiber functor associated to the
topos E (see 5.7):

T : Rel(E)
Rel(q∗)−−−−→ Rel(shB)

(−)∗−→ s`0(shB)
γ∗−→ (B-Mod)0, TX = (q∗X)d.

This determines a Tannakian context as in appendix A, with X = Rel(E), V = s`.

The universal property which defines the coend End∧(T ) is that of a universal ♦-cone
in the category of (B ⊗B)-modules, as described in the following diagram:

TX ⊗ TX
µX

''

φX

''
TX ⊗ TY

T (R)⊗TY ''

TX⊗T (R)∧
77

≡ End∧(T )
φ // Z.

TY ⊗ TY

µY
77

φY

88

(φ is a linear map)

Via the equivalence B ⊗ B-Mod ∼= s`(sh(B ⊗ B)), we can also think of this coend
internally in the topos sh(B ⊗B) as
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π∗1TX × π∗2TX
λX

((

φX

''
π∗1TX × π∗2TY

π∗1T (R)×π∗2TY ))

π∗1TX×π∗2T (R)op
55

≡ End∧(T )
φ // Z.

π∗1TY × π∗2TY

λY
66

φY

88

(φ a linear map)

Depending on the context, it can be convenient to think of End∧(T ) as a (B ⊗B)-module
or as a sup-lattice in sh(B ⊗ B): to use general Tannaka theory, we consider modules,
but to use the theory of ♦-cones developed in section 4 we work internally in the topos
sh(B ⊗B).

We apply proposition 4.17 to obtain:

6.9. Proposition. The large coend defining End∧(T ) exists and can be computed by the
coend corresponding to the restriction of T to the full subcategory of Rel(E) whose objects
are in any small site C of definition of E.

We fix a small site C (with binary products and 1) of the topos E . Then End∧(T )
can be constructed as a (B⊗B)-module with generators µC(δa⊗ δb), where δa, δb are the
generators of TC = (q∗C)d (see proposition 3.12), subject to the relations that make the
♦-diagrams commute. We will denote [C, δa, δb] = µC(δa ⊗ δb).

By the general Tannaka theory we know that End∧(T ) is a cogèbröıde agissant sur
B and a (B ⊗ B)-algebra. The description of the multiplication m and the unit u given
below proposition A.16 yields in this case, for C, D ∈ C (here, T (I) = T (1C) = B):

m([C, δa, δa′ ], [D, δb, δb′ ]) = [C ×D, (δa ⊗ δb), (δa′ ⊗ δb′)], u = λ1. (6.8)

When interpreted internally in sh(B⊗B), this shows that π∗1q
∗C×π∗2q∗C

λC−→ End∧(T ) is a
compatible ♦-cone, with End∧(T ) generated as a sup-lattice in sh(B⊗B) by the elements
λC(a, b), thus by proposition 4.22 it follows that End∧(T ) is a locale. By proposition A.17,
we obtain that End∧(T ) is also a (localic) Hopf cogèbröıde, i.e. the dual structure in Algs`
of a localic groupoid.

6.10.. The construction of G.

6.11. Proposition. Take L = End∧(T ). Then G = L satisfies (6.7), i.e. (by theorem
6.6) satisfies (6.2).

Proof. Given a �-cone of `-bijections over a locale A, by proposition 4.4 it factors
uniquely through a s`-morphism which by proposition 4.25 is a locale morphism.
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We show now that G actually is the localic groupoid considered by Joyal and Tierney.
By theorem 6.6, the dual L of a groupoid G satisfying (6.2) is unique as a locale in
sh(B ⊗B), and so are the λX corresponding to the ϕ in (6.2).

Now, remark A.15, interpreted for G = L using proposition 5.12, states that i = e,
◦ = c are the only possible localic groupoid structure (with inverse given as (−)−1 = a, see
proposition A.17) such that the lifting q̃∗ lands in βG (see remark 6.7). We have proved:

6.12. Theorem. Given any topos E over a base topos S, and a spatial cover shG0
q−→ E,

the localic groupoid G = G
G0

×
G0

G
◦ // G

∂0 //

∂1
// G0ioo considered in [12] can be constructed

as G = End∧(Rel(q∗)), with i = e, ◦ = c and inverse (−)−1 = a. The lifting E q̃∗−→ βG is
also unique and defined as in remark 6.7.

7. The main theorems

A topoi morphism shB
q−→ E , with inverse image E q∗−→ shB, determines by theorem

6.12 a situation described in the following diagram

βG //

U

��

Rel(βG)
∼= //

Rel(U)

��

Cmd0(L)

U

��

E

q∗~~

//

q̃∗
``

Rel(E)

Rel(q̃∗)
ff

T

''

Rel(q∗)

xx

T̃
77

shB //Rel(shB)
∼=

(−)∗
// s`0(shB)

∼=
γ∗
// (B-Mod)0.

(7.1)

where L = End∧(T ), G = L and the isomorphism in the first row of the diagram is given
by Theorem 5.23. Note that the triangle on the left is the Galois context associated to
the topos, and the triangle on the right is the one of the Tannakian context. Using 7.5
we obtain

7.1. Theorem. The (Galois) lifting functor q̃∗ is an equivalence if and only if the (Tan-

naka) lifting functor T̃ is such.

In [12, VIII.3, theorem 2, p.68] (see remark 6.7) it is proved the following:

7.2. Theorem. If q is an open surjection then the Galois lifting functor q̃∗ is an
equivalence.

Combining both results we obtain the following Tannakian recognition type theorem:

7.3. Theorem. The Tannaka lifting functor T̃ corresponding to an open surjection q is
an equivalence.
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7.4.. Tannaka theory for dcr. We show now that theorem 7.3 can be stated purely
in the language of s` categories as a Tannakian recognition theorem for a particular type
of s`-categories. We also describe our current progress regarding the extension of this
theorem to general s`-categories.

In [15, chapters 1 and 2], it is shown that the construction of 4.1 extends to a 2-fully

faithful functor Topop
Rel−→ DCR. Here DCR is the 2-category with

• Objects: distributive categories of relations (dcr). These generalize the s`-categories
Rel(E). By definition, a dcr is a cartesian s`-category in which every object is
discrete (see [15, 2.1 p.444], for details). Dcr are also a generalization (horizontal
categorification) of locales, in the sense that a locale is precisely a dcr with a sin-
gle object. More generally, in any cartesian s`-category, the hom sup-lattices are
actually locales.

• Morphisms: a morphism of dcr is a s`-functor that preserves this structure, for de-

tails see [15, 2.4 p.447]. In op. cit. it is shown that a s`-functor X T−→ Y between
dcr is a morphism of dcr if and only if the sup-lattice morphisms X (X,X ′) −→
Y(TX, TX ′) are locale morphisms. Then, in particular, an equivalence of s`-
categories is automatically a morphism of dcr (since an isomorphism in s` is au-
tomatically a locale morphism).

• 2-cells: they are the lax natural transformations T
ϕ−→ S ([15, 1.3(iii)]) whose

components TX
ϕ−→ SX are maps. The notion of map in a dcr (which is the

same as in any 2-category, namely to be a left adjoint) coincides with the notion of
function in the dcr Rel(E). An invertible arrow in a dcr is always a map (just like
an invertible relation is a function), and a lax natural isomorphism is automatically

natural. Then, the notion of equivalence T
ϕ−→ S in the 2-category DCR coincides

with the notion of natural equivalence.

7.5.. It follows that the inverse image q∗ of a topoi morphism is an equivalence if and only
if T = Rel(q∗) is an equivalence in DCR, which by the previous observations happens
if and only if T is an equivalence of s`-categories (a fully faithful, essentially surjective
s`-functor).

By identifying the essential image of the functor Topop
Rel−→ DCR, Carboni and Walters

[1] obtain an equivalence of 2-categories Topop
Rel−→ bcDCR, where bcDCR is the full

subcategory of DCR consisting of the bounded and complete dcr (see [15, 2.5]). In
[15, lemma 4.3], it is shown that under this equivalence (the inverse image of) an open
surjection corresponds to an open morphism of DCRs (see [15, 2.4 (ii)]) that is faithful as
a functor. Combining these results with theorem 7.3 we obtain the following recognition
theorem.

7.6. Theorem. Let A ∈ bcDCR, B ∈ Loc, A T−→ (B-Mod)0 a morphism of dcr. Then

the coend L = End∧(T ) of A.11 exists, and if T is open and faithful then the lifting T̃ of
A.13 is an equivalence.
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7.7.. Tannaka theory over sup-lattices. We have shown that theorem 7.3 corresponds
to a Tannakian recognition theorem for dcr, which are a particular case of s`-enriched
categories. But we should note that in a sense, this theorem combines a purely recognition
theorem (the lifting is an equivalence) and an “additional structure” theorem (where extra
structure is given to the coend L under extra hypothesis, in this case the cogèbröıde L is
a (localic) Hopf cogèbröıde).

But we can also consider a Tannakian context for a general s`-enriched category, not
necessarily the category of relations of a topos. This general Tannakian context doesn’t
correspond to a Galois context, so a priori we don’t have a recognition theorem, and we
can’t obtain one from the results of [12]. The (more ambitious) objective here is to obtain
the results of [12] via Tannakian methods, since we have shown that they correspond to
the particular case of dcr.

Note that the definition of an open morphism between dcr ([15, 4.1]) uses only their
underlying structure of s`-enriched categories, therefore we may consider open faithful
s`-functors between s`-categories. The same happens for the definitions of bounded and
complete.

We have been able to generalize the result of proposition 4.17 to bounded s`-categories
([19, 8.7]), which allows us to construct the Tannakian coend L = End∧(T ) given a fiber
functor T from a bounded s`-category A:

7.8. Theorem. Let A be a bounded s`-category, B ∈ Algs`, A
T−→ (B-Mod)0 a functor.

Then the coend L = End∧(T ) of A.11 exists, therefore so does the lifting T̃ of A.13.

Based on our previous developments, we end this paper with the conjecture that the
following more general recognition theorem may hold, which would imply theorem 7.3
(and therefore theorem 7.2 of Joyal-Tierney), for s`-enriched categories and comodules
of a (not necessarily localic Hopf) cogèbröıde. Note that an analysis of the properties of
Cmd0(L) and of the forgetful functor Cmd0(L) −→ (B-Mod)0 could lead to adding some
extra hypothesis to this conjecture.

7.9. Conjecture. In the hypothesis of theorem 7.8, if T is a s`-enriched open and
faithful functor then T̃ is an equivalence.

Appendix A Non-neutral Tannaka theory

In this section we make the constructions needed to develop a Non-neutral Tannaka theory
(as in [4]), over a general tensor category (V ,⊗, k). Let B′, B ∈ AlgV .

A.1. Duality of modules.

A.2 Definition. Let M ∈ B-Mod. We say that M has a right dual (as a B-module)

if there exists M∧ ∈ Mod-B, M ⊗M∧ ε→ B morphism of B-Mod-B and k
η→ M∧ ⊗B M
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morphism of V such that the triangular equations

η

M∧ M
ηM∧ M

M∧ B M
ε

M∧ = and M
ε

M∧ B M =

M∧ M.

M∧ B B B B M

(A.1)

hold. In this case, we say that M∧ is the right dual of M and we denote M aM∧.

A.3 Remark. If B is commutative, the notion of dual as a B-module coincides via the
inclusion B-mod ↪→ B-bimod with the notion of dual in the monoidal category B-bimod.

A.4 Proposition. A duality M aM∧ yields an adjunction

B′-Mod

(−)⊗M∧
,,

⊥ B′-Mod-B

(−)⊗
B
M

kk

given by the binatural bijection between morphisms

N ⊗M∧ λ→ L of B′-Mod-B

N
ρ→ L ⊗

B
M of B′-Mod

(A.2)

for each N ∈ B′-Mod, L ∈ B′-Mod-B.

Proof. The bijection is given by

N
ρ

M∧

λ : L B M M∧ ,

L B B
ε

N
η

ρ : N M∧ B M

L
λ

B M.

(A.3)

All the verifications are straightforward.

A.5 Definition. We will denote by (B-Mod)r the full subcategory of B-Mod consisting
of those modules that have a right dual.

A.6 Proposition. There is a contravariant functor (−)∧ : (B-Mod)r →Mod-B defined

on the arrows M
f−→ N as

η

N∧

f∧ : M∧ B M
f

N∧

M∧ B N N∧

M∧ B B
ε
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A.7. The Nat∧ adjunction. Consider now a category C and a functor H : Cop →Mod-
B. We have an adjunction

(B′-Mod)C

(−)⊗
C
H

,,
⊥ B′-Mod-B

HomB(H,−)

ll (A.4)

where the functors are given by the formulae

F ⊗C H =

∫ X∈C
FX ⊗HX, HomB(H,M)(C) = HomB(HC,M).

Assume now we have a full subcategory (B-Mod)0 of (B-Mod)r (recall definition A.5),
i.e. a full subcategory (B-Mod)0 of B-Mod such that every object has a right dual. Given
G : C → (B-Mod)0, using proposition A.6 we construct G∧ : Cop →Mod-B.

A.8 Definition. Given G : C → (B-Mod)0, F : C → B′-Mod, we define

Nat∧(F,G) = F ⊗C G∧ =

∫ X∈C
FX ⊗GX∧.

A.9. A note regarding left and right duality is in order here. There are two possible
different (symmetric) definitions of the Tannakian fundamental object, namely the one

above and the one we will denote by Nat∨(F,G) =
∫ X∈C

GX∨⊗FX, which is constructed
under the appropriate hypothesis, symmetric to the ones in definition A.8. Tannakian
theory can be developed using either one of the constructions, and by considering the
opposite of the tensor products each one becomes the other. In the commutative case
both constructions (and their variations present in the literature) coincide, but as Deligne
points out in [4], considering the non-commutative case helps us not to mistake left for
right.

If we consider the motivation in [10] for the definition of a predual of [F,G], we observe
that both possible definitions satisfy preduality in the following sense. Consider an object
C in a tensor category, then a left adjoint to the functor (−) ⊗ C is the usual internal
Hom functor Hom(C,−), but the functor C⊗ (−) can be considered instead, let’s denote
by Homr(C,−) this Hom functor. Note that both Hom functors satisfy [I,Hom(C,D)] =
[C,D]. A left dual C∨ of C yields the equality Hom(C,D) = D ⊗ C∨, and in this way
Hom(C, I) is the unique possible candidate for a left dual of C, even if C doesn’t admit
one. Similarly, Homr(C, I) is the unique possible candidate for a right dual of C. It

can be seen that Hom(
∫ X∈C

FX ⊗GX∧, I) = [F,G], therefore Nat∧(F,G) is the unique

possible candidate for a right dual of [F,G], and also Homr(
∫ X∈C

GX∨⊗FX, I) = [F,G],
therefore Nat∨(F,G) is the unique possible candidate for a left dual of [F,G].

The reason why we use definition A.8 in this paper is because, as the reader can
see below, it corresponds to left comodules, which in turn correspond to actions of the
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groupoid as we showed in the beginning of section 5.8. We note however that, since we’re
dealing with the commutative case, the other definition would also work (see remark 5.15).

A.10 Proposition. Given G : C → (B-Mod)0, we have an adjunction

(B′-Mod)C
Nat∧((−),G)

,,
⊥ B′-Mod-B

(−)⊗
B
G

ll (A.5)

where the functor (−)⊗B G is given by the formula (M ⊗B G)(C) = M ⊗B (GC).

Proof. The value of the functor Nat∧((−), G) in an arrow F
θ⇒ H of (B′-Mod)C is the

B′-B-bimodule morphism induced by

FX ⊗GX∧ θX⊗(GX)∧−→ HX ⊗GX∧ λX−→ Nat∧(H,G).

The adjunction is given by the binatural bijections

Nat∧(F,G)→ C

F ⊗
C
G∧ → C

F ⇒ HomB(G∧, C)

F ⇒ C ⊗
B
G

justified by the adjunction (A.4). We leave the verifications to the reader.

The unit of the adjunction is called the coevaluation F
ρ=ρF=⇒ Nat∧(F,G)⊗B G. It can

be checked that it is given by

ρC : FC
FC⊗η−→ FC ⊗GC∧ ⊗B GC

λC⊗GC−→ Nat∧(F,G)⊗B GC,

i.e. that it corresponds to λC via the correspondence (A.3).

The counit Nat∧(L⊗B G,G)
e=eL−→ L is induced by the arrows L⊗B GC ⊗GC∧

L⊗Bε−→ L.

We now restrict to the case B′ = B.

A.11 Definition. Given F : C → (B-Mod)0 , we define

L = L(F ) = End∧(F ) = Nat∧(F, F ).

As usual, given F,G,H : C → (B-Mod)0 we construct from the coevaluation a cocom-
position

Nat∧(F,H)
c→ Nat∧(F,G)

B
⊗
B
Nat∧(G,H)
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This is a B-bimodule morphism induced by the arrows

FC ⊗HC∧ FC⊗η⊗HC∧−→ FC ⊗GC∧
B
⊗
B
GC ⊗HC∧ λC⊗λC−→ Nat∧(F,G)

B
⊗
B
Nat∧(G,H)

The structure given by c and e is that of a cocategory enriched over B-Bimod. There-
fore, L = L(F ) is a coalgebra in the monoidal category B-Bimod, i.e. a B-bimodule with
a coassociative comultiplication L

c−→ L ⊗B L and a counit L
e−→ B. This is called a

cogébröıde agissant sur B in [4]. Cogébröıdes act on B-modules as follows

A.12 Definition. Let L be a cogébröıde agissant sur B, i.e. a coalgebra in B-Bimod.
A (left) representation of L, which we will also call a (left) L-comodule, is a B-module

M together with a coaction, or comodule structure M
ρ−→ L⊗BM , which is a morphism

of B-modules such that

C1 :

M
ρ

L
c

BM

L B L BM

=

M
ρ

L B M
ρ

L B L BM

C2 :

M
ρ

L
e

BM

B BM

=
M

M

We define in an obvious way the comodule morphisms, and we have that way a category
Cmd(L). We denote by Cmd0(L) the full subcategory of those comodules whose subjacent
B-module is in (B-Mod)0.

A.13 Proposition. Given F : C → (B-Mod)0, the unit FC
ρC−→ L ⊗B FC yields a

comodule structure for each FC. Then we obtain a lifting of the functor F as follows

C F̃ //

F
��

Cmd0(L)

Uxx
(B-Mod)0

A.14 Lemma. Let M ∈ (B-Mod)r, L ∈ B-Bimod, M ⊗M∧ λ−→ L in B-Bimod, and
ρ the corresponding B-module morphism via (A.3). Let L

e−→ B, L
c−→ L ⊗B L be a

structure of cogébröıde sur B. Then ρ is a comodule structure for M if and only if the
following diagrams commute:

B1 :

M ⊗M∧ λ //

M⊗η⊗M∧
��

L

c
��

M ⊗M∧ B
⊗
B
M ⊗M∧

λ⊗
B
λ

// L
B
⊗
B
L

B2 :

M ⊗M∧ λ //

ε
��

L

e
zz

B
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Proof. We can prove B1 ⇐⇒ C1, B2 ⇐⇒ C2. All the implications can be proved in
a similar manner when using a graphical calculus, we show C1 =⇒ B1:

M
η

M∧

M
ρ

M∧
B M

ρ

M∧

L B M M∧
B L B M M∧

L B B
ε

B L B B
ε

4
=

M
ρ

M∧

L B M
ρ

M∧

L B L B M M∧

L B L B B
ε

C1
=

M
ρ

M∧

L
c

BM M∧

L B L B B
ε

A.15 Remark. The previous lemma implies that L
e−→ B, L

c−→ L ⊗B L as defined
before is the only possible cogèbröıde structure for L that makes each ρX a comodule
structure.

We now give L additional structure under some extra hypothesis:

A.16 Proposition. If C and F are monoidal, and V has a symmetry, then L is a
B⊗B-algebra. If in addition C has a symmetry and F respects it, L is commutative (as an
algebra).

We will not prove this proposition here, but show how the multiplication and the unit

are constructed, since they are used explicitly in 6.8. The multiplication L
B
⊗
B⊗B

L
m−→ L

is induced by the composites

mX,Y : (FX ⊗ FX∧)
B
⊗
B⊗B

(FY ⊗ FY ∧)
∼=−→ (FX ⊗

B
FY )⊗ (FY ∧ ⊗

B
FX∧)

∼=−→ F (X ⊗ Y )⊗ F (X ⊗ Y )∧
λX⊗Y−→ L.

The unit is given by the composition

u : B ⊗B
∼=−→ F (I)⊗ F (I)∧

λI−→ L.

A.17 Proposition. If in addition C has a duality, then L has an antipode.

The antipode L
a−→ L is induced by the composites

aX : FX ⊗ FX∧
∼=−→ F (X∧)⊗ FX λX∧−→ L.

Appendix B Elevators calculus

This is a graphic notation invented by the first author in 1969 to write equations in
monoidal categories, ignoring associativity and suppressing the neutral object I. Given
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an algebra B we specify with a B the tensor product ⊗B over B, and leave the tensor
product ⊗ of the monoidal category unwritten. Arrows are written as cells, the identity
arrow as a double line, and the symmetry as crossed double lines. This notation exhibits
clearly the permutation associated to a composite of different symmetries, allowing to see if
any two composites are the same simply by checking if they codify the same permutation1.
Compositions are read from top to bottom.

Given arrows f : C → D, f ′ : C ′ → D′, the bifunctoriality of the tensor product is
the basic equality:

C

f

C ′

D C ′

f ′

D D′

=

C C ′

f ′

C

f

D′

D D′

=

C

f

C ′

f ′

D D′

(B.1)

This allows to move cells up and down when there are no obstacles, as if they were
elevators. There are also similar elevators with the symbol B .

The naturality of the symmetry is the basic equality:

C

f

C ′

D C ′

f ′

D D′

D′ D

=

C

f

C ′

D C ′

C ′

f ′

D

D′ D

=

C C ′

C ′ C

f

C ′

f ′

D

D′ D

(B.2)

Cells going up or down pass through symmetries by changing the column.

Combining the basic moves (B.1) and (B.2) we form configurations of cells that fit
valid equations in order to prove new equations.
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