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PROJECTIVITY, CONTINUITY, AND ADJOINTNESS:
QUANTALES, Q-POSETS, AND Q-MODULES

SUSAN NIEFIELD

Abstract. In this paper, projective modules over a quantale are characterized by
distributivity, continuity, and adjointness conditions. It is then show that a morphism
Q // A of commutative quantales is coexponentiable if and only if the corresponding
Q-module is projective, and hence, satisfies these equivalent conditions.

1. Introduction

In [Niefield, 1978/1982a], we characterized exponentiable affine schemes over Spec(R), for
a commutative ring R, by showing that a commutative R-algebra A is coexponentiable if
and only if the corresponding R-module is finitely generated projective, or equivalently,
finitely presented flat. Note that this characterization holds without the commutativity
assumption on A when coexponentiability is replaced by the condition that −⊗RA has a
left adjoint. Of course, this is equivalent to coexponentiability in the commutative case,
since ⊗R is the coproduct of algebras there. These results were subsequently generalized
to graded and differential graded R-algebras in [Niefield, 1986]. In both cases, the algebras
are objects of the category of commutative monoids for an appropriate monoidal category.

The question of coexponentiability of commutative quantales arose in preparation for
a talk including an extension of Proposition 4.3 of [Niefield, 2012] which applied to a
double category of quantales not considered therein. Since quantales are monoids in the
monoidal category Sup of sup-lattices (i.e., complete lattices and sup-preserving maps),
following an approach similar to that of rings is plausible for quantales, or more generally
for algebras over a commutative quantale Q. If M is a Q-module, then the functor
− ⊗Q M :QMod // QMod has a left adjoint if and only if M is projective if and only
if M is flat (cf. [Joyal/Tierney, 1984]). It turns out that essentially the same proof as
in [Niefield, 1978/1982a] yields a characterization of coexponentiable morphisms Q // A
of commutative quantales as those for which A is projective (or equivalently, flat) when
considered as modules over Q.

More can be said about projective Q-modules. In [Niefield, 1982b], we showed that X
is projective in Sup if and only if X is a completely distributive lattice if and only if X
is a totally continuous lattice (i.e., a strong version of a continuous lattice, in the sense
of [Scott, 1972]). A constructive version of complete distributivity (CCD) was introduced
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in [Fawcett/Wood, 1990] by requiring that the sup map
∨

:D(X) // X has left adjoint
(which is necessarily a right inverse in Sup), where D(X) is the lattice of downward
closed subsets of X. To generalize these concepts to Q-modules, consider how the CCD
condition is related to projectivity.

Recall that an object X of a category A is projective if and only for every f :X // Z
and every epimorphism g:Y //Z, there exists f̄ :X //Y such that the following diagram
commutes

Y Zg
// //

X

Y

f̄

���
�

�
�

�
X

Z

f

��

When A = Sup, since g preserves suprema, it has a right adjoint g∗:Z // Y , and so the
order-preserving map g∗f :X // Y induces a sup-preserving map D(X) // Y , and hence,
a sup-preserving map f̄ :X // Y such that gf̄ = f , when X is a retract of D(X) in Sup.
Conversely, if X is projective, then one can show that the right inverse to

∨
:D(X) //X

is a left adjoint as well. If A = QMod, then g∗f also satisfies ag∗f(x) ≤ g∗f(ax), since
g(ag∗f(x)) = agg∗f(x) ≤ af(x) = f(ax). Thus, we consider a category of Q-posets X
(i.e., posets on which Q acts) and morphisms which are order-preserving maps f :X //Y
satisfying af(x) ≤ f(ax). We then use their free Q-modules DQ(X) to define a general
notion of CCDQ (and hence, totally Q-continuous) lattices to characterize projectivity in
QMod. Moreover, the latter holds without the assumption that Q is commutative.

In [Stubbe, 2007], the CCD and continuity characterizations of projectivity were gen-
eralized to cocontinuous Q-categories for a quantaloid Q. Since quantales are one-object
quantaloids, Q-modules are cocontinuous Q-categories, and our Q-posets are necessarily
Q-categories, it should be noted that our characterization is implicit in Stubbe’s results.

The paper proceeds as follows. In Section 2, we generalize the Joyal/Tierney character-
ization of projective/flat Q-modules to the case where Q is not necessarily commutative.
The category of left Q-posets X with their free left Q-modules DQ(X) is introduced in
Section 3. This is followed, in Section 4, by the notions of CCDQ and totally Q-continuous
objects of QMod which characterize projective left Q-modules and lead to some concrete
examples. Restricting to the case where Q is commutative, in Section 5, we show that
the coexponentiable quantale morphisms Q //A are precisely those whose corresponding
Q-modules satisfy these equivalent conditions.

2. Projectivity and Adjoints for Left Q-Modules

Let Sup denote the category of sup-lattices, i.e., complete lattices and suprema preserv-
ing maps. Monoids in Sup are (unital) quantales, in the sense of [Mulvey, 1986]. Thus, a
quantale is a complete lattice together with a monoid structure such that the multiplica-
tion preserves suprema in both variables. If Q is a quantale, we write ab for the product, e
for the unit, and

∨
aα for the suprema of {aα}. A (left) Q-module is a complete lattice M
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together with a suprema preserving action of Q, i.e., satisfying a(bm) = (ab)m, em = m,
a(
∨
mα) =

∨
amα, and (

∨
aα)m =

∨
(aαm). Morphisms of quantales and Q-modules are

defined in the usual way.
Recall [Joyal/Tierney, 1984] that Sup is self dual via f :X // Y 7→ f ◦:Y ◦ // X◦,

where X◦ is the opposite poset and f ◦ corresponds to the right adjoint f∗ to f , which
exists since f preserves suprema. Limits in Sup are formed in Set and equipped with
point-wise suprema. Thus, limits and colimits agree, and so Sup is a bicomplete category.
Now, Sup(X, Y ) is a sup-lattice with point-wise suprema and the functor Sup(X,−) has
a left adjoint, by Freyd’s Special Adjoint Functor Theorem [Freyd, 1964], giving Sup the
structure of a symmetric monoidal closed category with unit 2. Moreover, one can show
that X ⊗ Y ∼= Sup(X, Y ◦)◦, and it follows that X is flat if and only if X is projective
in Sup. Similarly, if Q is a commutative quantale, then the category QMod of left Q-
modules in Sup is also a self-dual bicomplete symmetric monoidal category with unit Q.
Moreover, M ⊗Q N ∼= QMod(M,N◦)◦, and so projectivity and flatness agree in QMod.

Dropping the commutativity assumption on Q, the duality on QMod is replaced by
one between QMod and the category ModQ of right Q-modules as follows. Recall that if
M is a left Q-module, then M◦ is a right Q-module via m⊗a 7→ [a,m], where a·− a [a,−].
Similarly, if M is a right Q-module, then M◦ is a left Q-module via a⊗m 7→ {a,m}, where
− · a a {a,−}. Limits and colimits in QMod and ModQ are computed in Sup, and so
both categories are bicomplete. Although QMod and ModQ are no longer monoidal, we
can still define sup-lattices L⊗QM and QMod(M,N) via the following coequalizer and
equalizer in Sup

L⊗Q⊗M
· ⊗M //
L⊗ ·

// L⊗M // // L⊗QM

QMod(M,N) // // Sup(M,N)
ϕM //
ϕN

// Sup(Q⊗M,N)

where ϕM and ϕN are induced by actions of Q on M and N , respectively (cf. [Barr, 1996]).
Although we lose the adjointness between − ⊗Q M and QMod(M,−) in this case,

each of these Sup-valued functors has an adjoint, namely,

Sup oo
−⊗QM

Sup(M,−)
//ModQ and Sup

M⊗− //oo
QMod(M,−)

QMod

Similarly, ModQ(M,N) can be defined for right Q-modules and we obtain analogous
adjunctions. Then, as in the commutative case, one can show that

L⊗QM ∼= QMod(M,L◦)◦ ∼= ModQ(L,M◦)◦

Thus, we will say that a left Q-module M is projective if QMod(M,−):QMod // Sup
preserves epimorphisms, and flat if −⊗QM :ModQ // Sup preserves monomorphisms.

Now, if R is also a quantale and N is an QR-bimodule, then QMod(M,N) is a
right R-module. In particular, M∗ = QMod(M,Q) is a right Q-module and the counit
M⊗M∗ //Q is a morphism of QQ-bimodules. Thus, we get a morphism L⊗QM⊗M∗ //L
in ModQ, and hence, a sup-preserving map L⊗QM //ModQ(M∗, L).
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2.1. Theorem. The following are equivalent for a left Q-module M :

(a) L⊗QM //ModQ(M∗, L) is an isomorphism in Sup, for all right Q-modules L

(b) −⊗QM :ModQ // Sup has a left adjoint

(c) M is a flat

(d) M is a projective

Proof. First, (a) implies (b), since ModQ(M∗,−):ModQ // Sup has a left adjoint,
and (b) implies (c), since right adjoints preserve monomorphisms. To see that (c) implies
(d), suppose N // //P is a epimorphism in QMod. Then P ◦ // //N◦ is a monomorphism in
ModQ, and so P ◦⊗QM // //N◦⊗QM is a monomorphism in Sup, since M is flat. Thus,

QMod(M,N) // //QMod(M,P )

is an epimorphism in Sup, as desired. For (d) implies (a), suppose M is projective. Then
M is a retract of a free left Q-module F, i.e, a biproduct of copies of Q, and so we have
the commutative diagram

L⊗QM ModQ(M∗, Y )
ψM

//

L⊗Q F

L⊗QM
����

L⊗Q F ModQ(F ∗, L)
ψF //ModQ(F ∗, L)

ModQ(M∗, Y )
����OO

OO

OO

OO

where the vertical down arrows are retractions. Since L⊗Q− and ModQ(−, L) preserve
biproducts, one can show that ψF is an isomorphism, and it follows that so is ψM .

Note that the equivalence of (a), (c), and (d) was established in [Joyal/Tierney, 1984],
in the case where Q is commutative and Sup is replaced by QMod in (a). Since every
left Q-module becomes a right Q-module with the same action, we get:

2.2. Corollary. The following are equivalent for a left Q-module M , where Q is a
commutative quantale:

(a) L⊗QM //QMod(M∗, L) is an isomorphism in QMod

(b) −⊗QM :QMod //QMod has a left adjoint

(c) −⊗QM :QMod // Sup has a left adjoint

(d) M is a flat

(e) M is a projective

Proof. The proof that (c)⇒ (d)⇒ (e)⇒ (a)⇒ (b) follows as in Theorem 2.1, where the
penultimate implication uses the fact that every bijection in QMod is an isomorphism;
and (b) implies (c) holds, since the forgetful functor QMod // Sup is right adjoint to
Q⊗−.
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3. Q-Posets and Free Q-Modules

In this section, fixing a quantale Q, we introduce the notion of a left Q-poset X and give a
construction of the free left Q-module DQ(X) on X. The latter will be used to generalize
CCD and completely continuous to left Q-modules, and thus to obtain continuity and
distributivity characterizations of projectivity in QMod.

A left Q-poset is a poset X together with an order-preserving map Q × X
· // X

satisfying a(bx) = (ab)x and ex = x, where e is the unit of Q. Let QPos denote the
category of left Q-posets and order-preserving maps f :X // Y satisfying af(x) ≤ f(ax).
Note that if f has a right adjoint f∗ which is also in QPos, then f(ax) ≤ af(x), since
ax ≤ af∗f(x) ≤ f∗(af(x)), and it follows that f is equivariant. Thus, we get:

3.1. Proposition. Suppose M and N are left Q-modules and f :M //N is a morphism
of the underlying left Q-posets. Then f is a morphism of left Q-modules if and only if f
has a right adjoint in QPos.

If e is the top element of Q, then every poset X becomes a left Q-poset X̂ via the
projection Q×X̂ //X̂, thus providing a left adjoint to the forgetful functor QPos //Pos.
One can also consider the forgetful functor QMod // QPos which has a left adjoint, in
any case, by Freyd’s Special Adjoint Functor Theorem, since it is easily seen to preserve
limits. We denote this adjoint by DQ and the unit by dQ:X //DQ(X), since D generalizes
the down-set lattice functor Pos // Sup.

3.2. Proposition. If X is a left Q-poset, then DQ(X) is projective in QMod.

Proof. Consider the diagram

Y Zg
// //

DQ(X)

Y
}}z

z
z
DQ(X)

Z

f
��

X

DQ(X)

dQ
��

X

Y

g∗fdQ

����������������

f̄

where f and g are morphisms of left Q-modules and g∗ is a right inverse right adjoint
to g. Since g∗fdQ is in QPos, there exists a unique f̄ :DQ(X) // Y in QMod such that
f̄dQ = g∗fdQ. Thus, gf̄dQ = gg∗fdQ = fdQ, and so gf̄ = f , since dQ is the unit for the
adjunction.

We will see that a left Q-poset X is a left Q-module if and only if dQ:X //DQ(X) has
a left adjoint left inverse in QPos, which we will denote by sQ, and that X is projective
in QMod if and only if sQ has a right inverse left adjoint in QMod. To do so, we will
use the following construction of DQ(X).

3.3. Proposition. QPos(X,Q◦)◦ is the free left Q-module DQ(X) on the Q-poset X.

Proof. Since DQ(X)◦ ∼= ModQ(Q,DQ(X)◦) ∼= QMod(DQ(X), Q◦) ∼= QPos(X,Q◦),
the desired result follows.
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A detailed description of DQ(X) and its universal property will be given below. First,
we present some general properties which will be used in this description as well as in
subsequent sections.

We know that if M is a left Q-module, then M◦ is a right Q-module via m⊗a 7→ [a,m],
where a · − a [a,−]. Now, − ·m:Q //M is also sup-preserving, and we denote its right
adjoint by M(m,−).

Of course, these adjoints do not exist, in general, for a left Q-poset X, but one can
define X(x,−):X // Q by X(x, x′) =

∨
{a|ax ≤ x′}. Note that ax ≤ x′ implies a ≤

X(x, x′), but not conversely. For example, if X is the left 2-poset 2̂, then 0 ≤ X(1, 0),
but 0 · 1 6≤ 0, since 0 · 1 = 1 in 2̂.

Now, ex ≤ x implies e ≤ X(x, x). Since Q is a quantale one can show that

X(x′, x′′)X(x, x′) ≤ X(x, x′′)

and so X becomes a Q-category, in the sense of [Lawvere, 1973]. Thus, a Q-poset is
a Q-category with an order-preserving action of Q. This notion is weaker than that
of a tensored Q-category, in the sense of [Kelly, 1982], i.e., one satisfying X(ax, x′) =
Q(a,X(x, x′)), since, in that case, it easily follows that a ≤ X(x, x′) implies ax ≤ x′.

If f :X // Y is a morphism of left Q-posets, then f is a Q-functor (i.e., X(x, x′) ≤
Y (f(x), f(x′)), since ax ≤ x′ implies af(x) ≤ f(ax) ≤ f(x′)), but the converse need not
hold, for consider the identity function f : 2 // 2̂. Then 2̂(x, x′) = 2(x, x′), for all x, x′,
but f is not a morphism of 2-posets, since 0 · f(1) = 0 · 1 = 1, but f(0 · 1) = f(0) = 0 so
0 · f(1) 6≤ f(0 · 1). However, when the codomain of f is a left Q-module, we have:

3.4. Proposition. The following are equivalent for a function f :X //M , where X is
a left Q-poset and M is a left Q-module:

(a) f is a morphism of left Q-posets

(b) X(x, x′) ≤M(f(x), f(x′)) in Q, for all x, x′ ∈ X

(c) X(x, x′)f(x) ≤ f(x′) in M , for all x, x′ ∈ X

Proof. We know (a) implies (b), as noted above, and (b) is equivalent to (c), since M
is a left Q-module. To show (b) implies (a), suppose X(x, x′) ≤ M(f(x), f(x′)), for all
x, x′ ∈ X. Note that a ≤ M(f(x),m) implies af(x) ≤ m, since M is a left Q-module.
Thus, f is order preserving, since

x ≤ x′ ⇒ e ≤ X(x, x′) ≤M(f(x), f(x′))⇒ f(x) ≤ f(x′)

and af(x) ≤ f(ax), since a ≤ X(x, ax) ≤M(f(x), f(ax)).
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Identifying QPos(X,Q◦)◦ with DQ(X) and applying Proposition 3.4, we can take
elements of DQ(X) to be functions σ:X //Q such that σ(x′)X(x, x′) ≤ σ(x) in Q, since
X(x, x′) · σ(x) ≤ σ(x′) in Q◦ precisely when the following holds in Q

{X(x, x′), σ(x)} ≥ σ(x′) ⇐⇒ σ(x′) ≤ {X(x, x′), σ(x)} ⇐⇒ σ(x′)X(x, x′) ≤ σ(x)

Moreover, DQ(X) becomes a left Q-module with action, suprema, and infima defined
point-wise in Q.

Given x ∈ X, since X(x′′, x)X(x′, x′′) ≤ X(x′, x), it follows that the function X(−, x)
is an element of DQ(X), and these elements generate DQ(X) as a left Q-module since:

3.5. Proposition. If σ ∈ DQ(X), then a ≤ σ(x) ⇐⇒ aX(−, x) ≤ σ, for all a ∈ Q,
x ∈ X, and σ =

∨
{aX(−, x)|a ≤ σ(x)} in DQ(X).

Proof. First, a ≤ σ(x) if and only if aX(−, x) ≤ σ, since a ≤ σ(x) implies aX(x′, x) ≤
σ(x)X(x′, x) ≤ σ(x′), for all x′, and aX(−, x) ≤ σ implies a = ae ≤ aX(x, x) ≤ σ(x).
Thus,

∨
{aX(−, x)|a ≤ σ(x)} ≤ σ. The reverse inequality holds since suprema in DQ(X)

are computed point-wise in Q and σ(x) ≤ (aX(−, x)) (x), for a = σ(x).

The universal property of DQ(X) as a free left Q-module on the left Q-poset X

X DQ(X)
dQ //X

M

f

��

DQ(X)

M

f̄||y
y

y
y

y

can be described directly as follows. Define

dQ:X //DQ(X)

by dQ(x) = X(−, x). Then dQ is clearly order preserving; and adQ(x) ≤ dQ(ax), or
equivalently, aX(x′, x) ≤ X(x′, ax), for all x′, since

bx′ ≤ x⇒ abx′ ≤ ax⇒ ab ≤ X(x′, ax)

Given a leftQ-moduleM and a morphism f :X //M of leftQ-posets, define f̄ :DQ(X) //M
by f̄(σ) =

∨
{σ(x)f(x) | x ∈ X}. Then f̄ is clearly order preserving and

af̄(σ) = a
∨
x

σ(x)f(x) =
∨
x

aσ(x)f(x) = f̄(aσ)

To see that f̄ is a left Q-module morphism, by Proposition 3.1, it suffices to show that f̄
has a right adjoint in QPos. Consider f̄∗:M //DQ(X) defined by f̄∗(m) = M(f(−),m),
which is clearly in QPos, and f̄(f̄∗(m)) ≤ m, since

f̄(f̄∗(m)) =
∨
x

M(f(x),m)f(x) ≤ m
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To see that σ ≤ f̄∗(f̄(σ)) = M(f(−), f̄(σ)), by Proposition 3.5, it suffices to show that
a ≤ σ(x) implies aX(−, x) ≤ M(f(−), f̄(σ)). But, a ≤ σ(x) implies af(x) ≤ f̄(σ)
by definition of f̄ and aX(x′, x)f(x′) ≤ af(x) by Proposition 3.4, and it follows that
aX(x′, x) ≤M(f(x′), f̄(σ)), for all x′. Therefore, f̄ is a morphism of left Q-modules, and
f̄dQ = f , since

f̄(X(−, x)) =
∨
x′

X(x′, x)f(x′) = f(x)

Uniqueness of f̄ holds since the morphisms X(−, x) generate DQ(X).
We conclude this section with a characterization of left Q-modules as the ‘cocontinu-

ous’ Q-posets.

3.6. Proposition. Suppose X is a left Q-poset. Then X is a left Q-module if and only
if dQ:X //DQ(X) has a left adjoint left inverse in QPos.

Proof. Suppose X is a left Q-module. Then the identity id:X //X induces a morphism
sQ:DQ(X) //X in QMod such that sQdQ = id and

sQ(σ) = id(σ) =
∨
x

σ(x)x

Since σ(x)x ≤ sQ(σ), we know that σ(x) ≤ X(x, sQ(σ)), for all x, and so σ ≤ dQsQ(σ)
Conversely, suppose dQ has a left adjoint left inverse in QPos, call it sQ. Then one

can show X is complete via supxα = sQ(
∨
dQ(xα)) and a supxα = asQ(

∨
dQ(xα)) ≤

sQ(a
∨
dQ(xα)) = sQ(

∨
adQ(xα)) ≤ sQ(

∨
dQ(axα)) =

∨
axα. Since

∨
axα ≤ a supxα, in

any case, the desired result follows.

Note that the left adjoint sQ above is necessarily in QMod by Proposition 3.1.

4. Projectivity, Complete Distributivity, and Total Continuity

In this section, we generalize the notions of completely distributive and totally continuous
sup lattices, and use these concepts to characterize projectivity in the category of left
modules over a quantale Q. As noted in the introduction, this is a special case of Stubbe’s
characterization of projective quantaloid modules, presented here in a more elementary
setting.

A left Q-module M is called CCDQ (constructively completely distributive over Q) if
the morphism sQ:DQ(M) //M has a left adjoint right inverse in QMod.

4.1. Proposition. M is projective in QMod if and only if M is CCDQ.

Proof. Suppose M is CCDQ. Since DQ(M) is projective (by Proposition 3.2) and M is
a retract of DQ(M), it follows that M is projective in QMod.
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Conversely, suppose M is projective in QMod. Consider the diagram

DQ(M) MsQ
// //

M

DQ(M)

tQ

||y
y

y
y

y
y
M

M

id

��

where tQ is the right inverse to sQ in QMod induced by projectivity of M . To see
that tQ a sQ, it suffices to show that tQsQ ≤ id, or equivalently, tQsQdQ ≤ dQ, since
{M(−,m)|m ∈ M} generates DQ(M) by Proposition 3.5. But, sQ is left adjoint left
inverse to dQ in QPos, and so sQtQ ≤ id⇒ tQ ≤ dQ ⇒ tQsQdQ ≤ dQ, as desired.

Suppose M is a left Q-module and m,m′ ∈M . Then m′ is totally below m relative a,
written m′ /a m, if, for all a′ ∈ Q and σ ∈ DQ(M),

a′m ≤ sQ(σ)⇒ a′a ≤ σ(m′)

and M is called totally Q-continuous if it satisfies

m =
∨
{am′|m′ /a m}

Note that m′ /a m is order preserving in the second variable and order reversing in the
first. Also, we can replace “a′a ≤ σ(m′)” by “a′aM(−,m′) ≤ σ” in the definition of
m′ /a m, since they are equivalent by Proposition 3.5.

4.2. Lemma. Suppose m′ /a m and b ∈ Q. Then

(a) am′ ≤ m

(b) m′ /ba bm

(c) [b,m′] /ab m, where b · − a [b,−]

Proof. Suppose m′/am. Then am′ ≤ m, since m = sQ(M(−,m)) implies a ≤M(m′,m),
and so (a) holds. To prove (b), suppose a′bm ≤ sQ(σ). Then a′ba ≤ σ(m′), since m′ /am,
and it follows that m′ /ba bm. For (c), suppose a′m ≤ sQ(σ). Then a′a ≤ σ(m′), and so

a′ab ≤ σ(m′)b ≤ σ(b[b,m′])b ≤ σ([b,m′])

where the second inequality holds since b[b,m′] ≤ m′ and σ is order reversing, and the third
holds since {b, σ(n)} ≥ σ(bn) implies σ(bn)b ≤ σ(n), for all n ∈M . Thus, [b,m′] /ab m.
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4.3. Proposition. M is totally Q-continuous if and only if M is CCDQ.

Proof. Suppose M is totally Q-continuous and define tQ:M //DQ(M) by

[tQ(m)](m′) =
∨
{a|m′ /a m}

To show tQ(m) ∈ DQ(M), i.e., [tQ(m)](m′)M(m′′,m′) ≤ [tQ(m)](m′′), suppose m′ /a m
and b ≤M(m′′,m′). Then [b,m′] /abm, by Lemma 4.2, and m′′ ≤ [b,m′], since bm′′ ≤ m′,
and so m′′ /ab m. Thus, [tQ(m)](m′)M(m′′,m′) ≤ [tQ(m)](m′′).

Now, tQsQ(σ) ≤ σ, since m′ /a sQ(σ) implies a ≤ σ(m′), and

sQtQ(m) =
∨
m′

(∨
{a | m′ /a m}

)
m′ =

∨
{am′ | m′ /a m} = m

since M is totally B-continuous. Thus, tQ is a left adjoint right inverse of sQ in Sup,
since tQ is clearly order preserving, so it remains to show that tQ is equivariant. By
Proposition 3.1, it suffices to show that tQ is a left Q-poset morphism. But,

b[tQ(m)](m′) = b
∨
{a|m′ /a m} ≤

∨
{ba|m′ /ba bm} ≤ [tQ(bm)](m′)

Conversely, suppose M is CCDQ, and let tQ denote the left adjoint right inverse of sQ in
QMod. To prove M is totally Q-continuous, it suffices to show that aM(−,m′) ≤ tQ(m)
implies m′ /a m, for then

m = sQtQ(m) = sQ(
∨
{aM(−,m′)|aM(−,m′) ≤ tQ(m)}) ≤

∨
{am′|m′ /a m} ≤ m

where the second equality follows from Proposition 3.5. Given aM(−,m′) ≤ tQ(m), to
show m′ /a m, suppose a′m ≤ sQ(σ). Then a′a ≤ a′aM(m′,m′) ≤ a′[tQ(m)](m′) ≤
[tQ(a′m)](m′) ≤ [tQ(sQ(σ))](m′) ≤ σ(m′), and so m′ /a m, as desired.

Combining Theorem 2.1 with Propositions 4.1 and 4.3, we get:

4.4. Theorem. The following are equivalent for a left Q-module M :

(a) −⊗QM :ModQ // Sup has a left adjoint

(b) M is flat

(c) M is projective

(d) M is CCDQ

(e) M is totally Q-continuous
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Note that as in Theorem 2.1, we can replace (a) by “−⊗QM :QMod //QMod has
a left adjoint” when Q is commutative.

We conclude this section with examples of projective Q-modules. By Proposition 3.2,
we know DQ(X) is projective, and hence, CCDQ. Also, the unit interval [0, 1] is a CCD
suplattice (see [Fawcett/Wood, 1990]), and hence, projective in Sup. Now, if P is any
projective suplattice, then one easily shows that the free Q-module Q ⊗ P is projective
in ModQ. Thus, Q ⊗ D(X) and Q ⊗ [0, 1] are CCDQ. For an example of a projective
Q-module which is not of this form, let u be an idempotent element of Q, i.e., u2 = u.
Then, one can show that uQ is projective in ModQ and not, in general, isomorphic to
Q⊗ P , for any P .

5. Coexponentiable Morphisms of Commutative Quantales

In this section, we show that a morphism Q // A is coexponentiable in the category
Quantc of commutative (unital) quantales if and only if the corresponding Q-module is
projective, and hence, satisfies the equivalent conditions of Theorem 4.4. As in the case
of rings, this characterization holds when A is not necessarily commutative provided that
coexponentiability is replaced by the existence of a left adjoint to −⊗Q A.

We begin with a general lemma from [Niefield, 1978/1982a]

5.1. Lemma. Suppose A is a category with coequalizers, and consider the diagram

A
��

F

oo S

T
// B

��

G

where TF = GT and S a T such that the counit εA:STA //A is a regular epimorphism,
for all A. Then, if G has a left adjoint, so does F .

Suppose Q is a commutative quantale and X is a Q-module. Then one can show that
Q×X becomes a commutative quantale with (a, x)(a′, x′) = (aa′, ax′∨a′x) and unit (e, 0),
where 0 is the bottom element of X. Furthermore, every Q-module morphism f :X // Y
induces a quantale morphism Q× f :Q×X //Q× Y , and it is not difficult to show that
if f is a monomorphism, then so is Q× f .

5.2. Lemma. If Q // A is coexponentiable in Quantc, then A is flat in QMod.

Proof. To show that A is flat, suppose f :X // Y is a monomorphism in QMod. Then
Q × f :Q × X // Q × Y is a monomorphism in Quantc. Thus, we get a commutative
diagram in QMod.

Y ⊗Q A A⊕ (Y ⊗Q A)// //

X ⊗Q A

Y ⊗Q A
f⊗QA

��

X ⊗Q A A⊕ (X ⊗Q A)// // A⊕ (X ⊗Q A)

A⊕ (Y ⊗Q A)

��
��

∼=(Q⊕ Y )⊗Q A∼=

∼=(Q⊕X)⊗Q A∼=(Q×X)⊗Q A

(Q× Y )⊗Q A

��
(Q×f)⊗QA��
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where (Q × f) ⊗Q A is a monomorphism in QMod, since − ⊗Q A preserves monomor-
phisms (being a right adjoint) and the forgetful functor preserves monomorphisms, as
well. Therefore, f ⊗Q A is a monomorphism, and it follows that A is flat in QMod.

5.3. Theorem. The following are equivalent for a morphism f :Q // A of commutative
quantales:

(a) f is coexponentiable, i.e., −⊗Q A:Quantc\Q //Quantc\Q has a left adjoint

(b) A is flat in QMod

(c) A is projective in QMod

(d) A is CCDQ in QMod

(e) A is totally Q-continuous in QMod

(f) −⊗Q A:QMod //QMod has a left adjoint

Proof. First, (a) implies (b) by Lemma 5.2, and the equivalence of (b) through (f) follows
from the remark following Theorem 4.4. For (f) implies (a), apply Lemma 5.1 to

Quantc\Q
��

−⊗QA

oo S

T
// QMod

��

−⊗QA

where T is the forgetful functor and S is its left adjoint the symmetric algebra functor.

Note that, as in the case of rings, this characterization holds without the commuta-
tivity assumption on A when the coexponentiability part of (a) is omitted. Finally, one
can also show that (f)⇒ (a)⇒ (b) holds for monoids in any symmetric monoidal closed
category with colimits and finite biproducts, and the proof is essentially the same as that
of Theorem 5.3. This would provide a single proof for quantales and rings, but one must
add the additional finiteness conditions in the latter case to obtain the equivalence of (a),
(b), (c), and (f).
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