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CHARACTERISTIC SUBOBJECTS IN SEMI-ABELIAN
CATEGORIES

ALAN S. CIGOLI AND ANDREA MONTOLI

Abstract. We extend to semi-abelian categories the notion of characteristic subob-
ject, which is widely used in group theory and in the theory of Lie algebras. Moreover,
we show that many of the classical properties of characteristic subgroups of a group hold
in the general semi-abelian context, or in stronger ones.

1. Introduction

The notion of characteristic subgroup (which means a subgroup that is invariant under
all automorphisms of the bigger group) is widely used in group theory. Examples of
characteristic subgroups are the centre and the derived subgroup of any group. The main
properties of characteristic subgroups are the following: if H is a characteristic subgroup
of K and K is a characteristic subgroup of G, then H is a characteristic subgroup of G;
moreover, if H is characteristic in K and K is normal in G, then H is normal in G. These
transitivity properties of characteristic subgroups imply, for example, that the derived
series and the central series of a group are normal series, and this fact is very useful in
order to deal with solvable and nilpotent groups.

An analogous notion exists for Lie algebras (over a commutative ring R): a charac-
teristic ideal of a Lie algebra is a subalgebra which is invariant under all derivations of
the bigger one. The two transitivity properties mentioned above hold also in this context,
and again this allows to easily describe solvable and nilpotent Lie algebras.

The strong parallelism between these two contexts is explained by the fact that auto-
morphisms represent group actions, while derivations represent actions of Lie algebras in
the following sense. An action of a group B on a group G can be described simply as a
group homomorphism B → Aut(G); in the same way, an action of a Lie algebra B on a
Lie algebra G is a homomorphism of Lie algebras B → Der(G).
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The aim of this paper is to extend the definition and the main properties of character-
istic subobjects to the context of semi-abelian categories [18]. Examples of semi-abelian
categories are groups, rings, associative algebras, Lie algebras and, in general, any vari-
ety of Ω-groups. Our definition is based on the notion of internal action introduced in
[3]. In [9] it is proved that, in semi-abelian categories, internal actions are equivalent to
split extensions, via a semidirect product construction which generalises the classical one
known for groups.

We define a characteristic subobject as a subobject H of an object G which is invariant
under all (internal) actions on G. In the semi-abelian context, we can use the equivalence
between actions and split extensions mentioned above in order to deduce properties of
characteristic subobjects from properties of the kernel functor which associates with any
split epimorphism its kernel.

The paper is organized as follows: in Section 2 we give the definition of characteristic
subobject and we prove some properties that hold in any semi-abelian category, like the
transitivity properties mentioned at the beginning, or the fact that the intersection and
the join of two characteristic subobjects is characteristic. Then we study properties that
hold in stronger contexts, such as:

- the commutator of two characteristic subobjects is characteristic (Section 3);

- the centraliser of a characteristic subobject is characteristic (Section 4).

Some properties about actors of characteristic subobjects are studied in Section 5 in the
context of action representative categories [4, 2] and analogous results are proved in action
accessible categories [10], replacing actors with suitable objects.

2. Definition and basic properties

A characteristic subgroup of a group G is classically defined as a subgroup H of G which
is invariant under all the automorphisms of G. This means that any automorphism of G
restricts to an automorphism of H. Since the automorphism group Aut(G) of a group G
classifies all the group actions on G, a subgroup H of a group G is characteristic if and
only if any group action on G restricts to an action on H.

In other algebraic contexts it is no longer true that automorphisms classify actions,
hence the notions of invariance under automorphisms and invariance under actions are
different. As already explained in the introduction, here we are interested in the latter.
In order to study it in the semi-abelian setting, we are going to use the notion of internal
action, introduced in [3]. Let us briefly recall the definition.

Let C be a pointed category with finite limits and finite coproducts. For any object
B in C, we can define the category PtB(C) of points over B, whose objects are split
epimorphisms (A, p, s) with codomain B and whose arrows are commutative triangles of
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the following form, with p′f = p and fs = s′:

A
f //

p

��

A′

p′~~
B

s

__
s′

>>

We then get the two following functors:

KerB : PtB(C)→ C ,

given by KerB(A, p, s) = Ker p, and

B + (−) : C→ PtB(C) ,

where B + (X) is the point B +X
[1,0] // B
ιB
oo .

These functors give rise to an adjunction. The corresponding monad on C is denoted
by B[(−). For any object X ∈ C, we have that B[X is the kernel of the morphism
[1, 0] : B + X → B. The algebras for this monad are called internal B-actions. The
comparison functor associates with every point (A, p, s) an action ξ as described in the
following diagram (where X is the kernel of p and ξ is induced by the universal property
of X):

B[X
ker[1,0]//

ξ
��

B +X
[1,0] //

[s,k]
��

B
ι
B

oo

X
k

// A
p //

B
s

oo

When C is the category Gp of groups, the elements of B[X are generated by formal
sequences of type (b;x; b−1) with b ∈ B and x ∈ X, and the internal action ξ is nothing
but the realisation of these sequences in X, that is ξ(b;x; b−1) = bxb−1, or more properly
ξ(b;x; b−1) = k−1(s(b)k(x)s(b−1)) since the product is actually computed in A.

Vice versa, given a group action ξ of B over X, we can always associate with it the
semidirect product XoξB and a morphism of split extensions as in the following diagram:

B[X
ker[1,0]//

ξ

��

B +X
[1,0] //

��

B
ι
B

oo

X
iX

// X oξ B
pB //

B
iB
oo

We can repeat the same construction in any pointed category with finite limits, finite
coproducts and, in addition, coequalisers, defining the object X oξ B by means of the
following coequaliser diagram:

B[X
ker[1,0]//

ιXξ
// B +X // // X oξ B .
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However, in general, the sequence (iX , pB) above is not a short exact sequence. This is
the case when the comparison functor between points and actions is an equivalence, i.e.
when a categorical semidirect product in the sense of [9] is defined, as, for example, in
any semi-abelian category.

We are now ready to give the following definition:

2.1. Definition. Let C be a semi-abelian category, G an object in C and h : H � G a
subobject. We say that H is characteristic in G, and we write H <

char
G, if, for each pair

(B, ξ), with B an object of C and ξ an internal action of B on G, the action ξ restricts to
the subobject H. In other words, there exists a (unique) action ξ of B on H which makes
the following diagram commute:

B[H

ξ
��

1[h // B[G

ξ
��

H //
h

// G

Being C a semi-abelian category, the above mentioned equivalence between actions
and points allows us to reformulate the definition of characteristic subobject.

2.2. Proposition. Let C be a semi-abelian category. A subobject h : H � G is charac-
teristic in G if and only if, for every split extension of kernel G

G � ,2 // X // Boo ,

there exist a split extension H � ,2 // Y // Boo and a morphism of split extensions as
below, whose components on kernels and on cokernels are h and 1B respectively (it is
necessarily a monomorphism):

H � ,2 //
��

h
��

Y //

��

��

Boo

G � ,2 // X // Boo

(1)

As we will see afterwards, this reformulation makes the notion of characteristic sub-
object much easier to handle. Moreover, the translation in terms of points reveals that,
when actions are equivalent to points, many properties of characteristic subobjects are
strictly related to the properties of the fibration of points (see [1]) or, to be more precise,
of the kernel functors:

KerB : PtB(C)→ C .

2.3. Proposition. If H is a characteristic subobject of K, and K is a characteristic
subobject of G, then H is characteristic in G.

Proof. The result is a straightforward consequence of Definition 2.1.
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2.4. Proposition. If H is a characteristic subobject of K, and K is a normal subobject
of G, then H is normal in G.

Proof. It suffices to observe that, in the semi-abelian context, normal subobjects are
exactly those closed under the conjugation action (i.e. clots, see for example [20]). Indeed,
the conjugation action of G on itself restricts to K by normality, and then to H, since
H <

char
K, thus proving that H / G.

2.5. Corollary. If H is a characteristic subobject of G, then H is normal in G.

2.6. Remark.

1. Combining Propositions 2.2 and 2.4, we obtain that every characteristic subobject
h : H � G gives rise, for every action of an object B on G, to a normal monomor-
phism of split extensions. Indeed, considering the morphism in diagram (1), we have
that, since H <

char
G, then H / X; according to [1, Proposition 6.2.1], this suffices to

prove that (1) is a normal monomorphism in PtB(C).

2. The property stated in Proposition 2.4 is not only a consequence of the fact that a
subobject is characteristic, but it is equivalent to it, as shown in [13, Proposition 3.2].
Shortly:

H <
char

G ⇐⇒ (for each X, G / X ⇒ H / X) .

This is a consequence of Lemma 2.7 below.

2.7. Lemma. [13, Lemma 2.6] Consider a split extension as in the bottom row of the
diagram

H_��
h
��

// Y

��

// Boo

G � ,2
k
// X

p // B
s

oo

such that kh is normal. Then this split extension lifts along h : H → G to yield a normal
monomorphism of split extensions.

Proof. The needed lifting is obtained via the pullback of split extensions in the diagram

H_��

h

��

� ,2 // Y

}}

��

// B

s
}}

oo

H � ,2 //
_��

kh

��

R
r1 //

〈r1,r2〉

��

Xoo

G � ,2
k

//;x�

k
}}

X
p //

〈sp,1X〉
}}

B
s

oo

s

}}
X � ,2

〈0,1X〉
// X ×X

π1 // X
〈1X ,1X〉

oo
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where R is the equivalence relation on X associated with the normal subobject kh.

Thanks to Proposition 2.2 and Remark 2.6, in a semi-abelian category, we have three
equivalent formulations of the property, for a subobject, of being characteristic:

1. H <
char

G if every (internal) action on G restricts to an action on H;

2. H <
char

G if, for every point with kernel G in a fibre PtB(C), the inclusion of H in G

lifts to a monomorphism in PtB(C);

3. H <
char

G if, whenever G / K, then H / K.

We chose the first one as a definition, because it is a more natural generalisation of the
already existing notion for groups and for Lie algebras. Notice, however, that the three
formulations need not be equivalent outside the semi-abelian setting, since, in general,
actions are not equivalent to points and normal subobjects do not coincide with clots (i.e.
those closed under conjugation). The more exportable definition is probably the third,
which makes sense in any category where a notion of normal subobject is defined. In
that case, we should specify which kind of “normality” we are considering, since there are
different notions of normal subobject, that coincide in the semi-abelian context (see, for
example, [20] for a detailed account). These would give different, possibly non-equivalent,
definitions of characteristic subobject. The study of the relationship between these notions
in a more general context goes beyond the purposes of this paper and is material for a
future work. Accordingly, from now on, unless otherwise specified, C will be a semi-abelian
category and one can think of normal subobjects simply as kernels.

When the category C is not only semi-abelian, but also strongly protomodular [7],
internal actions behave well with respect to quotients. More precisely, in [21] the following
result is proved.

2.8. Proposition. [21, Theorem 5.3] A semi-abelian category is strongly semi-abelian
(i.e. semi-abelian and strongly protomodular) if and only if the following property holds:

• for every normal subobject H /G and every action ξ : B[G→ G, if ξ restricts to H,
then ξ also induces a (unique) action ξ̃ on the quotient G/H:

B[H //

ξ
��

B[G //

ξ

��

B[(G/H)

ξ̃
��

H � ,2
h

// G q
� ,2G/H
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In terms of split extensions, this means that if a kernel h is the restriction of some φ
in PtB(C), then q = coker(h) is the restriction of γ = coker(φ) in PtB(C):

H � ,2 //
_��
h
��

Y //

��
φ
��

Boo

G � ,2 //

q
_��

X //

γ
_��

Boo

G/H � ,2 // Z // Boo

(2)

It turns out that, for the special class of characteristic subobjects, strong protomod-
ularity is not needed in order to transfer actions to the quotient.

2.9. Proposition. If H is a characteristic subobject of G, then every action on G induces
an action on the quotient G/H, as in the diagram of Proposition 2.8.

Proof. As already observed in Remark 2.6, for every action of an object B on G, there
is a normal monomorphism in PtB(C) whose restriction to the kernels is h. By taking its
cokernel, we get an exact sequence in PtB(C) as in diagram (2).

2.10. Proposition. If H ≤ K ≤ G, H is characteristic in G and K/H is characteristic
in G/H, then K is characteristic in G.

Proof. Let us consider the following diagram

H � ,2 // K � ,2
��
k

��

K/H
��
k̃
��

H � ,2 // G q
� ,2G/H

The right hand side square is a pullback (this comes from the fact that the category C,
being semi-abelian, is protomodular [5]). By Proposition 2.9, every action of some B on
G induces an action on G/H. By assumption, the same action restricts to K/H. In
terms of points, we have a cospan in PtB(C) whose restriction to the kernels is the pair

(q, k̃). Now, since the kernel functors preserve pullbacks, K is the kernel of the pullback
in PtB(C) of the same cospan, hence the action of B on G restricts to K.

2.11. Proposition. If H is characteristic in G, then its corresponding equivalence re-
lation R on G is closed under actions on G, i.e. there exists an action R(ξ) of B on R
which makes the following diagram commute:

B[R

R(ξ)
��

1[r1 //

1[r2

// B[G

ξ
��

R
r1 //
r2

// G
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Proof. By Proposition 2.9, every action of an object B on G induces an action on G/H.
Now, since kernel functors preserve pullbacks, R is the kernel of the kernel pair in PtB(C)
of the morphism γ of diagram (2):

R � ,2 //

r1
��

r2
��

Rγ
//

����

Boo

G � ,2 //

q
_��

X //

γ
_��

Boo

G/H � ,2 // Z // Boo

We can make explicit the previous proposition in the category Gp. It says that for all
pairs (x, y) ∈ R and for all b ∈ B, the pair (bx, by) belongs to R.

More in general, whenever B acts on G, there is an induced action on G×G (simply
computing the product in PtB(C)), and the inclusion R� G×G is compatible with the
corresponding actions. However, this does not mean that R is a characteristic subobject
of G×G.

2.12. Proposition. If H and K are characteristic subobjects of G, then their intersec-
tion H ∧K is characteristic in G.

Proof. Thanks to Remark 2.6, this is an immediate consequence of the fact that the
intersection of normal subobjects is normal.

The result above can be extended to infinite families, provided that the infinite inter-
section exists.

2.13. Proposition. If H and K are characteristic subobjects of G, then their join H∨K
is characteristic in G.

Proof. Again, via Remark 2.6, this is an immediate consequence of the fact that, in a
semi-abelian category, the join of two normal subobjects is normal (see [1]).

3. Commutators

While the outcomes listed in Section 2 hold in the very general case of semi-abelian
categories, other classical properties of characteristic subgroups can be extended only
under additional requirements on the base category.

An assumption, which turns out to be crucial in this sense, is to ask that kernel
functors preserve jointly strongly epimorphic pairs. This is equivalent to the fact that,
for all pairs ((Y, p1, s1), (Z, p2, s2)) of objects in PtB(C), the canonical arrow in C:

KerB(Y, p1, s1) + KerB(Z, p2, s2)→ KerB((Y, p1, s1) + (Z, p2, s2))
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is a regular epimorphism. This condition, which was first considered in the present paper
and in [15], has been recently called algebraic coherence in [12], where it is studied in
details. An analogous condition, namely the preservation of jointly epimorphic pairs by
the functor B[− for any B, was already considered in [19].

A context in which the property of preservation of jointly strongly epimorphic pairs by
the kernel functors holds is the one of locally algebraically cartesian closed categories [8].
A semi-abelian category C is said locally algebraically cartesian closed (or simply LACC)
if, for any morphism f : A→ B in C, the change of base functor

f ∗ : PtB(C)→ PtA(C) ,

defined by taking pullbacks along f , has a right adjoint. Examples of this situation are
the categories Gp of groups and R-Lie of Lie algebras over a fixed commutative ring R. In
this context the kernel functors (which are change of base functors with A = 0), having
right adjoints, preserve all finite colimits, and hence the canonical arrow

KerB(Y, p1, s1) + KerB(Z, p2, s2)→ KerB((Y, p1, s1) + (Z, p2, s2))

mentioned above is an isomorphism.

Another context in which the kernel functors preserve jointly strongly epimorphic
pairs is given by categories of interest [23], as proved in [12]. We recall that a category
of interest in the sense of [23] is a category C whose objects are groups with a set of
operation Ω and with a set of equalities E, such that E includes the group laws and the
following conditions hold. If Ωi is the set of i-ary operations in Ω, then:

(a) Ω = Ω0 ∪ Ω1 ∪ Ω2;

(b) the group operations (written additively: 0,−,+, even if the group is not necessarily
abelian) are elements of Ω0, Ω1 and Ω2 respectively. Let Ω′2 = Ω2\{+}, Ω′1 = Ω1\{−}
and assume that if ∗ ∈ Ω′2, then Ω′2 contains ∗◦ defined by x ∗◦ y = y ∗ x. Assume
further that Ω0 = {0};

(c) for any ∗ ∈ Ω′2, E includes the identity x ∗ (y + z) = x ∗ y + x ∗ z;

(d) for any ω ∈ Ω′1 and ∗ ∈ Ω′2, E includes the identities ω(x + y) = ω(x) + ω(y) and
ω(x) ∗ y = ω(x ∗ y);

(e) Axiom 1 x1 + (x2 ∗ x3) = (x2 ∗ x3) + x1 for any ∗ ∈ Ω′2;

(f) Axiom 2 for any ordered pair (∗, ∗) ∈ Ω′2 × Ω′2 there is a word W such that

(x1 ∗ x2)∗x3 = W (x1(x2x3), x1(x3x2), (x2x3)x1, (x3x2)x1,

x2(x1x3), x2(x3x1), (x1x3)x2, (x3x1)x2),

where each juxtaposition represents an operation in Ω′2.
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Examples of categories of interest are groups, Lie algebras, rings, associative algebras,
Leibniz algebras, Poisson algebras and many others.

Since it will be useful later, we give here a description of internal actions in this context
(called derived actions in [11]). In a category of interest C, an action of an object B on
an object X is a set of functions:

f∗ : B ×X → X ,

one for each operation ∗ in Ω2 (we will write b · x for f+(b, x) and b ∗ x for f∗(b, x), with
∗ ∈ Ω′2), such that the one corresponding to the group operation + satisfies the usual
axioms for a group action, the others are bilinear with respect to + and moreover the
following axioms are satisfied (for all b, bi ∈ B, x, xi ∈ X and ∗, ∗ ∈ Ω′2):

1. b · (x1 ∗ x2) = x1 ∗ x2;

2. x1 + (b ∗ x2) = (b ∗ x2) + x1;

3. (b1 ∗ b2) · x = x;

4. b1 · (b2 ∗ x) = b2 ∗ x;

5. (b∗x1)∗x2 = W (b(x1x2), b(x2x1), (x1x2)b, (x2x1)b, x1(bx2), x1(x2b), (bx2)x1, (x2b)x1);

6. (x1 ∗x2)∗b = W (x1(x2b), x1(bx2), (x2b)x1, (bx2)x1, x2(x1b), x2(bx1), (x1b)x2, (bx1)x2);

7. (b1 ∗ b2)∗x = W (b1(b2x), b1(xb2), (b2x)b1, (xb2)b1, b2(b1x), b2(xb1), (b1x)b2, (xb1)b2);

8. (b1 ∗ x)∗b2 = W (b1(xb2), b1(b2x), (xb2)b1, (b2x)b1, x(b1b2), x(b2b1), (b1b2)x, (b2b1)x);

where W indicates the same word in Axiom 2 corresponding to the choice of ∗ and ∗.
Observe that axioms 1–4 above come from Axiom 1, while axioms 5–8 come from

Axiom 2 by replacing each operation with the corresponding action (notice that the
group action replaces the conjugation and not the group operation). These axioms are
nothing but the translation of the condition that one obtains by considering the equiv-
alence between actions and points and expressing the action as the conjugation into the
semidirect product. More explicitly, given a split extension:

X
k // A

p // B ,
s

oo

the corresponding action is given by:

b · x = k−1(s(b) + k(x)− s(b));

b ∗ x = k−1(s(b) ∗ k(x)).
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A wider class of semi-abelian varieties is given by groups with operations introduced
by Porter in [24]. In that class, the description of internal actions is similar to the one
given above; axioms 1–8 are replaced by suitable ones coming from the identities of the
corresponding algebraic theory. We will use this description explicitly in the Examples
3.4 and 4.5 below.

A classical property of characteristic subgroups of a group is the fact that the com-
mutator of two characteristic subgroups is characteristic as well. In order to study this
property in a semi-abelian setting, we will use an intrinsic definition of commutator of
two subobjects. There are different possible definitions. The first we consider is the Huq
commutator [17], which can be described in the following way (see [1] and [20]): given
two subobjects h : H � G and k : K � G of an object G, we can construct the following
diagram:

H +K
ΣH,K //

[h,k]

��

H ×K

��
[H,K]G

� ,2 // G π
// G
[H,K]G

where ΣH,K is the canonical map

ΣH,K = 〈[1, 0], [0, 1]〉 = [〈1, 0〉, 〈0, 1〉] : H +K → H ×K

and the commutative square is a pushout. Then the Huq commutator appears as the
kernel of the morphism π. Being a kernel, the Huq commutator is always a normal
subobject, even if H and K are not.

Another possible definition is that of Higgins commutator [20]. Given two subobjects
h : H � G and k : K � G of an object G, let us denote by σH,K : H � K → H + K
the kernel of the canonical morphism ΣH,K : H +K → H ×K. The Higgins commutator
[H,K] of H and K is the regular image of H �K under the morphism [h, k]σH,K , as in
the following diagram:

H �K

����

� ,2
σH,K // H +K

[h,k]

��
[H,K] // // G

The Higgins commutator of H and K is not necessarily a normal subobject of G, even
when H and K are. In fact, its normal closure in G is the Huq commutator. Following
[13], we say that a category C satisfies the (NH) property when the Higgins commutator of
two normal subobjects is normal, or, in other words, when Higgins and Huq commutators
of normal subobjects coincide. The (NH) property is fulfilled both by (LACC) categories
and by categories of interest (see [13]).

Let us observe that, if G coincides with the join of its subobjects H and K (or, in
other words, when [h, k] is a regular epimorphism), then the Higgins commutator [H,K] is
normal in G, since in the semi-abelian context regular images of normal subobjects along
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regular epimorphisms are normal. As a special case, this happens when h = k = 1G,
showing that the derived object [G,G] is always normal in G.

3.1. Proposition. Let C be a semi-abelian category where the kernel functors preserve
jointly strongly epimorphic pairs. If H and K are characteristic subobjects of G, then the
Higgins commutator [H,K] is a characteristic subobject of G. In particular, the derived
subobject [G,G] is a characteristic subobject of G.

Proof. IfH andK are characteristic subobjects ofG, then, for every action ξ : B[G→ G,
there is a cospan in PtB(C):

H � ,2 k1 //
��

h
��

Y
p1 //

��

��

B
s1

oo

G � ,2 iG // Goξ B
pB // B
iB
oo

K � ,2 k2 //
OOk

OO

Z
p2 //

OO

OO

B
s2

oo

The product (Y, p1, s1)× (Z, p2, s2) in PtB(C) has H ×K as kernel. In general, the kernel
N of the coproduct (Y, p1, s1) + (Z, p2, s2) is different from H + K; however, under our
hypothesis, the canonical map u : H+K → N is a regular epimorphism. Now, consider the
following commutative diagram, where α is the arrow induced on kernels by the canonical
morphism (Y, p1, s1) + (Z, p2, s2) → (Y, p1, s1) × (Z, p2, s2) in PtB(C), β is induced by
(Y, p1, s1) + (Z, p2, s2)→ (GoB, pB, iB), and j = ker(α):

H �K � ,2
σH,K //

v
_��

H +K
ΣH,K� ,2

p
u

_��

H ×K

M � ,2 j //

_��

N α � ,2

β

��

H ×K

[H,K] // // G

The arrow v : H � K → M is a regular epimorphism, since the square αu = 1H×KΣH,K

is a pushout. The Higgins commutator [H,K] in G is defined as the regular image of
σH,K along βu, which is the same as the regular image of j along β. Now recall that the
composite βj is the restriction to kernels of a morphism in PtB(C). Since the (regular epi,
mono) factorisation of a morphism in PtB(C) is preserved by the kernel functor, then the
inclusion [H,K]� G turns out to be the restriction to kernels of a morphism in PtB(C),
thus being characteristic as follows from Proposition 2.2.

3.2. Corollary. Let C be a semi-abelian category where the kernel functors preserve
jointly strongly epimorphic pairs. If H and K are characteristic subobjects of an object G
in C then the Huq commutator and the Higgins commutator of H and K in G coincide.
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Proof. This is a consequence of Proposition 3.1 and Corollary 2.5, since the Huq com-
mutator is the normal closure of the Higgins commutator.

The results above apply, in particular, either to a semi-abelian (LACC) category or
to a category of interest. This depends on the fact that both classes of categories satisfy
the hypothesis of Proposition 3.1, as explained above.

For example, in the category of (not necessarily unitary) rings, given a ring X and two
subrings H and K, the commutator [H,K] is nothing but the subring HK of X generated
by all elements of the form hk or kh, with h ∈ H and k ∈ K. Hence Proposition 3.1
says that, if H and K are characteristic, HK also is. Something similar happens in the
category of Lie algebras (over a commutative ring R), where the commutator [H,K] of
two subalgebras is the Lie subalgebra generated by all elements of the form [h, k], with
h ∈ H and k ∈ K.

3.3. Remark. In fact, in a semi-abelian context, the property:

H,K characteristic in X ⇒ [H,K] characteristic in X

is also implied by the (NH) property, as shown in [13, Proposition 3.3]. This gives an
alternative proof in the case of (LACC) categories and of categories of interest.

The fact that the Higgins (or the Huq) commutator of two characteristic subobjects is
characteristic is not true in a general semi-abelian category. Not even the derived subob-
ject of an object (which is the same in the Higgins or in the Huq sense) is characteristic
in general, as the following example shows. On the other hand, Example 3.5 below shows
that, even in the category of groups, the commutator [H,K] fails to be characteristic if
H and K are not characteristics.

3.4. Example. Let us consider the category NARng of not necessarily associative rings,
i.e. abelian groups with a binary operation which is distributive over the group operation.
Let us consider the object G in NARng given by the free abelian group on two generators
G = Zx+ Zy, endowed with a distributive binary operation, defined on generators as:

∗ x y
x x 0
y 0 0

Then the derived subobject [G,G] = Zx is an ideal (i.e. a normal subobject) of G, but it
is not characteristic in G. Indeed, if we consider the object given by the abelian group Z
with trivial multiplication, [G,G] is not stable under the following action of Z over G:

Z×G→ G , z ∗ (αx+ βy) = (zβ)x+ (zα)y ,
G× Z→ G , (αx+ βy) ∗ z = (zβ)x+ (zα)y .

We emphasize that G is, in fact, an associative ring, but the present is not a counterex-
ample for the category Rng of rings, since the one described above is an action in NARng
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but not in Rng. Indeed, according to the explicit description of actions recalled at the
beginning of this section, an action of Z over G in NARng is just a pair of bilinear maps
Z×G→ G and G×Z→ G, while an action in Rng must also satisfy some “associativity”
axioms. In the example above, the axiom

z ∗ (xx) = (z ∗ x)x

is not satisfied, indeed z ∗ (xx) = z ∗ x = zy, while (z ∗ x)x = (zy)x = 0.

3.5. Example. Let S3 be the symmetric group over the set of three objects, h : A3 → S3

its normal subgroup of even permutation. Let G = S3 × S3 and H be the subgroup A3

with the inclusion 〈h, 0〉, which is normal. One can prove that [G,H] = H, which is
not a characteristic subobject of G, since it is not fixed by the twisting automorphism
〈π2, π1〉 : S3 × S3 → S3 × S3.

4. Centres and centralisers

Given a characteristic subgroup H of a group G, its centraliser ZG(H) is characteristic,
too. In particular, the centre of a group is always a characteristic subgroup. This is not
true in any semi-abelian category, as we will show later, so we need to consider further
hypotheses on the category in order to get this property. In a semi-abelian category C,
given a subobject H of an object G, the centraliser of H in G is the largest subobject
ZG(H) of G such that the Huq commutator [H,ZG(H)]G vanishes. The centre of an object
G is the largest subobject Z(G) of G such that [G,Z(G)] = 0.

Centres and centralisers do not always exist in a semi-abelian category, and even
when they exist, they can be difficult to handle. Bourn and Janelidze introduced in [10]
a categorical context, namely action accessible categories, in which the centres and the
centralisers have an easy description. We recall now the definition of action accessible
categories and their basic properties.

Let C be a semi-abelian category. Fixed an object K ∈ C, a split extension with kernel
K is a diagram

K k // A
p // B
s

oo ,

such that ps = 1B and k = Ker(p). We denote such a split extension by (B,A, p, s, k).
Given another split extension (D,C, q, t, l) with the same kernel K, a morphism of split
extensions

(g, f) : (B,A, p, s, k) −→ (D,C, q, t, l) (3)

is a pair (g, f) of morphisms:

K
k // A

f

��

p // B

g

��

s
oo

K
l // C

q // D
t

oo

(4)
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such that l = fk, qf = gp and fs = tg. Let us notice that, since the category C is
protomodular, the pair (k, s) is jointly (strongly) epimorphic, and then the morphism f
in (4) is uniquely determined by g.

The split extensions with fixed kernel K form a category, denoted by SplExtC(K), or
simply by SplExt(K).

4.1. Definition. [10]

• An object in SplExt(K) is said to be faithful if any object in SplExt(K) admits at
most one morphism into it.

• Split extensions with a morphism into a faithful one are called accessible.

• If, for any K ∈ C, every object in SplExt(K) is accessible, we say that the category
C is action accessible.

In the case of groups, faithful extensions are those inducing a group action of B on K
(via conjugation in A) which is faithful. Every split extension in Gp is accessible and a
morphism into a faithful one can be performed by taking the quotients of B and A over
the centraliser ZB(K), i.e. the (normal) subobject of A given by those elements of B that
commute in A with every element of K.

In [22] it is proved that any category of interest in the sense of [23] is action accessible.
Examples of action accessible categories are then groups, rings, associative algebras, Lie
algebras, Leibniz algebras and Poisson algebras, as mentioned before.

In the context of action accessible categories it is easy to describe the centraliser of
a normal subobject. We give now a brief description of the construction, without proof
(that can be found, for example, in [14]). Let x : X → A be a normal subobject of A,
and let R[p] be the equivalence relation on A induced by X (i.e. the kernel pair of the
quotient p : A → A/X). Consider the following morphism of split extensions, where the
codomain is a faithful one (it exists because the category is action accessible):

X
〈x,0〉 // R[p]

r0 //

f
��

A
s0
oo

g

��
X

k
// C

q // D
t

oo

Then the kernel of g is the centraliser ZA(X) of X in A. This implies, in particular,
that in an action accessible category the centraliser of a normal subobject is normal [14,
Corollary 2.6], which is not always the case in general semi-abelian categories, even when
ZA(X) exists (see examples in [14]).

We are now ready to prove that, in the context of action accessible categories, the
centraliser of a characteristic subobject is characteristic.
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4.2. Lemma. Let C be a semi-abelian category where, for every normal subobject H / G,
the centraliser ZG(H) of H in G is normal in G. Then if G′ is a normal subobject of G,
ZG′(H) is also normal in G.

Proof. By definition of centraliser, ZG′(H) is the largest subobject of G′ such that
[H,ZG′(H)]G′ = 0. Hence, it is contained in both G′ and ZG(H), and it is the largest
with this property, so it is defined by the following pullback:

ZG′(H) � ,2 //
_��

��

ZG(H)
_��

��
G′ � ,2 // G

In other words, ZG′(H) = ZG(H)∧G′ and it is normal in G as intersection of two normal
subobjects.

4.3. Proposition. Let C be a semi-abelian category where, for every normal subobject
H / G, the centraliser ZG(H) of H in G is normal in G. Then if H is a characteristic
subobject of G, ZG(H) is also characteristic in G.

Proof. Consider an object B and an action ξ : B[G → G. G is a normal subobject of
Goξ B; so, being characteristic in G, H is normal in Goξ B by Proposition 2.4. Hence,
by Lemma 4.2, ZG(H) is a normal subobject of Goξ B. Now, we can apply Lemma 2.7
to the following situation:

ZG(H)
_��

��

�  )

%%
0 // G � ,2

iG
// Goξ B

pB // B
iB
oo // 0

thus obtaining a morphism of split extensions:

0 // ZG(H)
_��

��

� ,2 // ZGoξB(G)
_��

��

// Boo // 0

0 // G � ,2
iG

// Goξ B
pB // B
iB

oo // 0

which gives the desired action ξ′ : B[ZG(H)→ ZG(H) as a restriction of the action ξ.

4.4. Corollary. Let C be a semi-abelian category where, for every normal subobject
H / G, the centraliser ZG(H) of H in G is normal in G. Then the centre Z(G) is a
characteristic subobject of G.

In the category of (not necessarily unitary) rings, given an ideal H of a ring G, the
centraliser ZG(H) is the annihilator of H in G, i.e.

ZG(H) = {g ∈ G | gh = hg = 0 for all h ∈ H} .
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Hence, if H is characteristic in G, then the annihilator of H in G is characteristic, as well.
In particular, for any ring G, the annihilator of G is a characteristic ideal of G. The same
happens in the category of Lie algebras over a commutative ring R.

Proposition 4.3 and Corollary 4.4 are true, in particular, in semi-abelian action acces-
sible categories. However, they do not hold in any semi-abelian category. The following
is a counterexample.

4.5. Example. Let us consider again the category NARng of not necessarily associative
rings and the object G in NARng described in Example 3.4. The centre Z(G) = Zy is an
ideal (i.e. a normal subobject) of G, but it is not characteristic in G, since it is not stable
under the action of Z over G described in the same example.

5. Induced morphisms between actors

In the category Gp of groups, if H is a characteristic subgroup of G, then there are induced
morphisms Aut(G)→ Aut(H) and Aut(G)→ Aut(G/H). This comes from the fact that
actions on G (which are equivalent to split extensions with kernel G, as already observed)
are represented by the automorphism group Aut(G), in the sense that an action of a group
B on G can be described simply as a group homomorphism B → Aut(G). We are going
to show that the same induced morphisms exist in a context in which internal actions are
representable in the sense of [3, 4]. Categories in which this happens are called action
representative in [2]. Let us recall the definition.

5.1. Definition. [3, 2] A semi-abelian category C is action representative if, for any
object X ∈ C, there exists an object Act(X), called the actor of X, and a split extension

X // X o Act(X) // Act(X)oo ,

called the split extension classifier of X, which is terminal in SplExt(X). That is, for any
split extension with kernel X:

X k // A
p // B
s

oo

there exists a unique morphism (ϕ, ϕ1) of split extensions from (B,A, p, s, k) to the split
extension classifier:

X k // A

ϕ1

��

p // B
s

oo

ϕ

��
X // X o Act(X) // Act(X)oo

Notice that the morphism ϕ1 is uniquely determined by ϕ and the identity on X (since k
and s are jointly strongly epimorphic).

Examples of action representative categories are the category Gp of groups, where
the actor is the group of automorphisms, and the category Lie of Lie algebras over a
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commutative ring R, where the actor of a Lie algebra X is the Lie algebra Der(X) of
derivations of X.

It is well-known that the assignment G 7→ Act(G) is not functorial. Nevertheless, it
behaves well with respect to characteristic subobjects.

5.2. Proposition. Let C be an action representative semi-abelian category. Every char-
acteristic subobject h : H � G induces a morphism between split extension classifiers:

G � ,2 //

q
_��

Go Act(G) //

��

Act(G)oo

��
G/H � ,2 // G/H o Act(G/H) // Act(G/H)oo

(5)

and a morphism between actors: Act(G)→ Act(H).

Proof. As explained in Section 2, if H is a characteristic subobject of G, then, for every
action ξ : B[G→ G, there exists an exact sequence in PtB(C):

H � ,2 //
_��
h
��

Y //

��
φ
��

Boo

G � ,2 //

q
_��

X //

γ
_��

Boo

G/H � ,2 // Z // Boo

Since the category C is action representative, we can choose, in particular, B = Act(G)
and the middle row to be the split extension classifier of G. Thus, thanks to Proposition
2.9, we have a morphism in PtAct(G)(C):

G � ,2 //

_��

Go Act(G) //

��

Act(G)oo

G/H � ,2 // Z // Act(G)oo

By composing with the arrow to the split extension classifier of G/H, we get the desired
morphism (5).

For the same reason, we also have a morphism:

H � ,2 //
_��
h

��

Y //

��

��

Act(G)oo

G � ,2 // Go Act(G) // Act(G)oo

The arrow from the upper split extension to the split extension classifier of H produces
the morphism Act(G)→ Act(H).
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It is worth translating the above proposition in terms of internal actions. The first
assertion says that there exists a morphism q̃ : Act(G)→ Act(G/H) making the following
diagram commute:

Act(G)[G
q̃[q //

ζG
��

Act(G/H)[(G/H)

ζG/H
��

G q
� ,2G/H

where ζG and ζG/H are the canonical actions of the actors. On the other hand, the second

statement says that there exists a morphism h : Act(G) → Act(H) making this triangle
commute:

Act(G)[H h[1 //

ζG ''

Act(H)[H

ζH
��
H

where ζG is the action on H induced by ζG and ζH is the canonical action of the actor.

Let us observe that any action representative category is action accessible: indeed, it is
easy to see that the split extension classifier is a faithful split extension. On the other hand,
the category Rng of rings is action accessible [10] but not action representative. In the case
of action accessible categories, one cannot recover the same properties described above
for action representative categories, because there can be many faithful split extensions
associated with a given one. However, as observed in [14], there always exists a canonical
faithful split extension associated with a given one, and it has properties analogous to the
ones described above.

In an action accessible semi-abelian category, given a morphism of split extensions
with faithful codomain:

X k // A

f
��

p // B
s

oo

g
��

X // C
q // D
t

oo

the canonical (regular epi, mono) factorisation gives rise to another faithful split extension:

X k // A

ef
����

p // B
s

oo

eg
����

X // T1
��

mf
��

// T0
��
mg
��

oo

X // C
q // D.
t

oo

The important fact here is that the faithful split extension in the middle of the previous
diagram does not depend on the choice of the lower one, so it is a canonical faithful split
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extension associated with (A,B, p, s). The object T0 is actually the quotient B/ZB(X) of
B over the centraliser of X in B (i.e. the largest subobject of B commuting with X in
A), while T1 is the quotient A/ZB(X).

As above, let H be a characteristic subobject of G. Then, for every action ξ of B on
G, there exists an exact sequence in PtB(C) as in diagram (2). Let

G � ,2 // X //

_��

Boo

_��
G � ,2 // T1(B,G, ξ) // T0(B,G, ξ)oo

be the morphism onto the canonical faithful split extension (and similarly for the induced
split extensions of kernels H and G/H).

5.3. Proposition. Let C be an action accessible semi-abelian category. Every character-
istic subobject h : H � G induces a morphism between canonical faithful split extensions:

G � ,2 //

q
_��

T1(B,G, ξ) //

��

T0(B,G, ξ)oo

��

G/H � ,2 // T1(B,G/H, ξ̃) // T0(B,G/H, ξ̃)oo

(6)

and a morphism: T0(B,G, ξ)→ T0(B,H, ξ).

Proof. As explained above, the object T0(B,G, ξ) is nothing but the quotient B/ZB(G),

and T1(B,G, ξ) ∼= X/ZB(G), and similarly for Ti(B,H, ξ) and Ti(B,G/H, ξ̃). The desired
morphism (6) will be the bottom rectangle in the following commutative diagram:

G
q

5v�

� ,2 // X

γ
5v�

_��

// B

_��

oo

G/H � ,2 // Z //

_��

Boo

_��

G � ,2 //

q5v�

T1(B,G, ξ) //

q15v�

T0(B,G, ξ)oo

q05v�

G/H � ,2 // T1(B,G/H, ξ̃) // T0(B,G/H, ξ̃)oo

It is constructed as follows. By definition, the centraliser ZB(G) of G in B is such
that [G,ZB(G)]X = 0. Composing with γ, we also have [G/H,ZB(G)]Z = 0, so that
ZB(G) ≤ ZB(G/H), and this induces the arrow q0 between the corresponding cokernels
over B. On the other hand, q1 is the arrow which completes the following morphism of
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short exact sequences:

ZB(G) � ,2 //

��

��

X � ,2

γ
_��

T1(B,G, ξ)

q1_��

ZB(G/H) � ,2 // Z � ,2 T1(B,G/H, ξ̃)

To prove the second assertion, consider the morphism below in PtB(C):

H � ,2 //
_��
h
��

Y //

��
φ
��

Boo

G � ,2 // X // Boo

By definition, [G,ZG(B)]X = 0 and, as a consequence, [H,ZG(B)]X = 0. Since φ is
monomorphic, this implies that [H,ZG(B)]Y = 0 too, hence ZG(B) ≤ ZH(B). The
morphism T0(B,G, ξ) → T0(B,H, ξ) is the one induced on the corresponding cokernels
over B.

6. Summarising table

Property True in Reference

H <
char

G ⇒ H / G C semi-abelian 2.5

H <
char

K / G ⇒ H / G C semi-abelian 2.4

H <
char

K <
char

G ⇒ H <
char

G C semi-abelian 2.3

H,K <
char

G ⇒ H ∧K <
char

G C semi-abelian 2.12

H,K <
char

G ⇒ H ∨K <
char

G C semi-abelian 2.13

H <
char

G, B acts on G ⇒ B acts on G/H C semi-abelian 2.9

H ≤ K ≤ G, H <
char

G, K/H <
char

G/H

⇒ K <
char

G
C semi-abelian 2.10

H <
char

G, (R kernel pair of G→ G/H)

⇒ R closed under actions on G
C semi-abelian 2.11

[G,G] <
char

G
C semi-abelian

algebraically coherent
3.1

H,K <
char

G ⇒ [H,K] <
char

G
C semi-abelian

algebraically coherent
3.1

Z(G) <
char

G
C semi-abelian

action accessible
4.4

H <
char

G ⇒ ZG(H) <
char

G
C semi-abelian

action accessible
4.3

H <
char

G ⇒
{

Act(G)→ Act(G/H)
Act(G)→ Act(H)

C semi-abelian
action representative

5.2
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Lawrence Breen, Université de Paris 13: breen@math.univ-paris13.fr
Ronald Brown, University of North Wales: ronnie.profbrown(at)btinternet.com
Valeria de Paiva: valeria.depaiva@gmail.com
Ezra Getzler, Northwestern University: getzler(at)northwestern(dot)edu
Kathryn Hess, Ecole Polytechnique Fédérale de Lausanne: kathryn.hess@epfl.ch
Martin Hyland, University of Cambridge: M.Hyland@dpmms.cam.ac.uk
Anders Kock, University of Aarhus: kock@imf.au.dk
Stephen Lack, Macquarie University: steve.lack@mq.edu.au
F. William Lawvere, State University of New York at Buffalo: wlawvere@buffalo.edu
Tom Leinster, University of Edinburgh: Tom.Leinster@ed.ac.uk
Ieke Moerdijk, Radboud University Nijmegen: i.moerdijk@math.ru.nl
Susan Niefield, Union College: niefiels@union.edu
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