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LIMITS OF ABSTRACT ELEMENTARY CLASSES

M. LIEBERMAN, J. ROSICKÝ

Abstract. We show that the category of abstract elementary classes (AECs) and
concrete functors is closed under constructions of “limit type,” which generalizes the
approach of Mariano, Zambrano and Villaveces away from the syntactically oriented
framework of institutions. Moreover, we provide a broader view of this closure phe-
nomenon, considering a variety of categories of accessible categories with additional
structure, and relaxing the assumption that the morphisms be concrete functors.

1. Introduction

One of the main virtues of accessible categories is that they are closed under constructions
of limit type ([9]). This should be made precise by considering accessible functors between
accessible categories and showing that the resulting 2-category is closed under appropriate
limits. These limits can be reduced to products, inserters and equifiers and are called
PIE-limits. Proofs of this result (see [9], or [1]) also show that the category of accessible
categories with directed colimits and functors preserving directed colimits is closed under
PIE-limits. The needed 2-categorical limits are explained both in [9] and [1] and we
recommend [4] for a more systematic introduction.

Recent papers [3], [6] and [7] have shown that abstract elementary classes ([2]) can be
understood as special accessible categories with directed colimits. In [7], in particular, the
authors develop a hierarchy of such categories, extending from accessible categories with
directed colimits to AECs themselves. Here we show that each stage in this hierarchy is
closed under PIE-limits as well, provided we take the morphisms to be directed colimit
preserving functors. This closure becomes more problematic if we insist that the mor-
phisms be concrete functors: here we see that the iso-fullness axiom for AECs (heretofore
unneeded in the category-theoretic analysis thereof) is essential to guarantee the existence
of desired limits.

Schematically, our results encompass the categories in the figure below, where the
downward-accumulating properties of the objects are described in the left margin, and
the properties of the morphisms are listed at the top.
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Preserve
directed
colimits Subconcrete Concrete

Accessible Acc

Directed colimits Acc0

Concrete directed colimits Acc1 Acc†1 Acc∗1

Coherent, concrete monos Acc2 Acc†2 Acc∗2

Iso-full Acc3 Acc†3 Acc∗3

Subconcrete functors, introduced in Definition 3.1 below, are a natural generalization
of the concrete case. We show that all the pictured categories are closed under PIE-limits
in Acc, with the exception of Acc3, Acc∗1 and Acc∗3. The last category has PIE-limits
but it is closed in Acc only under inserters and equifiers while products are calculated in
Acc ↓ Set.

We note that the objects in categories along the bottom row are (equivalent to) AECs,
but equipped with three different notions of morphism, ranging from the most general—
functors preserving directed colimits—to a very close generalization of the syntactically-
derived functors in [10], namely directed-colimit preserving functors that are concrete,
i.e. respect underlying sets. We note also that while AECs are replete (their individ-
ual isomorphism classes are of maximal size, in a sense discussed immediately following
Remark 2.6 below), this property need not be shared by categories to which they are
equivalent and, in particular, by the objects of Acc3, Acc†3, and Acc∗3. Provided that
we are not concerned with the sizes of isomorphism classes, however, this is of no conse-
quence. Modulo this technical detail, the closure result corresponding to the Acc∗3 is the
promised generalization of [10], shifting it out of the framework of institutions and into a
more intrinsic, purely syntax-free characterization. We consider the precise relationship
between our result and that of [10] in Remark 3.4.

In fact, our ambitions are broader: inspired by the example of metric AECs, in which
directed colimits need not be concrete but ℵ1-directed colimits always are, we consider
a second version of this diagram in which we require only that the categories from the
third row down have concrete κ-directed colimits for a given κ—such categories will be
distinguished by the superscript κ. In particular, the category Acc†κ3 will consist of κ-
CAECs as defined in [8], with subconcrete functors as morphisms. We obtain a closure
result there as well.
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2. Accessible categories with directed colimits

Recall that a category K is λ-accessible, λ a regular cardinal, if it has λ-directed colimits
(i.e. colimits indexed by a λ-directed poset) and contains, up to isomorphism, a set A of
λ-presentable objects such that each object of K is a λ-directed colimit of objects from
A. Here, an object K is λ-presentable if its hom-functor K(K,−) : K → Set preserves
λ-directed colimits. A category is accessible if it is λ-accessible for some λ. A functor
F : K → L between λ-accessible categories is called λ-accessible if it preserves λ-directed
colimits. F is called accessible if it is λ-accessible for some λ. In this way, we get
the category Acc whose objects are accessible categories and morphisms are accessible
functors.

2.1. Remark. We work in the Gödel-Bernays set theory. Thus a category K is a class of
objects together with a class K(A,B) of morphisms A→ B for each object A and B. It
is called locally small if all K(A,B) are sets. Any accessible category is locally small. It is
important to observe that Acc is a category which is not locally small. The reason is that
a λ-accessible functor F : K → L is determined by its restriction on the full subcategory
A of λ-presentable objects.

We may regard Acc as a 2-category where the 2-cells are natural transformations. As
noted above, Acc is closed under appropriate 2-limits, namely PIE-limits, where “PIE”
abbreviates “products,” “inserters” and “equifiers.” This means that these 2-limits exist
in Acc and are calculated in the non-legitimate category CAT of categories, functors
and natural transformations. It follows that Acc is closed under lax limits and under
pseudolimits (see [9] or [1]).

Recall that, given functors F,G : K → L, the inserter category Ins(F,G) is the
subcategory of the comma category F ↓ G consisting of all objects f : FK → GK and
all morphisms

FK
f //

Fk

��

GK

Gk

��
FK ′

f ′
// GK ′

The projection functor P : Ins(F,G) → K sends f : FK → GK to K. The universal
property of Ins(F,G) is the existence of a natural transformation ϕ : FP → GP (given
as ϕPf = f) in the sense that for any H : H → K with ψ : FH → GH there is a unique
H̄ : H → Ins(F,G) such that PH̄ = H and ϕH = ψ (see [4]). Since Acc is full in CAT
with respect to 2-cells, we can ignore the 2-dimensional aspect of universality.

Given functors F,G : K → L and natural transformations ϕ, ψ : F → G, the equifier
Eq(ϕ, ψ) is the full subcategory of K consisting of all objects K such that ϕK = ψK . Let
P : Eq(ϕ, ψ)→ K be the inclusion. The universal property of Eq(ϕ, ψ) is that ϕP = ψP
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and for any H : H → K with ϕH = ψH there is a unique H̄ : H → K such that PH̄ = H
(see [4]); the 2-dimensional aspect of universality can be ignored again.

We now consider accessible categories having all directed colimits. Let Acc0 be the
2-category whose objects are accessible categories with directed colimits, morphisms are
functors preserving directed colimits and 2-cells are natural transformations.

2.2. Theorem. Acc0 is closed under PIE-limits in Acc.

Proof. Let Ki, i ∈ I be accessible categories with directed colimits. Following [1] 2.67,
the product

∏
i∈I Ki is an accessible category. Clearly, it has all directed colimits and the

projections Pi :
∏
Ki → Ki preserve them. Let L be an accessible category with directed

colimits and Qi : L → Ki functors preserving directed colimits. Then the induced functor
L →

∏
Ki preserves directed colimits. Hence

∏
Ki is the product in Acc0.

Let K,L be accessible categories with directed colimits and F,G : K → L be functors
preserving directed colimits. Following [1] 2.72, Ins(F,G) is an accessible category which
clearly has directed colimits. Let H be an accessible category with directed colimits,
H : H → K preserve directed colimits and ψ : FH → GH a natural transformation.
Then the induced functor H̄ : H → Ins(F,G) preserves directed colimits. Hence Ins(F,G)
is an inserter in Acc0.

Finally, let K,L be accessible categories with directed colimits, F,G : K → L functors
preserving directed colimits and ϕ, ψ : F → G natural transformations. Following [1]
2.76, Eq(ϕ, ψ) is an accessible category. Again, it is clear that Eq(ϕ, ψ) has all directed
colimits. Let H be an accessible category with directed colimits and H : H → K a functor
preserving directed colimits with ϕH = ψH. Then the induced functor H̄ : H → Eq(ϕ, ψ)
preserves directed colimits. Hence Eq(ϕ, ψ) is an equifier in Acc0.

We say that (K, U) is an accessible category with concrete directed colimits if K is an
accessible category with directed colimits and U : K → Set is a faithful functor to the
category of sets that preserves directed colimits. Let Acc1 be the full sub-2-category of
Acc0 consisting of accessible categories with concrete directed colimits. In particular,
morphisms in Acc1 are functors preserving directed colimits.

2.3. Theorem. Acc1 is closed under PIE-limits in Acc.

Proof. We must show that PIE-limits of accessible categories with concrete directed
colimits have concrete directed colimits (since Acc1 is a full subcategory of Acc0, we do
not need to bother about universal properties). This is evident for inserters and equifiers
because, in the first case, the projection functor P : Ins(F,G) → K is faithful and, in
the second case, Eq(ϕ, ψ) is a full subcategory of K. Consider accessible categories with
concrete directed colimits (Ki, Ui), i ∈ I. Then the functor U :

∏
i∈I Ki → Set sending

(Ai)i∈I to
∐

i∈I UiAi is faithful. Since

colim
∐
i∈I

UiAi ∼=
∐
i∈I

colimUiAi,

∏
i∈I Ki is an accessible category with concrete directed colimits.
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2.4. Remark. (1) We could also consider the subcategory Acc∗1 having the same objects
as Acc1 but whose morphisms are concrete functors F : K1 → K2 preserving directed
colimits. By “concrete,” we mean that F commutes with the relevant underlying set func-
tors, i.e. U2F = U1. The category Acc∗1 is closed in Acc under inserters and equifiers but
not under products. In fact, we are in the comma category Acc ↓ Set where

∏
i∈I(Ki, Ui)

is the multiple pullback of Ui over Set. While Acc has multiple pseudopullbacks, it does
not have multiple pullbacks. For multiple pullbacks, we would need all of the functors
Ui to be transportable in the sense that for any isomorphism f : UiA → X there is a
unique isomorphism f : A→ B such that Ui(f) = f (this also implies UiB = X). Then a
multiple pullback of Ui is equivalent to their multiple pseudopullback and thus it belongs
to Acc. This is done for a pullback in [9] 5.1.1 and the multiple case is analogous.

(2) Theorem 2.3 is also valid for the full sub-2-category Accκ1 of Acc0 consisting of
accessible categories with directed colimits where κ-directed colimits are concrete. These
categories appear in [8] in connection with metric abstract elementary classes.

An accessible category (K, U) with concrete directed colimits is coherent if for each
commutative triangle

UA
U(h) //

f
""

UC

UB

U(g)

<<

there is f : A→ B in K such that U(f) = f .
We say that morphisms of K are concrete monomorphisms if any morphism of K is

a monomorphism which is preserved by U . Let Acc2 be the full sub-2-category of Acc1
consisting of coherent accessible categories with concrete monomorphisms.

2.5. Theorem. Acc2 is closed under PIE-limits in Acc.

Proof. Since there is no problem with concrete monomorphisms, we have to show that
PIE-limits of coherent accessible categories are coherent (universal properties are again
clear). This is evident for equifiers because Eq(ϕ, ψ) is a full subcategory of K. Consider
coherent accessible categories (Ki, Ui), i ∈ I. We have to show that U :

∏
i∈I Ki → Set

sending (Ai)i∈I to
∐

i∈I UiAi is coherent. Consider a commutative triangle

U(Ai)
U(h) //

f
##

U(Ci)

U(Bi)

U(g)

;;

and a ∈ UiAi. Assume that fai ∈ UjBj for j 6= i. Then (Ug)fai ∈ UjCj and
(Uh)ai ∈ UiCi, which is impossible. Thus f =

∐
i∈I fi. Since each Ui is coherent, there

are morphisms f i : Ai → Bi such that U(f i) = f . Hence
∏

i∈I Ki is coherent.
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Consider morphisms F,G : K → L in Acc2. We have to show that the composition

Ins(F,G)
P−−−−→ K U−−−−→ Set

is coherent. Consider a commutative triangle

UPf1
UP (h) //

f
##

UPf3

UPf2

UP (g)

;;

where fi : FKi → GKi, i = 1, 2, 3. Thus we have a commutative triangle

UK1
U(h) //

f
""

UK3

UK2

U(g)

<<

and, since U is coherent, we have f = Uf . Thus we get the diagram

FK1
f1 //

Ff

��

GK1

Gf

��
FK2

f2 //

Fg

��

GK2

Gg

��
FK3 f3

// GK3

where the outer rectangle and the bottom square commute. Since Gg is a monomorphism,
the upper square commutes as well. Hence f : f1 → f2 is a morphism in Ins(F,G) and
f = UPf . Therefore PU is coherent.

2.6. Remark. (1) The assumption that objects of Acc2 have concrete monomorphisms
was needed in the proof of closure under inserters.

(2) Theorem 2.5 is also valid for the full sub-2-category Accκ2 of Accκ1 consisting of
coherent accessible categories with directed colimits and concrete monomorphisms.

Abstract elementary classes can be characterized as coherent accessible categories
K with directed colimits and with concrete monomorphisms satisfying two additional
conditions dealing with finitary function and relation symbols interpretable in K (see [7]).
Here, finitary relation symbols interpretable in K are subfunctors R of Un = Set(n, U−)
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where n is a finite cardinal. Finitary function symbols interpretable in K are natural
transformations h : Un → U . Since n-ary function symbols can be replaced by (n + 1)-
ary relation symbols, we can confine ourselves to finitary relation symbols interpretable
in K. Let ΣK consist of those finitary relation symbols R interpretable in K for which
K-morphisms f : A → B behave as embeddings. This means that if (Uf)n(a) ∈ RB

then a ∈ RA. We get the functor E : K → Emb(ΣK) where Emb(ΣK) is the category
of ΣK-structures whose morphisms are substructure embeddings. Now, K is an abstract
elementary class if and only if the functor E is full with respect to isomorphisms and
replete. The first condition means that if f : EA→ EB is an isomorphism then there is
an isomorphism f : A → B with Ef = f . In this case, we might also say, equivalently,
that the relations R ∈ ΣK detect isomorphisms. The second condition means that if EA
is isomorphic to X then there is B ∈ K such that A is isomorphic to B and EB = X.

We note that abstract elementary classes are commonly presented via an embedding
K → Emb(Σ). In this case, Σ ⊆ ΣK and, in fact, ΣK is the largest relational signature
in which K can be presented.

Let Acc3 be the full sub-2-category of Acc2 consisting of categories equivalent to
abstract elementary classes. Following the discussion in the introduction, such cate-
gories need not be replete in the sense described above—their isomorphism classes may
be smaller, in principle, than one would expect in an abstract elementary class. To be
precise, then, Acc2 and Acc3 differ only in that we assume objects in the latter are full
with respect to isomorphisms.

2.7. Proposition. Acc3 is closed under products and equifiers in Acc.

Proof. The closedness under equifiers immediately follows from the fact that Eq(ϕ, ψ)→
K is a replete, full embedding. Consider (Ki, Ui), i ∈ I, in Acc3. Given n-ary relation
symbols Ri ∈ ΣKi

where i ∈ I, we get the n-ary relation symbol R =
∐

iRi belonging to
Σ∏

iKi
. It includes unary interpretable relation symbols given by Rj = Uj and Ri = ∅ for

i 6= j. It is easy to see that these R detect isomorphisms. Thus E :
∏

iKi → Emb(Σ∏
Ki

)
is full with respect to isomorphisms.

2.8. Remark. In the case of inserters, any finitary relation symbol R interpretable in K
yields the finitary relation symbol RP interpretable in Ins(F,G). Let fi : FKi → GKi

for i = 1, 2 and
f : UK1 = UPf1 → UPf2 = UK2

be a bijection such that fn induces a bijection between Sf1 and Sf2 for each n-ary
relation symbol S interpretable in Ins(F,G). By taking S = RP we get that fn induces
a bijection between RK1 and RK2 for each n-ary relation symbol R interpretable in K.
Since E : K → Emb(ΣK) is full with respect to isomorphisms, there is an isomorphism
f : K1 → K2 with Uf = f . But we do not know whether f : f1 → f2 is a morphism, i.e.,
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whether the square

FK1
f1 //

Ff

��

GK1

Gf

��
FK2 f2

// GK2

commutes.

2.9. Problem. Is Acc3 closed under inserters in Acc?

3. Abstract elementary classes

3.1. Definition. Let (K1, U1) and (K2, U2) be concrete categories. We say that a functor
H : K1 → K2 is subconcrete if there is a natural monotransformation α : U2H → U1 such
that if (U1f)a ∈ U2HB then a ∈ U2HA for each f : A→ B in K1.

This means that U2H is a unary relation symbol belonging to ΣK1 . Any concrete
functor is subconcrete. Since a composition of subconcrete functors is subconcrete, we
get the subcategory Acc†1 of Acc1 consisting of accessible categories with concrete directed
colimits and subconcrete functors preserving directed colimits. Analogously, we get the
full subcategory Acc†2 of Acc†1 consisting of coherent accessible categories and concrete
monomorphisms whose morphisms are subconcrete functors preserving directed colimits.
Finally, we have the category

Acc†3 = Acc3 ∩Acc†2

of categories equivalent to abstract elementary classes and subconcrete functors preserving
directed colimits.

3.2. Theorem. Acc†1, Acc†2 and Acc†3 are closed under PIE-limits in Acc.

Proof. In Acc†1 and Acc†2, equifiers and inserters are the same as in Acc1 and Acc2.
The functors P : Eq(ϕ, ψ) → K and P : Ins(F,G) → K are concrete. Thus it remains
only to check that the induced maps arising from the universal property are subconcrete.
We will do it for inserters (the case of equifiers is the same), and present the argument
only for Acc1: the proof for Acc2 is identical. Let (K, U), (L, U ′) be accessible categories
with concrete directed colimits and let F,G : K → L be subconcrete functors preserving
directed colimits. Let (H, V ) be an accessible category with concrete directed colimits,
H : H → K a subconcrete functor preserving directed colimits and ψ : FH → FG a
natural transformation. We have to show that the induced functor H̄ : H → Ins(F,G) is
subconcrete. We have a natural transformation α : UH → V witnessing the subconcrete-
ness of H. Then α : (UP )H̄ = UH → V witnesses subconcreteness of H̄.

In the case of products, the projections Pi :
∏

iKi → Ki are subconcrete — take the
coproduct injections UiPi → U where U :

∏
iKi → Set is from the proof of 2.3. Again,
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we have to check the universal property. Let (H, V ) be a an accessible category with
concrete directed colimits and Hi : H → Ki be subconcrete functors preserving directed
colimits with witnesses αi : UiHi → V . Then, for A ∈ H, the natural transformation α
with components

αA : UHA =
∐
i

UiHiA→ V A

induced by (αi)A : UiHiA→ V A witnesses the sub concreteness of H̄ : H →
∏

iKi.
It remains to prove that Acc†3 is closed under inserters. Let (K1, U1) and (K2, U2)

be abstract elementary classes and F,G : K1 → K2 subconcrete functors. First, in the
notation of 2.8, we show that the square

FK1
f1 //

Ff

��

GK1

Gf

��
FK2 f2

// GK2

commutes. Since F and G are subconcrete, we get unary relation symbols U2F,U2G ∈ ΣK.
Hence we have unary relation symbols

U2FP,U2GP ∈ ΣIns(F,G).

Thus we have a binary relation symbol R ∈ ΣIns(F,G) such that (a, b) ∈ Rg, g : FK → GK,
if a ∈ U2FPg, b ∈ U2GPg and b = (U2g)a. To see that the above square commutes, notice
that (a, (U2f1)a) ∈ Rf1 for each a ∈ U2FK1. It follows that ((U2Ff)a, U2(G(f)f1)a) ∈
Rf2 , and therefore that U2(G(f)f1)a = U2(f2Ff)a for each a ∈ U2FK1. Hence

U2(G(f)f1) = U2(f2Ff)

and, since U2 is faithful,
G(f)f1 = f2Ff.

Finally, we have the category

Acc∗3 = Acc3 ∩Acc∗1

of categories equivalent to abstract elementary classes whose morphisms are concrete
functors preserving directed colimits.

3.3. Theorem. Acc∗3 has PIE-limits.
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Proof. Since concrete functors are subconcrete, Acc∗3 is closed in Acc under inserters
and equifiers. Concerning their universal property, if H is concrete in the notation of
the proof of 3.2 then H̄ is concrete as well. Products

∏
i∈I(Ki, Ui) are calculated in

Acc ↓ Set, i.e., they are multiple pullbacks. Since any abstract elementary class (K, U)
has U transportable, multiple pullbacks are equivalent to multiple pseudopullbacks (see
2.4). Following 3.2, Acc†3 is closed in Acc under PIE-limits and, consequently, under
pseudolimits. Thus

∏
i∈i(Ki, Ui) belongs to Acc∗3 and is the product of (Ki, Ui) there.

3.4. Remark. (1) Let H : K1 → K2 be a morphism in Acc†3. Since (U2H)n is an n-ary
relation symbol belonging to ΣK1 , we get an embedding of signatures H : ΣK2 → ΣK1

sending R to RH. In particular, it sends U2 to U2H. This induces the subconcrete functor
Emb(H) : Emb(ΣK1)→ Emb(ΣK2) given by taking reducts. The square

K1
H //

E1

��

K2

E2

��
Emb(ΣK1)

Emb(H)

// Emb(ΣK2)

clearly commutes.
If H is concrete then Emb(H) is concrete as well. This relates our morphisms of

abstract elementary classes to the syntactically-derived morphisms considered in [10].
(2) On the other hand, let G : Σ2 → Σ1 be an embedding of signatures. Let K1 →

Emb(Σ1) and K2 → Emb(Σ2) be abstract elementary classes—in the classical sense—
presented in signatures Σ1 and Σ2: note that, when paired with their natural underlying
set functors Ui : Ki → Set, they satisfy the purely category-theoretic characterization
of AECs following Remark 2.6. Moreover, let H : K1 → K2 be a functor such that the
square

K1
H //

��

K2

��
Emb(Σ1)

Emb(G)
// Emb(Σ2)

commutes. Since Emb(G) is concrete, H is a morphism in Acc∗3. These are precisely the
morphisms of abstract elementary classes considered in [10].

More generally, consider relational signatures Σ1,Σ2 and let L(Σ1), L(Σ2) be the
corresponding languages, i.e., sets of all formulas of Σ1,Σ2. Consider a mapping −∗ :
Σ2 → Σ1 of signatures preserving the arity of symbols and let P be a unary relation
symbol in Σ1. Let G : L(Σ2) →  L(Σ1) be a morphism of languages sending each (n-ary)
relation symbol R in Σ1 to P n ∧R∗. This defines G on the atomic formulas of L(Σ1); we
extend it recursively to all of L(Σ1). In particular, G sends = to the equality =P on P .
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Then Emb(G) : Emb(Σ1) → Emb(Σ2) is a subconcrete functor. Let K1 → Emb(Σ1)
and K2 → Emb(Σ2) be abstract elementary classes and H : K1 → K2 be a functor such
that the square

K1
H //

��

K2

��
Emb(Σ1)

Emb(G)
// Emb(Σ2)

commutes. Then H is a morphism in Acc†3.
(3) Let K be the category of infinite sets and monomorphisms. Then K is an abstract

elementary class in the empty signature Σ2. Let Σ1 contain just P and =P from (2) and
G : Σ2 → Σ1 be the corresponding morphism of languages. We also have H : Σ1 → Σ2

sending =P to = and P to the formula x = x. In this way, we make K isomorphic
to an abstract elementary class in the signature Σ1, where we interpret objects of K as
Σ1-structures K with PK infinite and (¬P )K countable (see [3], 5.8(3) motivated by [5]
2.10).

(4) Theorem 3.2 is also valid for categories Acc†κ1 , Acc†κ2 and Acc†κ3 where Acc1 is
replaced by Accκ1 .

Analogously, Theorem 3.3 is valid for Acc∗κ3 .

3.5. Lemma. Any morphism in Acc†3 is coherent and transportable.

Proof. Consider the square from 3.4(1). Since the functor Emb(H) is coherent, the
composition Emb(H)E1 is coherent as well. Since E2 is faithful, H is coherent.

Since ΣK1 and ΣK2 contain only relation symbols, the functor Emb(H) is surjective on
objects and full (by interpreting the missing relations as empty). Consider an isomorphism
f : HA→ B. We get the isomorphism

E2f : Emb(H)E1A = E2HA→ E2B = Emb(H)B̃.

and thus the isomorphism f̃ : E1A → B̃ such that Emb(H)f̃ = E2f . Since E1 is
transportable, there is an isomorphism f : A → B such that E1B = B̃ and E1f = f̃ .
Clearly, Hf = f . Thus H is transportable.

3.6. Remark. Following 3.5 and 2.4, pullbacks in Acc†3 are equivalent to pseudopull-
backs. Thus 3.2 implies that Acc†3 is closed in CAT under pullback. Consequently, the
same holds for Acc∗3, which was proved in [10].
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