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CATEGORIES IN CONTROL

JOHN C. BAEZ AND JASON ERBELE

Abstract. Control theory uses ‘signal-flow diagrams’ to describe processes where real-
valued functions of time are added, multiplied by scalars, differentiated and integrated,
duplicated and deleted. These diagrams can be seen as string diagrams for the sym-
metric monoidal category FinVectk of finite-dimensional vector spaces over the field of
rational functions k = R(s), where the variable s acts as differentiation and the monoidal
structure is direct sum rather than the usual tensor product of vector spaces. For any
field k we give a presentation of FinVectk in terms of the generators used in signal-
flow diagrams. A broader class of signal-flow diagrams also includes ‘caps’ and ‘cups’
to model feedback. We show these diagrams can be seen as string diagrams for the
symmetric monoidal category FinRelk, where objects are still finite-dimensional vector
spaces but the morphisms are linear relations. We also give a presentation for FinRelk.
The relations say, among other things, that the 1-dimensional vector space k has two
special commutative †-Frobenius structures, such that the multiplication and unit of
either one and the comultiplication and counit of the other fit together to form a bi-
monoid. This sort of structure, but with tensor product replacing direct sum, is familiar
from the ‘ZX-calculus’ obeyed by a finite-dimensional Hilbert space with two mutually
unbiased bases.

1. Introduction

Control theory is the branch of engineering that focuses on manipulating ‘open systems’—
systems with inputs and outputs—to achieve desired goals. In control theory, ‘signal-flow
diagrams’ are used to describe linear ways of manipulating signals, which we will take
here to be smooth real-valued functions of time [10]. For a category theorist, at least,
it is natural to treat signal-flow diagrams as string diagrams in a symmetric monoidal
category [11, 12]. This forces some small changes of perspective, which we discuss below,
but more important is the question: which symmetric monoidal category?

We shall argue that the answer is: the category FinRelk of finite-dimensional vector
spaces over a certain field k, but with linear relations rather than linear maps as mor-
phisms, and direct sum rather than tensor product providing the symmetric monoidal
structure. We use the field k = R(s) consisting of rational functions in one real variable s.
This variable has the meaning of differentiation. A linear relation from km to kn is thus
a system of linear constant-coefficient ordinary differential equations relating m ‘input’
signals and n ‘output’ signals.
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Our main goal is to provide a complete ‘generators and relations’ picture of this sym-
metric monoidal category, with the generators being familiar components of signal-flow
diagrams. It turns out that the answer has an intriguing but mysterious connection to
ideas that are familiar in the diagrammatic approach to quantum theory. Quantum theory
also involves linear algebra, but it uses linear maps between Hilbert spaces as morphisms,
and the tensor product of Hilbert spaces provides the symmetric monoidal structure.

We hope that the category-theoretic viewpoint on signal-flow diagrams will shed new
light on control theory. However, in this paper we only lay the groundwork. In Section 2
we introduce signal-flow diagrams and summarize our main results. In Section 3 we use
signal-flow diagrams to give a presentation of FinVectk, the symmetric monoidal category
of finite-dimensional vector spaces and linear maps. In Section 4 we use them to give
a presentation of FinRelk. In Section 5 we discuss a well-known example from control
theory: an inverted pendulum on a cart. Finally, in Section 6 we compare our results to
subsequent work of Bonchi–Sobociński–Zanasi [4, 5] and Wadsley–Woods [22].

2. Signal-flow diagrams

There are several basic operations that one wants to perform when manipulating signals.
The simplest is multiplying a signal by a scalar. A signal can be amplified by a constant
factor:

f 7→ cf

where c ∈ R. We can write this as a string diagram:

f

c

cf

Here the labels f and cf on top and bottom are just for explanatory purposes and not
really part of the diagram. Control theorists often draw arrows on the wires, but this is
unnecessary from the string diagram perspective. Arrows on wires are useful to distinguish
objects from their duals, but ultimately we will obtain a compact closed category where
each object is its own dual, so the arrows can be dropped. What we really need is for
the box denoting scalar multiplication to have a clearly defined input and output. This
is why we draw it as a triangle. Control theorists often use a rectangle or circle, using
arrows on wires to indicate which carries the input f and which the output cf .

A signal can also be integrated with respect to the time variable:

f 7→
∫
f.
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Mathematicians typically take differentiation as fundamental, but engineers sometimes
prefer integration, because it is more robust against small perturbations. In the end it
will not matter much here. We can again draw integration as a string diagram:

f

∫
∫
f

Since this looks like the diagram for scalar multiplication, it is natural to extend R to
R(s), the field of rational functions of a variable s which stands for differentiation. Then
differentiation becomes a special case of scalar multiplication, namely multiplication by
s, and integration becomes multiplication by 1/s. Engineers accomplish the same effect
with Laplace transforms, since differentiating a signal f is equivalent to multiplying its
Laplace transform

(Lf)(s) =

∫ ∞
0

f(t)e−st dt

by the variable s. Another option is to use the Fourier transform: differentiating f is
equivalent to multiplying its Fourier transform

(Ff)(ω) =

∫ ∞
−∞

f(t)e−iωt dt

by −iω. Of course, the function f needs to be sufficiently well-behaved to justify calcu-
lations involving its Laplace or Fourier transform. At a more basic level, it also requires
some work to treat integration as the two-sided inverse of differentiation. Engineers do
this by considering signals that vanish for t < 0, and choosing the antiderivative that van-
ishes under the same condition. Luckily all these issues can be side-stepped in a formal
treatment of signal-flow diagrams: we can simply treat signals as living in an unspecified
vector space over the field R(s). The field C(s) would work just as well, and control theory
relies heavily on complex analysis. In most of this paper we work over an arbitrary field
k.

The simplest possible signal processor is a rock, which takes the ‘input’ given by the
force F on the rock and produces as ‘output’ the rock’s position q. Thanks to Newton’s
second law F = ma, we can describe this using a signal-flow diagram:
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q

∫ v

∫ a

1
m

F

Here composition of morphisms is drawn in the usual way, by attaching the output wire
of one morphism to the input wire of the next.

To build more interesting machines we need more building blocks, such as addition:

+: (f, g) 7→ f + g

and duplication:
∆: f 7→ (f, f)

When these linear maps are written as matrices, their matrices are transposes of each
other. This is reflected in the string diagrams for addition and duplication:

f g

f + g f f

f

The second is essentially an upside-down version of the first. However, we draw addition
as a dark triangle and duplication as a light one because we will later want another way
to ‘turn addition upside-down’ that does not give duplication. As an added bonus, a light
upside-down triangle resembles the Greek letter ∆, the usual symbol for duplication.

While they are typically not considered worthy of mention in control theory, for com-
pleteness we must include two other building blocks. One is the zero map from {0} to
our field k, which we denote as 0 and draw as follows:

0
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The other is the zero map from k to {0}, sometimes called ‘deletion’, which we denote as
! and draw thus:

f

Just as the matrices for addition and duplication are transposes of each other, so are
the matrices for zero and deletion, though they are rather degenerate, being 1×0 and 0×1
matrices, respectively. Addition and zero make k into a commutative monoid, meaning
that the following relations hold:

= = =

The equation at right is the commutative law, and the crossing of strands is the ‘braiding’

B : (f, g) 7→ (g, f)

by which we switch two signals. In fact this braiding is a ‘symmetry’, so it does not
matter which strand goes over which:

f

f

g

g

=

f

f

g

g

Dually, duplication and deletion make k into a cocommutative comonoid. This means
that if we reflect the equations obeyed by addition and zero across the horizontal axis and
turn dark operations into light ones, we obtain another set of valid equations:

= = =

There are also relations between the monoid and comonoid operations. For example,
adding two signals and then duplicating the result gives the same output as duplicating
each signal and then adding the results:

f g

f + g f + g

=

f g

f + g f + g
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This diagram is familiar in the theory of Hopf algebras, or more generally bialgebras. Here
it is an example of the fact that the monoid operations on k are comonoid homomorphisms–
or equivalently, the comonoid operations are monoid homomorphisms. We summarize this
situation by saying that k is a bimonoid.

So far all our string diagrams denote linear maps. We can treat these as morphisms
in the category FinVectk, where objects are finite-dimensional vector spaces over a field k
and morphisms are linear maps. This category is equivalent to a skeleton where the only
objects are vector spaces kn for n ≥ 0, and then morphisms can be seen as n×m matrices.
The space of signals is a vector space V over k which may not be finite-dimensional, but
this does not cause a problem: an n × m matrix with entries in k still defines a linear
map from V n to V m in a functorial way.

In applications of string diagrams to quantum theory [3, 8], we make FinVectk into a
symmetric monoidal category using the tensor product of vector spaces. In control theory,
we instead make FinVectk into a symmetric monoidal category using the direct sum of
vector spaces. In Lemma 3.1 we prove that for any field k, FinVectk with direct sum
is generated as a symmetric monoidal category by the one object k together with these
morphisms:

c

where c ∈ k is arbitrary.
However, these generating morphisms obey some unexpected relations! For example,

we have:

=

−1

−1
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Thus, it is important to find a complete set of relations obeyed by these generating
morphisms, thus obtaining a presentation of FinVectk as a symmetric monoidal category.
We do this in Theorem 3.2. In brief, these relations say:

1. (k,+, 0,∆, !) is a bicommutative bimonoid;

2. the rig operations of k can be recovered from the generating morphisms;

3. all the generating morphisms commute with scalar multiplication.

Here item (2) means that +, ·, 0 and 1 in the field k can be expressed in terms of signal-flow
diagrams as follows:

b+c = b c

c

b

=bc 1 = 0 =

Multiplicative inverses cannot be so expressed, so our signal-flow diagrams so far do not
know that k is a field. Additive inverses also cannot be expressed in this way. And indeed,
a version of Theorem 3.2 holds whenever k is a commutative rig: that is, a commutative
‘ring without negatives’, such as N. See Section 6 for details.

While Theorem 3.2 is a step towards understanding the category-theoretic underpin-
nings of control theory, it does not treat signal-flow diagrams that include ‘feedback’.
Feedback is one of the most fundamental concepts in control theory because a control
system without feedback may be highly sensitive to disturbances or unmodeled behavior.
Feedback allows these uncontrolled behaviors to be mollified. As a string diagram, a basic
feedback system might look schematically like this:

reference

a controller

measured error

system input

b system

system output

csensor

measured output

−1
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The user inputs a ‘reference’ signal, which is fed into a controller, whose output is fed
into a system, or ‘plant’, which in turn produces its own output. But then the system’s
output is duplicated, and one copy is fed into a sensor, whose output is added (or if we
prefer, subtracted) from the reference signal.

In string diagrams—unlike in the usual thinking on control theory—it is essential to
be able to read any diagram from top to bottom as a composite of tensor products of
generating morphisms. Thus, to incorporate the idea of feedback, we need two more
generating morphisms. These are the ‘cup’:

f = g

f g

and ‘cap’:

f = g

f g

These are not maps: they are relations. The cup imposes the relation that its two inputs
be equal, while the cap does the same for its two outputs. This is a way of describing
how a signal flows around a bend in a wire.

To make this precise, we use a category called FinRelk. An object of this category is a
finite-dimensional vector space over k, while a morphism from U to V , denoted L : U 9 V ,
is a linear relation, meaning a linear subspace

L ⊆ U ⊕ V.

In particular, when k = R(s), a linear relation L : km → kn is just an arbitrary system of
constant-coefficient linear ordinary differential equations relating m input variables and
n output variables.

Since the direct sum U ⊕ V is also the cartesian product of U and V , a linear relation
is indeed a relation in the usual sense, but with the property that if u ∈ U is related to
v ∈ V and u′ ∈ U is related to v′ ∈ V then cu + c′u′ is related to cv + c′v′ whenever
c, c′ ∈ k. We compose linear relations L : U 9 V and L′ : V 9 W as follows:

L′L = {(u,w) : ∃ v ∈ V (u, v) ∈ L and (v, w) ∈ L′}.

Any linear map f : U → V gives a linear relation F : U 9 V , namely the graph of that
map:

F = {(u, f(u)) : u ∈ U}.
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Composing linear maps thus becomes a special case of composing linear relations, so
FinVectk becomes a subcategory of FinRelk. Furthermore, we can make FinRelk into
a monoidal category using direct sums, and it becomes symmetric monoidal using the
braiding already present in FinVectk.

In these terms, the cup is the linear relation

∪ : k2 9 {0}

given by
∪ = {(x, x, 0) : x ∈ k} ⊆ k2 ⊕ {0},

while the cap is the linear relation

∩ : {0}9 k2

given by
∩ = {(0, x, x) : x ∈ k} ⊆ {0} ⊕ k2.

These obey the zigzag relations:

= =

Thus, they make FinRelk into a compact closed category where k, and thus every object,
is its own dual.

Besides feedback, one of the things that make the cap and cup useful is that they
allow any morphism L : U 9 V to be ‘plugged in backwards’ and thus ‘turned around’.
For instance, turning around integration:

∫
:=∫

we obtain differentiation. In general, using caps and cups we can turn around any linear
relation L : U 9 V and obtain a linear relation L† : V 9 U , called the adjoint of L,
which turns out to given by

L† = {(v, u) : (u, v) ∈ L}.

For example, if c ∈ k is nonzero, the adjoint of scalar multiplication by c is multiplication
by c−1:
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c = c−1:=c

Thus, caps and cups allow us to express multiplicative inverses in terms of signal-flow
diagrams! One might think that a problem arises when c = 0, but no: the adjoint of
scalar multiplication by 0 is

{(0, x) : x ∈ k} ⊆ k ⊕ k.

In Lemma 4.1 we show that FinRelk is generated, as a symmetric monoidal category,
by these morphisms:

c

where c ∈ k is arbitrary.
In Theorem 4.2 we find a complete set of relations obeyed by these generating mor-

phisms, thus giving a presentation of FinRelk as a symmetric monoidal category. To
describe these relations, it is useful to work with adjoints of the generating morphisms.
We have already seen that the adjoint of scalar multiplication by c is scalar multiplication
by c−1, except when c = 0. Taking adjoints of the other four generating morphisms of
FinVectk, we obtain four important but perhaps unfamiliar linear relations. We draw
these as ‘turned around’ versions of the original generating morphisms:

• Coaddition is a linear relation from k to k2 that holds when the two outputs sum
to the input:

+† : k 9 k2

+† = {(x, y, z) : x = y + z} ⊆ k ⊕ k2

:=

• Cozero is a linear relation from k to {0} that holds when the input is zero:

0† : k 9 {0}

0† = {(0, 0)} ⊆ k ⊕ {0}



846 JOHN C. BAEZ AND JASON ERBELE

:=

• Coduplication is a linear relation from k2 to k that holds when the two inputs
both equal the output:

∆† : k2 9 k

∆† = {(x, y, z) : x = y = z} ⊆ k2 ⊕ k

:=

• Codeletion is a linear relation from {0} to k that holds always:

!† : {0}9 k

!† = {(0, x)} ⊆ {0} ⊕ k

:=

Since +†, 0†,∆† and !† automatically obey turned-around versions of the relations obeyed
by +, 0,∆ and !, we see that k acquires a second bicommutative bimonoid structure when
considered as an object in FinRelk.

Moreover, the four dark operations make k into a Frobenius monoid. This means
that (k,+, 0) is a monoid, (k,+†, 0†) is a comonoid, and the Frobenius relation holds:

= =

All three expressions in this equation are linear relations saying that the sum of the two
inputs equal the sum of the two outputs.

The operation sending each linear relation to its adjoint extends to a contravariant
functor

† : FinRelk → FinRelk,

which obeys a list of properties that are summarized by saying that FinRelk is a ‘†-
compact’ category [1, 20]. Because two of the operations in the Frobenius monoid
(k,+, 0,+†, 0†) are adjoints of the other two, it is a †-Frobenius monoid. This Frobe-
nius monoid is also special, meaning that comultiplication (in this case +†) followed by
multiplication (in this case +) equals the identity:
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=

This Frobenius monoid is also commutative—and cocommutative, but for Frobenius
monoids this follows from commutativity.

Starting around 2008, commutative special †-Frobenius monoids have become impor-
tant in the categorical foundations of quantum theory, where they can be understood
as ‘classical structures’ for quantum systems [9, 21]. The category FinHilb of finite-
dimensional Hilbert spaces and linear maps is a †-compact category, where any linear
map f : H → K has an adjoint f † : K → H given by

〈f †φ, ψ〉 = 〈φ, fψ〉

for all ψ ∈ H,φ ∈ K. A commutative special †-Frobenius monoid in FinHilb is then
the same as a Hilbert space with a chosen orthonormal basis. The reason is that given
an orthonormal basis ψi for a finite-dimensional Hilbert space H, we can make H into a
commutative special †-Frobenius monoid with multiplication m : H ⊗H → H given by

m(ψi ⊗ ψj) =

{
ψi i = j
0 i 6= j

and unit i : C→ H given by

i(1) =
∑
i

ψi.

The comultiplication m† duplicates basis states:

m†(ψi) = ψi ⊗ ψi.

Conversely, any commutative special †-Frobenius monoid in FinHilb arises this way.
Considerably earlier, around 1995, commutative Frobenius monoids were recognized

as important in topological quantum field theory. The reason, ultimately, is that the free
symmetric monoidal category on a commutative Frobenius monoid is 2Cob, the category
with 2-dimensional oriented cobordisms as morphisms: see Kock’s textbook [13] and the
many references therein. But the free symmetric monoidal category on a commutative
special Frobenius monoid was worked out even earlier [6, 14, 19]: it is the category with
finite sets as objects, where a morphism f : X → Y is an isomorphism class of cospans

X −→ S ←− Y.

This category can be made into a †-compact category in an obvious way, and then the
1-element set becomes a commutative special †-Frobenius monoid.

For all these reasons, it is interesting to find a commutative special †-Frobenius monoid
lurking at the heart of control theory! However, the Frobenius monoid here has yet another
property, which is more unusual. Namely, the unit 0 : {0} 9 k followed by the counit
0† : k 9 {0} is the identity:
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=

We call a special Frobenius monoid that also obeys this extra law extra-special. One
can check that the free symmetric monoidal category on a commutative extra-special
Frobenius monoid is the category with finite sets as objects, where a morphism f : X → Y
is an equivalence relation on the disjoint union X t Y , and we compose f : X → Y and
g : Y → Z by letting f and g generate an equivalence relation on X t Y t Z and then
restricting this to X t Z.

As if this were not enough, the light operations share many properties with the dark
ones. In particular, these operations make k into a commutative extra-special †-Frobenius
monoid in a second way. In summary:

• (k,+, 0,∆, !) is a bicommutative bimonoid;

• (k,∆†, !†,+†, 0†) is a bicommutative bimonoid;

• (k,+, 0,+†, 0†) is a commutative extra-special †-Frobenius monoid;

• (k,∆†, !†,∆, !) is a commutative extra-special †-Frobenius monoid.

It should be no surprise that with all these structures built in, signal-flow diagrams
are a powerful method of designing processes. However, it is surprising that most of these
structures are present in a seemingly very different context: the so-called ‘ZX calculus’, a
diagrammatic formalism for working with complementary observables in quantum theory
[7]. This arises naturally when one has an n-dimensional Hilbert space H with two
orthonormal bases ψi, φi that are ‘mutually unbiased’, meaning that

|〈ψi, φj〉|2 =
1

n

for all 1 ≤ i, j ≤ n. Each orthonormal basis makes H into commutative special †-
Frobenius monoid in FinHilb. Moreover, the multiplication and unit of either one of
these Frobenius monoids fits together with the comultiplication and counit of the other
to form a bicommutative bimonoid. So, we have all the structure present in the list
above—except that these Frobenius monoids are only extra-special if H is 1-dimensional.

The field k is also a 1-dimensional vector space, but this is a red herring: in FinRelk
every finite-dimensional vector space naturally acquires all four structures listed above,
since addition, zero, duplication and deletion are well-defined and obey all the relations
we have discussed. We focus on k in this paper simply because it generates all the objects
FinRelk via direct sum.

Finally, in FinRelk the cap and cup are related to the light and dark operations as
follows:

= −1 =
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Note the curious factor of −1 in the second equation, which breaks some of the symmetry
we have seen so far. This equation says that two elements x, y ∈ k sum to zero if and
only if −x = y. Using the zigzag relations, the two equations above give

= −1

We thus see that in FinRelk, both additive and multiplicative inverses can be expressed
in terms of the generating morphisms used in signal-flow diagrams.

Theorem 4.2 gives a presentation of FinRelk based on the ideas just discussed. Briefly,
it says that FinRelk is equivalent to the symmetric monoidal category generated by an
object k and these morphisms:

1. addition +: k2 9 k

2. zero 0 : {0}9 k

3. duplication ∆: k 9 k2

4. deletion ! : k 9 0

5. scalar multiplication c : k 9 k for any c ∈ k

6. cup ∪ : k2 9 {0}

7. cap ∩ : {0}9 k2

obeying these relations:

1. (k,+, 0,∆, !) is a bicommutative bimonoid;

2. ∩ and ∪ obey the zigzag equations;

3. (k,+, 0,+†, 0†) is a commutative extra-special †-Frobenius monoid;

4. (k,∆†, !†,∆, !) is a commutative extra-special †-Frobenius monoid;

5. the field operations of k can be recovered from the generating morphisms;

6. the generating morphisms (1)-(4) commute with scalar multiplication.

Note that item (2) makes FinRelk into a †-compact category, allowing us to mention
the adjoints of generating morphisms in the subsequent relations. Item (5) means that
+, ·, 0, 1 and also additive and multiplicative inverses in the field k can be expressed in
terms of signal-flow diagrams in the manner we have explained.
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3. A presentation of FinVectk

Our goal in this section is to find a presentation for the symmetric monoidal category
FinVectk. To simplify some technicalities, we shall use Mac Lane’s coherence theorem
[17] to choose a symmetric monoidal equivalence F : FinVect′k → FinVectk where FinVect′k
is strict. This allows us to avoid mentioning associators and unitors, since in FinVect′k
these are identity morphisms. In what follows, we call FinVect′k simply FinVectk, and call
objects and morphisms in FinVectk by the names of their images under F . Colloquially
speaking, we ‘work in a strict version’ of FinVectk, and do not bother to indicate that
this is a different (though equivalent) symmetric monoidal category.

We say a strict symmetric monoidal category C is generated by a set O of objects
and a set M of morphisms going between tensor products of objects in O if the smallest
subcategory C0 of C containing:

• the objects in O,

• the morphisms in M ,

• the tensor products of any objects or morphisms in C0

• the braiding for any pair of objects in C0

has the property that the inclusion i : C0 → C is an equivalence of categories. It follows
that i extends to an equivalence of symmetric monoidal categories. In this situation we
call the elements of O generating objects for C, and call the elements of M generating
morphisms.

3.1. Lemma. For any field k, the object k together with the morphisms:

1. scalar multiplication c : k → k for any c ∈ k

2. addition +: k ⊕ k → k

3. zero 0: {0} → k

4. duplication ∆: k → k ⊕ k

5. deletion ! : k → {0}

generate FinVectk, the category of finite-dimensional vector spaces over k and linear maps,
as a symmetric monoidal category.
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Proof. It suffices to show that k together with the morphisms in (1)–(5) generate the
full subcategory of FinVectk containing only the iterated direct sums kn = k ⊕ · · · ⊕ k,
since this is equivalent to FinVectk.

A linear map in FinVectk, T : km → kn can be expressed as n k-linear combinations
of m elements of k. That is, T (k1, . . . , km) = (

∑
j a1jkj, . . . ,

∑
j anjkj), aij ∈ k. Any

k-linear combination of r elements can be constructed with only addition, multiplication,
and zero, with zero only necessary when providing the unique k-linear combination for
r = 0. When r = 1, a1(k1) is an arbitrary k-linear combination. For r > 1, +(Sr−1, ar(kr))
yields an arbitrary k-linear combination on r elements, where Sr−1 is an arbitrary k-linear
combination of r − 1 elements. The inclusion of duplication allows process of forming k-
linear combinations to be repeated an arbitrary (finite) positive number of times, and
deletion allows the process to be repeated zero times. When n k-linear combinations are
needed, each input may be duplicated n−1 times. Because FinVectk is being generated as
a symmetric monoidal category, the mn outputs can then be permuted into n collections
of m outputs: one output from each input for each collection. Each collection can then
form a k-linear combination, as above. The following diagrams illustrate the pieces that
form this inductive argument.

k1

a1

a1k1

r−1∑
j=1

ajkj

ar

kr

r∑
j=1

ajkj

k1

ai1

ai1k1k1

r−1∑
j=1

aijkj

kr
r∑
j=1

aijkj

air

kr

Since multiplication provides the map k1 7→ a1k1, as in the far left diagram, the middle-left
diagram can be used inductively to form a k-linear combination of any number of inputs.
In particular, we have any linear map Sr : km → k given by (k1, . . . , km) 7→ (

∑
j arjkj). Us-

ing duplication as in the middle-right diagram, one can produce the map k1 7→ (k1, ai1k1),
to which the right diagram can be inductively applied. Thus we can build any linear
map, Tj ∈ FinVectk, Tj : km → km+1 given by (k1, . . . , km) 7→ (k1, . . . , km,

∑
j aijkj). If we

represent the identity map on kr as 1r, the r-fold tensor product of the identity map on
k, any linear map T : km → kn can be given by (k1, . . . , km) 7→ (

∑
j a1jkj, . . . ,

∑
j anjkj),

which can be expressed as T = (S1⊕ 1n−1)(T2⊕ 1n−2) · · · (Tn−1⊕ 11)Tn. The above works
as long as the vector spaces are not 0-dimensional. f : km → {0} can be written as an
m-fold tensor product of deletion, !m, and f : {0} → kn can be written as an n-fold tensor
product of zero, 0n. f : {0} → {0} is the empty morphism, which has an empty diagram
for its string diagram.
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It is easy to see that the morphisms given in Lemma 3.1 obey the following 18 relations:

(1)–(3) Addition and zero make k into a commutative monoid:

= = =

(4)–(6) Duplication and deletion make k into a cocommutative comonoid:

= = =

(7)–(10) The monoid and comonoid structures on k fit together to form a bimonoid:

= = = =

(11)–(14) The rig structure of k can be recovered from the generating morphisms:

c

b

=bc b+c = b c 1 = 0 =

(15)–(16) Scalar multiplication commutes with addition and zero:

c c

=
c c =

(17)–(18) Scalar multiplication commutes with duplication and deletion:
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c c
=

c c =

In fact, these relations are enough. That is, together with the generating objects
and morphisms, they give a ‘presentation’ of FinVectk as a symmetric monoidal category.
However, we need to make this concept precise.

Suppose C is generated by a set O of objects and a set M of morphisms going between
tensor products of objects in O. Define a formal morphism to be a formal expression
built from symbols for morphisms in M via composition, identity morphisms, tensor
product, the unit object and the braiding. Any formal morphism f can be evaluated to
obtain a morphism ev(f) in C, which actually lies in C0.

Define a relation to be a pair f, g of formal morphisms. We say the relation holds
in C if ev(f) = ev(g). Suppose R is a set of relations that hold in C. We say (O,M,R)
is a presentation of C if given any two formal morphisms j, k that evaluate to the same
morphism, then we can go from j to k via a finite sequence of moves of these kinds:

1. replacing an instance of a generating morphism f in a formal morphism by the
generating morphism g, where (f, g) ∈ R,

2. applying an equational law in the definition of strict symmetric monoidal category
to a formal morphism.

In intuitive terms, this means that there are enough relations to prove all the equations
that hold in C—or more precisely, in the equivalent category C0.

3.2. Theorem. The symmetric monoidal category FinVectk is presented by the object k,
the morphisms given in Lemma 3.1, and relations (1)–(18) as listed above.

Proof. To prove this, we show that these relations suffice to rewrite any formal morphism
into a standard form, with all formal morphisms that evaluate to the same morphism
T : km → kn in FinVectk having the same standard form. To deal with moves of type
(2), we draw formal morphisms as string diagrams built from generating morphisms and
the braiding. Two formal morphisms that differ only by equational laws in the definition
of strict symmetric monoidal category will have topologically equivalent string diagrams.
It suffices, then, to show that any string diagram built from generating morphisms and
the braiding can be put into a standard form using topological equivalences and relations
(1)–(18).

A qualitative description of this standard form will be helpful for understanding how
an arbitrary string diagram can be rewritten in this form. By way of example, consider
the linear transformation T : R3 → R2 given by

(x1, x2, x3) 7→ (y1, y2) = (3x1 + 7x2 + 2x3, 9x1 + x2).

Its standard form looks like this:
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x1 x2 x3

3 9 7 1 2 0

y1 y2

This is a string diagram picture of the following equation:

Tx =

(
3 7 2
9 1 0

) x1

x2

x3

 =

(
y1

y2

)

In general, given a k-linear transformation T : km → kn, we can describe it using an
n ×m matrix with entries in k. The case where m and/or n is zero gives a matrix with
no entries, so their standard form will be treated separately. For positive values of m
and n, the standard form has three distinct layers. The top layer consists of m clusters
of n − 1 instances of ∆. The middle layer is mn multiplications. The n outputs of the
jth cluster connect to the inputs of the multiplications {a1j, . . . , anj}, where aij is the ij
entry of A, the matrix for T . The bottom layer consists of n clusters of m−1 instances of
+. There will generally be braiding in this layer as well, but since the category is being
generated as symmetric monoidal, the locations of the braidings doesn’t matter so long as
the topology of the string diagram is preserved. The topology of the sum layer is that the
ith sum cluster gets its m inputs from the outputs of the multiplications {ai1, . . . , aim}.
The arrangement of the instances of ∆ and + within their respective clusters does not
matter, due to the associativity of + via relation (2) and coassociativity of ∆ via relation
(5). For the sake of making the standard form explicit with respect to these relations,
we may assume the right output of a ∆ is always connected to a multiplication input,
and the right input of a + is always connected to a multiplication output. This gives
a prescription for drawing the standard form of a string diagram with a corresponding
matrix A.

The standard form for T : k0 → kn is n zeros (0⊕ · · · ⊕ 0), and the standard form for
T : km → k0 is m deletions (!⊕ · · ·⊕ !).

Each of the generating morphisms can easily be put into standard form: the string
diagrams for zero, deletion, and multiplication are already in standard form. The string
diagram for duplication (resp. addition) can be put into standard form by attaching a
multiplication by 1, relation (13), to each of the outputs (resp. inputs).
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1 1

=
1 1

=

The braiding morphism is just as basic to our argument as the generating morphisms,
so we will need to write the string diagram for B in standard form as well. The matrix
corresponding to braiding is (

0 1
1 0

)
,

so its standard form is as follows:

=
0 1 1 0

For n > 1, any morphism built from n copies of the basic morphisms—that is,
generating morphisms and the braiding—can be built up from a morphism built from
n − 1 copies by composing or tensoring with one more basic morphism. Thus, to prove
that any string diagram built from basic morphisms can be put into its standard form,
we can proceed by induction on the number of basic morphisms.

Furthermore, because strings can be extended using the identity morphism, relation
(13) can be used to show tensoring with any generating morphism is equivalent to ten-
soring with 1, followed by a composition: ∆ = ∆ ◦ 1, + = 1 ◦ +, c = 1 ◦ c, ! = ! ◦ 1,
0 = 1 ◦ 0. In the case of braiding, the step of tensoring with 1 is repeated once before
making the composition: B = (1⊕ 1) ◦B.

⊕ G = ⊕

G

= ⊕

G

1 1

Thus there are 11 cases to consider for this induction: ⊕1, +◦, ◦∆, ∆◦, ◦+, ◦c, c◦,
◦0, !◦, B◦, ◦B. Without loss of generality, the string diagram S to which a generating
morphism is added will be assumed to be in standard form already. Labels ij on diagrams
illustrating these cases correspond to strings incident to the multiplications aij.
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• ⊕1
When tensoring morphisms together, the matrix corresponding to C ⊕D is the block
diagonal matrix (

C 0
0 D

)
,

where, by abuse of notation, the block C is the matrix corresponding to morphism C,
and respectively D with D. Thus, when tensoring S by 1, we write the matrix for S
with one extra row and one extra column. Each of these new entries will be 0 with the
exception of a 1 at the bottom of the extra column. The string diagram corresponding
to the new matrix can be drawn in standard form as prescribed above. Using relations
(14), (4), and (1), the standard form reduces to S ⊕ 1. The process is reversible
(ev(f) = ev(g) implies ev(g) = ev(f)), so if the string diagram S can be drawn in
standard form, the string diagram S ⊕ 1 can be drawn in standard form, too. The
diagrams below show the relevant strings before they are reduced.

0

n+1,jnj

2j1j

1

n+1,m+10

n,m+10

2,m+1

0

1,m+1

i,m+1

im

i2i1

Note that for i = n+ 1 the multiplications ai2, . . . , aim going to the sum cluster will be
multiplication by zero, and ai,m+1 = 1. Otherwise ai,m+1 = 0, and the rest depend on
the matrix corresponding to S. When S = (!⊕· · ·⊕!), the matrix corresponding to S⊕1
has a single row, (0 · · · 0 1), and the standard form generated is just the middle diagram
above. When the same simplifications are applied, no sum cluster exists to eliminate
the zeros, so the standard form still simplifies to S⊕ 1. Dually, when S = (0⊕ · · ·⊕ 0),
the matrix representation of S ⊕ 1 is a column matrix. No duplication cluster exists in
the standard form for this matrix, so the same simplifications again reduce to S ⊕ 1.

• +◦
If we compose the string diagram for addition with S, first consider only the affected
clusters of additions: two clusters are combined into a larger cluster. Without loss of
generality we can assume these are the first two clusters, or formally, (+⊕1n−2)(S). We
can rearrange the sums using the associative law, relation (2), and permute the inputs
of this large cluster using the commutative law, relation (3). After several iterations of
these two relations, the desired result is obtained:
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1m

1211

2m

2221

= 1m 2m

12 2211 21

Now the right side of relation (12) appears in the diagram m times with a1j and a2j in
place of b and c. Relation (12) can therefore be used to simplify to the multiplications
a1j + a2j.

a1j a2j = a1j+a2j

The simplification removes one instance of ∆ from each of the m clusters of ∆ and m
instances of + from the large addition cluster. There will remain (m− 1) + (m− 1) +
(1)− (m) = m− 1 instances of +, which is the correct number for the cluster. I.e. the
composition has been reduced to standard form.
The argument is vastly simpler if S = (0 ⊕ · · · ⊕ 0). In that case relation (1) deletes
the addition and one of the 0 morphisms, and S is still in the same form.

=

• ◦∆
The argument for S◦(∆⊕1m−2) is dual to the above argument, using the light relations
(4), (5) and (6) instead of the dark relations (1), (2) and (3).

• ∆◦
For (∆ ⊕ 1n−1) ◦ S, relation (7) can be used iteratively to “float” the ∆ layer above
each of the two + clusters formed by the first iteration.

1m

11 12

=

11 12

1m

=

11 12 1m· · ·
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Each of these instances of ∆ can pass through the multiplication layer to ∆ clusters
using relation (17).
As before, we consider the subcase S = (0⊕ · · · ⊕ 0) separately. Relation (8) removes
the duplication and creates a new zero, so S remains in the same form.

• ◦+
For S(+⊕1m−1), the argument is dual to the previous one: relation (7) is used to “float”
the additions down, relation (15) sends the additions through the multiplications, and
relation (9) removes the addition and creates a new deletion in the subcase S = (! ⊕
· · ·⊕!).

• ◦c
We can iterate relation (17) when a multiplication is composed on top, as in S(c⊕1m−1).

c

11 21

n1

=

c c c

11 21 · · · n1

The double multiplications in the multiplication layer reduce to a single multiplication
via relation (11), c ◦ aij = caij, which leaves the diagram in standard form. The
composition does nothing when S = (!⊕ · · ·⊕!), due to relation (18).

• c◦
A dual argument can be made for (c⊕ 1n−1) ◦ S using relations (15), (11) and (16).

• ◦0
For S(0⊕ 1m−1), relations (8) and (16) eradicate the first ∆ cluster and all the multi-
plications incident to it, leaving behind n zeros. Relation (1) erases each of these zeros
along with one addition per addition cluster, leaving a diagram that is in standard
form.

11 21

n1
= · · ·

11 21 n1
ai1 =

i2

i3

im
=

i2 i3

im

When S = (!⊕ · · ·⊕!), the zero annihilates one of the deletions via relation (10).
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• !◦
A dual argument erases the indicated output for the composition (! ⊕ 1n−1) ◦ S using
relations (9), (18), and (4). Again, relation (10) annihilates the deletion and one of
the zeros if S = (0⊕ · · · ⊕ 0).

• B◦
Since this category of string diagrams is symmetric monoidal, an appended braiding will
naturally commute with the addition cluster morphisms. The principle that only the
topology matters means the composition (B ⊕ 1n−2) ◦ S is in standard form. Braiding
will similarly commute with deletion morphisms.

= =

• ◦B
Composing with B on the top, braiding commutes with duplication, multiplication and
zero, so S ◦ (B ⊕ 1m−2) almost trivially comes into standard form.

An interesting exercise is to use these relations to derive a relation that expresses the
braiding in terms of other basic morphisms. One example of such a relation appeared in
Section 2. Here is another:

−1 −1=

With a few more relations, FinVectk can be presented as merely a monoidal category.
Lafont [16] explained how, and gave a full proof in the special case where k is the field
with two elements.

4. A presentation of FinRelk

Now we give a presentation for the symmetric monoidal category FinRelk. As we did in
the previous section for FinVectk, we work in a strict version of the symmetric monoidal
category FinRelk.
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4.1. Lemma. For any field k, the object k together with the morphisms:

• addition +: k ⊕ k 9 k

• zero 0: {0}9 k

• duplication ∆: k 9 k ⊕ k

• deletion ! : k 9 {0}

• multiplication c : k 9 k for any c ∈ k

• cup ∪ : k ⊕ k 9 {0}

• cap ∩ : {0}9 k ⊕ k

generate FinRelk, the category of finite-dimensional vector spaces over k and linear rela-
tions, as a symmetric monoidal category.

Proof. A morphism of FinRelk, R : km 9 kn is a subspace of km ⊕ kn ∼= km+n. It can
be expressed as a system of k-linear equations in km+n. Lemma 3.1 tells us any number
of arbitrary k-linear combinations of the inputs may be generated. Any k-linear equation
of those inputs can be formed by setting such a k-linear combination equal to zero. In
particular, if caps are placed on each of the outputs to make them inputs and all the
k-linear combinations are set equal to zero, any k-linear system of equations of the inputs
and outputs can be formed. Expressed in terms of string diagrams,

km+n
. . .km+1

fi

The left diagram turns the n outputs into inputs by placing caps on all of them. The
morphism zero gives the k-linear combination zero, so an arbitrary k-linear combination
in km+n is set equal to zero (fi = 0) via the cozero morphism. These elements can be
combined with Lemma 3.1 to express any system of k-linear equations in km+n.

Putting these elements together, taking the FinVectk portion as a black box and
drawing a single string to denote zero or more copies of k, the picture is fairly simple:
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To obtain a presentation of FinRelk as a symmetric monoidal category, we need to
find enough relations obeyed by the generating morphisms listed in Lemma 4.1. Relations
(1)–(18) from Theorem 3.2 still apply, but we need more.

For convenience, in the list below we draw the adjoint of any generating morphism by
rotating it by 180◦. It will follow from relations (19) and (20) that the cap is the adjoint
of the cup, so this convenient trick is consistent even in that case, where a priori there
might have been an ambiguity.

(19)–(20) ∩ and ∪ obey the zigzag relations, and thus give a †-compact category:

= =

(21)–(22) (k,+, 0,+†, 0†) is a Frobenius monoid:

= =

(23)–(24) (k,∆†, !†,∆, !) is a Frobenius monoid:

= =

(25)–(26) The Frobenius monoid (k,+, 0,+†, 0†) is extra-special:

= =

(27)–(28) The Frobenius monoid (k,∆†, !†,∆, !) is extra-special:
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= =

(29) ∪ with a factor of −1 inserted can be expressed in terms of + and 0:

−1 =

(30) ∩ can be expressed in terms of ∆ and !:

=

(31) For any c ∈ k with c 6= 0, scalar multiplication by c−1 is the adjoint of scalar
multiplication by c:

c = c−1

Some curious identities can be derived from relations (1)–(31), beyond those already
arising from (1)–(18). For example:

(D1)–(D2) Deletion and zero can be expressed in terms of other generating morphisms:

=
(27)

=
(30)†

=
(28)

=
(14)

0 =
(D1)† 0

This does not diminish the role of deletion and zero. Indeed, regarding these generating
morphisms as superfluous buries some of the structure of FinRelk.

(D3) Addition can be expressed in terms of coaddition and scalar multiplication by −1,
and the cup:
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−1
=

(29)
=

(21)
=

(1)†

(D4) Duplication can be expressed in terms of coduplication and the cap:

=

where the proof is similar to that of (D3).

(D5)–(D7) We can reformulate the bimonoid relations (7)–(9) using adjoints:

=

= =

(D8)–(D9) When c 6= 1, we have:

c = c =

We leave the derivation of (D5)–(D9) as exercises for the reader.
Next we show that relations (1)–(31) are enough to give a presentation of FinRelk as

a symmetric monoidal category. As before, we do this by giving a standard form that any
morphism can be written in and use induction to show that an arbitrary diagram can be
rewritten in its standard form using the given relations.
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4.2. Theorem. The symmetric monoidal category FinRelk is presented by the object k,
the morphisms given in Lemma 4.1, and relations (1)–(31) as listed above.

Proof. We prove this theorem by using the relations (1)–(31) to put any string diagram
built from the generating morphisms and braiding into a standard form, so that any two
string diagrams corresponding to the same morphism in FinRelk have the same standard
form.

As before, we induct on the number of basic morphisms involved in a string diagram,
where the basic morphisms are the generating morphisms together with the braiding. If
we let R : km 9 kn be a morphism in FinRelk, we can build a string diagram S for R
as in Lemma 4.1. Each output of S is capped, and, together with the inputs of S, form
inputs for a FinVectk block, T . For some r ≤ m + n, there are r outputs of T–linear
combinations of the m+n inputs–each set equal to zero via (0†)r. When T is in standard
form for FinVectk, we say S is in prestandard form, and can be depicted as follows:

While the linear subspace of km+n defined by R is determined by a system of r linear
equations, the converse is not true, meaning there may be multiple prestandard string
diagrams for a single morphism R. The second stage of this proof collapses all the pre-
standard forms into a standard form using some basic linear algebra. The standard form
will correspond to when the matrix representation of T is written in row-reduced echelon
form. For this stage it will suffice to show all the elementary row operations correspond to
relations that hold between diagrams. By Theorem 3.2, an arbitrary FinVectk block can
be rewritten in its standard form, so the FinVectk blocks here need not be demonstrated
in their standard form.
When there is one basic morphism, there are eight cases to consider, one per basic mor-
phism. In each of these basic cases, the block of the diagram equivalent to a morphism
in FinVectk is denoted by a dashed rectangle. We first consider ∪.

(D10)

=
(13)
(11)

−1

−1
=

(29)

−1

Capping each of the inputs turns this into the standard form of ∩. Aside from deletion,
the remaining generating morphisms can be formed by introducing a zigzag at each output
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and rewriting the resulting cups as above. The standard forms for 0 and ! have simpler
expressions.

=
−1

c =
−c

=
−1

= =

−1

=
(26)

Braiding is two copies of multiplication by 1 that have been braided together.

=

−1 −1

Assuming any string diagram with j basic morphisms can be written in prestandard form,
we show an arbitrary diagram with j + 1 basic morphisms can be written in prestandard
form as well. Let S be a string diagram on j basic morphisms, rewritten into prestandard
form, with a maximal FinVectk subdiagram T . Several cases are considered: those putting
a basic morphism above S, beside S, and below S.

• S ◦G for a basic morphism G 6= ∩
If a diagram G is composed above S, G can combine with T to make a larger FinVectk
subdiagram if G is c, ∆, +, B, or 0, as these are morphisms in FinVectk. The generating
morphisms ∩, ∪ and ! are not on this list, though a composition with ∪ (resp. !) would
be equivalent to tensoring by ∪ (resp. !).

=

G
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for

G = c

, , , , or .

Putting these morphisms on top of S reduces to performing those compositions on T .
The maximal FinVectk subdiagram now includes T and G, with S unchanged outside
the FinVectk block.

• B ◦ S
B commutes with caps because the category is symmetric monoidal, so capping the
braiding is equivalent to putting the braiding on top of T . B is “absorbed” into T , just
as in the S ◦G case.

• S ⊕G for any basic morphism G
If any two prestandard string diagrams S and S ′ are tensored together, the result
combines into one prestandard diagram. This is evident because the category of string
diagrams is symmetric monoidal, and the FinVectk blocks can be placed next to each
other as the tensor of two FinVectk blocks. These combine into a single FinVectk
block, and absorbing all the braidings into this block as above brings the diagram into
prestandard form. Since each basic morphism can be written as a prestandard diagram,
the tensor S ⊕G is a special case of this.

⊕
=

• c ◦ S for c 6= 0
Because the outputs of S are capped, putting any morphism on the bottom of S is
equivalent (via relations (19) and (20)) to putting its adjoint on top of T . Putting
c 6= 0 below S reduces to putting c−1 on top of T by relation (31). The case of c = 0
will be considered below. The other cases of adjoints of generating morphisms that
need to be considered more carefully are the ones that put ∆†, +† and ∩ = ∪† on top
of T .

c =

c−1

• ∆ ◦ S
When putting ∆† on top of T , the idea is to make it “trickle down.” If there is a
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nonzero multiplication incident to the ∆ cluster, ∆† can slide through the ∆s using
relation (23) to the first nonzero multiplication, switching to relation (24). When it
encounters this c, relation (31) turns c into (c−1)†, relation (17)† allows ∆† to pass
through (c−1)†. Both copies of (c−1)† can return to being c by another application of
relation (31), and the ∆† moves on to the next layer.

0

=
(23) 0

c

=
(24)

c c

=
(31)†

c−1

=
(17)†

c−1 c−1

=
(31)†

c c

When the codelta gets to a + cluster, derived relation (D5) has a net effect of bringing
it to the bottom of the subdiagram, as the other morphisms involved all belong to
FinVectk. This allows the process to be repeated on the next addition until ∆† reaches
the bottom of the + cluster. Once there, codelta interacts with the cozero layer below
T ; relation (8)† reduces it to a pair of cozeros.

=
(D5)

=
(8)†

If all the multiplications incident to the ∆ cluster are by 0, rather than trickling down,
∆† composes with ! (due to relation (14)), which gives ∪ by relation (30)†. By the
zigzag identities, this cup becomes a cap that is tensored with a subdiagram of S that
is in prestandard form.

0 0 0

=
(14)
(4) · · ·

=
(30)†

· · ·

• + ◦ S
There is a similar trickle down argument for +†. First rewriting all multiplications by
zero via relation (14), the two ∆ clusters incident to the coaddition can either reduce
to ∆ clusters that are incident only to nonzero multiplications or reduce to a single
deletion, as above, if none of the incident multiplications were nonzero. There are three
cases of what can happen from here.
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– Both ∆ clusters were incident to only zero-multiplications
In the first case, as above, the ∆ clusters will reduce to ! incident to the outputs of
+†. Relations (D7) and (28) delete the coaddition.

– One ∆ cluster was incident to only zero-multiplications
Without loss of generality, the ! incident to +† is on the left. Relation (D7) replaces
! and +† with !†◦!, and relation (30) replaces ∆ and !† with a cap. The ∆ was – and
the cap is – incident to some multiplication by c 6= 0. Without loss of generality, c is
incident to the bottom addition in the cluster. Relation (29) replaces the addition
and cozero with a cup and multiplication by −1, which combines with c by relation
(11). The cup and cap turn −c around to its adjoint, which is −c−1 by relation (31).

c

=
(D7)†

(30)
c

c =
(29)
(11)

−c =
(31)

−c−1

An addition cluster is above −c−1 and a duplication cluster is below, but because
those clusters are not otherwise connected to each other, there is a vertical arrange-
ment of the morphisms in the FinVectk block of the string diagram such that no cups
or caps are present.

– Both ∆ clusters are incident to at least one nonzero multiplication
Using relation (D5)†, a +† will pass through one ∆ at a time. A new ∆† is created
each time, but this can trickle down as before.

=

Once the ∆† trickles down, there are two possibilities for what is directly beneath
each +†: either the same scenario will recur with a ∆ connected to one or both
outputs, which can only happen finitely many times, or two nonzero multiplications
will be below the +†. A multiplication by any unit in k, c 6= 0, can move through a
coaddition by inserting cc−1 on the top branch and applying relation (15)†:

c
=

c

c−1
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This allows one of the outputs of the coaddition to connect directly to a + cluster.

∗ If both branches go to different + clusters, Frobenius relations (21)–(22)
slide the +† down the + cluster on one side until it gets to the end of that cluster.

c
=

(21)
(22)

c

The only morphisms added to the FinVectk block that are not from FinVectk were
the coaddition and the cozero. Since these reduce to an identity morphism string
by relation (1)†, the FinVectk block is truly a FinVectk block again.

∗ If both branches go to the same + cluster, relation (3) and the Frobenius
relation (21) take both branches to the same addition.

c =
(3)
(21)

c

Depending on whether the remaining multiplication is by 1, either relation (25)
reduces the coaddition and the given addition to an identity string or relation (D8)
applies. In the former case we are done, and in the latter case relations (D7) and
(10)† remove the !† introduced by applying relation (D8).

=
(D7) =

(D7)
=

(10)†

• ∪ ◦ S and S ◦ ∩
Composing with a cup below S is equivalent to composing with cap above T , since
∩ = ∪†. Using relation (D10)†, this cap can be replaced by multiplication by −1,
coaddition, and zero. By the arguments above, −1, +†, and 0 can each be absorbed
into the FinVectk block.

=
(D10)† −1

= = =
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The compositions with zero and multiplication by −1 expand the FinVectk block, thus
have no effect on whether the diagram can be written in prestandard form.

• ! ◦ S
When composing !† above T , two possibilities arise, depending on whether there is a
layer of ∆s in the FinVectk block. If there is such a layer, relation (30) combines the
!† with a ∆, making a cap on top of T . As we have just seen, this can be rewritten in
prestandard form.

= =
(30)

If no layer of ∆s exists, relations (31)† and (18)† pass the codeletion through a nonzero
multiplication. Then relations (D7) and (10)† can be used to remove !†, as we have
already seen. This leaves only the basic morphisms of FinVectk within the FinVectk
block.

c =
(31)†

c−1 =
(18)†

If the multiplication is c = 0, relation (14) converts c = 0 to 0◦!, allowing relation (28)
to remove the !†, with the same conclusion.

0 =
(14)

=
(28)

• c ◦ S for c = 0
Composing with multiplication by c = 0 below S is equivalent to composing with
codeletion, followed by tensoring with zero. Codeletion is the ! ◦ S case, and zero can
be written in a prestandard form, so this reduces to tensoring two diagrams that are in
prestandard form.

0 =
(14)
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Finally, we need to show the prestandard forms can be rewritten in standard form. We
need to show what elementary row operations look like in terms of string diagrams. We
also need to show for an arbitrary prestandard string diagram S with FinVectk block T
that if T is replaced with T ′, the diagram where an elementary row operation has been
performed on T , the resulting diagram S ′ can be built from S using relations (1)–(31).

Because the ith output of a FinVectk diagram is a linear combinations of the inputs,
with the coefficients coming from the ith row of its matrix, rows of the matrix correspond
to outputs of the FinVectk block. Because of this, the row operation subdiagrams in
S ′ will have 0†s immediately beneath them. Showing S ′ can be built from S reduces to
showing composition of row operations with 0†s builds the same number of 0†s.

• Add a multiple c of one row to another row:
If we want to add a multiple of the β row to the α row, we need a map (yα, yβ) 7→
(yα + cyβ, yβ). By the naturality of the braiding in a symmetric monoidal category, we
can ignore any intermediate outputs:

c

yα yβ

yα + cyβ yβ

When two cozeros are composed on the bottom of this diagram, the result is two cozeros:

c =
(D10)

c

−1

=
(11)

−c =
(D6)

−c

=
(16)

• Swap rows:
If we want to swap the β row with the α row, we need a map (yα, yβ) 7→ (yβ, yα), which
is the braiding of two outputs. Again, intermediate outputs may be ignored:

yα

yα

yβ

yβ
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When two cozeros are composed at the bottom of this diagram, the cut strings untwist
by the naturality of the braiding:

= =

• Multiply a row by c 6= 0:
The third row operation is multiplying an arbitrary row by a unit, but since k is a field,
that means any c 6= 0. This is just the multiplication map on one of the outputs:

c

yα

cyα

Because c is a unit, c−1 ∈ k, so the multiplication by c can be replaced by the adjoint
of multiplication by c−1.

c =
(31)† c−1 =

(16)†

5. An example

A famous example in control theory is the ‘inverted pendulum’: an upside-down pendulum
on a cart [10]. The pendulum naturally tends to fall over, but we can stabilize it by setting
up a feedback loop where we observe its position and move the cart back and forth in a
suitable way based on this observation. Without introducing this feedback loop, let us
see how signal-flow diagrams can be used to describe the pendulum and the cart. We
shall see that the diagram for a system made of parts is built from the diagrams for the
parts, not merely by composing and tensoring, but also with the help of duplication and
coduplication, which give additional ways to set variables equal to one another.

Suppose the cart has mass M and can only move back and forth in one direction, so
its position is described by a function x(t). If it is acted on by a total force Fnet(t) then
Newton’s second law says

Fnet(t) = Mẍ(t).

We can thus write a signal-flow diagram with the force as input and the cart’s position
as output:
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x

∫ ẋ

∫ ẍ

1
M

Fnet

The inverted pendulum is a rod of length l with a mass m at its end, mounted on the
cart and only able to swing back and forth in one direction, parallel to the cart’s movement.
If its angle from vertical, θ(t), is small, then its equation of motion is approximately linear:

lθ̈(t) = gθ(t)− ẍ(t)

where g is the gravitational constant. We can turn this equation into a signal-flow diagram
with ẍ as input and θ as output:

−1
l

∫
g
l ∫

ẍ

θ
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Note that this already includes a kind of feedback loop, since the pendulum’s angle affects
the force on the pendulum.

Finally, there is an equation describing the total force on the cart:

Fnet(t) = F (t)−mgθ(t)

where F (t) is an externally applied force and −mgθ(t) is the force due to the pendulum.
It will be useful to express this as follows:

−mg

Fnet θ

F

Here we are treating θ as an output rather than an input, with the help of a cap.
The three signal-flow diagrams above describe the following linear relations:

x =

∫ ∫
1

M
Fnet (1)

θ =

∫ ∫ (
g

l
θ − 1

l
ẍ

)
(2)

Fnet +mgθ = F (3)

where we treat (1) as a relation with Fnet as input and x as output, (2) as a relation with
ẍ as input and θ as output, and (3) as a relation with F as input and (Fnet, θ) as output.

To understand how the external force affects the position of the cart and the angle
of the pendulum, we wish to combine all three diagrams to form a signal-flow diagram
that has the external force F as input and the pair (x, θ) as output. This is not just a
simple matter of composing and tensoring the three diagrams. We can take Fnet, which
is an output of (3), and use it as an input for (1). But we also need to duplicate ẍ, which
appears as an intermediate variable in (1) since ẍ = 1

M
Fnet, and use it as an input for

(2). Finally, we need to take the variable θ, which appears as an output of both (2) and
(3), and identify the two copies of this variable using coduplication. Following traditional
engineering practice, we shall write coduplication in terms of duplication and a cup, as
follows:
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=

The result is this signal-flow diagram:

−mg

1
M

F

∫

∫

x

−1
l

∫
g
l ∫

θ

This is not the signal-flow diagram for the inverted pendulum that one sees in Fried-
land’s textbook on control theory [10]. We leave it as an exercise to the reader to rewrite
the above diagram using the rules given in this paper, obtaining Friedland’s diagram:
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F

1
M

−1
Ml

∫
∫

x

∫
∫mg

M

(M+m)g
Ml

θ

As a start, one can use Theorem 4.2 to prove that it is indeed possible to do this rewriting.
To do this, simply check that both signal-flow diagrams define the same linear relation.
The proof of the theorem gives a method to actually do the rewriting—but not necessarily
the fastest method.

6. Conclusions

We conclude with some remarks aimed at setting our work in context. In particular, we
would like to compare it to some other recent papers. On April 30th, 2014, after most of
this paper was written, Sobociński told the first author about some closely related papers
that he wrote with Bonchi and Zanasi [4, 5]. These provide interesting characterizations
of symmetric monoidal categories equivalent to FinVectk and FinRelk. Later, while this
paper was being refereed, Wadsley and Woods [22] generalized the first of these results
to the case where k is any commutative rig. We discuss Wadsley and Woods’ work first,
since doing so makes the exposition simpler.
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A particularly tractable sort of symmetric monoidal category is a PROP: that is, a
strict symmetric monoidal category where the objects are natural numbers and the tensor
product of objects is given by ordinary addition. The symmetric monoidal category
FinVectk is equivalent to the PROP Mat(k), where a morphism f : m → n is an n ×m
matrix with entries in k, composition of morphisms is given by matrix multiplication, and
the tensor product of morphisms is the direct sum of matrices.

Wadsley and Woods gave an elegant description of the algebras of Mat(k). Suppose
C is a PROP and D is a strict symmetric monoidal category. Then the category of
algebras of C in D is the category of strict symmetric monoidal functors F : C → D and
natural transformations between these. If for every choice of D the category of algebras
of C in D is equivalent to the category of algebraic structures of some kind in D, we say
C is the PROP for structures of that kind.

In this language, Wadsley and Woods proved that Mat(k) is the PROP for ‘bicom-
mutative bimonoids over k’. To understand this, first note that for any bicommutative
bimonoid A in D, the bimonoid endomorphisms of A can be added and composed, giving
a rig End(A). A bicommutative bimonoid over k in D is one equipped with a rig homo-
morphism ΦA : k → End(A). Bicommutative bimonoids over k form a category where a
morphism f : A→ B is a bimonoid homomorphism compatible with this extra structure,
meaning that for each c ∈ k the square

A

f

��

ΦA(c) // A

f

��
B

ΦB(c)
// B

commutes. Wadsley and Woods proved that this category is equivalent to the category
of algebras of Mat(k) in D.

This result amounts to a succinct restatement of Theorem 3.2, though technically the
result is a bit different, and the style of proof much more so. The fact that an algebra
of Mat(k) is a bicommutative bimonoid is equivalent to our relations (1)–(10). The fact
that ΦA(c) is a bimonoid homomorphism for all c ∈ k is equivalent to relations (15)–(18),
and the fact that Φ is a rig homomorphism is equivalent to relations (11)–(14).

Even better, Wadsley and Woods showed that Mat(k) is the PROP for bicommuta-
tive bimonoids over k whenever k is a commutative rig. Subtraction and division are not
required to define the PROP Mat(k), nor are they relevant to the definition of bicommu-
tative bimonoids over k. Working with commutative rigs is not just generalization for the
sake of generalization: it clarifies some interesting facts.

For example, the commutative rig of natural numbers gives a PROP Mat(N). This is
equivalent to the symmetric monoidal category where morphisms are isomorphism classes
of spans of finite sets, with disjoint union as the tensor product. Lack [15, Ex. 5.4]
had already shown that this is the PROP for bicommutative bimonoids. But this also
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follows from the result of Wadsley and Woods, since every bicommutative bimonoid A is
automatically equipped with a unique rig homomorphism ΦA : N→ End(A).

Similarly, the commutative rig of booleans B = {F, T}, with ‘or’ as addition and
‘and’ as multiplication, gives a PROP Mat(B). This is equivalent to the symmetric
monoidal category where morphisms are relations between finite sets, with disjoint union
as the tensor product. Mimram [18, Thm. 16] had already shown this is the PROP
for special bicommutative bimonoids, meaning those where comultiplication followed by
multiplication is the identity:

=

But again, this follows from the general result of Wadsley and Woods.
Finally, taking the commutative ring of integers Z, Wadsley and Woods showed that

Mat(Z) is the PROP for bicommutative Hopf monoids. The key here is that scalar
multiplication by −1 obeys the axioms for an antipode, namely:

−1 = = −1

More generally, whenever k is a commutative ring, the presence of −1 ∈ k guarantees that
a bimonoid over k is automatically a Hopf monoid over k. So, when k is a commutative
ring, Wadsley and Woods’ result implies that Mat(k) is the PROP for Hopf monoids over
k.

Earlier, Bonchi, Sobociński and Zanasi gave an elegant and very different proof that
Mat(R) is the PROP for Hopf monoids over R when R is a principal ideal domain [4,
Prop. 3.7]. The advantage of their argument is that they build up the PROP for Hopf
monoids over R from smaller pieces, using some ideas developed by [15].

These authors also described a PROP that is equivalent to FinRelk as a symmetric
monoidal category whenever k is a field. In this PROP, which they call SVk, a morphism
f : m → n is a linear relation from km to kn. They proved that SVk is a pushout in the
category of PROPs and strict symmetric monoidal functors:

Mat(R) + Mat(R)op

��

// Span(Mat(R))

��
Cospan(Mat(R)) // SVk
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This pushout square requires a bit of explanation. Here R is any principal ideal
domain whose field of fractions is k. For example, we could take R = k, though Bonchi,
Sobociński and Zanasi are more interested in the example where R = R[s] and k = R(s).
A morphism in Span(Mat(R)) is an isomorphism class of spans in Mat(R). There is a
covariant functor

Mat(R) → Span(Mat(R))

m
f→ n 7→ m

1← m
f→ n

and also a contravariant functor

Mat(R) → Span(Mat(R))

m
f→ n 7→ n

f← m
1→ m.

Putting these together we get the functor from Mat(R) + Mat(R)op to Span(Mat(R))
that gives the top edge of the square. Similarly, a morphism in Cospan(Mat(R)) is an
isomorphism class of cospans in Mat(R), and we have both a covariant functor

Mat(R) → Cospan(Mat(R))

m
f→ n 7→ m

f→ n
1← n

and a contravariant functor

Mat(R) → Cospan(Mat(R))

m
f→ n 7→ n

1→ n
f← m.

Putting these together we get the functor from Mat(R) + Mat(R)op to Cospan(Mat(R))
that gives the left edge of the square.

Bonchi, Sobociński and Zanasi analyze this pushout square in detail, giving explicit
presentations for each of the PROPs involved, all based on their presentation of Mat(R).
The upshot is a presentation of SVk which is very similar to our presentation of the
equivalent symmetric monoidal category FinRelk. Their methods allow them to avoid
many, though not all, of the lengthy arguments that involve putting morphisms in ‘normal
form’.
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Clemens Berger, Université de Nice-Sophia Antipolis: cberger@math.unice.fr
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