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EXTENSIVE CATEGORIES AND THE SIZE OF AN ORBIT

ERNIE MANES

Abstract. It is well known how to compute the number of orbits of a group action. A
related problem, apparently not in the literature, is to determine the number of elements
in an orbit. The theory that addresses this question leads to orbital extensive categories
and to combinatorial aspects of such categories.

The vertices of a regular icosahedron will be colored black or white. How many
icosahedra exist if opposite vertices have different color? This is easily found from the
“Burnside-Frobenius lemma” (which is due exclusively to Frobenius [6]): there are 4.
For each of these objects, we might also wish to know how many differently-appearing
positions they appear in, that is, how many elements do these orbits have? The theory
developed in this paper gives that 2 of the orbits have 5 elements and the other 2 have
10. If vertices can be black, white or red, there are 804 objects of which 18 have 5-
element orbits, 18 have 10-element orbits and, quite surprisingly, the remaining 768 have
60-element orbits. This problem will be solved in the last section together with additional
remarks that indicate how to generalize to solve similar counting problems.

The theory develops from a general look at atoms in extensive categories and their
relation to conjugacy classes of subgroups of a certain group. This is the main focus of
this paper. Atoms in an extensive category have been studied by others [5, 3].

We thank the referee for helpful comments.

1. Combinatorial Categories

1.1. Definition. A ranged extensive category is a locally-small category which sat-
isfies the following four axioms.

(RE.1) Finite colimits exist.

(RE.2) Any morphism pulls back finite coproducts to finite coproducts.

(RE.3) Every morphism factors as i p with i a coproduct injection and p epic.

(RE.4) The pullback of an epic under a coproduct injection is again an epic.
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For convenience, we assume that, like the category of sets, a ranged extensive category
contains only one initial object.

Coproducts and (RE.2) define an extensive category. For basic facts about extensive
categories see [2]. The astute reader will note that a good deal of the theory below does
not require coequalizers, but these are assumed because the resulting categories lie closer
to the applications we have in mind.

Evidently, any Boolean topos is a ranged extensive category.
Summ(X) denotes the subobjects of X represented by a coproduct injection; note

that coproduct injections are monic by Lemma 1.6 below. It is well known that, in any
extensive category, Summ(X) is a Boolean algebra. (Boolean categories are studied in [9].
An extensive category is the same thing as a Boolean category in which every morphism
is total and deterministic [9, Corollary 12.3]). Summ(X) is a Boolean algebra in any
Boolean category [9, Theorem 5.11]). Note that for A1, . . . , An ∈ Summ(X), Ai → X is a
coproduct if and only if in Summ(X), Ai∩Aj = ∅ whenever i 6= j and A1∪ . . .∪An = X.

1.2. Definition. A combinatorial category is a ranged extensive category C in which
every hom-set C(X, Y ) is finite.

For the balance of the section, we work in a combinatorial category C.

1.3. Lemma. For each object X in C, Summ(X) is a finite Boolean algebra.

Proof. Suppose Summ(X) were infinite. Then as is well-known (see [8, Proposition
3.4]), there exists A1, A2, . . . in Summ(X) with Ai ∧ Aj = 0 whenever i 6= j and each
Ai 6= 0. For any n, X = A1 ∨A2 ∨ · · · ∨An ∨ (A1 ∨ · · · ∨An)′ (where (·)′ denotes Boolean
algebra complement). As the two coproduct injections Ai → Ai +Ai are distinct for each
i, C(X,X +X) has at least 2n elements. This is a contradiction, since n is arbitrary.

It follows that every object is uniquely a finite coproduct of atoms, where an atom is

an object with exactly two summands, that is, an object A 6= 0 such that 0 −−→ A
id←−− A

is the only coproduct decomposition.

1.4. Lemma. If 0→ B is epic, B = 0.

Proof. If B 6= 0 there exist two distinct maps B → B +B.

1.5. Lemma. If f : X → Y is epic and 0 6= Q ∈ Summ(Y ) then the pullback f−1(Q) ∈
Summ(X) is also not 0.

Proof. Consider the pullback

X Y-
f

f−1(Q) Q-
g

? ?

By (RE.4), g is epic. Now use Lemma 1.4.
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1.6. Lemma. Every coproduct injection is an equalizer.

Proof. Given a coproduct P
i−−→ X

i′←−− P ′ define F as shown.

X X +X-
in1

P X-
i

?
i

?
F

X�
in2

P ′� i′

?
i

As both rows are coproducts, both squares must be pullbacks ([2, Proposition 2.2]). Thus
i = eq(F, in1).

1.7. Lemma. Given a commutative square

C D-
i

A B-
p

?
f

?
g

with p epic and i a coproduct injection, there exists a diagonal fill-in t : B → C with
it = g, tp = f .

Proof. By Lemma 1.6, write i = eq(α, β). Then αgp = αif = βif = βgp so αg = βg
since p is epic. The desired t is induced by the equalizer property.

1.8. Proposition. If f : A→ B is epic with A an atom, then B is also an atom.

Proof. Let 0 6= Q ∈ Summ(B) and show Q = B. As A is an atom, it follows from
Lemma 1.5 that f−1(Q) = A, so we have a pullback

Q B-

A A-
id

? ?
f

As f is epic, Q→ B is epic. By Lemma 1.6, we are done.

1.9. Definition. Let A be a choice of one atom from each isomorphism class of atoms
in C. Define At(C) to be the full subcategory A.

The structure of C is determined by At(C) as follows. Consider a morphism f : A →
B1 + · · · + Bm with A an atom in At(C). As the image of f can be taken as an atom
in At(C) by Proposition 1.8, there exists a unique j such that f factors through Bj. Let
{A1, . . . Am} be the set of atoms of Summ(X), and let {B1, . . . , Bn} be the atoms of
Summ(Y ), both taken in At(C). Thus X = A1 + · · · + Am, Y = B1 + · · · + Bn. To
determine a morphism f : X → Y , let α : {1, . . . ,m} → {1, . . . , n} be the function such
that f maps Ai into Bα i. Then f is determined by the function α and the resulting maps
Ai → Bα i in At(C). By the same reasoning, composition of morphisms is determined by
the composition in At(C).

We continue our study of C.
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1.10. Lemma. Every object of C is Dedekind-finite, that is, every monic endomorphism
is an isomorphism.

Proof. For f : X → X, as C(X,X) is a finite semigroup, n > 1 exists with fn idempo-
tent. If f is monic then fn is a monic idempotent, hence the identity. This shows that
f−1 = fn−1.

1.11. Proposition. Every endomorphism of an atom is an isomorphism.

Proof. Every endomorphism of an atom is epic by (RE.3) and Proposition 1.8. Now use
the dual of the proof of the previous lemma.

1.12. Corollary. If A,B are non-isomorphic atoms and there exists A → B, then no
B → A exists.

1.13. Definition. Let Ciso denote the category of isomorphisms of C. Let Fin denote
the category of finite sets and functions. In the spirit of the species invented by Joyal
[7, 1], define a species on C to be a functor Ciso → Fin. A species gives us something
to count.

1.14. Definition. A species F on Cop×C is binomial if there are natural isomorphisms

F (X, Y + Z) ∼=
∑

P∈Summ(X)

F (P, Y )× F (P ′, Z)

1.15. Example. The hom-set species (X, Y ) 7→ C(X, Y ) is binomial. For consider the
pullbacks

X Y + Z-
in1

P X-
i

?

g
?
f

Z�
in2

P ′� i′

?
h

As the category is extensive, for each f there exists unique P giving rise to g, h by pullback.
Conversely, given P, g, h, unique f is induced by the coproduct and the squares must be
pullbacks.

1.16. Example. The species X, Y 7→ coproduct injections X → Y is binomial. The
argument is that of the previous example, noting that f is a coproduct injection if and
only if g, h are. A formal proof appears in [9, Lemma 5.2, Observation 5.7], noting that
extensive categories are a special case of the “Boolean categories” studied there.

1.17. Example. The species X, Y 7→ epics X → Y is binomial because a coproduct of
epics is epic in any category.
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1.18. Example. Fin is a combinatorial category.

Let |X| denote the cardinality of X. Treating a natural number n as the finite set
{1, . . . , n}, a species F is binomial if and only if pn(y) = |F (n, y)| satisfies pn(y + z) =∑
pk(y) pn−k(z), so this will be a sequence of binomial type providing pn(y) is a degree-n

polynomial. Examples 1.15, 1.16 yield that yn and the falling factorials y(y − 1) · · · (y −
n + 1) are polynomial sequences of binomial type. The first case proves the binomial
theorem. The second case is well-known. The only atom of Fin is the terminal object 1.
Thus At(Fin) is the 1-morphism category. The description of Fin in terms of its atom
category then gives the morphisms as functions α : m → n which, of course, indeed are
the morphisms of this category.

The next example plays an important role in this paper.

1.19. Example. For G a group, the Boolean topos of finite right G-sets is a combinatorial
category. We denote this category as FinG.

Axiom (RE.3) is the usual image factorization in a topos, since monics are coproduct
injections in a Boolean topos. The atoms are the 1-orbit G-sets, corresponding to the
finite quotients of G (considered as a G-set where the right action gh is defined as the
multiplication in the group). The resulting category of atoms will be characterized later
in this paper.

1.20. Example. Any slice category C/X is again a combinatorial category. Any finite
product of combinatorial categories is combinatorial.

We note that for G,H non-trivial groups, FinG × FinH is never of form FinK since
no nonzero object admits a map to both atoms (G, 0) and (0, K).

1.21. Definition. Denote by ‖X‖ the number of atoms in Summ(X).

A number of properties are immediate from the fact that every finite Boolean algebra
is isomorphic to 2n. We immediately have

• ‖X + Y ‖ = ‖X‖+ ‖Y ‖.

• How many summands does X have? |Summ(X)| = 2‖X‖.

• If ‖X‖ = n, how many summands have k atoms?
(
n
k

)
.

• Up to isomorphism, how many objects have k atoms if there are N different atoms?(
N+k−1
N−1

)
.

• The number of coproduct decompositions of X is the Bell number B‖X‖.

• If f : X → Y is epic, Lemma 1.5 gives ‖Y ‖ ≤ ‖X‖.
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In Fin, let surj(m, y) be the number of epics X → Y where X has m elements and Y
has y elements. Since surj(m, y) = ∅ if m < y or m > 0 with y = 0, and surj(m, 1) = 1,
the binomial property gives

surj(m, y + 1) =
m−1∑
k=y

(
m

k

)
surj(k, y)

2. Orbit Objects

2.1. Definition. In any category, an object G is a generator if whenever f, g : X → Y
with f 6= g there exists x : G→ X with fx 6= gx. An orbit object is an object G which
is both an atom and a generator and which satisfies the property that given a, b : G → A
with A an atom, there exists g : G → G with ag = b. An orbital extensive category
is a combinatorial category with an orbit object.

In this section, we work in an orbital extensive category C with orbit object G. It will
shortly be seen that such G is unique.

2.2. Example. The terminal object 1 is an orbit object for Fin.

2.3. Example. A finite group G (qua G-set with multiplication as action) is the orbit
object for FinG. For let x, y : G → A where aG = A for every a ∈ A. Let e ∈ G be
the unit. There exists g ∈ G with x(e) = y(e) g. Let λg : G → G be the equivariant left
translation λg(h) = gh. Then (y λg)(h) = y(gh) = y(eg)h = (y(e)) gh = ((y(e) g)h =
x(e)h = x(h) shows that yλg = x as desired.

FinG constitutes a variety of universal algebras with unary operations indexed by
G. For G as a G-set, the operations are the right translations whereas, as above, the
endomorphisms are the left translations.

2.4. Lemma. If X 6= 0 there exists G→ X.

Proof. The injections X → X +X are distinct.

2.5. Proposition. All orbit objects are isomorphic.

Proof. Immediate from Corollary 1.12 and Lemma 2.4.

Since the category FinG determines the group G, there is no possibility of a “Morita
theorem”. That is, if FinG, FinH are equivalent categories, G ∼= H as groups.

In FinG, G is free (on one generator). In general, we have

2.6. Proposition. G is projective.
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Proof. Let f : X → Y be epic and let y : G → Y . Factor y = G
p−−→ A

i−−→ Y as in
(RE.3) so that A is an atom by Proposition 1.8 and i is a summand. By Lemma 1.5, for
the pullback P shown in the following diagram,

G A-p

G P-
x

6
g

?
h

Y-
i

X-
j

?
f

P 6= 0. By Lemma 2.4 there exists x : G → P . As G is an orbit object, there exists g
with p = hxg. Thus y = f(jxg) as desired.

2.7. Proposition. The atoms are precisely the (epic) quotients of G.

Proof. Each quotient of G is an atom by Proposition 1.8. Conversely, if A is an atom
then A 6= 0 so there exists G→ A and every such morphism is epic.

For each atom A we choose a morphism θA : G→ A. All such choices are isomorphic
by the definition of orbit object, noting that all endomorphisms of G are isomorphisms.

2.8. Proposition. For any atom A, the slice category C/A is a combinatorial category
with orbit object (G, θA).

Proof. Let f, g : (X, a) → (Y, b) with f 6= g. Let t : G → X with ft 6= gt and let
h : G → G with ath = θA. Then th : (G, θA) → (X, a) with fth 6= gth, and this shows
that (G, θA) is a generator. Now let x, y : (G, θA) → (B, a) with (B, a) an atom of C/A.

Then B is an atom of C so there exists g : G→ G with G
g−−→ G

x−−→ G = G
y−−→ G. We

have θA g = axg = ay = θA, so g is a morphism (G, θA)→ (G, θA).

2.9. Definition. An element of an object X is a morphism x : G → X. We write
x ∈ X.

We denote by |X| the number of elements of X.

Each atom A in Summ(X) induces the element G
θA−−→ A −→ X of X. As distinct

atoms are disjoint, different atoms induce different elements. This shows that ‖X‖ ≤ |X|.
If A is an atom, ‖A‖ = 1 but since A may have many automorphisms a, b, . . . (as will be
seen later) and since then θA, a θA, b θA, . . . are all distinct, A may have many elements.

2.10. Proposition. If A,B are atoms, |C(A,B)| ≤ |G|.

Proof. Let f : A→ B. As G is an orbit object, there exists

A B-
f

G G-
g
f

?
θA

?
θB
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g
f

as shown making the square commute. If f1 : A→ B with f 6= f1, fθA 6= f1θA (as θA
is epic) so θB gf 6= θB gf1 and g

f
6= g

f1
in particular.

We do not know if |C(A,B)| is always a divisor of |G|, but that will be established
below in a number of special cases.

It will be seen below that every orbital extensive category has finite limits. Anticipat-
ing that result, we consider some results concerning products and the terminal object.

We clearly have the “rules of sum and product”:

• |X + Y | = |X|+ |Y |

• |X × Y | = |X| |Y |

2.11. Lemma. The terminal object 1 is an atom. Moreover, ‖1‖ = 1 = |1|.

Proof. Each atom of 1 induces an image factorization of G → 1 and there is only one
such factorization. The second statement is then obvious.

3. The Category of Atoms

In this section, we shall characterize orbital extensive categories. Fix an orbital extensive
category C.

3.1. Definition. Let G be a finite group with unit e. The spread of G is the finite
category Gσ whose objects are the subgroups of G and in which a morphism H → K is a

right coset Ka such that H ⊂ a−1Ka. Composition is group multiplication, H
Ka−−→ K

Lb−−→
L = Lba : H → L and K

K−−→ K serves as the identity.

Of course, it must be checked that these constructions are well defined. To begin, if
H ⊂ a−1Ka and Ka = Kb, there exists k ∈ K with b = ka. Then b−1Kb = (ka)−1Kka =
a−1k−1Kka = a−1Ka ⊃ H, so the definition of the morphisms makes sense. Next consider

H
Ka−−→ K

Lb−−→ L. We have H ⊂ a−1Ka ⊂ a−1b−1Lba = (ba)−1Lba, so indeed H
Lba−−→ L is

a morphism. It must still be shown that Lb1a1 = Lba if Ka = Ka1, Lb = Lb1; to that
end, (b1a1)(ba)−1 = b1a1a

−1b−1 ⊂ b1Kb
−1 ⊂ L. Since Ke = K and K ⊂ e−1Ke, it is clear

that the K
K−−→ K is the identity for composition.

3.2. Lemma. G is the unique terminal object of Gσ. {e} is the unique object of Gσ with
|G| endomorphisms.

It follows from this lemma that G can be reconstructed from Gσ as the endomorphism
monoid of the object with the largest number of endomorphisms.

The proof of the next result is routine.
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3.3. Proposition. For H,K subgroups of G, the following statements are equivalent.

1. There exist morphisms H → K, K → H in Gσ.

2. H,K are conjugate subgroups.

3. H ∼= K in Gσ.

We follow the usual mathematical practice of using the same notation for a group and
for its set of elements. In this sense, an orbit object G has elements all G → G which
comprise a group which we also call G.

We can now state the main result of this section. It entails that the number of atoms
of an orbital extensive category, up to isomorphism, is finite and at most the number of
conjugacy classes of subgroups of G. It also gives that the number of different orbital
extensive categories with orbit object isomorphic to a given finite group is finite.

3.4. Theorem. Let C be an orbital extensive category with orbit object G. Then the full
subcategory At(C) is isomorphic to a full reflective subcategory of Gσ.

Proof. The elements of G act (on the right) on the elements of an object X by

xg = G
g−−→ G

x−−→ X

In particular, each element x ∈ X induces its stability subgroup {g ∈ G : xg = x},
an object of Gσ. Now recall that for each atom A we have chosen a particular element
θA ∈ A. Define a functor Ψ : At(C) → Gσ by Ψ(A) = HA, where HA is the stability
subgroup

HA = {g ∈ G : G
g−−→ G

θA−−→ A = G
θA−−→ A}

Define Ψ on maps as follows. Given f : A→ B there exists a ∈ G such that the following
square commutes:

A B-
f

G G-
a

?
θA

?
θB

This is because G is an orbit object. Define Ψ(f) = HA
HBa−−−→ HB. To check that this is

well-defined, let g ∈ HA. Then

θB aga
−1 = fθA ga

−1 = fθA a
−1 = θB aa

−1 = θB

which shows that HA ⊂ a−1HBa. To see that the map depends only on f and not on
the choice of a, suppose also θB b = fθA. Then θB ba

−1 = fθA a
−1 = θB aa

−1 = θB, and
ba−1 ∈ HB so that HB a = HB b. That Ψ is functorial is immediate. Further, the fact
that each θA is epic guarantees that Ψ is faithful.
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We next construct a left adjoint to Ψ. Let H ∈ Gσ be any subgroup. As H is a
finite set of endomorphisms of G, it has a coequalizer p : G → A in C and A is an atom
by Proposition 1.8. By orbit object, there exists a ∈ G with θAa = p. For h ∈ H,
θA ah = θAp = p = θAa, so θA aha

−1 = θA aa
−1 = θA and aha−1 ∈ HA. To construct

the left adjoint on H it suffices to construct it on the isomorphic object aHa−1 so we
assume without loss of generality, that H ⊂ HA. Now suppose that B is an atom and
that HB b : H → HB is a morphism in Gσ. Consider the diagram in C in which H means
a set of maps.

G -H

A B-
f

G B-
b

?
θA

?
θB

Here, f is to be constructed. For h ∈ H there exists x ∈ HB with h = b−1xb. Then
θB bh = θB bb

−1xb = θB xb = θB b. As θA = a−1p, θA is also a coequalizer of H so f is
induced as above. It follows that

H HA
-HA

HB b
@
@
@@R
HB

?
HB b

establishes the adjointness. Applying the same argument to H = HC for any atom C
shows that θC = coeq(HC) and that Ψ is full. In particular, if HA = HB then there exist
A→ B → A so that A ∼= B. The proof is complete.

For H any subgroup of the finite group G, the right coset space G\H is a G-set with
action (Ha)g = H(ag) and He = H has stability subgroup {g ∈ G : Hg = H} = H.
Moreover, G\H has one orbit, so is an atom of FinG. The previous theorem then gives
that At(FinG) ∼= Gσ.

We continue to work in an orbital extensive category C with orbit object G.
Observe that C embeds FinG in a natural way via Φ(X) = |X| with right action xg

the composition G
g−−→ G

x−−→ X. We have Φ is a functor over Fin

C FinG-Φ

| · |
@
@
@
@@R
Fin
?

since if f : X → Y in C, (fx)g = f(xg) by the associativity of composition in C, that is,
f is equivariant.
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By the definition of a category, X 6= Y ⇒ |X|∩|Y | = ∅. We assumed at the beginning
that a ranged extensive category has only one initial object, and this is the only object
X with |X| = 0. It follows that Φ is injective on objects.

By the rule of sum above, | · | preserves finite coproducts, so Φ also does.
Φ(G) is G acting on itself by multiplication.
Φ(f) is surjective if f is epic since G is projective by Proposition 2.6. Thus Φ maps

quotients of G to quotients of G and so maps atoms to atoms.
We are ready for

3.5. Theorem. Φ : C → FinG is a full surjection-reflective subcategory closed under
finite coproducts and G-invariant subsets.

Proof. For A an atom of C let θA : G → A in C so that θA : Φ(G) → Φ(A) in FinG.
{g : gθA = θA} is the same stability subgroup in both categories. This shows that Φ maps
At(C) to a full subcategory of At(FinG) ∼= Gσ, by Theorem 3.4. From the process by
which a combinatorial category is determined by its atom category, it follows that C is a
full subcategory of FinG.

In a finite Boolean algebra, there is only one way to write the greatest element as
a supremum of atoms, namely as the supremum of all the atoms. It follows at once
that Summ(X), Summ(Φ(X)) have the same atoms, and so the same summands since
a summand is but an arbitrary supremum of atoms. In particular, C is closed under
summands.

Since any coproduct of G-sets each one of which has a surjective reflection in C itself
has a surjective reflection in C, the proof will be complete if we show that each atom B
of FinG has a surjective reflection in C. By Theorem 3.4, B has a reflection p : B → B�

in At(C). Such p is surjective, being a morphism between atoms. We will show that
this is the desired reflection. Let f : B → Φ(X) in FinG. By (RE.3) for FinG, factor

f = B
q−−→ A

i−−→ Φ(X) with A an atom and i a summand. As we have already shown,
i is a summand of C which is a quotient of G so A is an atom of C. Thus there exists
ψ : B� → A with ψi = q so (iψ)p = f . As p is surjective, such iψ is unique.

3.6. Corollary. C has finite limits, and every monic in C is a summand. It follows
that C is lextensive, and so distributive by [2, Proposition 4.5].

Proof.FinG is a Boolean topos, so has finite limits and all its monics are summands. Any
full reflective subcategory is closed under limits. Any monic in a full reflective category
is monic in the ambient category. Since C is closed under summands, we are done.

4. Some Counting Results for Orbital Extensive Categories

We continue to work in an orbital extensive category C with orbit object G.

4.1. Proposition. If A is an atom, |A| divides |G|. If there exists A → B with A,B
atoms then |A| divides |B|.
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Proof. By Theorem 3.4 we may work in Gσ = At(FinG). |A| = [G : HA] and the index
of a subgroup is always a divisor of G. If HA → HB exists in Gσ, a conjugate L of HA is
a subgroup of HB so that

|HA| |A| = |H| [G : HA] = |G| = |HB| [G : HB] = |L| [HB : L] |B| = |HA| [HB : L] |B|

Now divide by |HA|.
Recall that the normalizer NH of a subgroup H of G is the subset {g ∈ G : g−1Hg =

H}. This is a subgroup, being the stabilizer subgroup of H when G acts on its set of
subgroups by conjugation. Evidently, H is a normal subgroup of NH so that NH/H is a
group.

4.2. Proposition. The endomorphism monoid (= automorphism group) Aut(A) of an
atom A is isomorphic to the group NH/H if H = HA.

Proof. If Ha : H → H then H ⊂ a−1Ha so that H = a−1Ha by finiteness. Thus the
endomorphisms of H are precisely all Ha with a ∈ NH . Since two a are equivalent if and
only if they are equal modulo H, we are done. |Aut(A)| = [NH : H] divides |NH |, so
divides |G|.

4.3. Definition. An atom A is transitive if whenever x, y ∈ A there exists ψ : A→ A
with ψx = y.

Evidently, A is transitive if and only if for all y ∈ A there exists ψ : A→ A with

G
θA−−→ A

ψ−−→ A = y

4.4. Proposition. Let B be a transitive atom and let A be an atom such that a morphism
f : A→ B exists. Then |C(A,B)| = |Aut(B)|, so |C(A,B)| divides |G| in particular.

Proof. The function Aut(B) → C(A,B) sending an automorphism ψ : B → B to the
function ψf : A→ B is injective because f is epic and is surjective because B is transitive.

Even if B is not transitive, the argument above shows that the orbits of C(A,B) under
the action of Aut(B) all have cardinality |Aut(B)|. Thus in general, |C(A,B)| is a multiple
of |Aut(B)|.

4.5. Proposition. An atom A is transitive if and only if its stability subgroup H is a
normal subgroup of G.

Proof. The definition of transitive in the triangle on the left corresponds to the commu-
tative triangle in Gσ on the right.

A A-
ψ

G

x
�

�
��	

y
@
@
@@R

H H-
Hv

{e}

Ht
�

�
��	

Hu
@
@
@@R
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Here, t, u are arbitrary elements of G since the elements of A = G\H are arbitrary cosets,
whereas we must have H ⊂ v−1Hv, that is, v ∈ NH . The transitivity of A then amounts
to

∀ t, u ∈ G ∃ v ∈ NH with vtu−1 ∈ H

If this condition holds then tu−1 = v−1(vtu−1) ∈ NHH = NH with t, u arbitrary, so
NH = G and G is normal. Conversely, if NH = G then, given t, u, set v = t−1u since then
v ∈ G = NH and vtu−1 = e ∈ H.

4.6. Theorem. Let X 6= 0 be an object. Then every atom of G×X is isomorphic to G.

Indeed, G
[idG,x]−−−−−→ G×X (x ∈ X) is the copower |X| ·G, so that |G×X| = ‖X‖.

Proof. Write inx for [idG, x]. Each inx is monic, hence a coproduct injection. For
x, y : G→ X, suppose we have a pullback

G G×X-
inx

G G-
id

?
k

?
iny

Then k = id and so y = xk = x. AsG is an atom, if x 6= y, the pullback must be 0, showing
that the inx are pairwise disjoint. Define P to be the supremum of all inx in Summ(X).

We must show P ′ = 0. If not, there exists t : G→ P ′. Write [p, q] = G
t−−→ P ′ → A×X.

We have the commutative square

P ′ G×X-

G G-
p

?
t

?

inqp−1

By Lemma 1.7, the atom inqp−1 is in P ∧ P ′, the desired contradiction.

This theorem has surprising consequences. Consider FinG, a variety of universal
algebras with G the free algebra on one generator. Let X, Y be arbitrary finite G-sets
with the same cardinality. The operations on a product algebra are coordinatewise, so it
is quite amazing that X × G ∼= Y × G. We invite the reader to explore how the “lost
information” X ×G→ X is encoded in the isomorphism X ×G ∼= |X| ·G.

4.7. Theorem. If the exponential Y X exists in C, |Y X | = |Y ||X|.

Proof. It is clear that |0| = 0 and |1| = 1 so the identity holds if X = 0. In general, we
apply Lemma 4.6. |Y X | = |C(G, Y X)| = |C(G×X, Y )| = |C(G, Y )||X| = |Y ||X|.
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5. Examples

In this section we construct nontrivial examples of orbital extensive categories and show
that such categories need not be cartesian closed.

Throughout this section, C is an orbital extensive category with orbit object G. We
are at liberty to think of C as a full reflective subcategory of FinG closed under coproducts
and summands because of Theorem 3.5. We begin with a converse to that theorem.

5.1. Lemma. Let D be an arbitrary full reflective subcategory of C which contains G and
is closed under coproducts and summands. Then D is an orbital extensive category.

Proof.D is closed under limits and has finite colimits by reflecting those of C, so (RE.1),
(RE.2) hold. Since D is closed under coproducts, it follows from the proof of Lemma 1.6
that all summands in D are equalizers in D. Hence if p : X → Y is epic in D, factoring
p in C as in (RE.3) renders i an epic equalizer in D, hence an isomorphism. Thus epics
in D are epic in C, so (RE.3), (RE.4) are clear. Hom-sets in D are finite since that holds
for C. Since atoms are quotients of G, atoms of D must be atoms of C, so G is the orbit
object.

We can now provide a converse to Theorem 3.4.

5.2. Theorem. Let G be a finite group and let E be a full reflective subcategory of Gσ

containing {e} and all isomorphisms. then there exists an orbital extensive category C

with At(C) ∼= E.

Proof. E is isomorphic to the full subcategory A of FinG of all atoms G\H with H in E .
Let C be the full subcategory of FinG of all finite coproducts of atoms in A. Evidentally,
C is closed under finite coproducts and summands. By exactly the same proof as in
Theorem 3.5, C is a full surjection-reflective subcategory of FinG containing G\{e} = G.
By Lemma 5.1, C is an orbital extensive category. That At(C) ∼= E is clear from the
construction.

Let (·)� : FinG → C denote the reflector.

5.3. Lemma. Let C in C be such that C × (·) : C → C preserves coequalizers. Then for
all X in FinG, C ×X� ∼= (C ×X)�.

Proof. Let X, Y satisfy the condition, i.e. C × X� ∼= (C × X)�, C × Y � ∼= (C × Y )�.
Then

C × (X + Y )� ∼= C × (X� + Y �) (reflectors preserve coproducts)
∼= (C ×X�) + (C × Y �) (FinG is a topos)
∼= (C ×X)� + (C × Y )� ∼= ((C ×X) + (C × Y ))�

∼= (C × (X + Y ))�

Thus it suffices to show that C × A� ∼= (C × A)� for A an atom of FinG. There exists
epic p : G→ A so that p = coeq(t, u) with t, u : K → G the kernel pair of p in FinG. As
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K → G×G is a summand, K,G are in C. Let η : A→ A� be the reflection, so that η p =
coeq(t, u) in C. As FinC is cartesian closed, id× p = coeq(id× t, id× u) in FinG whence
(C×A)� = coeq(id× t, id×u) in C. But by hypothesis, also C×A� = coeq(id× t, id×u)
in C, so we are done.

It is well known that the exponential object Y X in FinG can be constructed as the set

of all functions from the set X to the set Y with G-action f ∗g = X
g−−→ X

f−−→ Y
g−1

−−→ Y .

5.4. Proposition. Suppose that (·) × G : C → C has a right adjoint (·)G. Then Y G is
also the exponential in FinG.

Proof. C
(·)G−−→ C

(·)�−−→ FinG has left adjoint

Y 7→ Y � ×G ∼= (Y ×G)� (Lemma 5.3)
∼= (|Y | ·G)� (alchemy theorem)
∼= |Y | ·G� ((·)� preserves coproducts)
∼= |Y | ·G ∼= Y ×G

which shows that the surjective reflection Y X → (Y X)� is the exponential in FinG.
But both exponentials have cardinality |Y ||X| by Theorem 4.7, so the reflection is an
equivariant isomorphism.

The proposition just proved leads to a way to create examples of orbital extensive
categories that are not cartesian closed.

5.5. Theorem. Suppose (·)×G : C→ C has a right adjoint. Let C ⊂ G be any conjugacy
glass of G, so that C is an atom of FinG. Then C is, in fact, in C.

Proof. GG exists in C and coincides with GG in FinG by Proposition 5.4. Let G act
on itself by conjugation, x ∗ g = g−1xg. Let λa g = ag be the left translation map and
embed G in GG by the injective map λ : G→ GG, a 7→ λa−1 . The action of g on G is the

map δgx = x ∗ g = g−1xg. In GG we have λa−1 ∗ g = G
δg−−−→ G

λa−1−−−→ G
δg−1

−−−→ G =
λ(g−1ag)−1 = λ(a∗g)−1 which shows that G is an invariant subset of GG, and hence is in C.
Since an orbit of G under this action is a conjugacy class of G, C is an atom in C.

5.6. Example. {e}, G generate a full reflective subcategory C of Gσ with reflection
{e}� = {e}, H� = G if H 6= {e}.

This works because G is terminal in Gσ and because there are no maps H → {e} if
H 6= {e}. Theorem 5.2 constructs an orbital extensive category C with orbit object G
and atoms 1 and G. If G is non-abelian, it has a conjugacy class C with 1 < |C| < |G|.
By Theorem 5.5, GG does not exist in C, so C is not cartesian closed.
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5.7. Example. Every orbital extensive category C has a transitive hullD whose objects
are all finite coproducts of the transitive atoms of C, and such D is an orbital extensive
category.

In view of Proposition 4.5, it suffices to see that the normal subgroups of G form a full
reflective subcategory of Gσ. This is easy: set H� to be the normal subgroup generated
by H.

A group is Hamiltonian if it is non-abelian and all of its subgroups are normal. It is
known [4] that a finite group is Hamiltonian if and only if it is a product Q× A with Q
the 8-element quaternion group and A a particular type of abelian group. It follows that
for most non-abelian groups, the transitive hull is a proper subcategory of FinG.

6. Identifying Atoms

In this final section, we put objects under the microscope in order to see their individual
atoms. Recall the colored icosahedron of the opening paragraph. With black and white,
there are 4 orbits. We now wish to determine for which subgroups H of the symmetry
group G it happens that G\H is an orbit. Among other things, this tells us that the orbit
has [G : H] elements.

The icosahedron group G is a 60-element group isomorphic to the alternating group
A5. We represent this group by permutations on the 12 vertices. Label one of the vertices
1 and label the 5 adjacent vertices 2,3,4,5,6 clockwise. Label the remaining vertices so
that for 1 ≤ k ≤ 6, k and k+ 6 are opposite. The following table records the 5 conjugacy
classes of G. Given there, is the disjoint cycle factorization of a typical element of the
class, and the number of elements of the class.

e = (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12), 1

a = (1 2) (3 6) (4 10) (5 11) (7 8) (9 12), 15

b = (1 2 3) (4 6 11) (5 10 12) (7 8 9), 20

c = (1) (2 3 4 5 6) (7) (8 9 10 11 12), 12

d = (1 8 3 5 12) (2 9 11 6 7) (4) (10), 12

The well-known Burnside-Frobenius lemma computes the number of orbits:

6.1. Theorem. [6] Let G be a finite group and let X be a finite G-set. Let the ith
conjugacy class Ci have ci elements and choose gi ∈ Ci, i = 1, . . . , k. Define Ni = {x ∈
X : xgi = x}. Then the number of orbits of X is the average number of elements of X
fixed by the elements of G, namely

1

|G|

k∑
i=1

ciNi

For “coloring problems” such as that for the icosahedron, we represent G by permu-
tations on a set V of “vertices” so that the “colored objects” are functions V → C for a
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given set C of “colors”. Regard C as the trivial action C × G → C, cg = c, that is, let
C = |C| · 1 be a copower of the terminal object in FinG. The exponential object CV then
has action

CV ×G→ CV , (V
f−−→ C, g) 7→ G

g−−→ G
f−−→ C

this makes precise how elements of G move a colored object.
The opening example with G the icosahedron group permuting vertices 1, . . . , 12 has

X = {f ∈ CV : w, v opposite vertices ⇒ f(w) 6= f(v)}. We calculate the number of
orbits of X since the more general problem to be considered must build on the ideas
used here. Write c = |C|. Each of the cycle decompositions for elements of G partitions
V into blocks. Clearly the requirement fg = f holds if and only if f assigns the same
color to all elements in a block. Thus Ne = c6(c − 1)6 since 6 vertices can be any color
with the opposite vertices any other color. Na = 0 because the block {4, 10} contains
opposite vertices which cannot be colored differently. In all other cases for g, there are
six vertices in 2 blocks with all opposite vertices in two other blocks, so Ng = c2(c− 1)2.
By Burnside-Frobenius, the number of orbits is

f(c) =
c6(c− 1)6 + 44c2(c− 1)2

60

and, in particular, f(2) = 4 as claimed. These 4 orbits are atoms G\H and it is our
object to find out which subgroups H arise.

To begin, we observe that the conjugacy classes of a group G forms a poset (P,≤) if
H ≤ K means that there exists H → K in Gσ. This is a poset by Proposition 3.3. Let
H1, . . . , Hk be a choice of one representative from each subgroup conjugacy class and let
M be the incidence matrix of (P,≤), that is, the row-i, column-j entry is 1 if Hi ≤ Hj,
and is otherwise 0. It is well known that the vertices in V can be listed so that M is lower
triangular (begin with a maximal element and proceed inductively).

For a specific example, let G be the icosahedron group. There are exactly 9 conjugacy
classes of subgroups and it happens that non-conjugate subgroups have different cardi-
nality. As 60 = 22 · 3 · 5, Sylow theory gives three conjugacy classes for the subgroups
K4, ZZ3, ZZ5. Here the Sylow 2-group is the Klein 4-group K4 since it is clear from the
table above that there are no elements of order 4. List the nine subgroups in the order
G, h12, h10, h6, K4, ZZ5, ZZ3, ZZ2, {e} (the numbers indicating the number of elements in
the subgroup). The incidence matrix is then

M =



1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0
1 0 1 0 0 1 0 0 0
1 1 0 1 0 0 1 0 0
1 1 1 1 1 0 0 1 0
1 1 1 1 1 1 1 1 1


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6.2. Definition. For any X in FinG, define integer-valued functions on the subgroups
of G by

ψ(H) = number of orbits of X isomorphic to G\H
ϕ(H) =

∑
H≤K

ψ(K)

Our objective is to compute ψ. It is clear that

M

 ψ(H1)
· · ·

ψ(Hk)

 =

 ϕ(H1)
· · ·

ϕ(Hk)


Our approach will be to use the theory to compute ϕ(Hi). As det(M) = 1, M is

invertible so we can then determine ψ by ψ = M−1ϕ. This technique is known as
“Möbius inversion”.

Notice, by the way, that while the poset of subgroups of a group under inclusion is
always a lattice, the poset of conjugacy classes for the icosahedron group fails to be. This
is because h6, h12 have two distinct maximal lower bounds, ZZ2 and ZZ3. (P,≤) just misses
being a sublattice of divisors of 60 by virtue of having no Gσ-morphisms h6→ h12.

We turn now to computing ϕ(H).

6.3. Lemma. For any G-set X, stability subgroups along the same orbit are conjugate,
specifically, Hxg = g−1Hxg.

Proof. h ∈ Gxg ⇔ xgh = xg ⇔ xghg−1 = x⇔ ghg−1 ∈ Hx ⇔ h ∈ g−1Hxg.

6.4. Definition. Given X in FinG and H ∈ Gσ, define

XH = {x ∈ X : H ≤ Hx}

6.5. Lemma. XH is G-invariant.

Proof. Let x ∈ XH , g ∈ G. By Lemma 6.3, Hx, Hxg are conjugate subgroups, hence
isomorphic in Gσ. Thus H ≤ Hxg.

6.6. Proposition. ϕ(H) is the number of orbits of XH .

Proof. For any G-set X, the orbit of x ∈ X is isomorphic to the G-set G\Hx. This orbit
is counted in ϕ(H) precisely when H ≤ Hx, that is, precisely when x ∈ XH .
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This proposition reduces the computation of ϕ(H) to a Burnside-Frobenius calculation
for the G-invariant set XH .

To that end, we begin by observing that H ≤ Hx ⇔ some subgroup conjugate to H
is contained in Hx ⇔ some subgroup conjugate to H fixes x.

To go further, we return to an invariant subset X of colored objects CV where G is
a group of permutations of V . Our approach in the next paragraphs is influenced by the
work of [10].

If subgroup H is to fix f ∈ CV , consider the action of H on V . For x ∈ V and h ∈ H
we must have fx = f(xh). This means that f is constant on each block of the orbit
partition of V induced by the action of H.

Consider the subgroup K4 with elements e as well as the three order-2 permutations
with cycle decompositions

(1 2) (3 6) (4 10) (5 11) (7 8) (9 12)

(1 7) (2 8) (3 12) (4 11) (5 10) (6 9)

(1 8) (2 7) (3 9) (4 5) (6 12) (10 11)

The orbit partition of this K4 is

{{1, 2, 7, 8}, {3, 6, 9, 12}, {4, 5, 10, 11}}}

Since at least one (in fact all three) blocks have a pair of opposite vertices, no coloring we
seek can be fixed by K4. By Lemma 6.3, this holds for each of the conjugates of K4. We
conclude that ψ(K4) = 0. Similar investigations show that ψ(ZZ2) = ψ(h6) = ψ(h12) = 0.

One next checks that the orbits for the subgroups h12 and, of course, G have only
one block, so can only fix a constant coloring. Since opposite vertices must be differently
colored, we conclude ψ(h12) = ψ(G) = 0 as well.

Among the permutations {e, a, b, c, d}, a has a cycle (4 10) containing a pair of opposite
vertices. For any g ∈ G, (g−1ag)g−1(4) = g−1a(4) = g−1(10) and any symmetry moves
opposite vertices to opposite vertices, so it follows that any of the 15 conjugates of a
will also have a cycle with opposite vertices. Thus for Ng as in the Burnside-Frobenius
formula, Ng = 0 for g conjugate to a.

We must work harder to deal with e, b, c, d and the subgroups {e}, ZZ3, ZZ5. We’ll begin
with ZZ3 which has e and two permutations of order 3 whose partition blocks are

{{1, 3, 4}, {2, 12, 5}, {6, 11, 8}, {7, 9, 10}}
{{1, 4, 3}, {2, 5, 12}, {6, 8, 11}, {7, 10, 9}}

The orbit partition of ZZ3 is

{{1, 3, 4}, {2, 5, 12}, {6, 8, 11}, {7, 9, 10}}

The cycles of the permutation b partition V into the blocks

{{1, 2, 3}, {4, 6, 11}, {5, 10, 12}, {7, 8, 9}}
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For both Z3 to fix a coloring and a to fix a coloring, the blocks of the refinement join of
the two partitions (i.e. the partition of the equivalence relation generated by the union of
the two equivalence relations) have all elements colored the same. Now the join of these
two partitions is the one-block partition which contributes nothing. However, me must
check not only against b but also for all 20 conjugates of b. It is equivalent and more
efficient to check b against all 10 conjugates of ZZ3 (conjugacy classes of subgroups are
smaller than conjugacy classes of elements). When this is done, exactly one of the 10
delivers a nontrivial partition join, and it coincides with the orbit partition of ZZ3 shown
above. There are 2 cycles containing the opposite vertices of the other 2 cycles, leading to
c2(c−2)2 colorings. When one similarly checks the ten conjugate subgroups of ZZ3 against
c, d all partition joins have one block.

We must not forget to check the 10 conjugate subgroups against the identity permuta-
tion! Here the partition join will coincide the with orbit partition of the subgroup, which
in all cases is 2 cycles with the other 2 having the opposite vertices of the second 2. Here
each of the 10 subgroups contributes c2(c− 1)2 colorings for a total of 10c2(c− 1)2. But
wait! Some of these colorings may have been fixed by more than one of the 10 subgroups.
This sets up a potentially disastrous inclusion-exclusion. We must subtract the effect of
two subgroups at a time, then add in the effect of three subgroups as a time, and so forth.
Happily, the join of the orbit partition of any two of these subgroups is found to be the
one-block partition. Thus the calculation stops, and, applying the Burnside-Frobenius
formula, we have found that

φ(ZZ2) =
10c2(c− 1)2 + 20c2(c− 1)2

60
=

c2(c− 1)2

2

In fact, {ZZ2, K4, h10, h12, G} is a complete list of all the elements ≥ ZZ2 and ψ(H) = 0
for all H 6= ZZ2. We thus conclude

ψ(ZZ2) =
c2(c− 1)2

2

Which yields 30-element orbits for any number of colors ≥ 2.

An entirely similar analysis yields ψ(ZZ5) = c2(c−1)2
2

. Since the only subgroups that
can fix a valid coloring are ZZ3, ZZ5 and {e}, we deduce that

ψ({e} =
c6(c− 1)6 + 44c2(c− 1)2

60
− c2(c− 1)2 =

c6(c− 1)6 − 16c2(c− 1)2

60

These formulas establish the claims made at the beginning.
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