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DIAGRAMMATIC CHARACTERISATION OF
ENRICHED ABSOLUTE COLIMITS

RICHARD GARNER

Abstract. We provide a diagrammatic criterion for the existence of an absolute col-
imit in the context of enriched category theory.

An absolute colimit is one preserved by any functor; the class of absolute colimits was
characterised for ordinary categories by Paré [4] and for enriched ones by Street [5]. For
categories enriched over a monoidal category V or bicategoryW , the appropriate colimits
are the weighted colimits of [6], and Street’s characterisation is in fact one of the class
of absolute weights : those weights ϕ such that ϕ-weighted colimits are preserved by any
functor. This is different to Paré’s result, which gives a diagrammatic characterisation of
when a particular cocone is absolutely colimiting. In this note, we give a result in the
enriched context which is closer in spirit to Paré’s than to Street’s. This result is very
useful in practice, but seems not to be in the literature; we set it down for future use.

1. The result

1.1. Background. We work in the context of bicategory-enriched category theory;
see [6], for example. W will denote a bicategory whose homs are locally small, complete
and cocomplete categories, and which is biclosed, meaning that for each 1-cell A : x→ y in
W , the composition functors A⊗(–) : W(z, x)→W(z, y) and (–)⊗A : W(y, z)→W(x, z)
have right adjoints [A, –] and 〈A, –〉 respectively.

A W-category A comprises a set obA of objects; for each a ∈ obA an object
εa ∈ obW , the extent of a; for each pair of objects a, b, a hom-object C(b, a) ∈ W(εa, εb);
and identity and composition 2-cells ι : Iεa → C(a, a) and µ : C(c, b)⊗C(b, a)→ C(c, a) sat-
isfying the expected axioms. A W-profunctor M : A −7→ B is given by objects M(b, a) ∈
W(εa, εb) and action maps µ : B(b′, b) ⊗M(b, a) ⊗ A(a, a′) → M(b′, a′) satisfying unital-
ity and associativity axioms. A profunctor map M → M ′ : A −7→ B comprises maps
M(b, a) → M ′(b, a) compatible with the actions by A and B. The identity profunctor
A : A −7→ A has components A(b, a) with action given by composition in A. For profunc-
tors M : A −7→ B and N : B −7→ C with B small, the tensor product N ⊗B M : A −7→ C
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has components given by coequalisers∑
b,b′ N(c, b)⊗ B(b, b′)⊗M(b′, a) ⇒

∑
bN(c, b)⊗M(b, a) � (N ⊗BM)(c, a)

and actions by C and A inherited from N and M . Small W-categories, profunctors and
profunctor maps comprise a bicategoryW-Mod. There is a full embeddingW →W-Mod
sending X to the W-category X with one object ? with ε(?) = X and X(?, ?) = IX .

If A and B are W-categories, then a W-functor F : A → B comprises an extent-
preserving assignation on objects, together with 2-cells C(b, a) → D(Fb, Fa) subject to
two functoriality axioms. If F : A → C and G : B → C are W-functors then there is an
induced profunctor C(G,F ) : A −7→ B with components C(G,F )(b, a) = C(Gb, Fa) and
action derived from the action of F and G on homs and composition in C.

Given profunctorsM : A −7→ B, N : B −7→ C and L : A −7→ C with B small, a profunctor
map u : N ⊗B M → L is said to exhibit M as [N,L] if every map f : N ⊗B K → L is of
the form u ◦ (N ⊗B f̄) for a unique f̄ : K → M ; while it is said to exhibit N as 〈M,L〉 if
every f : K ⊗BM → L is of the form u ◦ (f̄ ⊗BM) for a unique f̄ : K → N .

Given ϕ : A −7→ B in W-Mod and a functor F : B → C, a ϕ-weighted colimit of F is
a functor Z : A → C and profunctor map a : ϕ → C(F,Z) such that for each C ∈ C, the
map

ϕ⊗A C(Z,C)
a⊗A1−−−→ C(F,Z)⊗A C(Z,C)

µ−−−→ C(F,C) (1)

exhibits C(Z,C) as [ϕ, C(F,C)]. A functor G : C → D preserves this colimit just when the
composite ϕ → C(F,Z) → D(GF,GZ) exhibits GZ as a ϕ-weighted colimit of GF ; the
colimit is absolute when it is preserved by all functors out of C. [5] proves that ϕ-weighted
colimits are absolute if and only if ϕ admits a right adjoint in W-Mod.

Dually, given ψ : B −7→ A in W-Mod and a functor F : B → C, a ψ-weighted limit of
F is a functor Z : A → C and map b : ψ → C(Z, F ) such that for each C ∈ C, the map

C(C,Z)⊗A ψ
1⊗Ab−−−→ C(C,Z)⊗A C(Z, F )

µ−−−→ C(C,F )

exhibits C(C,Z) as 〈ψ, C(C,Z)〉. Absoluteness of limits is defined as before; now every
limit weighted by ψ : B −7→ A is absolute if and only if ψ has a left adjoint in W-Mod.

1.2. Theorem. Let ϕ : A −7→ B admit the right adjoint ψ : B −7→ A in W-Mod, and let
F : B → C and Z : A → C be W-functors. There is a bijective correspondence between
data of the following forms:

(a) A map a : ϕ→ C(F,Z) exhibiting Z as a ϕ-weighted colimit of F ;
(b) A map b : ψ → C(Z, F ) exhibiting Z as a ψ-weighted limit of F ;
(c) Maps a : ϕ → C(F,Z) and b : ψ → C(Z, F ) such that the following two squares

commute in W-Mod(A,A) and W-Mod(B,B):

A η
//

Z
��

ψ ⊗B ϕ
b⊗Ba
��

C(Z,Z) oo µ C(Z, F )⊗B C(F,Z)

ϕ⊗A ψ ε //

a⊗Ab
��

B
F
��

C(F,Z)⊗A C(Z, F ) µ
// C(F, F ) .

(2)
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Proof . Suppose first given (a); consider the composite profunctor map

ϕ⊗A C(Z, F )
a⊗A1−−−→ C(F,Z)⊗A C(Z, F )

µ−−−→ C(F, F ) . (3)

Evaluating in the second variable at any a ∈ A yields the map (1) exhibiting C(Z, Fa)
as [ϕ, C(F, Fa)]; it follows easily that (3) exhibits C(Z, F ) as [ϕ, C(F, F )]. Applying this
universality to the composite ε ◦ F : ϕ⊗A ψ → B → C(F, F ) yields a unique map b : ψ →
C(Z, F ) making the right square of (2) commute; we must show that the left one does
too. Arguing as before shows that

ϕ⊗A C(Z,Z)
a⊗A1−−−→ C(F,Z)⊗A C(Z,Z)

µ−−−→ C(F,Z) (4)

exhibits C(Z,Z) as [ϕ, C(F,Z)]. It thus suffices to show that the left square of (2) com-
mutes after applying the functor ϕ⊗A (–) and postcomposing with (4); which follows by
a short calculation using commutativity in the right square and the triangle identities.

So from the data in (a) we may obtain that in (c), and the assignation is injective,
since b is uniquely determined by universality of a and commutativity on the right of (2).
For surjectivity, suppose given a and b as in (c); we must show that a exhibits Z as a ϕ-
weighted colimit of F , in other words, that for each C ∈ C, the map (1) exhibits C(Z,C) as
[ϕ, C(F,C)], or in other words, that for each map f : ϕ⊗AK → C(F,C), there is a unique
map f̄ : K → C(Z,C) such that f = µ◦(a⊗Af̄) : ϕ⊗AK → C(F,Z)⊗AC(Z,C)→ C(F,C).
For existence, we let f̄ be the composite

K ∼= A⊗A K
η⊗A1−−−→ ψ ⊗B ϕ⊗A K

b⊗Bf−−−→ C(Z, F )⊗B C(F,C)
µ−→ C(Z,C) ; (5)

now rewriting with the right-hand square of (2) and using the triangle identities and F ’s
preservation of units shows that f = µ ◦ (a ⊗A f̄). For uniqueness, let g : K → C(Z,C)
also satisfy f = µ ◦ (a⊗A g). Substituting into (5) shows that f̄ is the composite

K ∼= A⊗A K
η⊗A1−−−→ ψ ⊗B ϕ⊗A K

b⊗Ba⊗Ag−−−−−→ C(Z, F )⊗B C(F,Z)⊗A C(Z,C)
µ−→ C(Z,C) ;

which by rewriting with the left square of (2) and using Z’s preservation of identities is
equal to g. This proves the equivalence (a) ⇔ (c); now (b) ⇔ (c) follows by duality.

1.3. Examples. We first consider examples whereinW is the one-object bicategory cor-
responding to a monoidal category V .

• Let V = Set, and let ϕ be the weight for splittings of idempotents. The result
recovers the bijection, for an idempotent e : A → A, between: maps p : A → B
coequalising e and 1A; maps i : B → A equalising e and 1A; and pairs (i, p) with
pi = 1A and ip = e.

• Let V = Set∗, and let ϕ be the weight for an initial object. The result recovers
the bijection in a pointed category between: initial objects; terminal objects; and
objects X with 1X = 0X .
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• Let V = Ab, and let ϕ be the weight for binary coproducts. The result recovers the
bijection, for objects A,B in a pre-additive category, between: coproduct diagrams
i1 : A→ Z ← B : i2; product diagrams p1 : A← Z → B : p2; and tuples (i1, i2, p1, p2)
such that pjik = δik and i1p1 + i2p2 = 1Z .

• Let V =
∨

-Lat, and let ϕ be the weight for J-fold coproducts (for J a small
set). The result recovers the bijection, for objects (Aj : j ∈ J) in a sup-lattice
enriched category, between: coproduct diagrams (ij : Aj → Z)j∈J ; product diagrams
(pj : Z → Aj)j∈J ; and families (ij)j∈J and (pj)j∈J with pjik = δjk and

∨
j ijpj = 1Z .

• Let V = k-Vect for k a field of characteristic zero, let G be a finite group, and let
ϕ : k −7→ kG be the trivial right kG-module k. By Burnside’s Lemma, ϕ has a right
adjoint kG −7→ k given by the trivial left kG-module k. Now the result recovers the
bijection, for a G-representation A in a k-linear category, between: maps p : A→ Z
exhibiting Z as an object of coinvariants of A; maps i : Z → A exhibiting Z as an
object of invariants of A; and pairs of maps (i, p) with pi = 1Z and ip = 1

|G|Σg∈G g.

We conclude with two examples where W is a genuine bicategory.

• Let (C, j) be a subcanonical site, and let W denote the full sub-bicategory of
Span(Sh(C))op on objects of the form C(–, X). To any prestack p : E → C over C, we
may (as in [1]) associate a W-category with objects those of E , extents ε(a) = p(a),
and hom-object from a to b given by the span C(–, pa) ← E(a, b) → C(–, pb) in
Sh(C); here E(a, b)(x) is the set of all triples (f, g, θ) with f : pa ← x → pb : g in C
and θ : f ∗(a)→ g∗(b) in Ex (note that E(a, b) is a sheaf by the prestack condition).

For any cover (fi : Ui → U)i∈I in C, we have a W-category R[f ] with object set I,
extents ε(i) = Ui and hom-objects R[f ](j, i) = C(–, Uj)← C(–, Uj×U Ui)→ C(–, Ui).
There is a profunctor ϕ : U −7→ R[f ] with components given by the spans ϕ(i, ?) =
C(–, Ui)← C(–, Ui)→ C(–, U). Writing ψ : R[f ] −7→ U for the reverse profunctor, it
is not hard to see that ϕ a ψ (in fact they are adjoint pseudoinverse).

The result now says the following. Given a prestack p : E → C, a cover (fi : Ui → U)
in C, and a family of spans pij : ai ← aij → aj : qij in E whose legs are cartesian
over the projections Ui ← Ui ×U Uj → Uj, there is a bijection between: cocones
(hi : ai → a) in E over the fi’s that are colimiting for the diagram comprised of the
pij’s and qij’s; universal objects a ∈ EU equipped with vertical maps f ∗i (a) → ai
fitting into double pullback squares

f ∗i (a)

��

·oo

��

// f ∗j (a)

��
ai aijpij
oo

qij
// aj ;

and objects a ∈ EU equipped with a family of maps (hi : ai → a) cartesian over the
fi’s. This generalises [6, Proposition 5.2(b)]1.

1The proposition numbering here is taken from the TAC reprint.
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• Let W denote the bicategory whose objects are sets, and whose hom-category
W(X, Y ) is the category of finitary functors Set/Y → Set/X; note thatW(X, Y ) '
[Fam(Y )×X, Set], where Fam(Y ) has as objects, finite lists of elements of Y , and
as maps (y0, . . . , ym)→ (z0, . . . , zn), functions f : [m]→ [n] such that yi = zf(i). To
any cartesian multicategory M (i.e., a Gentzen multicategory in the sense of [3]) we
may associate a W-category M whose objects of extent X are X-indexed families
of objects of M , and whose hom-object between families (ax)x∈X and (by)y∈Y is the
presheaf

M((by), (ax))(y0, . . . , ym;x) = M(by0 , . . . , bym ; ax)

in [Fam(Y )×X, Set]; reindexing along maps in Y makes use of the cartesianness of
the multicategory structure. Composition and units in M follow from those in M .

Given a finite set X = {x0, . . . , xn}, let ϕ : 1 −7→ X be the W-profunctor whose
unique component is the representable y(x0, . . . , xn; ?) ∈ [Fam(X)×1,Set]. This has
a right adjoint ψ : X −7→ 1 whose unique component is the presheaf Σx∈Xy(?;x) ∈
[Fam(1) × X, Set]. The result now establishes a bijection, for any finite family
(a0, . . . , an) of objects in a cartesian multicategory M , between data of the fol-
lowing three forms: first, an object a and a multimap i ∈ M(a0, . . . , an; a), com-
position with which induces bijections between M(b0, . . . , bk, a, c0, . . . , c`; d) and
M(b0, . . . , bk, a0, . . . , an, c0, . . . , c`; d); second, an object a and unary maps pj ∈
M(a; aj), composition with which establishes bijections between M(b0, . . . , bk; a)
and ΠjM(b0, . . . , bk; aj); third, an object a and maps i and pj as above such that
pj ◦ i = πj ∈ M(a0, . . . , an; aj) and i ◦ (p0, . . . , pn) = 1a ∈ M(a; a). This generalises
[2, Proposition 3.5].
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Richard Blute, Université d’ Ottawa: rblute@uottawa.ca
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