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A BAYESIAN CHARACTERIZATION
OF RELATIVE ENTROPY

JOHN C. BAEZ AND TOBIAS FRITZ

Abstract. We give a new characterization of relative entropy, also known as the
Kullback–Leibler divergence. We use a number of interesting categories related to prob-
ability theory. In particular, we consider a category FinStat where an object is a finite
set equipped with a probability distribution, while a morphism is a measure-preserving
function f : X → Y together with a stochastic right inverse s : Y → X. The function f
can be thought of as a measurement process, while s provides a hypothesis about the
state of the measured system given the result of a measurement. Given this data we
can define the entropy of the probability distribution on X relative to the ‘prior’ given
by pushing the probability distribution on Y forwards along s. We say that s is ‘opti-
mal’ if these distributions agree. We show that any convex linear, lower semicontinuous
functor from FinStat to the additive monoid [0,∞] which vanishes when s is optimal
must be a scalar multiple of this relative entropy. Our proof is independent of all earlier
characterizations, but inspired by the work of Petz.

1. Introduction

This paper gives a new characterization of the concept of relative entropy, also known
as ‘relative information’, ‘information gain’ or ‘Kullback-Leibler divergence’. Whenever
we have two probability distributions p and q on the same finite set X, we define the
information of q relative to p as:

S(q, p) =
∑
x∈X

qx ln

(
qx
px

)
Here we set qx ln(qx/px) equal to ∞ when px = 0, unless qx is also zero, in which case we
set it equal to 0. Relative entropy thus takes values in [0,∞].

Intuitively speaking, S(q, p) is the expected amount of information gained when we
discover the probability distribution is really q, when we had thought it was p. We should
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think of p as a ‘prior’. When we take p to be the uniform distribution on X, relative
entropy reduces to the ordinary Shannon entropy, up to a sign and an additive constant.
The advantage of relative entropy is that it makes the role of the prior explicit.

Since Bayesian probability theory emphasizes the role of the prior, relative entropy
naturally lends itself to a Bayesian interpretation [3]. Our goal here is to make this
precise in a mathematical characterization of relative entropy. We do this using a category
FinStat where:

• an object (X, q) consists of a finite set X and a probability distribution x 7→ qx on
that set;

• a morphism (f, s) : (X, q)→ (Y, r) consists of a measure-preserving function f from
X to Y , together with a probability distribution x 7→ sxy on X for each element
y ∈ Y with the property that sxy = 0 unless f(x) = y.

We can think of an object of FinStat as a system with some finite set of states together
with a probability distribution on its states. A morphism (f, s) : (X, q) → (Y, r) then
consists of two parts. First, there is a deterministic ‘measurement process’ f : X → Y
mapping states of some system being measured to states of a ‘measurement apparatus’.
The condition that f be measure-preserving says that the probability that the apparatus
winds up in some state y ∈ Y is the sum of the probabilities of states of X leading to
that outcome:

ry =
∑

x: f(x)=y

qx.

Second, there is a ‘hypothesis’ s: an assumption about the probability sxy that the system
being measured is in the state x given any measurement outcome y ∈ Y . We assume that
this probability vanishes unless f(x) = y, as we would expect from a hypothesis made by
someone who knew the behavior of the measurement apparatus.

Suppose we have any morphism (f, s) : (X, q) → (Y, r) in FinStat. From this we
obtain two probability distributions on the states of the system being measured. First,
we have the probability distribution p : X → R given by

px = sx f(x)rf(x). (1)

This is our ‘prior’, given our hypothesis and the probability distribution of measurement
outcomes. Second, we have the ‘true’ probability distribution q : X → R. It follows that
any morphism in FinStat has a relative entropy S(q, p) associated to it. This is the
expected amount of information we gain when we update our prior p to q.

In fact, this way of assigning relative entropies to morphisms defines a functor

RE: FinStat→ [0,∞]

where we use [0,∞] to denote the category with one object, the nonnegative real num-
bers together with ∞ as morphisms, and addition as composition. More precisely, if
(f, s) : (X, q)→ (Y, r) is any morphism in FinStat, we define

RE(f, s) = S(q, p)



424 JOHN C. BAEZ AND TOBIAS FRITZ

where the prior p is defined as in Equation (1). The fact that RE is a functor is nontrivial
and rather interesting. It says that given any composable pair of measurement processes:

(X, q)
(f,s)−→ (Y, r)

(g,t)−→ (Z, u)

the relative entropy of their composite is the sum of the relative entropies of the two parts:

RE((g, t) ◦ (f, s)) = RE(g, t) + RE(f, s).

We prove that RE is a functor in Section 3. However, we go much further: we characterize
relative entropy by saying that up to a constant multiple, RE is the unique functor from
FinStat to [0,∞] obeying three reasonable conditions.

The first condition is that RE vanishes on morphisms (f, s) : (X, q) → (Y, r) where
the hypothesis s is ‘optimal’. By this, we mean that Equation (1) gives a prior p equal to
the ‘true’ probability distribution q on the states of the system being measured.

The second condition is that RE is lower semicontinuous. The set P (X) of probability
distributions on a finite set X naturally has the topology of an (n− 1)-simplex when X
has n elements. The set [0,∞] can be given the topology induced by the usual order on
this set, and it is then homeomorphic to a closed interval. However, with these topologies,
the relative entropy does not define a continuous function

S : P (X)× P (X) → [0,∞]
(q, p) 7→ S(q, p).

The problem is that

S(q, p) =
∑
x∈X

qx ln

(
qx
px

)
and qx ln(qx/px) equals ∞ when px = 0 and qx > 0, but 0 when px = qx = 0. So, it turns
out that S is only lower semicontinuous, meaning that it can suddenly jump down, but
not up. More precisely, if pi, qi ∈ P (X) are sequences with pi → p, qi → q, then

S(q, p) ≤ lim inf
i→∞

S(qi, pi).

In Section 3 we give the set of morphisms in FinStat a topology, and show that with this
topology, RE maps morphisms to morphisms in a lower semicontinuous way.

The third condition is that RE is convex linear. In Section 3 we describe how to take
convex linear combinations of morphisms in FinStat. The functor RE is convex linear
in the sense that it maps any convex linear combination of morphisms in FinStat to the
corresponding convex linear combination of numbers in [0,∞]. Intuitively, this means
that if we flip a probability-λ coin to decide whether to perform one measurement process
or another, the expected information gained is λ times the expected information gain of
the first process plus (1− λ) times the expected information gain of the second.

Our main result is Theorem 3.1: any lower semicontinuous, convex linear functor

F : FinStat→ [0,∞]
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that vanishes on morphisms with an optimal hypothesis must equal some constant times
the relative entropy. In other words, there exists some constant c ∈ [0,∞] such that

F (f, s) = cRE(f, s)

for any morphism (f, s) : (X, p)→ (Y, q) in FinStat.
This theorem, and its proof, was inspired by results of Petz [8], who sought to charac-

terize relative entropy both in the ‘classical’ case discussed here and in the more general
‘quantum’ setting. Our original intent was merely to express his results in a more category-
theoretic framework. Unfortunately his work contained a flaw, which we had to repair.
As a result, our proof is now self-contained. For details, see the remarks after Theorem
5.2.

Our characterization of relative entropy implicitly relies on topological categories and
on the operad whose operations are convex linear combinations. However, since these
structures are not strictly necessary for stating or proving our result, and they may be
unfamiliar to some readers, we discuss them only in Appendix A and Appendix B.

2. The categories in question

FinStoch. To describe the categories used in this paper, we need to start with a word on
the category of finite sets and stochastic maps. A stochastic map f : X  Y is different
from an ordinary function, because instead of assigning a unique element of Y to each
element of X, it assigns a probability distribution on Y to each element of X. Thus f(x)
is not a specific element of Y, but instead has a probability of taking on different values.
This is why we use a wiggly arrow to denote a stochastic map.

More formally:

2.1. Definition. Given finite sets X and Y , a stochastic map f : X  Y assigns
a real number fyx to each pair x ∈ X, y ∈ Y in such a way that fixing any element x,
the numbers fyx form a probability distribution on Y. We call fyx the probability of y
given x.

In more detail, we require that the numbers fyx obey:

• fyx ≥ 0 for all x ∈ X, y ∈ Y ,

•
∑
y∈Y

fyx = 1 for all x ∈ X.

Note that we can think of f : X  Y as a Y ×X-shaped matrix of numbers. A matrix
obeying the two properties above is called stochastic. This viewpoint is nice because it
reduces the problem of composing stochastic maps to matrix multiplication. It is easy to
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check that multiplying two stochastic matrices gives a stochastic matrix. So, we define
the composite of stochastic maps f : X  Y and g : Y  Z by

(g ◦ f)zx =
∑
y∈Y

gzyfyx.

Since matrix multiplication is associative and identity matrices are stochastic, this con-
struction gives a category:

2.2. Definition. Let FinStoch be the category of finite sets and stochastic maps between
them.

We are restricting attention to finite sets merely to keep the discussion simple and
avoid issues of convergence. It would be interesting to generalize all our work to more
general probability spaces.

FinProb. Choose any 1-element set and call it 1. A function f : 1 → X is just a point
of X. But a stochastic map q : 1  X is something more interesting: it is a probability
distribution on X.

We use the term finite probability measure space to mean a finite set with a
probability distribution on it. As we have just seen, there is a very quick way to describe
such a thing within FinStoch:

1

q

��
X

This gives a quick way to think about a measure-preserving function between finite prob-
ability measure spaces! It is simply a commutative triangle like this:

1

q

��

r

��
X

f
// Y

Note that the horizontal arrow f : X → Y is not wiggly. The straight arrow means it
is an honest function, not a stochastic map. But a function can be seen as a special
case of a stochastic map. So it makes sense to compose a straight arrow with a wiggly
arrow—and the result is, in general, a wiggly arrow. If we then demand that the above
triangle commute, this says that the function f : X → Y is measure-preserving.

We now work through the details. First: how can we see a function as a special case
of a stochastic map? A function f : X → Y gives a matrix of numbers

fyx = δy f(x)
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where δ is the Kronecker delta. This matrix is stochastic, and it defines a stochastic map
sending each point x ∈ X to the probability distribution supported at f(x).

Given this, we can see what the commutativity of the above triangle means. If we
use qx to stand for the probability that q : 1  X assigns to each element x ∈ X, and
similarly for ry, then the triangle commutes if and only if

ry =
∑
x∈X

δy f(x)qx

or in other words:
ry =

∑
x: f(x)=y

qx

In this situation we say p is q pushed forward along f , and that f is a measure-
preserving function.

So, we have used FinStoch to describe another important category:

2.3. Definition. Let FinProb be the category of finite probability measure spaces and
measure-preserving functions between them.

Another variation may be useful at times:

1

q

��

r

��
X

f
// Y

A commuting triangle like this is a measure-preserving stochastic map. In other
words, q gives a probability measure on X, r gives a probability measure on Y , and
f : X  Y is a stochastic map that is measure-preserving in the following sense:

ry =
∑
x∈X

fyxqx.

FinStat. The category we need for our characterization of relative entropy is a bit more
subtle. In this category, an object is a finite probability measure space:

1

q

��
X
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but a morphism looks like this:

1

q

��

r

��
X

f

33 Y
s

ss

f ◦ q = r
f ◦ s = 1Y

The diagram need not commute, but the two equations shown must hold. The first
equation says that f : X → Y is a measure-preserving function. In other words, this
triangle, which we have seen before, commutes:

1

q

��

r

��
X

f
// Y

The second equation says that f ◦ s is the identity, or in other words, s is a ‘section’ for
f . This requires a bit of discussion.

We can think of X as the set of ‘states’ of some system, while Y is a set of possible
states of some other system: a ‘measuring apparatus’. The function f is a ‘measurement
process’. One ‘measures’ the system using f , and if the system is in any state x ∈ X the
measuring apparatus goes into the state f(x). The probability distribution q gives the
probability that the system is in any given state, while r gives the probability that the
measuring apparatus ends up in any given state after a measurement is made.

Under this interpretation, we think of the stochastic map s as a ‘hypothesis’ about the
system’s state given the state of the measuring apparatus. If one measures the system
and the apparatus goes into the state y ∈ Y, this hypothesis asserts that the system is in
the state x with probability sxy.

The equation f ◦ s = 1Y says that if the measuring apparatus ends up in some state
y ∈ Y , our hypothesis assigns a nonzero probability only to states of the measured system
for which a measurement actually leads to this state y:

2.4. Lemma. If f : X → Y is a function between finite sets and s : Y  X is a stochastic
map, then f ◦ s = 1Y if and only for all y ∈ Y , sxy = 0 unless f(x) = y.
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Proof. The condition f ◦ s = 1Y says that for any fixed y, y′ ∈ Y ,∑
x: f(x)=y′

sxy =
∑
x∈X

δy′ f(x)sxy = δy′y.

It follows that the sum at left vanishes if y′ 6= y. If s is stochastic, the terms in this sum
are nonnegative. So, sxy must be zero if f(x) = y′ and y′ 6= y.

Conversely, suppose we have a stochastic map s : Y  X such that sxy = 0 unless
f(x) = y. Then for any y ∈ Y we have

1 =
∑
x∈X

sxy =
∑

x: f(x)=y

sxy =
∑
x∈X

δy f(x)sxy

while for y′ 6= y we have

0 =
∑

x: f(x)=y′

sxy =
∑
x∈X

δy′ f(x)sxy,

so for all y, y′ ∈ Y ∑
x∈X

δy′ f(x)sxy = δy′y,

which says that f ◦ s = 1Y .

It is also worth noting that f ◦ s = 1Y implies that f is onto: if y ∈ Y were not in the
image of f , we could not have ∑

x∈X

sxy = 1

as required, since sxy = 0 unless f(x) = y. So, the equation f ◦ s = 1Y also rules out the
possibility that our measuring apparatus has ‘extraneous’ states that never arise when we
make a measurement.

This is how we compose morphisms of the above sort:

1

q

��

r

��

u

��
X

f

33 Y
s

ss

g

33 Z
t

ss

f ◦ q = r g ◦ r = u
f ◦ s = 1Y g ◦ t = 1Z

We get a measure-preserving function g ◦ f : X → Z and a stochastic map going back,
s ◦ t : Z → X. It is easy to check that these obey the required equations:

g ◦ f ◦ q = u
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g ◦ f ◦ s ◦ t = 1Z

So, this way of composing morphisms gives a category, which we call FinStat, to allude
to its role in statistical reasoning:

2.5. Definition. Let FinStat be the category where an object is a finite probability
measure space:

1

q

��
X

a morphism is a diagram
1

q

��

r

��
X

f

33 Y
s

ss

obeying these equations:
f ◦ q = r
f ◦ s = 1Y

and composition is defined as above.

FP. We have described how to think of a morphism in FinStat as consisting of a ‘mea-
surement process’ f and a ‘hypothesis’ s, obeying two equations:

1

q

��

r

��
X

f

33 Y
s

ss

f ◦ q = r
f ◦ s = 1Y

We say the hypothesis is optimal if also

s ◦ r = q.
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Conceptually, this says that if we take the probability distribution r on our observations
and use it to infer a probability distribution for the system’s state using our hypothesis
s, we get the correct answer: q. Mathematically, it says that this diagram commutes:

1

q

��

r

��
X Y

soo

In other words, s is a measure-preserving stochastic map.
It is easy to check that this optimality property is preserved by composition of mor-

phisms. Hence there is a subcategory of FinStat with all the same objects, but only
morphisms where the hypothesis is optimal:

2.6. Definition. Let FP be the subcategory of FinStat where an object is a finite prob-
ability measure space

1

q

��
X

and a morphism is a diagram
1

q

��

r

��
X

f

33 Y
s

ss

obeying these equations:
f ◦ q = r
f ◦ s = 1Y
s ◦ r = q

The category FP was introduced by Leinster [5]. He gave it this name for two reasons.
First, it is a close relative of FinProb, where a morphism looks like this:

1

q

��

r

��
X

f
// Y
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We now explain the similarities and differences between FP and FinProb by studying the
properties of the forgetful functor FP → FinProb, which sends every morphism (f, s) to
its underlying measure-preserving function f .

For a morphism in FP, the conditions on s are so strong that they completely determine
it, unless there are states of the measurement apparatus that happen with probability zero:
that is, unless there are y ∈ Y with ry = 0. To see this, note that

s ◦ r = q

says that ∑
y∈Y

sxyry = qx

for any choice of x ∈ X. But we have already seen in Lemma 2.4 that sxy = 0 unless
f(x) = y, so the sum has just one term, and the equation says

sxyry = qx

where y = f(x). We can solve this for sxy unless ry = 0. Furthermore, we have already
seen that every y ∈ Y is of the form f(x) for some x ∈ X.

Thus, for a morphism (f, s) : (X, q)→ (Y, r) in FP, we can solve for s in terms of the
other data unless there exists y ∈ Y with ry = 0. Except for this special case, a morphism
in FP is just a morphism in FinProb. But in this special case, a morphism in FP has a little
extra information: an arbitrary probability distribution on the inverse image of each point
y with ry = 0. The point is that in FinStat, and thus FP, a ‘hypothesis’ must provide a
probability for each state of the system given a state of the measurement apparatus, even
for states of the measurement apparatus that occur with probability zero.

A more mathematical way to describe the situation is that our functor FP→ FinProb

is ‘generically’ full and faithful: the function

FP((X, q), (Y, r)) −→ FinProb((X, q), (Y, r))
(f, s) 7→ f

is a bijection if the support of r is the whole set Y , which is the generic situation.
The second reason Leinster called this category FP is that it is freely formed from

an operad called P. This is a topological operad whose n-ary operations are probability
distributions on the set {1, . . . , n}. These operations describe convex linear combinations,
so algebras of this operad include convex subsets of Rn, more general convex spaces [2],
and even more. As Leinster explains [5], the category FP (or more precisely, an equivalent
one) is the free P-algebra among categories containing an internal P-algebra. We will not
need this fact here, but it is worth mentioning that Leinster used this fact to characterize
entropy as a functor from FP to [0,∞). He and the authors then rephrased this in simpler
language [1], obtaining a characterization of entropy as a functor from FinProb to [0,∞).
The characterization of relative entropy in the current paper is a closely related result.
However, the proof is completely different.
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3. Characterizing entropy

The theorem. We begin by stating our main result. Then we clarify some of the terms
involved and begin the proof.

3.1. Theorem. Relative entropy determines a functor

RE: FinStat → [0,∞](
(X, q)

f

22 (Y, r)
srr

)
7→ S(q, s ◦ r)

(2)

that is lower semicontinuous, convex linear, and vanishes on morphisms in the subcategory
FP.

Conversely, these properties characterize the functor RE up to a scalar multiple. In
other words, if F is another functor with these properties, then for some 0 ≤ c ≤ ∞ we
have F (f, s) = cRE(f, s) for all morphisms (f, s) in FinStat. (Here we define ∞ · a =
a · ∞ =∞ for 0 < a ≤ ∞, but ∞ · 0 = 0 · ∞ = 0.)

In the rest of this section we begin by describing [0,∞] as a category and checking
that RE is a functor. Then we describe what it means for the functor RE to be lower
semicontinuous and convex linear, and check these properties. We postpone the hard part
of the proof, in which we characterize RE up to a scalar multiple by these properties, to
Section 4.

In what follows, it will be useful to have an explicit formula for S(q, s◦r). By definition,

S(q, s ◦ r) =
∑
x∈X

qx ln

(
qx

(s ◦ r)x

)
We have

(s ◦ r)x =
∑
y∈Y

sxyry,

but by Lemma 2.4, sxy = 0 unless f(x) = y, so the sum has just one term:

(s ◦ r)x = sx f(x)rf(x)

and we obtain

S(q, s ◦ r) =
∑
x∈X

qx ln

(
qx

sx f(x)rf(x)

)
. (3)

Functoriality. We make [0,∞] into a monoid using addition, where we define addition
in the usual way for numbers in [0,∞) and set

∞+ a = a+∞ =∞

for all a ∈ [0,∞]. There is thus a category with one object and elements of [0,∞] as
endomorphisms of this object, with composition of morphisms given by addition. With a
slight abuse of language we also use [0,∞] to denote this category.
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3.2. Lemma. The map RE: FinStat→ [0,∞] described in Theorem 3.1 is a functor.

Proof. Let

(X, q)
f

22 (Y, r)
srr

g
22 (Z, u)

trr

be a composable pair of morphisms in FinStat. Then the functoriality of RE can be
shown by repeated use of Equation (3):

RE (g ◦ f, s ◦ t) = S (q, s ◦ t ◦ u)

=
∑
x∈X

qx ln

(
qx

sx f(x)tf(x) g(f(x))ug(f(x))

)

(∗)
=

∑
x∈X

qx ln

(
qx

sx f(x)rf(x)

)
+
∑
x∈X

qx ln

(
rf(x)

tf(x) g(f(x))ug(f(x))

)

= S(q, s ◦ r) +
∑
y∈Y

ry ln

(
ry

ty g(y)ug(y)

)

= S(q, s ◦ r) + S(r, t ◦ u)

= RE(f, s) + RE(g, t).

Here the main step is (∗), where we have simply inserted

0 =
∑
x

qx ln
1

rf(x)

+
∑
x

qx ln rf(x).

This is unproblematic as long as rf(x) > 0 for all x. When there are x with rf(x) = 0, then
we necessarily have qx = 0 as well, and both qx ln 1

rf(x)
and qx ln rf(x) actually vanish, so

this case is also fine. In the step after (∗), we use the fact that for each y ∈ Y , ry is the
sum of qx over all x with f(x) = y.

Lower semicontinuity. Next we explain what it means for a functor to be lower
semicontinuous, and prove that RE has this property. There is a way to think about
semicontinuous functors in terms of topological categories, but this is not really necessary
for our work, so we postpone it to Appendix A. Here we take a more simple-minded
approach.

If we fix two finite sets X and Y , the set of all morphisms

(f, s) : (X, q)→ (Y, p)

in FinStat forms a topological space in a natural way. To see this, let

P (X) = {q : X → [0, 1] :
∑
x∈X

qx = 1}
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be the set of probability distributions on a finite set X. This is a subset of a finite-
dimensional real vector space, so we give it the subspace topology. With this topology,
P (X) is homeomorphic to a simplex. The set of stochastic maps s : Y  X is also a
subspace of a finite-dimensional real vector space, namely the space of matrices RX×Y , so
we also give it the subspace topology. We then give P (X) × P (Y ) × RX×Y the product
topology. The set of morphisms (f, s) : (X, q) → (Y, p) in FinStat can be seen as a
subspace of this, and we give it the subspace topology. We then say:

3.3. Definition. A functor F : FinStat→ [0,∞] is lower semicontinuous if for any
sequence of morphisms (f, si) : (X, qi)→ (Y, ri) that converges to a morphism (f, s) : (X, q)
→ (Y, r), we have

F (f, s) ≤ lim inf
i→∞

F (f, si).

We could use nets instead of sequences here, but it would make no difference. We can
then check another part of our main theorem:

3.4. Lemma. The functor RE: FinStat → [0,∞] described in Theorem 3.1 is lower
semicontinuous.

Proof. Suppose that (f, si) : (X, qi) → (Y, ri) is a sequence of morphisms in FinStat

that converges to (f, s) : (X, q)→ (Y, r). We need to show that

S(q, s ◦ r) ≤ lim inf
i→∞

S(qi, si ◦ ri).

If there is no x ∈ X with sx f(x)rf(x) = 0 then this is clear, since all the elementary
functions involved in the definition of relative entropy are continuous away from 0. If all
x ∈ X with sx f(x) = 0 also satisfy qx = 0, then S(q, s ◦ r) is still finite since none of these
x contribute to the sum for S. In this case S(qi, si ◦ ri) may remain arbitrarily large, even
infinite as i→∞. But the inequality

S(q, s ◦ r) ≤ lim inf
i→∞

S(qi, si ◦ ri)

remains true. The same argument applies if there are x ∈ X with rf(x) = 0, which implies
qx = 0. Finally, if there are x ∈ X with sx f(x) = 0 but rf(x) ≥ qx > 0, then S(q, s◦r) =∞.
The above inequality is still valid in this case.

That lower semicontinuity of relative entropy is an important property was already
known to Petz; see the closing remark in [8].

Convex linearity. Next we explain what it means to say that relative entropy gives a
convex linear functor from FinProb to [0,∞], and we prove this is true. In general, convex
linear functors go between convex categories. These are topological categories equipped
with an action of the operad P discussed by Leinster [5]. Since we do not need the general
theory here, we postpone it to Appendix B.
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First, note that there is a way to take convex linear combinations of objects and
morphisms in FinProb. Let (X, p) and (Y, q) be finite sets equipped with probability
measures, and let λ ∈ [0, 1]. Then there is a probability measure

λp⊕ (1− λ)q

on the disjoint union X + Y , whose value at a point x is given by

(λp⊕ (1− λ)q)x =

{
λpx if x ∈ X
(1− λ)qx if x ∈ Y.

Given a pair of morphisms

f : (X, p)→ (X ′, p′), g : (Y, q)→ (Y ′, q′)

in FinProb, there is a unique morphism

λf ⊕ (1− λ)g : (X + Y, λp⊕ (1− λ)q) → (X ′ + Y ′, λp′ ⊕ (1− λ)q′)

that restricts to f on X and to g on Y .
A similar construction applies to FinStat. Given a pair of morphisms

(X, p)
f

11 (X ′, p′)
srr

(Y, q)
g

11 (Y ′, q′)
trr

in FinStat, we define their convex linear combination to be

(X + Y, λp⊕ (1− λ)q)

λf⊕(1−λ)g

33
(X ′ + Y ′, λp′ ⊕ (1− λ)q′)

s⊕t
ss

where s⊕ t : X ′ + Y ′  X + Y is the stochastic map which restricts to s on X ′ and t on
Y ′. As a stochastic matrix, it is of block-diagonal form. It is right inverse to λf⊕ (1−λ)g
by construction.

We may also define convex linear combinations of objects and morphisms in the cat-
egory [0,∞]. Since this category has only one object, there is only one way to define
convex linear combinations of objects. Morphisms in this category are elements of the
set [0,∞]. We have already made this set into a monoid using addition. We can also
introduce multiplication, defined in the usual way for numbers in [0,∞), and with

0a = a0 = 0

for all a ∈ [0,∞]. This gives meaning to the convex linear combination λa + (1 − λ)b of
two morphisms a, b in [0,∞]. For more details, see Appendices A and B.
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3.5. Definition. A functor F : FinStat→ [0,∞] is convex linear if it preserves con-
vex combinations of objects and morphisms.

For objects this requirement is trivial, so all this really means is that for any pair of
morphisms (f, s) and (g, t) in FinStat and any λ ∈ [0, 1], we have

F (λ(f, s)⊕ (1− λ)(g, t)) = λF (f, s) + (1− λ)F (g, t).

3.6. Lemma. The functor RE: FinStat → [0,∞] described in Theorem 3.1 is convex
linear.

Proof. This follows from a direct computation:

RE((λ(f, s)⊕(1− λ)(g, t)) = S(λp⊕ (1− λ)q, λs ◦ p′ ⊕ (1− λ)t ◦ q′)

=
∑
x∈X

λpx ln

(
λpx

sx f(x) · λp′f(x)

)
+
∑
y∈Y

(1− λ)qy ln

(
(1− λ)qy

ty g(y) · (1− λ)q′g(y)

)

= λ
∑
x∈X

px ln

(
px

sx f(x)p′f(x)

)
+ (1− λ)

∑
y∈Y

ln

(
qy

ty g(y)q′y

)
= λS(p, s ◦ p′) + (1− λ)S(q, t ◦ q′)
= λRE(f, s) + (1− λ) RE(g, t)

4. Proof of the theorem

Now we prove the main part of Theorem 3.1.

4.1. Lemma. Suppose that a functor

F : FinStat→ [0,∞]

is lower semicontinuous, convex linear, and vanishes on morphisms in the subcategory
FP. Then for some 0 ≤ c ≤ ∞ we have F (f, s) = cRE(f, s) for all morphisms (f, s) in
FinStat.

Proof. Let F : FinStat → [0,∞] be any functor satisfying these hypotheses. By func-
toriality and the fact that 0 is the only morphism in [0,∞] with an inverse, F vanishes
on isomorphisms. Thus, given any commutative square in FinStat where the vertical
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morphisms are isomorphisms:

(X, p)
f

22

∼

��

(Y, q)

∼

��

sqq

(X ′, p′)

∼

SS

f ′
11 (Y ′, q′)

s′qq

∼

SS

functoriality implies that F takes the same value on the top and bottom morphisms:

F (f, s) = F (f ′, s′).

So, in what follows, we can replace an object by an isomorphic object without changing
the value of F on morphisms from or to this object.

Given any morphism in FinStat, complete it to a diagram of this form:

(X, p)
f

11

!X

!!

(Y, q)

!Y

��

s
qq

(1, 1)

s◦q

aa

q

GG

Here 1 denotes any one-element set equipped with the unique probability measure 1, and
!X : X → 1 is the unique function, which is automatically measure-preserving since p is
assumed to be normalized. Since this diagram commutes, and the morphism on the lower
right lies in FP, we obtain

F

(
(X, p)

f

22 (Y, q)
srr

)
= F

(
(X, p)

!X

22 (1, 1)
s◦q

rr
)
.

In other words: the value of F on a morphism depends only on the two distributions p
and s ◦ q living on the domain of the morphism. For this reason, it is enough to prove the
claim only for those morphisms whose codomain is (1, 1).

We now consider the family of distributions

q(α) = (α, 1− α) ,

on a two-element set 2 = {0, 1}, and consider the function

g(α) = F

(
(2, q(1))

!2

22 (1, 1)
q(α)

qq
)

(4)
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for α ∈ [0, 1]. Note that for all β ∈ [0, 1), this square in FinStat commutes:

(3, (1, 0, 0))

07→0

1,27→1

��

0,1 7→0

27→1

22
(2, (1, 0))

!2

��

q(β)⊕1
rr

(2, (1, 0))

1⊕q(α(1−β)1−αβ )

UU

!2

44 (1, 1)

q(α)

UU

q(αβ)
rr

where the left vertical morphism is in FP, while the top horizontal morphism is the convex
linear combination

1

 (2, q(1))
!2

22 (1, 1)
q(β)

qq

⊕ 0
(
1(1,1)

)
.

Applying the functoriality and convex linearity of F to this square, we thus obtain the
equation

g(αβ) = g(α) + g(β). (5)

We claim that all solutions of this equation are of the form g(α) = −c lnα for some
c ∈ [0,∞]. First we show this for α ∈ (0, 1].

If g(α) < ∞ for all α ∈ (0, 1], this equation is Cauchy’s functional equation in its
multiplicative-to-additive form, and it is known [7] that any solution with g measurable is
of the desired form for some c <∞. By our hypotheses on F , g is lower semicontinuous,
hence measurable. Thus, for some c <∞ we have g(α) = −c lnα for all α ∈ (0, 1].

If g(α) = ∞ for some α ∈ (0, 1], then Equation (5) implies that g(β) = ∞ for all
β < α. Since it also implies that g(2β) = 1

2
g(β), we conclude that then g(β) =∞ for all

β ∈ (0, 1). Thus, if we take c =∞ we again have g(α) = −c lnα for all α ∈ (0, 1].
Next consider α = 0. If c > 0, then g(0) = g(0) + g(1

2
) shows that we necessarily

have g(0) = ∞. If c = 0, then lower semicontinuity implies g(0) = 0. In both cases, the
equation g(α) = −c lnα also holds for α = 0.

In what follows, choosing the value of c that makes g(α) = −c lnα, we shall prove
that the equation

F

(
(X, p)

!X

22 (1, 1)
rrr

)
= c S(p, r)

holds for any two probability distributions p and r on any finite set X. Using Equation
(3), it suffices to show that

F

(
(X, p)

!X

22 (1, 1)
rrr

)
= c

∑
x∈X

px ln

(
px
rx

)
. (6)
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We prove this for more and more general cases in the following series of lemmas. We start
with the generic case, where c < ∞ and the probability distribution r has full support.
In Lemma 4.4 we treat all cases with 0 < c <∞. In Lemma 4.5 we treat the case c = 0,
and in Lemma 4.12 we treat the case c =∞, which seems much harder than the rest.

4.2. Lemma. Equation (6) holds if c <∞ and the support of r is all of X.

Proof. Choose α ∈ (0, 1) such that α < rx for all x ∈ X. The decisive step is to consider
the commutative square

(X +X, p⊕ 0)

〈1X ,1X〉

33

!X+!X

��

(X, p)

!X

��

sqq

(2, (1, 0))

!2

33

t

TT

(1, 1)

r

TT

q(α)
rr

where the stochastic matrices s and t are given by

s =



αp1
r1 0. . .

0 αpn
rn

1− αp1
r1 0. . .

0 1− αpn
rn


, t =

 p1
r1−αp1

1−α
...

...
pn

rn−αpn
1−α

 .

The second column of t is only relevant for commutativity. The left vertical morphism is in
FP, while we already know that the lower horizontal morphism evaluates to g(α) = −c lnα
under the functor F . Hence the diagonal of the square gets assigned the value −c lnα
under F . On the other hand, the upper horizontal morphism is actually a convex linear
combination of morphisms

(2, (1, 0))

!2

44 (1, 1)

q
(
α
px
rx

)
rr

,
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one for each x ∈ X, with the probabilities px as coefficients. Thus, composing this with
the right vertical morphism we get a morphism to which F assigns the value

−c
∑
x∈X

px ln

(
α
px
rx

)
+ F

(
(X, p)

!X

22 (1, 1)
rrr

)
.

Thus, we obtain

−c
∑
x∈X

px ln

(
α
px
rx

)
+ F

(
(X, p)

!X

22 (1, 1)
rrr

)
= −c lnα

and because c <∞, we can simplify this to

F

(
(X, p)

!X

22 (1, 1)
rrr

)
= c

∑
x∈X

px ln

(
px
rx

)
This is the desired result, Equation (6).

4.3. Lemma. Equation (6) holds if c <∞ and supp(p) ⊆ supp(r).

Proof. This can be reduced to the previous case by considering the commutative triangle

(X, p)

!X
++

��

(1, 1)

r

kk

r̄

}}
(supp(r), p̄)

TT

! supp(r)

==

in which p̄ = p|supp(r) and r̄ = r|supp(r), and the vertical morphism consists of any map
X → supp(r) that restricts to the identity on supp(r) and, as its stochastic right inverse,
the inclusion supp(r) ↪→ X. This morphism lies in FP.

4.4. Lemma. Equation (6) holds if 0 < c <∞.

Proof. We already know by Lemma 4.3 that this holds when supp(p) ⊆ supp(r), so
assume otherwise. Our task is then show that

F

(
(X, p)

!X

22 (1, 1)
rrr

)
=∞.
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To do this, choose x ∈ X with px > 0 = rx, and consider the commutative triangle

(X + 1, p⊕ 0)

!X+1

++
f

��

(1, 1)

r⊕0
jj

r

}}
(X, p)

s

TT

!X

==

in which f maps X to itself by the identity and sends the unique element of 1 to x. This
function has a one-parameter family of stochastic right inverses, and we take the arrow
s : X  X + 1 to be any element of this family.

To construct these stochastic right inverses, let Y = X − {x}. This set is nonempty
because the probability distribution r is supported on it. If px < 1 let q be the probability
distribution on Y given by

q =
1

1− px
p|Y ,

while if px = 1 let q be an arbitrary probability distribution on Y . For any α ∈ [0, 1], the
convex linear combination

(1− px)

(
(Y, q)

1Y

22 (Y, q)
1Yrr

)
⊕ px

(2, (1, 0))
!2

22 (1, 1)
q(α)

qq

 (7)

is a morphism in FinStat. There is a natural isomorphism from its domain to that of the
desired morphism (f, s):

(1− px)(Y, q) ⊕ px(2, (1, 0)) ∼= (X + 1, p⊕ 0)

and similarly for its codomain:

(1− px)(Y, q) ⊕ px(1, 1) ∼= (X, p).

Composing (7) with these fore and aft, we obtain the desired morphism

(X + 1, p⊕ 0)
s

11 (X, p)
fpp

.

Using convex linearity and the fact that F vanishes on isomorphisms, (7) implies that
F (f, s) = −pxc lnα. Applying F to our commutative triangle, we thus obtain

F

(
(X + 1, p⊕ 0)

!X+1

11 (1, 1)
r⊕0pp

)
= −pxc lnα + F

(
(X, p)

!X

22 (1, 1)
rrr

)
.
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Since px, c > 0, the first term on the right-hand side depends on α, but no other terms
do. This is only possible if both other terms are infinite. This proves

F

(
(X, p)

!X

22 (1, 1)
rrr

)
=∞,

as was to be shown.

4.5. Lemma. Equation (6) holds if c = 0.

Proof. That (6) holds in this case is a simple consequence of lower semicontinuity:
approximate r by a family of probability distributions whose support is all of X. By
Lemma 4.4, F maps all the resulting morphisms to 0. Thus, the same must be true for
the original r.

To conclude the proof of Lemma 4.1, we need to show Equation (6) holds if c = ∞.
To do this, it suffices to assume c =∞ and show that

F

(
(X, p)

!X

22 (1, 1)
rrr

)
=∞

whenever p 6= r. The reasoning in the previous lemmas will not help us now, since in
Lemma 4.2 we needed c < ∞. As we shall see in Proposition 5.1, the proof for c = ∞
must use lower semicontinuity. However, since lower semicontinuity only produces an
upper bound on the value of F at a limit point, it will have to be used in proving the
contrapositive statement: if F is finite on some morphism of the above form with p 6= r,
then it is finite on some morphism of the form (4). Now in order to infer that the value
of F at the limit point of a converging family of distributions is finite, it is not enough
to know that the value of F is finite at each element of the family: one needs a uniform
bound. The need to derive such a uniform bound is the reason for the complexity of the
following argument.

In what follows we assume that p and r are probability distributions on X with p 6= r
and

F

(
(X, p)

!X

22 (1, 1)
rrr

)
<∞.

We develop a series of consequences culminating in Lemma 4.12, in which we see that
g(α) is finite for some α < 1. This implies c <∞, thus demonstrating the contrapositive
of our claim that Equation (6) holds if c =∞.

4.6. Lemma. There exist α, β ∈ [0, 1] with α 6= β such that

h(α, β) = F

 (2, q(α))
!2

22 (1, 1)
q(β)

qq

 (8)

is finite.
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Proof. Choose some y ∈ X with py 6= ry, and define f : X → 2 by

f(x) =

{
1 if x = y

0 if x 6= y.

Put β = 1− ry. Then f has a stochastic right inverse s given by

sxj =


rx
β

(1− δxy) if j = 0

δxy if j = 1

where, if β = 0, we interpret the fractions as forming an arbitrarily chosen probability
distribution on X − {y}. Setting α = 1− py, we have a commutative triangle

(X, p)

!X
++

f

��

(1, 1)

r

kk

q(β)

}}
(2, q(α))

s

TT

!2

==

and the claim follows from functoriality.

4.7. Lemma. h(α′, 1
2
) is finite for some α′ < 1

2
.

Proof. Choose α, β as in Lemma 4.6. Consider the commutative square

(4, 1
2
q(α)⊕ 1

2
q(β))

0, 1 7→ 0
2, 3 7→ 1

22

0, 2 7→ 0
1, 3 7→ 1

��

(2, q(1
2
))

!2

��

sqq

(2, q(α+β
2

))

!2

33

t

TT

(1, 1)

q
(

1
2

)

TT

q(β)
rr
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with the stochastic matrices

s =


β 0

1− β 0
0 β
0 1− β

 = q(β)⊕ q(β), t =


1
2

0
0 1

2
1
2

0
0 1

2

 .

The right vertical morphism in this square lies in FP, so F vanishes on this. The top
horizontal morphism is a convex linear combination

1

2

 (2, q(α))
!2

22 (1, 1)
q(β)

qq

⊕ 1

2

 (2, q(β))
!2

22 (1, 1)
q(β)

qq

 ,

where the second term is in FP. Thus, by convex linearity and Lemma 4.6, F of the
top horizontal morphism equals 1

2
h(α, β) < ∞. By functoriality, F is 1

2
h(α, β) on the

composite of the top and right morphisms.
This implies that the value of F on the other two morphisms in the square must also

be finite. Let us compute F of their composite in another way. By definition, F of the
bottom horizontal morphism is h(α+β

2
, β). The left vertical morphism is a convex linear

combination

α + β

2

(2, q( α
α+β

))
!2

22 (1, 1)

q( 1
2

)
pp

⊕ 2− α− β
2

(2, q( 1−α
2−α−β ))

!2

11 (1, 1)

q( 1
2

)
pp

 .

By functoriality and convex linearity, F on the composite of these two morphisms is thus

α + β

2
· h
(

α

α + β
,
1

2

)
+

2− α− β
2

· h
(

1− α
2− α− β

,
1

2

)
+ h

(
α + β

2
, β

)
.

Comparing these computations, we obtain

h(α, β) = (α + β) · h
(

α

α + β
,
1

2

)
+ (2− α− β) · h

(
1− α

2− α− β
,
1

2

)
+ 2 · h

(
α + β

2
, β

)
.

(9)

This shows that each term on the right-hand side must be finite. Note that the coefficients
in front of these terms do not vanish, since α 6= β. If α < β then we can take α′ = α

α+β
,

so that α′ < 1
2
, and the first term on the right-hand side gives h(α′, 1

2
) <∞. If α > β we

can take α′ = 1−α
2−α−β , so that α′ < 1

2
, and the second term on the right-hand side gives

that h(α′, 1
2
) <∞.
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4.8. Lemma. For α ≤ β ≤ 1
2
, we have h(β, 1

2
) ≤ h(α, 1

2
).

Proof. By the intermediate value theorem, there exists γ ∈ [0, 1] with

γα + (1− γ)(1− α) = β.

Now let q(α)⊗q(γ) stand for the distribution on 4 with weights (αγ, α(1−γ), (1−α)γ, (1−
α)(1− γ)). The equation above guarantees that the left vertical morphism in this square
is well-defined:

(4, q(α)⊗ q(γ))

0, 1 7→ 0
2, 3 7→ 1

22

0, 3 7→ 0
1, 2 7→ 1

��

(2, q(α))

!2

��

srr

(2, q(β))

t

TT

!2

33 (1, 1)

q
(

1
2

)
ss

q
(

1
2

)

TT

where we take:

s =


γ 0

1− γ 0
0 γ
0 1− γ

 , t =


γ 0
0 1− γ
0 γ

1− γ 0


The square commutes and the upper horizontal morphism is in FP, so the value of F on
the bottom horizontal morphism is bounded by the value of F on the right vertical one,
as was to be shown.

In the preceding lemma we are not yet claiming that h(α, 1
2
) is finite. We show this

for α = 1
4

in Lemma 4.10, and for all α ∈ (0, 1) in Lemma 4.11, where we actually obtain
a uniform bound.

4.9. Lemma. h(α, 1
2
) = h(1− α, 1

2
) for all α ∈ [0, 1].
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Proof. Apply functoriality to the commutative triangle

(2, q(α))

!2
++0 7→ 1

1 7→ 0

��

(1, 1)

q
(

1
2

)kk

q
(

1
2

)

}}
(2, q(α))

0 7→ 1
1 7→ 0

TT

!2

==

where the vertical morphism is in FP.

4.10. Lemma. h(1
4
, 1

2
) <∞.

Proof. We use (9) with β = 1
2
:

h

(
α,

1

2

)
=

(
α +

1

2

)
h

(
2α

1 + 2α
,
1

2

)
+

(
3

2
− α

)
h

(
2− 2α

3− 2α
,
1

2

)
+ 2h

(
1 + 2α

4
,
1

2

)
,

(10)

which we will apply for α < 1
2
. On the right-hand side here, the first argument of h in the

second term can be replaced by 1
3−2α

, thanks to Lemma 4.9. Then the first arguments in

all three terms on the right-hand side are in [0, 1
2
], with the smallest in the first term, so

Lemma 4.8 tells us that

h

(
α,

1

2

)
≤ 4h

(
2α

1 + 2α
,
1

2

)
.

Now with α0 = 1
4
, the sequence recursively defined by αn+1 = 2αn

1+2αn
increases and con-

verges to 1
2
. In particular we can find n with α′ < αn < 1

2
, where α′ is chosen as in

Lemma 4.7. Using that result together with Lemma 4.8, we obtain

h

(
1

4
,
1

2

)
≤ 4n h

(
αn,

1

2

)
≤ 4n h

(
α′,

1

2

)
<∞.

4.11. Lemma. There is a constant B <∞ such that h(α, 1
2
) ≤ B h(1

4
, 1

2
) for all α ∈ (0, 1).
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Proof. By the symmetry in Lemma 4.9, it is sufficient to consider α ∈ (0, 1
2
]. By

Lemma 4.8, we may use the bound B = 1 for all α ∈ [1
4
, 1

2
]. It thus remains to find a

choice of B that works for all α ∈ (0, 1
4
), and we assume α to lie in this interval from now

on.
We reuse Equation (10). Both the second and the third term on the right-hand side

have their first argument of h in the interval [1
4
, 3

4
], so we can apply Lemmas 4.8 and 4.9

to obtain

h

(
α,

1

2

)
≤
(
α +

1

2

)
h

(
2α

1 + 2α
,
1

2

)
+

(
7

2
− α

)
h

(
1

4
,
1

2

)
.

To find a simpler-looking upper bound, we bound the right-hand side from above by
applying Lemma 4.8 in order to replace the 2α

1+2α
argument by just 2α, and at the same

time use α ∈ (0, 1
4
) in order to bound the coefficients of both terms by α + 1

2
≤ 3

4
and

7
2
− α ≤ 7

2
:

h

(
α,

1

2

)
≤ 3

4
h

(
2α,

1

2

)
+

7

2
h

(
1

4
,
1

2

)
.

If we put α = 2−n for n ≥ 2, then we can apply this inequality repeatedly until only terms
of the form h(1

4
, 1

2
) are left. This results in a geometric series:

h

(
2−n,

1

2

)
≤

((
3

4

)n−2

+
n−3∑
k=0

(
3

4

)k
· 7

2

)
h

(
1

4
,
1

2

)
.

whose convergence (as n→∞) implies the existence of a constant B <∞ with

h(2−n, 1
2
) ≤ B h(1

4
, 1

2
)

for all n ≥ 2. The present lemma then follows with the help of Lemma 4.8.

4.12. Lemma. Equation (6) holds if c =∞.

Proof. By Lemma 4.11 and the lower semicontinuity of h, we see that

g(1
2
) = h(0, 1

2
) <∞

This implies that the constant c with g(α) = −c lnα has c < ∞. Recall that we have
shown this under the assumption that there exist probability distributions p and r on a
finite set X with p 6= r and

F

(
(X, p)

!X

22 (1, 1)
rrr

)
<∞.

So, taking the contrapositive, we see that if c =∞, then

F

(
(X, p)

!X

22 (1, 1)
rrr

)
=∞

whenever p and r are distinct probability distributions on X. This proves Equation (6)
except in the case where p = r. But in that case, both sides vanish, since on the left we
are taking F of a morphism in FP, and on the right we obtain ∞ · 0 = 0.
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5. Counterexamples and subtleties

One might be tempted to think that our Theorem 3.1 also holds if one relaxes the
lower semicontinuity assumption to measurability, upon equipping the hom-spaces of both
FinStat and [0,∞] with their σ-algebras of Borel sets. For [0,∞], this σ-algebra is the
usual Borel σ-algebra: the sets of the form (a,∞) are open and hence measurable, the
sets of the form [0, b] are closed and hence measurable, and therefore all half-open inter-
vals (a, b] are measurable, and these generate the standard Borel σ-algebra. However, for
Theorem 3.1, mere measurability of the functor F is not enough:

5.1. Proposition. There is a functor FinStat → [0,∞] that is convex linear, measur-
able on hom-spaces, and vanishes on FP, but is not a scalar multiple of relative entropy.

Proof. We claim that one such functor G : FinStat→ [0,∞] is given by

G

(
(X, p)

f

22 (Y, q)
srr

)
=

{
0 if supp(p) = supp(s ◦ q),
∞ if supp(p) 6= supp(s ◦ q).

This G clearly vanishes on FP. Since taking the support of a probability distribution is
a lower semicontinuous and hence measurable function, the set of all morphisms obeying
supp(p) = supp(s ◦ q) is also measurable, and hence G is measurable.

Concerning functoriality, for a composable pair of morphisms

(X, p)
f

22 (Y, q)
srr

g
11 (Z, r),

trr

we have

supp(p) = supp(s ◦ q), supp(q) = supp(t ◦ r) ⇐⇒ supp(p) = supp(s ◦ t ◦ r).

This proves functoriality. A similar argument proves convex linearity.

As a measure of information gain, this functor G is not hard to understand intuitively:
we gain no information whenever the set of possible outcomes is precisely the set that we
expected; otherwise, we gain an infinite amount information.

Since the collection of all functors satisfying our hypotheses is closed under sums and
scalar multiples and also contains the relative entropy functor, we actually obtain a whole
family of such functors. For example, another one of these functors is G′ : FinStat →
[0,∞] given by

G′
(

(X, p)
f

22 (Y, q)
srr

)
=

{
S(p, s ◦ q) if supp(p) = supp(s ◦ q),
∞ if supp(p) 6= supp(s ◦ q).

Our original idea was to use the work of Petz [8, 9] to prove Theorem 3.1. However, as
it turned out, there is a gap in Petz’s argument. Although his purported characterization
concerns the quantum version of relative entropy, the first part of his proof in [8] treats
the classical case. If his proof were correct, it would prove this:
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5.2. Unproved “Theorem”. The relative entropy S(p, r) for pairs of probability mea-
sures on the same finite set such that r has full support is characterized up to a multi-
plicative constant by these properties:

(a) Conditional expectation law. Suppose f : X → Y is a function and s : Y  X
a stochastic map with f ◦ s = 1Y . Given probability distributions p and r on X, and
assuming that r has full support and r = s ◦ f ◦ r, we have

S(p, r) = S(f ◦ p, f ◦ r) + S(p, s ◦ f ◦ p). (11)

(b) Invariance. Given any bijection f : X → Y and probability distributions p, r on X
such that r has full support (i.e. its support is all of X), we have

S(f ◦ p, f ◦ r) = S(p, r).

(c) Convex linearity. Given probability distributions p, r on X and p′, r′ on Y such
that r and r′ have full support, and given λ ∈ [0, 1], we have

S(λp⊕ (1− λ)p′, λr ⊕ (1− λ)r′) = λS(p, r) + (1− λ)S(p′, r′).

(d) Nilpotence. For any probability distribution p with full support on a finite set,
S(p, p) = 0.

(e) Measurability property. The function

(p, r) 7→ S(p, r)

is measurable on the space of pairs of probability distributions on X such that r has
full support.

Note that [8] uses the opposite ordering for the two arguments of S.
The problem with this “theorem” is the range of applicability of Equation (11): what

is this formula supposed to mean when s ◦ f ◦ p does not have full support? After all,
S(p, r) is assumed to be defined only when the second argument has full support, but
this need not be the case for s ◦ f ◦ p, given the assumptions made in the statement
of the conditional expectation property. (Note that f ◦ r has full support, so the term
S(f ◦ p, f ◦ r) is fine.)

One can try to correct this problem by assuming that the conditional expectation
property holds only if s ◦ f ◦ p has full support as well. However, this means that the
proof of Petz’s Lemma 1 is valid only when (using his notation) p3 > 0, which implies that
his Equation (5) is known to hold only for p2 > 0 and p3 > 0. Upon following the thread
of Petz’s argument, one finds that his Equation (6) has been proven to follow from his
assumptions only for x ∈ (0, 1) and u ∈ (0, 1). However, the solution of that functional
equation in the references he points to crucially uses the assumption that the functional
equation also holds in case that x = 0 or u = 0. This is the gap in Petz’s proof.
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In fact, if one allows S to take on infinite values, then the above classical version of
Petz’s theorem is not even correct, if one uses the interpretation that (11) is to be applied
only when s◦f ◦p has full support. The counterexample is similar to our functor G′ from
above:

S ′(p, r) =

{
S(p, r) if p has full support,

∞ otherwise.

6. Conclusions

The theorem here, and our earlier characterization of entropy [1], can be seen as part of a
program of demonstrating that mathematical structures that are “socially important” are
also “categorically natural”. Tom Leinster, whose words we quote here, has carried this
forward to a categorical explanation of Lebesgue integration [6]. It would be interesting to
generalize our results on entropy and relative entropy from finite sets to general measure
spaces, where integrals replace sums. It would be even more interesting to do this using
a category-theoretic approach to integration.

It would also be good to express our theorem more concisely. As noted in Appendix
B, convex linear combinations are operations in a topological operad P. We can define
‘convex algebras’, that is, algebras of P, in any symmetric monoidal topological category.
The category [0,∞] with the upper topology on its set of morphisms is a convex algebra
in TopCat, the (large) topological category of topological categories. We believe, but have
not proved, that FinStat is a ‘weak’ convex algebra in TopCat. This would mean that
the axioms for a convex algebra hold up to coherent natural isomorphism [4]. If this is
true, the relative entropy

RE: FinStat→ [0,∞]

should be, up to a constant factor, the unique map of weak convex algebras that vanishes
on morphisms in FP. Leinster [5] has shown that FP is also a weak convex algebra in
Cat(Top). In fact, it is the free such thing on an internal convex algebra. So, it seems that
both entropy and relative entropy emerge naturally from a category-theoretic examination
of convex linearity.

A. Semicontinuous functors

In Section 3 we explained what it meant for relative entropy to be a semicontinuous func-
tor. A more sophisticated way to think about semicontinuous functors uses topological
categories. This requires that we put a nonstandard topology on [0,∞], the so-called
‘upper topology’.

A topological category is a category internal to Top, and a continuous functor is a
functor internal to Top. In other words:
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A.1. Definition. A topological category C is a small category where the set of objects
C0 and the set of morphisms C1 are equipped with the structure of topological spaces, and
the maps assigning to each morphism its source and target:

s, t : C1 → C0

the map assigning to each object its identity morphism

i : C0 → C1

and the map sending each pair of composable morphisms to their composite

◦ : C1 ×C0 C1 → C1

are continuous. Given topological categories C and D, a continuous functor is a functor
F : C → D such that the map on objects F0 : C0 → D0 and the map on morphisms
F1 : C1 → D1 are continuous.

We now explain how FinStoch and FinStat are topological categories. Strictly speak-
ing, in order for this to work, we need to deal with size issues. One approach is to let
the objects of Top be ‘large’ sets living in a higher Grothendieck universe, which allows
us to talk about the set of all objects or morphisms of FinStat or FinStoch. Another is
to replace each of these categories by its skeleton, which is an equivalent small category.
From now on, we assume that one of these things has been done.

For FinStoch, we put the discrete topology on its set of objects FinStoch0. Each
hom-set FinStoch(X, Y ) is a subset of the Euclidean space R|X|×|Y |, and we put the
subspace topology on this hom-set; for example, FinStoch(1, Y ), the set of all probability
distributions on Y , is topologized as a simplex. In this way, FinStoch becomes a category
enriched over Top, and in particular internal to Top.

As for FinStat, the identification

FinStat0 = {(X, p) |X ∈ FinStoch0, p ∈ FinStoch(1, X)} ⊆ FinStoch0 × FinStoch1

induces a topology on FinStat0. In this topology, a net (Xλ, pλ)λ∈Λ converges to (X, p)
if and only if eventually Xλ = X, and pλ → p for those λ with Xλ = X. Similarly, every
morphism in FinStat consists of a pair of morphisms in FinStoch satisfying certain
conditions, and the resulting inclusion

FinStat1 ⊆ FinStoch1 × FinStoch1

can be used to define a topology on FinStat1. We omit the verification that these topolo-
gies make FinStat into a topological category.

There is a topology on [0,∞] where the open sets are those of the form (a,∞], together
with the whole space and the empty set. This is called the upper topology. With this
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topology, a function ψ : A→ [0,∞] from any topological space A is continuous if and only
ψ is lower semicontinuous, meaning

ψ(a) ≤ lim inf
λ→∞

ψ(aλ)

for every convergent net aλ ∈ A. It is easy to check that this topology on [0,∞] makes
addition continuous.

In short, [0,∞] with its upper topology is a topological monoid under addition. We
thus obtain a topological category with one object and [0,∞] as its topological monoid of
endomorphisms. By abuse of notation we also call this topological category simply [0,∞].
This lets us state Lemma 3.4 in a different way:

A.2. Lemma. If [0,∞] is viewed as a topological category using the upper topology, the
functor RE: FinStat→ [0,∞] is continuous.

On the other hand, if we give the monoid [0,∞] the less exotic topology where it is
homeomorphic to a closed interval, then this functor is not continuous.

Having gone this far, we cannot resist pointing out that [0,∞] with its upper topology
is also a topological rig. Recall that a rig is a ‘ring without negatives’: a set equipped
with an addition making it into a commutative monoid and a multiplication making it
into a monoid, with multiplication distributing over addition. In other words, it is a
monoid in the monoidal category of commutative monoids. A topological rig is a rig
with a topology in which addition and multiplication are continuous. To make [0,∞] into
a rig, we define addition as before, define multiplication in the usual way for numbers in
[0,∞), and set

0a = a0 = 0

for all a ∈ [0,∞]. One can verify that multiplication is continuous: but again, the key
point is that we need to use the upper topology, since ∞· a suddenly jumps from ∞ to 0
as a reaches zero. Thus:

A.3. Lemma. With its upper topology, [0,∞] is a topological rig.

More important now is that [0,∞] is a module over the rig [0,∞), where addition
and multiplication in the latter are defined as usual and we define the action of [0,∞) on
[0,∞] using multiplication, with the proviso that 0 · a = 0 even when a = ∞. And here
we see:

A.4. Lemma. The topological monoid [0,∞] with its upper topology becomes a topological
module over the rig [0,∞) with its usual topology.

B. Convex algebras

We define the monad for convex sets to be the monad on Set sending any set X to the
set of finitely-supported probability distributions on X. For example, this monad sends
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{1, . . . , n} to the set

Pn = {p ∈ [0, 1]n :
n∑
i=1

pi = 1}

which can be identified with the (n−1)-simplex. This monad is finitary, so can be thought
about in a few different ways.

First, a finitary monad can thought of as a finitary algebraic theory. The monad for
convex sets can be presented by a family (∗λ)λ∈[0,1] of binary operations, subject to the
equations

x ∗0 y = x,

x ∗λ x = x,

x ∗λ y = y ∗1−λ x,

(x ∗µ y) ∗λ z = x ∗λµ (y ∗λ(1−µ)
1−λµ

z)

For λ = µ = 1, the fraction λ(1−µ)
1−λµ in the last equation may be taken to be an arbitrary

number in [0, 1]. See [2] for more detail on how to derive this presentation from the
monad.

A finitary algebraic theory can also be thought of as an operad with extra structure.
In a symmetric operad O, one has for each bijection σ : {1, . . . , n} → {1, . . . , n} an
induced map σ∗ : On → On. In a finitary algebraic theory, one has the same thing for
arbitrary functions between finite sets, not just bijections. In other words, a finitary
algebraic theory amounts to a non-symmetric operad O together with, for each function
θ : {1, . . . ,m} → {1, . . . , n} between finite sets, an induced map θ∗ : Om → On, satisfying
suitable axioms.

B.1. Definition. The underlying symmetric operad for the monad for convex sets is
called the operad for convex algebras and denoted P. An algebra of P is called a
convex algebra.

The space of n-ary operations for this operad is Pn, the space of probability distribu-
tions on {1, . . . , n}. The composition of operations works as follows. Given probability
distributions p ∈ Pn and ri ∈ Pki for each i ∈ {1, . . . , n}, we obtain a probability distri-
bution p ◦ (r1, . . . , rn) ∈ Pk1+···+kn , namely

p ◦ (r1, . . . , rn) = (p1r11 . . . , p1r1k1 , . . . pnrn1, . . . , pnrnkn).

The maps θ∗ : Pm → Pn can be defined by pushforward of measures. An algebra for
the algebraic theory of convex algebras is an algebra X for the operad with the further
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property that the square

Pm ×Xn 1×θ∗ //

θ∗×1

��

Pm ×Xm

��
Pn ×Xn // X

commutes for all θ : {1, . . . ,m} → {1, . . . , n}, where the unlabelled arrows are given by
the convex algebra structure of X.

Note that P is naturally a topological operad, where the topology on Pn is the usual
topology on the (n−1)-simplex. In this paper we have implicitly been using algebras of P
in various topological categories E with finite products. We call these convex algebras
in E. Here are some examples:

• Any convex subset of Rn is a convex algebra in Top.

• The additive monoid [0,∞] with its upper topology becomes a convex algebra in Top

if we define convex linear combinations by treating [0,∞] as a topological module
of the rig [0,∞) as in Lemma A.4. We must equip [0,∞] with its upper topology
for this to work, because the convex linear combination λ ·∞+ (1− λ) · a equals ∞
when λ > 0, but suddenly jumps down to a when λ reaches zero.

• The category Cat(Top) of small topological categories and continuous functors is
itself a large topological category. If we regard [0,∞] with its upper topology as a
one-object topological category as in Appendix A, then it becomes a convex algebra
in Cat(Top) thanks to the previous remark.

• The categories FinProb, FinStat should be ‘weak convex algebras’ in Cat(Top),
though we have not carefully checked this. By this, we mean that axioms for an
algebra of the operad P hold up to coherent natural isomorphism, in the sense made
precise by Leinster [4].

• Similarly, Leinster has shown that FP is a weak convex algebra in Cat(Top). In fact,
it is equivalent to the free convex algebra in Cat(Top) on an internal convex algebra
[5].
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