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DÉCALAGE AND KAN’S SIMPLICIAL LOOP GROUP FUNCTOR

DANNY STEVENSON

Abstract. Given a bisimplicial set, there are two ways to extract from it a simplicial
set: the diagonal simplicial set and the less well known total simplicial set of Artin and
Mazur. There is a natural comparison map between these simplicial sets, and it is a
theorem due to Cegarra and Remedios and independently Joyal and Tierney, that this
comparison map is a weak homotopy equivalence for any bisimplicial set. In this paper
we will give a new, elementary proof of this result. As an application, we will revisit
Kan’s simplicial loop group functor G. We will give a simple formula for this functor,
which is based on a factorization, due to Duskin, of Eilenberg and Mac Lane’s classifying
complex functor W . We will give a new, short, proof of Kan’s result that the unit map
for the adjunction G aW is a weak homotopy equivalence for reduced simplicial sets.

1. Introduction

The aim of this paper is to give new and hopefully simpler proofs of two theorems in the
theory of simplicial sets, the first being a generalization to simplicial sets of Dold-Puppe’s
version [Dold-Puppe, 1961] of the Eilenberg-Zilber theorem from homological algebra, the
second being an old result of Kan’s on simplicial loop groups. This first result is due to
Cegarra and Remedios and independently to Joyal and Tierney.

Recall that if X is a bisimplicial set, then the diagonal dX of X is the simplicial set
obtained by precomposing the functor X : ∆op × ∆op → Set with the opposite of the
functor δ : ∆ → ∆ × ∆ given by δ([n]) = ([n], [n]), i.e. dX = Xδ, so that the set of
n-simplices of dX is (dX)n = Xn,n. In particular, if A is a bisimplicial abelian group,
then dA is a simplicial abelian group which we may regard as a chain complex via the
Moore complex functor.

Alternatively, we could first form a bicomplex from A using the Moore bicomplex
construction [Goerss-Jardine, 1999] and then forming the associated total complex, which
we will denote TotA. There is a natural comparison map dA → TotA and the gener-
alized Eilenberg-Zilber theorem [Dold-Puppe, 1961, Goerss-Jardine, 1999] says that this
comparison map is a chain homotopy equivalence.

There is a generalization of this comparison with bisimplicial abelian groups replaced
by bisimplicial sets. In this case the total complex construction is replaced by what is
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c© Danny Stevenson, 2012. Permission to copy for private use granted.

768
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variously known as the total simplicial set or Artin-Mazur codiagonal TX of a simplicial
set X (see [Artin-Mazur, 1966]). This construction extends to define a functor T : SS→ S
from the category SS of bisimplicial sets to the category S of simplicial sets.

The construction TX is the analog for simplicial sets of the process of forming the
total complex TotC of a double complex C. In fact, if

N : sAb � Ch≥0 : Γ

denotes the Dold-Kan correspondence, then for any bisimplicial abelian group A there is
an isomorphism between NTA and TotNA (see [Cegarra-Remedios, 2005]).

As mentioned above, the Eilenberg-Zilber theorem in homological algebra has a gen-
eralization for simplicial sets. For any bisimplicial set X, there is a natural comparison
map

dX → TX

between the diagonal simplicial set of X and the total simplicial set of X. We have the
following result.

1.1. Theorem. [Cegarra-Remedios, 2005, Joyal-Tierney, 2011] Let X be a bisimplicial
set. Then the comparison map dX → TX is a weak homotopy equivalence.

The first published proof of this result was given in [Cegarra-Remedios, 2005], with
the authors noting that this fact is stated without proof in [Cordier, 1987] where it is
attributed to Zisman (unpublished). When X is a bisimplicial group, a closely related
result was proven by Quillen [Quillen, 1966]. The proof of Theorem 1.1 given in [Cegarra-
Remedios, 2005] is unfortunately somewhat complicated, and so it is of interest to have
a simpler proof. One such proof, incorporating some ideas of Cisinski, is given by Joyal
and Tierney in their forthcoming book [Joyal-Tierney, 2011]. We shall give here a new
proof, which we think is fairly elementary — in particular it uses nothing more than the
fact that the diagonal functor d sends level-wise weak homotopy equivalences to weak
homotopy equivalences.

In the second part of the paper we present a simple construction of Kan’s simplicial
loop group functor as an application of Theorem 1.1. Recall that in [Kan, 1958], Kan
defined a functor G : S → sGp which is left adjoint to the classifying complex functor
W : sGp → S of Eilenberg and Mac Lane [Eilenberg-Mac Lane, 1953]. He was able to
show that, when X is reduced (i.e. when X is a simplicial set with only one vertex),
the principal GX bundle Xη on X induced by the unit map η : X → WGX has weakly
contractible total space. Kan’s proof of this last fact involves showing firstly that Xη

is simply connected, and secondly that Xη is acyclic in the sense that it has vanishing
reduced homology in all degrees.

We will show that both the construction of the functor G and the proof that the
unit map is a weak homotopy equivalence can be greatly illuminated and simplified by
considering a factorization (first noticed by Duskin) of W involving the functor T . In
fact we hasten to point out that this last section of the paper makes no great claim to
originality, we find it hard to believe that some of the results of this section were not
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known to Duskin, although we cannot find any evidence for this in his published papers.
We also point out that in their forthcoming book [Joyal-Tierney, 2011] and their paper
[Joyal-Tierney, 1996] Joyal and Tierney prove more general statements in the context
of simplicially enriched groupoids. Using Duskin’s factorization we will give a simple
formula for the left adjoint to W (see Proposition 5.3). In Theorem 5.8 we will apply
this formula to give a simple and direct proof of Kan’s theorem that the unit map of the
adjunction G a W is a weak homotopy equivalence whenever X is reduced. To the best
of our knowledge this proof is new (we note that an essential ingredient for the proof is
Theorem 1.1). We point out that in [Waldhausen, 1996] Waldhausen described another
approach to the construction of G, nevertheless we feel our approach (which proceeds
along different lines) is still of some interest.

2. The décalage comonad

We begin by recalling the definition and main properties of the décalage and total décalage
functors of Illusie [Illusie, 1972].

2.1. The décalage or shift functor Let ∆a denote the augmented simplex cat-
egory, in other words the simplex category ∆ together with the additional object [−1],
the empty set (the initial object of ∆a). We will write asC for the category [∆op

a ,C ] of
augmented simplicial objects in a category C , which we will assume to be complete and
cocomplete. Recall (see for example VII.5 of [Mac Lane, 1998]) that ∆a is a monoidal
category with unit [−1] under the operation of ordinal sum, which operation we will de-
note by σ (following Joyal and Tierney). If [m], [n] ∈ ∆a then σ([m], [n]) = [m + n + 1],
and the operation σ gives rise to a bifunctor σ : ∆a ×∆a → ∆a which sends a morphism

(α, β) : ([m], [n])→ ([m′], [n′])

in ∆a ×∆a to the morphism σ(α, β) : [m+ n+ 1]→ [m′ + n′ + 1] in ∆a defined by

σ(α, β)(i) =

{
α(i) if 0 ≤ i ≤ m

β(i−m− 1) +m′ + 1 if m+ 1 ≤ i ≤ m+ n+ 1.

(∆a, σ) is not a symmetric monoidal category — while σ([m], [n]) = σ([n], [m]), it need
not be the case that σ(α, β) = σ(β, α). The monoidal structure on ∆a allows us to define
a functor σ(−, [0]) : ∆a → ∆ which sends [n] ∈ ∆a to σ([n], [0]) = [n + 1] in ∆. We have
the following definition which we believe is originally due to Illusie.

2.2. Definition. [Illusie, 1972] Define Dec0 : sC → asC to be the functor given by
restriction along σ(−, [0]) : ∆a → ∆, so that if X is a simplicial object in C then Dec0X
is the augmented simplicial object given by

Dec0X([n]) = X([n+ 1]),
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whose face maps di : (Dec0X)n → (Dec0X)n−1 and degeneracy maps si : (Dec0X)n →
(Dec0X)n+1 for i = 0, 1, . . . , n are given by di : Xn+1 → Xn and si : Xn+1 → Xn+2 respec-
tively. The augmentation (Dec0X)0 → X0 is given by d0 : X1 → X0.

Dec0X is obtained from X by forgetting the top face and degeneracy map at each
level and re-indexing by shifting degrees up by one. Thus the augmented simplicial object
Dec0X can be pictured as

X0 X1
d0oo

s0 //
X2

d0oo
d1oo

s0 //
s1 //

X3

d0oo
d1oo
d2oo · · ·

Note that the simplicial identity d0d1 = d0d0 shows that d0 : X1 → X0 is an augmentation.
There is an analogous functor Dec0 : sC → asC given by restriction along the functor

σ([0],−) : ∆a → ∆ — thus Dec0 is the functor which forgets the bottom face and degen-
eracy map at each level. The functors Dec0 and Dec0 are usually called the décalage
or shifting functors. More generally we can define functors Decn : sC → asC and
Decn : sC → asC induced by restriction along σ(−, [n]) : ∆a → ∆ and σ([n],−) : ∆a → ∆
respectively.

The relation between DecnX and DecnX can be easily understood through the device
of the opposite simplicial object. Let τ : ∆ → ∆ denote the automorphism of ∆ which
reverses the order of each ordinal [n], or equivalently sends the category [n] to its opposite
category. Note that τ(σ([m], [n])) = σ(τ([n]), τ([m])) for any [m], [n] ∈ ∆. If X is a
simplicial object then we write Xo for the simplicial object obtained by precomposing X
with the functor τ op. The simplicial object Xo is called the opposite simplicial object of
X in [Joyal, 2008]. Note that (Dec0X)o = Dec0(Xo) by the following calculation:

(Dec0X)o([n]) = Dec0X(τ([n])) = X(σ([0], τ([n]))) = X(σ(τ([n]), [0])),

since τ([0]) = [0]. It follows that (DecnX)o = Decn(Xo) for any n ≥ 0.
There are canonical comonads underlying the functors Dec0 and Dec0, when these

functors are thought of as endofunctors on sC by forgetting augmentations. As is well
known, [0] determines a monoid in ∆ whose multiplication is given by the canonical map
[1] → [0]. This monoid is universal in a certain precise sense (see Proposition 5.1 in
Chapter VII of [Mac Lane, 1998]).

The monoid [0] determines a corresponding comonoid in ∆op which in turn induces
by composition the two comonads Dec0 and Dec0 in sC . The counit of the comonad
Dec0 is induced by the natural transformation [n] → σ([0], [n]) and hence is given on a
simplicial object X by the simplicial map Dec0X → X which in degree n is the last face
map dn+1 : Xn+1 → Xn.

Likewise, the counit of the comonad Dec0 is induced by the natural transformation
[n] → σ([n], [0]) and hence is given on a simplicial object X by the simplicial map
Dec0X → X which in degree n is the first face map d0 : Xn+1 → Xn.
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When Dec0 and Dec0 are regarded as endofunctors on sC , we see that the functors
Decn and Decn (also thought of as endofunctors on sC ) are given by Decn = (Dec0)n+1

and Decn = (Dec0)n+1 respectively.

2.3. Contractibility of the décalage functor It is an important fact that Dec0X
and Dec0X are not just augmented simplicial objects, they are actually contractible aug-
mented simplicial objects in the following sense.

Recall that the augmentation map ε : X → X−1 of an augmented simplicial object
X is a deformation retraction if there exists a simplicial map s : X−1 → X (with X−1

regarded as a constant simplicial object) which is a section of the projection ε and is such
that sε is homotopic to the identity map on X.

A sufficient condition for sε to be homotopic to the identity map onX is that there exist
for each n ≥ −1, maps sn+1 : Xn → Xn+1 with s0 = s, which act as ‘extra degeneracies
on the right’ in the sense that the following identities hold:

disn = sn−1di for 0 ≤ i < n, (1a)

dnsn = id, (1b)

sisn = sn+1si for 0 ≤ i ≤ n, (1c)

The following definition is standard.

2.4. Definition. Let ε : X → X−1 be an augmented simplicial object in C . By a con-
traction of X we will mean the data of the section s : X−1 → X together with the extra
degeneracies sn+1 as described above. We will say that X is contractible if it has such a
contraction.

A map of contractible augmented simplicial objects is a map of the underlying aug-
mented simplicial objects which preserves the corresponding sections s and the extra
degeneracies (as in [Duskin, 1975] we will sometimes say that such a map is coherent).
We will write acsC for the category of contractible augmented simplicial objects and
coherent maps.

Given the data of such a collection of maps sn+1 as above, we define maps hi : Xn →
Xn+1 by the formula

hi = sn−i0 sn+1d
n−i
0 .

It is easy to check that the maps hi satisfy the conditions (i)–(iii) in Definition 5.1 of
[May, 1967]. The hi then piece together to define a homotopy h : X ⊗ ∆[1] → X from
sε to the identity on X, analogous to Proposition 6.2 in [May, 1967]. Here, if K is a
simplicial set, X ⊗ K denotes the tensor for the usual structure of sC as a simplicially
enriched category, so that X ⊗K has n-simplices given by

(X ⊗K)n =
∐
k∈Kn

Xn. (2)
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In degree n, the map h : X ⊗∆[1]→ X is given by di+1hi : (Xn)α → Xn on the summand
(Xn)α of (X ⊗∆[1])n corresponding to the map α : [n]→ [1] determined by α−1(0) = [i].
We summarize this discussion in the following lemma.

2.5. Lemma. Let ε : X → X−1 be a contractible augmented simplicial object in C . Then
there is a homotopy h : X ⊗∆[1]→ X in sC between sε and 1X .

Clearly, the degeneracy sn+1 : Xn+1 → Xn+2 for n ≥ 0 equips Dec0X with an extra
degeneracy in the above sense. Therefore we have the following well known result.

2.6. Lemma. For any simplicial object X in C , the augmentation d0 : Dec0X → X0 is a
deformation retract. An analogous statement is true for Dec0X.

A prime example where simplicial objects with extra degeneracies appear is in the
construction of simplicial comonadic resolutions. Let (L, δ, ε) be a comonad on a category
C , where ε : L → 1 and δ : L → L2 denote the counit and the comultiplication of the
comonad respectively. If X is an object of C then, as is well known, L determines an
augmented simplicial object L∗X with LnX = Ln+1X for n ≥ −1, and whose face and
degeneracy maps are defined by

di = LiεLn−i, si = LiδLn−i−1

respectively. Let X be an object of C and suppose that σ : X → LX is a section of the
counit ε : LX → X. Define a sequence of maps sn+1 : LnX → Ln+1X, n ≥ −1 by

sn+1 = Ln+1σ : Ln+1X → Ln+2X. (3)

The following proposition gives a necessary and sufficient condition for this sequence of
maps to define a contraction of the augmented simplicial object L∗X (I am indebted to the
referee for informing me of both this proposition and its proof, correcting an incomplete
discussion in an earlier version of this paper).

2.7. Proposition. Let σ : X → LX be a section of the counit ε : LX → X. Then the
sequence of maps (3) is a contraction of the augmented simplicial object L∗X if and only
if (X, σ) is a coalgebra for the comonad L.

Proof. The sequence of maps sn+1 : LnX → Ln+1X above is a contraction of the aug-
mented simplicial object L∗X if and only if the equations (1) are satisfied. Of these
equations, (1a) and (1b) follow from the naturality of ε, while the equation sisn = sn+1si
of (1c) follows from the naturality of δ for 0 ≤ i < n. When i = n, the equation (1c)
amounts to the commutativity of the diagram

LnX
Lnσ //

Lnσ
��

Ln+1X

Ln+1σ
��

Ln+1X
Lnδ
// Ln+2X,
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which is assured by the commutativity of this same diagram in the case where n = 0, i.e.
by the commutativity of the diagram

X
σ //

σ

��

LX

Lσ
��

LX
δX
// L2X.

The commutativity of this diagram is in turn exactly the condition that σ is coassociative,
in other words that (X, σ) is a coalgebra for (L, ε, δ). Thus the condition that (X, σ) is a
coalgebra is both a necessary and a sufficient one, and the proposition follows.

Lemma 2.5 immediately yields the following corollary.

2.8. Corollary. Suppose that (X, σ) is a coalgebra for the comonad L. Then there is
a homotopy h : L∗X ⊗∆[1]→ L∗X in sC between σε and the identity on L∗X.

3. The total décalage and the total simplicial set functors

In this section we will recall some of the main properties of Illusie’s total décalage functor
Dec [Illusie, 1972] and its right adjoint, the Artin-Mazur total simplicial set functor [Artin-
Mazur, 1966]. For more details the reader should refer to the excellent discussion of these
functors and their properties in the papers [Cegarra-Remedios, 2005, Cegarra-Remedios,
2007]. In this section we will mainly be interested in the case where C = Set. We begin
therefore by explaining our notations and conventions for bisimplicial sets (which follows
closely the presentation in [Joyal-Tierney, 2007]).

We write SS for the category of bisimplicial sets; if X ∈ SS is a bisimplicial set then
we will say that Xm,n = X([m], [n]) has horizontal degree m and vertical degree n.We
say a simplicial space is a simplicial object in S. There are two ways in which we can
regard a bisimplicial set X as a simplicial space. On the one hand, we can define for
every m ≥ 0 the simplicial set Xm∗ whose set of n-simplices is (Xm∗)n := Xm,n. On the
other hand we can define for every n ≥ 0 the simplicial set X∗n whose set of m-simplices
is (X∗n)m := Xm,n. Thus we may regard X as a horizontal simplicial object in S whose
columns are the simplicial sets Xm∗, or we may regard X as a vertical simplicial object
in S whose rows are the simplicial sets X∗n. With the conventions above understood, we
may sometimes use a shorthand for the columns Xm∗ by putting Xm := Xm∗.

Each of these two ways of viewing a bisimplicial set as a simplicial space leads to a
simplicial enrichment of SS, using the canonical simplicial enrichment of sS mentioned
earlier. If we view bisimplicial sets as horizontal simplicial objects in S, then SS = sS is
equipped with the structure of a simplicial enriched category for which the tensor X⊗1K,
for X a bisimplicial set and K ∈ S, has as its columns the simplicial sets given by (see (2))

(X ⊗1 K)m = (X ⊗1 K)m∗ =
∐
k∈Km

Xm = Xm ×Km,
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so that the set of (m,n)-bisimplices of X ⊗1 K is (X ⊗1 K)m,n = Xm,n ×Km. In other
words,

X ⊗1 K = X × p∗1K,
where p1 : ∆×∆→ ∆ denotes projection onto the first factor. The simplicial enrichment
is then defined by the formula

Hom1(X, Y ) = (p1)∗(Y
X),

where (p1)∗ denotes the right adjoint to (p1)∗; observe that since i1 : ∆→ ∆×∆ defined
by i1([n]) = ([n], [0]) is right adjoint to p1, it follows that (p1)∗ : SS → S is the functor
which sends a bisimplicial set to the simplicial set which is its first row.

Similarly, if we view X ∈ SS as a vertical simplicial object, then the tensor X ⊗2 K
is given by

X ⊗2 K = X × p∗2K
where p2 : ∆×∆ → ∆ denotes projection onto the second factor. The simplicial enrich-
ment is defined by the formula

Hom2(X, Y ) = (p2)∗(Y
X),

where (p2)∗ denotes the right adjoint to p∗2, i.e. the functor (p2)∗ : SS→ S which sends a
bisimplicial set to its first column.

We write A�B for the external product of simplicial sets A and B; this is the bisimpli-
cial set with (A�B)m,n = Am×Bn. In particular we write ∆[m,n] := ∆[m]�∆[n] for the
prism of shape (m,n). Observe that p∗1A = A� 1, p∗2B = 1�B and p∗1A× p∗2B = A�B.

Following Joyal we will say that a row augmentation of a bisimplicial set X by a
simplicial set A is a map X → p∗1A in SS; thus a row augmentation is the same thing
as a map of bisimplicial sets X → A � 1. Similarly a column augmentation of X by a
simplicial set B is a map X → p∗2B in SS; thus a column augmentation is the same thing
as a map of bisimplicial sets X → 1 �B. A double augmentation is a map of bisimplicial
sets X → A�B.

The category SS has two intervals, the horizontal interval ∆[1, 0] and the vertical
interval ∆[0, 1]. Accordingly, there are two notions of homotopy in SS: a horizontal
homotopy is a map X ×∆[1, 0]→ Y and a vertical homotopy is a map X ×∆[0, 1]→ Y .
Note that a vertical homotopy X × ∆[0, 1] → Y induces an ordinary homotopy on the
columns of X and Y , while a horizontal homotopy X ×∆[1, 0]→ Y induces an ordinary
homotopy on the rows of X and Y .

With these conventions understood we can describe Illusie’s total décalage functor [Il-
lusie, 1972]. The simplicial comonadic resolution of Dec0 gives rise to a functor Dec: S→
sS which sends a simplicial set X to the simplicial space DecX which in degree n is the
(horizontal) simplicial set

DecnX = (Dec0)n+1X.

Here we are thinking of DecX as a vertical simplicial object in S with horizontal sim-
plicial sets. The set of (m,n)-bisimplices of the bisimplicial set DecX is (DecX)m,n =
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Xm+n+1. The horizontal and vertical face operators dhi : (DecX)m+1,n → (DecX)m,n
and dvi : (DecX)m,n+1 → (DecX)m,n are given by dhi = di : Xm+n+2 → Xm+n+1 and
dvi = dm+i+1 : Xm+n+2 → Xm+n+1 respectively. There are similar formulas for the hori-
zontal and vertical degeneracy operators. Note that if we regard the bisimplicial set DecX
as a horizontal simplicial object with vertical simplicial sets then DecX is the simplicial
comonadic resolution of X by Dec0. The following Lemma is straightforward.

3.1. Lemma. The functor Dec: S → SS is given by restriction along the ordinal sum
map σ : ∆×∆→ ∆, so that

DecX([m], [n]) = X(σ([m], [n])) = Xn+m+1

for X ∈ S.

If X is a simplicial set then the bisimplicial set DecX is called the total décalage of
X. Note that in fact DecX comes equipped with a natural double augmentation in the
above sense. To see this note that the n-th row of DecX is the simplicial set DecnX which
has the augmentation d0 : X1+n → Xn. These augmentations assemble together to define
the column augmentation εc : DecX → 1 �X of the bisimplicial set X. Dually, the m-th
column of DecX is the simplicial set DecmX which has the augmentation dm+1 : Xm+1 →
Xm; these augmentations assemble together to define the row augmentation εr : DecX →
X � 1 of the bisimplicial set DecX.

I am indebted to the referee for the conceptual proof of the following lemma, and for
a suggestion on how to streamline the statement of the lemma.

3.2. Lemma. Let X be a simplicial set. Then the map εr : DecX → X�1 is a column-wise
homotopy equivalence and the map εc : DecX → 1 � X is a row-wise homotopy equiva-
lence. Moreover, εr is a vertical homotopy equivalence and εc is a horizontal homotopy
equivalence in the case where X = ∆[n].

Proof. Observe that the n-th row of εc is the augmentation d0 : DecnX → Xn and that
DecnX = Dec0(Dec0)nX; therefore Lemma 2.5 applies to show that d0 : DecnX → Xn is
a homotopy equivalence. The dual statement for εr follows immediately.

We now prove the more refined statement in the case where X = ∆[n]: let us show that
εr : DecX → X � 1 is a vertical homotopy equivalence in this case. As noted earlier, the
functor L = Dec0 : S→ S has the structure of a comonad and the associated augmented
simplicial object L∗∆[n] is the augmented simplicial object εr : Dec∆[n]→ ∆[n] � 1. By
Proposition 2.7, it suffices to show that ∆[n] has the structure of a coalgebra over the
comonad L, it will then follow from Corollary 2.8 that the augmentation εr : L∗∆[n] →
∆[n] is a vertical homotopy equivalence. But the functor L = Dec0 has a left adjoint
S : S→ S which is the left Kan extension of the functor σ(−, [0]) : ∆→ ∆. In particular,
we have S∆[n] = ∆[n+ 1] for every n ≥ 0. The functor S has the structure of a monad,
since Dec0 has the structure of a comonad. Therefore it suffices to show that ∆[n] has
the structure of an algebra over the monad S. The unit of the monad S is the inclusion
dn+1 : ∆[n] → S∆[n] and its multiplication is the map sn+1 : S2∆[n] → S∆[n]; it is then
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easy to verify that sn : S∆[n] → ∆[n] is a S-algebra structure on ∆[n]. The proof that
εc : L∗∆[n]→ ∆[n] is a horizontal homotopy equivalence is similar.

From the description of Dec in Lemma 3.1 above it is clear that Dec has both a left and
right adjoint. The left adjoint of Dec is related to the notion of the join of simplicial sets.
The right adjoint to Dec is denoted T : SS→ S, it was introduced in [Artin-Mazur, 1966]
where it was called the total simplicial set functor. It is also known as the Artin-Mazur
codiagonal. It has the following explicit description: if X is a bisimplicial set then the set
(TX)n of n-simplices of the simplicial set TX is given by the equalizer of the diagram

(TX)n →
n∏
i=0

Xi,n−i ⇒
n−1∏
i=0

Xi,n−i−1 (4)

where the components of the two maps are defined by the composites

n∏
i=0

Xi,n−i
pi→ Xi,n−i

dv0→ Xi,n−i−1

and
n∏
i=0

Xi,n−i
pi+1→ Xi+1,n−i−1

dhi+1→ Xi,n−i−1.

The face maps di : (TX)n → (TX)n−1 are given by

di = (dvi p0, d
v
i−1p1, . . . , d

v
1pi−1, d

h
i pi+1, d

h
i pi+2, . . . , d

h
i pn)

while the degeneracy maps si : (TX)n → (TX)n+1 are given by

si = (svi p0, s
v
i−1p1, . . . , s

v
0pi, s

h
i pi+1, . . . , s

h
i pn).

The unit map η : X → TDecX of the adjunction Dec a T is given by the map

x 7→ (s0(x), s1(x), . . . , sn(x)) (5)

in degree n (see [Cegarra-Remedios, 2005]). In general it is rather difficult to give a
simple description of the simplicial set TX for an arbitrary bisimplicial set X. When X
is constant however, we have the following well-known result.

3.3. Lemma. Let X be a simplicial set. Then there are isomorphisms Tp∗1X = Tp∗2X =
X, natural in X.

Proof. Observe that the functor Tp∗1 is right adjoint to the functor π0Dec. Lemma 3.2
implies that the functor π0Dec is the identity on S, from which it follows that there is an
isomorphism Tp∗1X = X, natural in X. The other statement is proven in an analogous
fashion.
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Since T∆[1, 0] = Tp∗1∆[1] = ∆[1] we immediately obtain the following result (which
was also pointed out to me by the referee).

3.4. Proposition. The functor T : SS → S takes a horizontal (respectively vertical)
homotopy of bisimplicial maps to an ordinary homotopy of simplicial maps.

4. The generalized Eilenberg-Zilber theorem for simplicial sets

Our goal in this section is to present an elementary proof of Theorem 1.1. Recall that
this theorem states that there is a weak equivalence

dX → TX (6)

of simplicial sets, natural in X. As mentioned earlier, the proof of Theorem 1.1 in
[Cegarra-Remedios, 2005] is rather lengthy, and so it is of interest to have a simpler
approach. We will describe here another proof, which we think is fairly elementary (as
stated in the Introduction, the forthcoming book [Joyal-Tierney, 2011] of Joyal and Tier-
ney contains another proof, which proceeds along different lines).

We begin by describing the map (6). This map is induced by the map of cosimplicial
bisimplicial sets

(εr, εc) : Dec∆→ (∆ � ∆)δ, (7)

i.e. the map which in degree n is the double augmentation (εr, εc) : Dec∆[n]→ ∆[n]�∆[n].
Since dXn = SS(∆[n, n], X) = SS(∆[n] � ∆[n], X) and TXn = SS(Dec∆[n], X) we see
that (7) does give rise to a map dX → TX in this way. Note that it is possible to describe
the map dX → TX much more explicitly at the level of simplices (see [Cegarra-Remedios,
2005]) but we will not need this.

The proof of Theorem 1.1 that we shall give essentially boils down to the well known
fact that the diagonal functor d : SS → S sends level-wise weak homotopy equivalences
of bisimplicial sets to weak homotopy equivalences of simplicial sets. In other words,
if f : X → Y is a map in SS such that the map f∗n : X∗n → Y∗n on n-th rows is a
weak homotopy equivalence for all n ≥ 0, then df : dX → dY is also a weak homotopy
equivalence. Alternatively, if the map fm∗ : Xm∗ → Ym∗ on the m-th columns is a weak
homotopy equivalence for all m ≥ 0, then df : dX → dY is a weak homotopy equivalence.

Recall that d has a right adjoint d∗ : S→ SS (see for instance [Goerss-Jardine, 1999]
page 222) defined by the formula

(d∗X)m,n = S(∆[m]×∆[n], X). (8)

Using the fact that the diagonal d sends level-wise weak equivalences to weak equivalences
one can prove (see for instance [Moerdijk, 1989]) that the counit ε : dd∗K → K of this
adjunction is a weak homotopy equivalence for any simplicial set K, and so in particular
dd∗TX → TX is a weak homotopy equivalence for any bisimplicial set X. Therefore,
since we can factor (6) as

dX → dd∗TX → TX,

we see that to prove Theorem 1.1 it suffices to prove the following proposition.
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4.1. Proposition. The map dX → dd∗TX is a weak homotopy equivalence for any
bisimplicial set X.

I am very grateful to the referee for several helpful suggestions which have helped to
simplify the following proof.

Proof. First observe that, by definition, for any bisimplicial set X we have

(d∗TX)m,n = SS(Dec d∆[m,n], X)

= SS(Dec∆[m]×Dec∆[n], X).

Using the observation that the map (7) factors as

Dec∆→ Dec(∆×∆)δ → (∆ � ∆)δ,

where the map ∆ → (∆ ×∆)δ is the canonical map inducing the counit dd∗ → 1 of the
adjunction d a d∗, we see that the natural map X → d∗TX is induced by the map of
bicosimplicial bisimplicial sets

Dec ∆×Dec ∆
1×εc−−→ Dec ∆× p∗2∆

εr×1−−→ ∆ � ∆.

It follows therefore that the natural map X → d∗TX factorizes as

X
α−→ RX

β−→ d∗TX,

where R : SS→ SS denotes the functor which sends a bisimplicial set X to the bisimplicial
set

RX = SS(Dec∆× p∗2∆, X).

We will show that the map α is a column-wise homotopy equivalence and that the map
β is a row-wise homotopy equivalence; it will then follow that X → d∗TX is a diagonal
weak homotopy equivalence, as we claim.

We begin by examining the rows of the bisimplicial set RX: for any m,n ≥ 0 we have

(RX)m,n = SS(Dec∆[m]× p∗2∆[n], X)

= SS(Dec∆[m], Xp∗2∆[n])

= S(∆[m], T (Xp∗2∆[n])),

from which it follows that the n-th row of RX is the simplicial set T (Xp∗2∆[n]). Likewise
we have

(d∗TX)m,n = SS(Dec∆[m]×Dec∆[n], X)

= SS(Dec∆[m], XDec∆[n])

= S(∆[m], T (XDec∆[n])),
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from which it follows that the n-th row of d∗TX is the simplicial set T (XDec∆[n]). More-
over the n-th row of the map β is plainly the map T (Xεc) : T (Xp∗2∆[n]) → T (XDec∆[n]),
where εc : Dec∆[n] → p∗2∆[n] is the column augmentation of Dec∆[n]. We have seen in
Lemma 3.2 that the map εc is a horizontal homotopy equivalence. It follows, since SS is
cartesian closed, that Xεc is a horizontal homotopy equivalence and hence that T (Xεc) is
a homotopy equivalence by Proposition 3.4.

Next we examine the columns of the bisimplicial set RX: for any m,n ≥ 0 we have

(RX)m,n = SS(Dec∆[m]× p∗2∆[n], X)

= SS(p∗2∆[n], XDec∆[m])

= S(∆[n], (p2)∗X
Dec∆[m]),

from which it follows that m-th column of RX is the simplicial set (p2)∗X
Dec∆[m]. Writing

∆[m,n] = p∗1∆[m] × p∗2∆[n] and using adjointness shows that the m-th column of X is
the simplicial set (p2)∗X

p∗1∆[m] and that the m-th column of the map α is the map

(p2)∗X
εr : (p2)∗X

p∗1∆[m] → (p2)∗X
Dec∆[m],

where εr : Dec∆[m] → p∗1∆[m] denotes the row augmentation of Dec∆[m]. Lemma 3.2
shows that εr is a vertical homotopy equivalence; it then follows that Xεr is a vertical
homotopy equivalence and hence that (p2)∗X

εr is a homotopy equivalence (recall that
(p2)∗ : SS→ S is the functor which sends a bisimplicial set to its first column).

5. Kan’s simplicial loop group construction revisited

The classifying complex WG of a simplicial group G was introduced in [Eilenberg-Mac
Lane, 1953] (see Section 17 of that paper). We recall the definition.

5.1. Definition. [Eilenberg-Mac Lane, 1953] Let G be a simplicial group. Then WG is
the simplicial set with a single vertex, and whose set of n-simplices, n ≥ 1, is given by

(WG)n = Gn−1 ×Gn−2 × · · · ×G0.

The face and degeneracy maps of WG are given by the following formulas:

di(gn−1, . . . , g0) =

{
(gn−2, . . . , g0) if i = 0,

(di(gn−1), . . . , d1(gn−i+1), gn−i−1d0(gn−i), gn−i−2, . . . , g0) if 1 ≤ i ≤ n

and

si(gn−1, . . . , g0) =

{
(1, gn−1, . . . , g0) if i = 0,

(si−1(gn−1), . . . , s0(gn−i), 1, gn−i−1, . . . , g0) if 1 ≤ i ≤ n.
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The motivation for the above formula for WG is perhaps not so clear. We will show
that there is a very natural ‘explanation’ for the above formula in terms of the décalage
functors. For this, we first need some background on principal twisted cartesian products.

Recall that a principal twisted cartesian product (PTCP) with structure group G con-
sists of a simplicial set P (the total space) and a simplicial set M (the base space) together
with a map π : P → M and an action of G on P which is principal in the sense that the
diagram

P ×G
p1
��

// P

π

��
P π

//M

is a pullback, where p1 denotes projection onto the first factor, the top arrow is the action
of G on P , and π denotes the projection to the base. Moreover, π : P → M is required
to have a pseudo-cross section (on the left), i.e. a family of sections σn of the maps
πn : Pn → Mn for all n ≥ 0 such that σn+1si = siσn for all 0 ≤ i ≤ n and diσn = σn−1di
for all 0 < i ≤ n.

The simplicial set WG is a classifying space for PTCPs with structure group G in the
sense that there is a universal PTCP WG with base space WG with the property that
every PTCP P on M with structure group G is induced by pullback from WG → WG
along a map M → WG, the classifying map of P .

In [Duskin, 1975] Duskin explained how this classical notion of pseudo-cross section
has a convenient reformulation in terms of Dec0. In this reformulation, σ is required to be
a section of the induced map Dec0π : Dec0P → Dec0M in the category acS of contractible
augmented simplicial sets and coherent maps (see Section 2.3).

Since G acts principally on P , there is a canonical map of bisimplicial sets

cosk0P → NG,

where NG denotes the bisimplicial set which, when viewed as a (vertical) simplicial object
in S, has as its object of n-simplices the (horizontal) simplicial set NGn, i.e. the nerve of
the group Gn. Also here cosk0P denotes the 0-coskeleton (or Čech nerve) of P , viewed
as an object in S/M . Therefore, cosk0P has as its object of n-simplices the (horizontal)
simplicial set Č(Pn) which is the Čech nerve of the map πn : Pn → Mn. In degree n the
canonical map cosk0 → NG is just the canonical map Č(Pn) → NGn arising from the
principal action of Gn on Pn.

One of the advantages of this reformulation of the notion of PTCP is that it allows for
a very simple and conceptual description of the classifying map of P (we find it hard to
believe that this description was not known to Duskin). We have a commutative diagram

Dec0P

��

// P

��
Dec0M //M.
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Composing the pseudo-cross section s : Dec0M → Dec0P with the map Dec0P → P gives
rise to a map Dec0M → P over M which extends canonically to a simplicial map

DecM → cosk0P (9)

between simplicial objects in S/M . Here Dec0M is thought of as the vertical simplicial set
of 0-simplices of the bisimplicial set DecM . We can compose (9) with the canonical map
cosk0P → NG to obtain a map DecM → NG. The adjoint of the map DecM → NG is
a map

M → TNG

which serves as a classifying map for P . One can go further and show that there is a
canonical PTCP with base space TNG from which P arises via pullback along the above
map. The next result shows that TNG is precisely the classifying complex WG.

5.2. Lemma. [Duskin] The classifying complex functor W factors as

W = TN,

so that WG = TNG for any simplicial group G.

This factorization of W is due as far as we know to Duskin, who observed that it
persists when simplicial groups are replaced by simplicially enriched groupoids, i.e. the
functor W : SGpd→ S introduced by Dwyer and Kan in [Dwyer-Kan, 1984] also factors
as W = TN (this last observation also appears in the MSc thesis of Ehlers [Ehlers, 1991]).

Proof. This is an essentially straightforward computation, so we will just give a sketch
of the details. To an n-simplex of WG consisting of a tuple

(gn−1, gn−2, . . . , g0)

as above, we associate the element (x0, x1, . . . , xn) of TNG, where x0 = 1 and

xi = (di−1
0 (gn−1), di−2

0 (gn−2), . . . , d0(gn−i+1), gn−i) ∈ (NGn−i)i

for i ≥ 1. This sets up a bijection (WG)n = (TNG)n which respects face and degeneracy
maps.

It is well known that WG is weakly equivalent to the simplicial set dNG, obtained
by applying the diagonal functor to the degree-wise nerve NG of the simplicial group G.
Of course this can be seen as an instance of Theorem 1.1 in light of the identification
WG = TNG, but there are easier proofs, see for example [Jardine-Luo, 2006]. In fact,
WG is simplicially homotopy equivalent to dNG, the point being that both WG and dNG
are fibrant (a proof of the latter fact can be found in [Joyal-Tierney, 1996]). In [Thomas,
2008] it is shown via explicit calculation that the map f : dNG→ WG defined by

f(h1, . . . , hn) = (d0(h1), . . . , dn0 (hn))
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for hi ∈ Gn exhibits dNG as a deformation retract of WG. There is a further relationship
between dNG and WG (see [Berger-Huebschmann, 1998]): after passing to geometric
realizations there is an isomorphism of spaces |WG| = |dNG|. It is not clear that this
isomorphism is induced by a simplicial map however. It would be interesting to give a
more conceptual proof of the isomorphism from [Berger-Huebschmann, 1998].

There are several advantages of the description of W in Lemma 5.2 over the traditional
description. One such advantage of the present description is that it becomes manifestly
clear that W has a left adjoint since both of the functors N and T do.

5.3. Proposition. A left adjoint for the functor W = TN is given by the functor

G = π1RDec: S→ sGp,

where R : SS→ sS0 is the left adjoint of the inclusion sS0 ⊂ SS. If X is a simplicial set,
then the value of G on X is the simplicial group GX defined by

[n] 7→ π1(DecnX/Xn+1).

Proof. Observe that the functor R is induced by the left adjoint of the inclusion S0 ⊂ S,
i.e. the functor which sends a simplicial set X to the reduced simplicial set X/sk0X.
To describe RX for X a bisimplicial set whose n-th row is X∗n, we let sk0X denote the
bisimplicial set whose n-th row is sk0X∗n, i.e. the constant simplicial set [m] 7→ X0,n. Then
RX = X/sk0X so that the n-th row of RX is (RX)∗n = X∗n/X0,n. The proposition then
follows from the fact that sk0DecnX is the constant simplicial set Xn+1.

Recall that a simplicial group G is said to be a loop group for a simplicial set X if there
is a PTCP P on X with structure group G such that P is weakly contractible. In [Kan,
1958] Kan showed that the left adjoint G : S → sGp of the classifying complex functor
W had the property that G(X) was a loop group for any reduced simplicial set X. We
will shortly give a simplified proof of his theorem by exploiting the description of G given
in Proposition 5.3 above. Before we do this however we need the following lemmas.

5.4. Lemma. Suppose that X is a bisimplicial set whose first column is weakly con-
tractible, i.e. the simplicial set [n] 7→ X0,n is weakly contractible. Then X → RX is
a column-wise weak equivalence.

Proof. For every m ≥ 0, the vertical simplicial set (sk0X)m is weakly contractible and
so Xm → Xm/(sk0X)m is a weak equivalence of vertical simplicial sets for every m ≥ 0.

5.5. Lemma. Let X be a CW complex whose path components are all contractible. Then
X/X0 is a K(π, 1), where X0 denotes the set of vertices of X.

Proof. X/X0 can be written as a wedge∨
α∈π0(X)

Xα/X
0
α,
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where Xα denote the path components of X. Therefore without loss of generality we can
assume that X is a path connected, pointed CW complex. We then have to show that
X/X0 is a K(π, 1). Choose a strong deformation retraction of X onto a maximal tree T
in the 1-skeleton X1 of X (see for example I Theorem 5.9 of [Whitehead, 1978]). Then
T/X0 is a deformation retract of X/X0 and so X/X0 is a wedge of circles, from which
the result follows.

5.6. Corollary. For any simplicial set X, DecnX/Xn+1 has the weak homotopy type
of a K(π, 1).

Proof. Since DecnX = Dec0Decn−1X, it is enough to prove this for Dec0X/X1. However
this follows immediately from the Lemma since Dec0X deformation retracts onto X0 (see
Lemma 2.6).

With a little extra effort one can use this corollary to construct an explicit isomorphism
between GX and the simplicial group described by Kan in [Kan, 1958], however we will
not do this here.

We can now give a simple proof of Kan’s result from [Kan, 1958] that X → WGX is a
weak homotopy equivalence when X is reduced. We will need the following property of the
total simplicial set functor T : as observed in [Cegarra-Remedios, 2005], since d sends level-
wise weak homotopy equivalences of bisimplicial sets to weak homotopy equivalences of
simplicial sets, Theorem 1.1 implies that this property is inherited by T . As an immediate
consequence of this observation, Cegarra and Remedios prove the following:

5.7. Lemma. [Cegarra-Remedios, 2005] For any simplicial set X, the unit map X →
TDecX is a weak homotopy equivalence.

We briefly review the proof of this result from [Cegarra-Remedios, 2005].

Proof. Cegarra and Remedios observe that the composite of the unit X → TDecX with
the map TDecX → Tp∗1X is the identity on X, in light of the identification Tp∗1X = X of
Lemma 3.3. Since T sends level-wise weak homotopy equivalences to weak equivalences
it follows that TDecX → X is a weak homotopy equivalence and hence the unit map is
a weak homotopy equivalence.

We are now ready to prove that GX is a loop group for X whenever X is reduced.

5.8. Theorem. [Kan, 1958] Let X be a reduced simplicial set. Then the unit map

η : X → WGX

is a weak homotopy equivalence. Hence GX is a loop group for X.

Proof. The units of the adjunctions Dec a T , R a U , and N0 a π1 give a factorization
of η

X → TDecX → TRDecX → TNπ1RDecX
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in S. The map X → TDecX is a weak homotopy equivalence by Lemma 5.7. The maps
TDecX → TRDecX and TRDecX → Tπ1RDecX are induced by the maps

DecX → RDecX and RDecX → Nπ1RDecX

in SS. We will show that both of these maps are level-wise weak homotopy equivalences.
The first map is a level-wise weak homotopy equivalence by Lemma 5.4, since sk0DecX =
Dec0X and X is reduced. Corollary 5.6 shows that RDecnX has the weak homotopy type
of a K(π, 1) and so the second map is also a level-wise weak homotopy equivalence.
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