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TANGLED CIRCUITS

R. ROSEBRUGH AND N. SABADINI AND R. F. C. WALTERS

Abstract. We consider commutative Frobenius algebras in braided strict monoidal
categories in the study of the circuits and communicating systems which occur in Com-
puter Science, including circuits in which the wires are tangled. We indicate also some
possible novel geometric interest in such algebras. For example, we show how Arm-
strong’s description ([1, 2]) of knot colourings and knot groups fit into this context.

1. Introduction

The theme of this paper is the use of commutative Frobenius algebras in braided strict
monoidal categories in the study of varieties of circuits and communicating systems which
occur in Computer Science, including circuits in which the wires are tangled. We indicate
also some possible novel geometric interest in such algebras.

The main definition of the paper is of tangled circuit diagrams. To make this definition
we need the notion of monoidal graph M (see Section 3). Then a tangled circuit diagram
(over M) is an arrow in the free braided strict monoidal category on M in which the
objects of M are equipped with commutative Frobenius algebra structures.

In order to study tangled circuit diagrams we define two different invariants for tangled
circuits, one which takes values in a tangled category of relations, and the other in a
tangled version of the category of spans. The second type of invariant includes as special
cases the colourings of knots, and knot groups (following work of Armstrong [1, 2]).

The authors and collaborators have previously studied similar systems using symmetric
monoidal categories ([8, 9, 10, 11, 17, 18, 19, 5]), with separable algebras instead of
Frobenius algebras. These earlier works did not take into consideration any tangling of
the wires. Further we will see in Section 6.5 the importance of considering Frobenius
algebras rather than the more special separable algebras even in the symmetric monoidal
case (no tangling).

There is a huge literature now relating monoidal categories and geometry beginning
with [7, 12, 16]. We mention just two further items of an expository nature useful to
reading this paper (apart from our own work mentioned above): the first [20] is a sur-
vey for computer scientists and others which discusses many additional structures but
strangely not Frobenius algebras, and ignores our work on separable algebras; the second
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[13] is an introductory book on the relation between Frobenius algebras and 2-dimensional
cobordism.

1.1. Acknowledgements. We would like to thank Aurelio Carboni and the anony-
mous referee for helpful suggestions.

2. Braided monoidal categories and Frobenius algebras

We review immediately the notions which are fundamental for the paper.

2.1. Definition.A braided strict monoidal category ([7]) is a category C with a functor,
called tensor, ⊗ : C × C // C and a “unit” object I together with a natural family of
isomorphisms τA,B : A⊗B //B ⊗ A called twist satisfying

1) ⊗ is associative and unitary on objects and arrows,

2) the following diagrams commute for objects A,B,C:

B1 :

A⊗B ⊗ C

B ⊗ A⊗ C
τ⊗1

$$J
JJ

JJ
JJ

JJ
JJ

JA⊗B ⊗ C B ⊗ C ⊗ Aτ // B ⊗ C ⊗ A

B ⊗ A⊗ C

::

1⊗τ
tt
tt
tt
tt
tt
tt

and

B2 :

A⊗B ⊗ C

A⊗ C ⊗B
1⊗τ

$$J
JJ

JJ
JJ

JJ
JJ

JA⊗B ⊗ C C ⊗ A⊗Bτ // C ⊗ A⊗B

A⊗ C ⊗B

::

τ⊗1
tt
tt
tt
tt
tt
tt

Among the consequences of the definition is the Yang-Baxter equation which reads:

(1⊗ τ)(τ ⊗ 1)(1⊗ τ) = (τ ⊗ 1)(1⊗ τ)(τ ⊗ 1) : A⊗B ⊗ C // C ⊗B ⊗ A

A compact and comprehensible formulation of such properties is provided by circuit
or“wire” diagrams like the one below for the Yang-Baxter equation. Composition is read
from left to right and ⊗ is vertical juxtaposition. The twist is expressed by the “positive
crossing” (top wire over bottom) and its inverse by the negative crossing.

=

Another consequence of the axioms above is that τA,I = τI,A = 1A : A // A.
The naturality of the twist τ leads to the following kind of equality of diagrams:
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R =
R

In the case when the codomain of the component is I, naturality is drawn, for example,
as:

R =
R

The following structures on an object in a braided monoidal category are fundamental
to describing circuits.

2.2. Definition. A Frobenius algebra in a braided monoidal category consists of an
object G and four arrows ∇ : G⊗G //G, ∆ : G //G⊗G, n : I //G and e : G // I
making (G,∇, e) a monoid, (G,∆, n) a comonoid and satisfying the equations

(1G ⊗∇)(∆⊗ 1G) = ∆∇ = (∇⊗ 1G)(1G ⊗∆) : G⊗G //G⊗G.

The Frobenius algebra is said to be commutative if in addition the following equations
involving the twist hold:

∇τ = ∇ : G⊗G //G

τ∆ = ∆ : G //G⊗G

3. Tangled circuit diagrams

We propose a definition for a category of tangled circuit diagrams, in which it is possible
to distinguish, for example, the first and second of the following circuit diagrams, while
the second and third are equal.

R R R

The main definitions are:
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3.1. Definition. A monoidal graph M consists of two sets M0 (objects or wires) and
M1 (arrows or components) and two functions dom : M1

// M∗
0 and cod : M1

// M∗
0

where M∗
0 is the free monoid on M0.

3.2. Definition. Given a monoidal graph M the free braided strict monoidal category
in which the objects of M are equipped with commutative Frobenius algebra structures
is called TCircM . Its arrows are called tangled circuit diagrams, or more briefly circuit
diagrams. In the case thatM has one object and no arrows we will denote TCircM simply
by TCirc.

The basic structure we require on an object is the following.

3.3. Definition. An object X in a braided strict monoidal category (with twist τ) is
called a tangle algebra when it is equipped with arrows η : I //X⊗X and ϵ : X⊗X //I
that satisfy the equations (where we write 1 for all identities):

(i) (ϵ⊗ 1)(1⊗ η) = 1 = (1⊗ ϵ)(η ⊗ 1)

(ii) ϵτ = ϵ and τη = η.

Axiom (i) says that X is a self-dual object. The reader can translate these into wire
diagrams. For example the wire diagram for (i) is:

= =

3.4. Theorem. If G is a commutative Frobenius algebra in a braided strict monoidal
category, then the object G together with the arrows ϵ = e∇, η = ∆n form a tangle
algebra.

Proof. Let G be a commutative Frobenius algebra in a braided monoidal category. It is
straightforward to give algebraic proofs for the tangle algebra axioms, but we remind the
reader that these can be more easily found using wire diagrams.

To see that (ϵ⊗ 1)(1⊗ η) = 1 notice that

(e⊗ 1)(∇⊗ 1)(1⊗∆)(1⊗ n) = (e⊗ 1)∆∇(1⊗ n) = 1 · 1 = 1.
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3.5. Definition. (Freyd-Yetter [6]) The category Tangle is the free braided strict mon-
oidal category generated by one object X, equipped with a tangle algebra structure.

The category Tangle has a geometric description [21] consonant with its name. In
that description the arrows from I to I are unoriented knots and links.

Given any object A of M it is straightforward to see that there is an appropriate
functor from Freyd and Yetter’s category Tangle to TCircM since a symmetric Frobenius
structure on A induces a tangle algebra structure on A. As a result any invariants of
tangled circuit diagrams provide also invariants for tangles and knots. We conjecture
that such functors Tangle // TCircM are faithful. We also conjecture that there is a
topological description of TCircM related to Freyd and Yetter’s description of Tangle
and to cobordisms.

3.6. Corollary. Given an object A of a monoidal graph M there is a unique braided
strict monoidal functor Tangle // TCircM taking the generating object to A and the
structure maps of Tangle to the corresponding structure maps of A in TCircM .

3.7. Remark. Notice that in TCircM the commutative Frobenius algebra structures on
the objects of M induce Frobenius algebra structures on each object (that is, on multiple
wires) of TCircM . However these Frobenius algebra structures are not commutative and
hence the corresponding η and ϵ do not satisfy the commutativity property (ii) of tangle
algebras.

3.8. Example equations. We now give some examples of equations between circuit
diagrams.

3.9. Proposition. If R : X × Y // I is an arrow in the monoidal graph M then

Rτ−1
Y,X = ϵX(1X ⊗R⊗ 1X)(η ⊗ 1Y ⊗ 1X) = RτX,Y

.

Proof. First a picture of the equations:

R =
R

R=

It is clearly sufficient to prove the first equation. Consider:
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(commutativity)

R

=

=

R

(naturality)

R

R

=

R

=

(naturality)

(duality)

3.10. Proposition. If R : I //X ⊗X and S : X ⊗X // I then Sτ 2nR = SR; that is,
R and S joined by an even number of twists is equal to R and S joined directly.

Several more equations provable in TCirc follow:

3.11. Example.

=

Proof.

(∇X ⊗ 1X)(1X ⊗ τX)(∆X ⊗ 1X) = (∇X ⊗ 1X)(τX ⊗ 1X)(1X ⊗ τX)(∆X ⊗ 1X)
(commutativity)

= (∇X ⊗ 1X)(1X ⊗∆X)τX (naturality)

= ∆X∇XτX (Frobenius)

= ∆X∇X (commutativity)
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3.12. Remark. The geometric intuition is that single wires are thick (but not ribbons)
and so can be deformed contracting segments. Notice however that it is not true in general
in TCirc that the separable axiom ∇∆ = 1 holds. That is, cycles of wires cannot be
contracted to a point.

3.13. Example.

=

H1

H2

U1

U2

H1

H2

U1

U2

3.14. Example. If R : I //X ⊗X and S : X ⊗X // I then

S(ϵ⊗ ϵ⊗ 1⊗ 1)(1⊗ τ−1 ⊗ τ−1 ⊗ 1)(1⊗ 1⊗ η ⊗ η)R = SττR = SR.

Diagrammatically:

R

S

= R S

Proof. We will give a diagrammatic proof. A more explicit picture of the left hand
expression is

R

S

By naturality this is equal to
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R

S

and hence to

R

S

This simplifies by duality to

R

S

It is now clear that repeating the argument using naturality and duality we obtain the
result.

3.15. Dirac’s belt trick. We claim that the following two circuits are equal inTCirc,
that is that a rotation through 4π of a component I //X3 is equal to the identity. We
suspect, but are unable to prove, that a rotation through 2π is not the identity.

R S

R S
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We give a sketch of a proof only. Using arguments similar to that of example 3.14 we
may prove that the first (twisted) circuit is equal to

S
R

Naturality gives equality to

S
R

and then to

R

S

which is equal to the untwisted circuit.

3.16. Remark. In a separate article [15] we investigate a group structure on the set of
blocked-braids on n-strings, that is, on circuits of the form SBR where R : I // Xn,
S : Xn // I and B is a braid on n strings.

4. A braided category of relations

The category Rel whose objects are sets, and whose arrows are relations is symmetric
monoidal with the tensor of sets being the cartesian product, and each object has a com-
mutative Frobenius (even separable) algebra structure provided by the diagonal functions
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and their reverse relations. In fact this was the motivating example for the introduction
in [3] of the Frobenius equations Equivalent axioms had been given earlier by Lawvere
in [14]. We describe here a modification of Rel which we call TRelG, which depends on
a group G, and which is braided rather than symmetric. We further describe a commu-
tative Frobenius algebra in TRelG which hence yields a representation of TCircM , and
this representation enables us to distinguish various circuits. We discuss distinguishing
closed circuits, a problem analogous to classifying knots, using TRelG.

4.1. The definition of TRelG. We will describe a braided modification of the cate-
gory Rel with a commutative Frobenius object.

4.2. Definition. Let G be a group. The objects of TRelG are the formal powers of G,
and the arrows from Gm to Gn are relations R from the set Gm to the set Gn satisfying:

1) if (x1, ..., xm)R(y1, ...yn) then also for all g in G
(gx1g

−1, ..., gxmg
−1)R(gy1g

−1, ..., gymg
−1),

2) if (x1, ..., xm)R(y1, ...yn) then x1...xm(y1...yn)
−1 ∈ Z(G) (the center of G).

Composition and identities are defined to be composition and identity of relations.

It is straightforward to verify that TRelG is a category; that is, that identities and
composites of relations satisfying 1) and 2) also satisfy 1) and 2). Notice also that if
the group G is abelian the conditions 1) and 2) of Definition 4.2 are trivially true. We
introduce some useful notation. Write x = (x1, ..., xm), y = (y1, ..., yn), and so on. Write
x = x1x2...xm and for g, h in G, as gh = hgh−1. For g in G write xg = (xg1, x

g
2, ..., x

g
m).

Thus, (x)g = xg, and of course for any x, y in Gm ×Gn, xgyg = (xy)g where we write xy
for (x1, ..., xm, y1, ..., yn).

4.3. Theorem. TRelG is a braided strict monoidal category with tensor defined on ob-
jects by Gm ⊗Gn = Gm+n and on arrows by product of relations. The twist

τm,n : Gm ⊗Gn //Gn ⊗Gm

is the functional relation
(x, y) ∼ (yx, x)

Proof. The monoidal structure of Rel restricts to TRelG since if R : Gm // Gt and
S : Gn // Gu satisfy 1) and 2) then so also does R × S. To see that R × S satisfies 1)
notice that if xRy and zSw then for any g ∈ G, xgRyg and zgSwg and hence (xz)g(R ×
S)(yw)g. To see that R × S satisfies 2) notice that, if x(y)−1 ∈ Z(G) and z(w)−1 ∈
Z(G), then xz(yw)−1 = (x)(z)((y)(w))−1 = (x)(z)(w)−1(y)−1. But z(w)−1 ∈ Z(G), so
(x)(z)(w)−1(y)−1 = (x)(y)−1(z)(w)−1 and the latter is in Z(G).

It is straightforward that τ satisfies properties 1) and 2). We show that B1 holds for
τ as defined. B2 is similar.
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First note that τm,n+p(xyz) = (yz)xx. Further (τm,n ⊗ 1Gp)(xyz) = yxxz while (1Gn ⊗
τn,p)(xyz) = xzyy. Thus

(1Gn ⊗ τn,p)(τm,n ⊗ 1Gp)(xyz) = (1Gn ⊗ τn,p)((yx)xz) = (yx)(zx)x = τm,n+p(xyz).

Lastly we need to show that τm,n : Gm×Gn //Gn×Gm is natural. This amounts to
two conditions. Consider R : Gp //Gm and S : Gq //Gn in TRelG. The first condition
for naturality is that

τm,n(R⊗ 1Gn) = (1Gn ⊗R)τp,n : Gp+n //Gn+m.

But xyzw (x ∈ Gp, y ∈ Gn, z ∈ Gn, w ∈ Gm) belongs to the left-hand side iff xRw and
z = yw, whereas xyzw belongs to the right-hand side iff xRw and z = yx. But condition
2) implies that if xRw then for any y it follows that yx = yw, and hence the result.

The second condition for naturality is that

τm,n(1Gm ⊗ S) = (S ⊗ 1Gm)τm,q : G
m+q //Gn+m.

But xyzw (x ∈ Gm, y ∈ Gq, z ∈ Gn, w ∈ Gm) belongs to the left-hand side iff x = w and
yS(zx

−1
), whereas xyzw belongs to the right-hand side iff x = w and yxSz. Condition 1)

implies the result.

4.4. Remark. Notice that a relation in TRelG from I to Gn is just a subset of Gn closed
under conjugation by elements of G and whose elements x satisfy x ∈ Z(g). Further a
relation from I to I is either the empty set or the one-point set.

4.5. The commutative Frobenius structure on G. The commutative Frobenius
structure on the object G of TRelG mentioned above is as follows: ∇ is a function, namely
the multiplication of the group G, n : I //G is also a function, the identity of the group;
∆ is the opposite relation of ∇, e is the opposite relation of n.

For the resulting tangle algebra structure on G, notice that η is the relation ∗ ∼
(x, x−1), and ϵ is the opposite relation of η.

It is straightforward to check that these relations belong to TRelG. We will just check
one of the Frobenius equations, namely that

(1G ⊗∇)(∆⊗ 1G) = ∆∇ : G×G //G×G.

If g, h, p, q are in G then (g, h, p, q) belongs to the left-hand relation if there is a r ∈ G
such that g = pr and rh = q. But this is the same as saying that p−1g = qh−1 or gh = pq
which is exactly the condition for (g, h, p, q) to be in the right-hand relation.

The Frobenius algebra structure on G in TRelG actually satisfies the additional sep-
arable axiom ∇∆ = 1.

4.6. Proving circuits distinct in TRelG. In this section we discuss the possibility
of distinguishing various tangled circuits by looking in TRelG. These include the analogue
of knots, or closed circuits, which are circuits from the one-point set I to I.
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4.7. Example. First an example where two circuits may be distinguished in TRelS3 ,
where S3 is the symmetric group on three letters. The circuits are:

R S R S

Proof. Let each of R and S be the set of conjugates of u = ((1, 2), (1, 3), (2, 3), (1, 3))
under the action of G (not G × G × G × G). Notice that (1, 2)(1, 3)(2, 3)(1, 3) is the
identity and so in the centre of G. The second circuit evaluates as the one point set.

The first circuit evaluates instead as the empty set since the braid ττ × 1G × 1G in
the first circuit relates ((1, 2), (1, 3), (2, 3), (1, 3)) in R to ((1, 3), (2, 3), (2, 3), (1, 3)) which
is not in the conjugacy class of u since the second and third elements are equated by the
braid.

Notice that a similar argument using the symmetric group S3 works for two compo-
nents joined by n > 3 wires, the first two of which are tangled.

4.8. Example. We will see that the first two circuits in Section 3 can also be shown
distinct in TRelS3 . It is clearly sufficient to show the following circuits distinct:

R R

Take R to be the following subset of (S3)
2× (S3)

2: the conjugacy class of the element
(((1, 2), (1, 3)), ((1, 2), (1, 3))). Then the first circuit evaluates as ∅ and the second as the
one-point set.

4.9. Example. Next an example of two circuits which we believe are distinct in TCircM
but are always equal in TRelG. For any group G, TRelG cannot distinguish them.

R S

R S
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Proof. Suppose (x, y, z) is an element of component R. Notice that since xyz is in the
centre xyz = yzx = zxy. The braid between the two components in the first circuit
relates (x, y, z) to

u = (xyx−1zxy−1x−1, xyx−1, z−1xz) = (xyx−1zxy−1x−1, z−1yz, z−1xz)

since yzx = zxy. Instead the braid in the second circuit relates (x, y, z) to

v = (z, z−1yz, z−1y−1xyz) = (z, xyx−1, x)

since z−1y−1xyz = z−1y−1yzx = x and zxy = yzx. But xzuz−1x−1 = v since

xzxyx−1zxy−1x−1z−1x−1 = xyzxx−1zxx−1z−1y−1x−1 = xyzy−1x−1 = z

and hence u and v are conjugate. Since S is closed under conjugacy, the element (x, y, z)
gives rise to an element of the first circuit if and only if it does for the second circuit.
Since this is true for any (x, y, z) the two circuits are equal in TRelG.

4.10. Example. In fact the last example is general for three wires. The circuit obtained
by composing in TRelG any two components R : I //G3 and S : G3 // I with a braiding
in between depends only on the permutation, not the braiding.

Proof. Suppose (x, y, z) ∈ R then xyz ∈ Z(G) and hence xyx−1 = z−1yz, yzy−1 = x−1zx
and zxz−1 = y−1xy. Consider two composites R composed with τ ⊗ 1 and R composed
with τ−1 ⊗ 1. Consider (x, y, z) ∈ R. We will show that these two composites associate
(x, y, z) with conjugate triples. Repeating this we see that the argument given in the above
example can be applied, showing that in a composite τ and τ−1 are interchangeable.

In the first composite (x, y, z) is related to u = (xyx−1, x, z) = (z−1yz, y, z). In the
second composite (x, y, z) is related to (y, y−1xy, z). It is immediate that zuz−1 = v.

Of course such circuits with different permutations can be distinguished even in
TRelZ2 .

4.11. Example. Here are another two circuits we can distinguish in TRelS3 :

H1

H2

U1

U2

U3

U4

H1

H2

U1

U2

U3

U4
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Proof. Replace each of the four components U1,U2,U3,U4 by ϵ. Let H1 be the conjugacy
class of ((1, 2), (1, 3), (2, 3), (1, 3)). The wires of the first circuit relate this element to
u = ((1, 2), (2, 3), (1, 2), (1, 3)), and of the second circuit to v = ((1, 3), (1, 2), (1, 2), (1, 3)).
Clearly u and v are not conjugate, and hence we can choose H2 so that the two circuits
evaluate differently in TRelS3 .

4.12. Example. The following two circuits can be distinguished in TRelS3 .

R S R S

Proof.TakeR to be the conjugacy class of ((1, 2), (1, 3), (2, 3), (1, 3)) and S the conjugacy
class of ((), (1, 3), (), (1, 3)). The first circuit evaluates as the one-point set and the second
as ∅.

5. A braided category of spans

The principal category we have been using in the earlier work on circuits and commun-
icating-parallel algebras of processes is the category of spans of graphs Span(Graph).
For sequential systems we have used the category of cospans of graphs Cospan(Graph).
Already in the paper [8] the separable algebra structure on each object played a cru-
cial role. The relation between another model of circuits, namely Mealy automata and
Span(Graph) was discussed in [9]. One of the motivations of the present work is to
produce an semantic algebra in which the twisting (or crossing) of wires is also (at least
partially) expressible. To this end we introduce first a simple braided modification of the
category of spans of sets Span(Set) called TSpanG, depending on a group G and with a
commutative Frobenius algebra. It is clear that a similar construction TSpanG(C) could
be made for a group object G in a category C with limits in the place of Set.

Again, there is a representation of Tangle (via a representation of TCirc) which takes
a tangle to the span of colourings of the tangle (introduced by John Armstrong in [2]).
Applied to knots, the set of colourings is one of the simplest invariants for distinguishing
knots. As a first example it allows one to show that a trefoil is not an unknot. The
extended notion of colourings of tangled circuit diagrams gives further aid in distinguishing
circuit diagrams.

The dual of the category of groups Groupop has finite limits. Further the free group
on one generator F is a group object in Groupop. The category TSpanF (Groupop) is
braided monoidal with F equipped with a commutative Frobenius structure. The induced
representation

Tangle //TSpanF (Groupop)
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associates the cospan of groups introduced by John Armstrong in [1] to a tangle, and the
knot group to a knot.

Strictly speaking, because we are interested in categories of spans, we always consider
isomorphism classes of spans (in the usual sense of isomorphism of spans) but we will
often describe them in terms of representatives.

5.1. Definition. Let G be a group. The objects of TSpanG are the formal powers of G,

and an arrow from Gm to Gn is an isomorphism class of spans of sets, Gm oo δ0 S
δ1 //Gn,

from the set Gm to the set Gn such that there exists a function G× S // S of G written
(g, s) 7→ gs yielding a bijection for each g ∈ G, and satisfying:

1) if δ0(s) = (x1, ..., xm) and δ1(s) = (y1, ..., yn) then δ0(gs) = (xg1, ..., x
g
m) and δ1(gs) =

(yg1 , ..., y
g
m) for all g in G,

2) if δ0(s) = (x1, ..., xm) and δ1(s) = (y1, ..., yn) then x1...xm(y1...yn)
−1 ∈ Z(G).

Composition and identities are composition and identity of spans.

It is straightforward that TSpanG is a category. Like TRelG it has the structure of
a braided strict monoidal category. Note again that if G is abelian then 1) and 2) in the
definition are satisfied.

5.2. Theorem. TSpanG is braided strict monoidal with tensor defined by Gm ⊗ Gn =
Gm+n and twist τm,n : Gm ⊗Gn //Gn ⊗Gm is the span with δ0 = 1Gm⊗Gn and

δ1(x1, ..., xm, y1, ..., yn) = (yx1 , ..., y
x
n, x1, ..., xm).

Proof. This is similar to Theorem 4.3. As noted, it is easy to show that identities and
composites of spans satisfying conditions 1) and 2) also satisfy 1) and 2), so TSpanG is
a category.

To see that ⊗ is a functor recall that product of spans defines a tensor functor on
the category Span(Set). It remains to show that TSpanG is closed under ⊗. Suppose
R : Gm //Gt and S : Gn //Gu. If x = δ0(r), y = δ1(r) and z = δ0(s), wδ1(s), then for any
g, xg = δ0(gr), y

g = δ1(gr) and z
g = δ0(s), w

g = δ1(s), whence (xz)g = δ0(gr, gs), (yw)
g =

δ1(gr, gs), so taking g(r, s) to be (gr, gs) condition 1) is satisfied. For x, y, z, w as defined,
condition 2) follows exactly as in Theorem 4.3.

The associative and unitary properties for ⊗ in TSpanG are immediate from the same
properties in Span(Set).

The properties B1 and B2 for τ are identical to the case of TRelG.
As in the case of TRelG the conditions 1) and 2) assure the naturality of τ .

5.3. A commutative Frobenius structure on G. As for TRelG and using the
same functions viewed as spans, G has the structure of a commutative Frobenius algebra
in TSpanG. Consequently:
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5.4. Corollary. There is a unique braided strict monoidal functor

Tangle //TSpanG

taking the generating object to G and the structure maps of Tangle to the corresponding
arrows in TSpanG.

While G is separable in TRelG, it is not so in TSpanG because, unlike the relational
composite, the span composite ∇∆ is not the identity.

5.5. Knot colourings. The description of TSpanG makes it clear that there is a
faithful monoidal functor

TSpanG
// Span(Set).

Consider the following composite of monoidal functors we have described above:

colouringsG : Tangle //TCirc //TSpanG
// Span(Set).

colouringsG takes the generating object X of Tangle to the underlying set of G, and
takes ϵX to the span G×G← {(x, y) : xy = 1} → I, ηX to I ← {(x, y) : xy = 1} → G×G
and τX to (x, y)← (x, y) 7→ (xyx−1, x).

5.6. Theorem. (J. Armstrong [2]) If K is a knot then colouringsG is the set of colour-
ings of K in the group G.

5.7. Remark. Because of the faithfulness of the functor TSpanG
//Span(Set) the cal-

culation of the set of colourings of a knot may be done equally in TSpanG or Span(Set).
The advantage of introducing TSpanG as we do is that TSpanG has the same structure
as Tangle (braided monoidal with a tangle algebra) whereas Span(Set) does not.

5.8. Colourings of a trefoil. We will calculate the colourings of a trefoil knot in
the dihedral group D3 to allow us to introduce notation and indicate relations with other
work. One expression in Tangle for a trefoil is

(ϵ⊗ ϵ)(1⊗ τ ⊗ 1)(1⊗ 1⊗ τ−1)(1⊗ τ ⊗ 1)(η ⊗ η).

It is convenient to represent the arrows in this expression as components as follows:

η ϵ τ τ−1
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Then the trefoil may be displayed as the circuit diagram:

η

η

τ

τ−1

τ

ϵ

ϵ

The evaluation of the expression for the trefoil in Span(Set) is a limit of the diagram
in Set formed as follows: for each wire in the diagram take the set G and for each
component take the pair of arrows constituting its span of sets. See [19] for the relation
between limits in C and expressions in Span(C). An element of this limit is a tuple of
elements of G one for each wire, satisfying the conditions of the components. Each of
the components η, ϵ, τ , τ−1 is actually a relation from its domain to codomain, that is a
subset of products of groups given by equational conditions.

It is convenient to refine the pictures of the components to include the conditions as
follows:

1=xy

x

y
η

xy=1

x

y

xy=zw
x=w

τ

x

y

z

w

xy=zw

y=z

τ−1ϵ

x

y

z

w

Then a colouring of the trefoil is an element of the limit. Thus it is a tuple of elements
of G on the wires satisfying the conditions of the components:

1=ab

1=ej

ad=1

hk=1

a

b c d

e
f g

h

j k

b=f

be=cf

c=h

cg=dh

j=g

fj=gk
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Clearly a and c determine the other letters. When the group is D3 there are twelve
colourings: one for each of (a, c) = ((), ()), ((1, 2, 3), (1, 2, 3)), ((1, 3, 2), (1, 3, 2)),
((1, 2), (1, 2)), ((1, 3), (1, 3)), ((2, 3), (2, 3)), ((1, 2), (1, 3)), ((1, 2), (2, 3)), ((1, 3), (1, 2)),
((1, 3), (2, 3)), ((2, 3), (1, 2)), ((2, 3), (1, 2)), whereas the unknot has only six colourings.

5.9. Knot groups. Consider now the free group on one generator F as a group object
in the category Groupop. As we have mentioned, the construction TSpan works for any
category with finite limits, not just Set, and hence there is a braided monoidal category
TSpanF (Groupop), and a corresponding representation

Gp : Tangle //TSpanF (Groupop) // Span(Groupop) = Cospan(Group)

5.10. Theorem. (J. Armstrong [1]) If K is a knot then Gp(K) is the knot group of K.

5.11. The knot group of a trefoil. Limits in Groupop are colimits in Group.
We can calculate the knot group from the same picture we used to calculate the knot
colouring. In the diagram

1=ab

1=ej

ad=1

hk=1

a

b c d

e
f g

h

j k

b=f

be=cf

c=h

cg=dh

j=g

fj=gk

a letter represents the free group F on that generator, letters on a pair of wires represent
the free group on two generators F × F in Groupop. The components are quotients of
the free group on the boundary wires by the equations. The evaluation of the circuit in
TSpanF (Groupop) is a colimit, namely the free group on all the wires quotiented by all
the equations.

In the case of the trefoil the knot group is

< a, b, c, d, e, f, g, h, j, k ; ab = 1, b = f, be = cf, c = h,

cg = dh, ad = 1, ej = 1, j = g, fj = gk, hk = 1 > .

Eliminating the variables b, d, e, f, g, h, j, k this presentation reduces to

< a, c ; aca = cac > .
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6. Extending TRelG and TSpanG

We now describe an extension of TRelG which depends not only on the group G but
also on a set X, and we denote it TRelX,G, and a similar extension of TSpanG denoted
TSpanX,G. These will enable us to model circuits with state. The idea is that in TRelX,G

the object X ×G is a single wire carrying data X.

6.1. Definition. The category TRelX,G has objects (X×G)n. An arrow of TRelX,G is
a relation S in Set from (X ×G)m to (Y ×G)n such that 1) if (x, h)S(y, k) then for any
g ∈ G, (x, hg)S(y, kg), and 2) if (x, h)S(y, k) then (h)(k)−1 ∈ Z(G). Composition and
identities are defined as in Rel.

In TRelX,G we define a tensor product by (X ×G)m ⊗ (X ×G)n = (X ×G)m+n.

6.2. Proposition. TRelX,G is a braided strict monoidal category with

τ(XG)m⊗(XG)n : (XG)m ⊗ (XG)n // (XG)n ⊗ (XG)m

defined to be the relation

((x, g), (y, h)) ∼ ((y, hg), (x, g)).

As in TRelG and TSpanG, a “single wire” X ×G in TRelX,G admits a commutative
Frobenius algebra structure, namely the multiplication is the relation ((x, g), (x, h)) ∼
(x, gh); the comultiplication is (x, gh) ∼ ((x, g), (x, h)), the counit is (x, 1) ∼ ∗ and the
unit is ∗ ∼ (x, 1).

6.3. Analogue resistive circuits in TRelR,R. We begin by describing circuits of
resistors which may be described inTRelX,G whereX = R is the real numbers, andG = R
as a group under addition. It is useful to use a graphical notation similar to that of Section
5 to do calculations in TRelR,R. For example, we draw a relation S : R× R //X ×G
as:

i1, v1 i2, v2

(i1, v1)S(i2, v2)

With this notation, where i denotes current and v denotes voltage, a resistor of resis-
tance r is:
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i1, v1 i2, v2i1 = i2

v2 = v1 − ir

The multiplication and comultiplication, which we sometimes draw as forks, and which
embody Kirchhoff’s law of currents are:

i1, v1
i2, v2

i3, v3

i1, v1

i2, v2

i3, v3
i1 = i2 + i3
v1 = v2 = v3

i1 + i2 = i3
v1 = v2 = v3

Using the operations of TRelR,R one can now evaluate a network of resistors. For
example the circuit with two parallel resistors with resistances r1, r2 respectively

r1

r2

evaluates as:

i1, v1 i2, v2

i1 = i2

v2 − v1 = i1(
r1r2
r1+r2

)
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6.4. Definition. The category TSpanX,G has objects (X×G)n. An arrow of TSpanX,G

is an isomorphism class of spans S in Set: (X × G)m oo δ0 S
δ1 // (Y × G)n such that

such that there exist a function G × S // S of G on S written (g, s) 7→ gs yielding a
bijection for each g ∈ G, and satisfying:

1) if δ0(s) = (x1, h1, ..., xm, hm) and δ1(s) = (y1, k1, ..., yn, kn) then
δ0(gs) = (x1, h

g
1, ..., xm, h

g
m) and δ1(gs) = (y1, k

g
1 , ..., yn, k

g
n) for all g in G,

2) if δ0(s) = (x1, h1, ..., xm, hm) and δ1(s) = (y1, k1, ...yn, kn) then
h1...hm(k1..., kn)

−1 ∈ Z(G).

Composition and identities and tensor are defined as in Span(Set). The braiding and
Frobenius structure are as in TRelX,G.

It is clear that this definition may be made in any category C with finite limits to give
a category TSpanX,G(C).

6.5. RLC circuits in TSpanX,G(Graph). This example comes from the paper [9]
where it is discussed in detail. However the Frobenius algebra structure was not noticed in
that paper. The category is analogous to TSpanG(Graph) where the group G is the real
numbers under addition. The Frobenius algebra structure arises from the Kirchhoff law
for currents. Since the group is abelian there is no information about the tangling of wires.
We describe, as an example, circuits composed of resistors, capacitors and inductors.

The algebra of RLC circuits we will describe was introduced in [9]. We will give a
brief recapitulation without full details.

We need to say something first about the somewhat unusual interpretation of a graph
in this setting. If the graph consists of the two (domain and codomain) functions ϕ :
X // Y and ψ : X // Y we will interpret this as the formal differential equation ϕ

′
=

ψ. For further explanation of this interpretation see [9]. In the examples we describe
the interpretation will have a clear meaning. There is a notion of behaviour for such a
system, namely a function x : R //X such that ϕ

′
(x(t)) = ψ(x(t)) (only meaningful with

smoothness assumptions).
We will now consider TSpanX,G(Graph) where both X and G are the graph with

one object, and set of arrows R; we will identify both X and G with the set R, the group
structure being addition.

Again it is useful to use a graphical notation similar to that of Section 5 to do cal-
culations in TSpanR,R(Graph). For example, we draw the spans corresponding to the

constants τ , ∆, ∇, η, ϵ, and the resistors of the algebra (in which all of the graphs have
one object) exactly as in Section 6.3.

The graph of a capacitor with capacitance c is the pair of functions ϕ, ψ : R3 // R
defined by ϕ(i, v, q) = q and ψ(i, v, q) = i; the interpretation is that a capacitor has state i,
v, and also state q, the charge of the capacitor, and that q

′
= i. The boundary conditions

(the morphism of the span) are on the left v1 = v, and i1 = i, and on the right v2 = v− q
c

and i2 = i. Hence we draw the capacitor as follows:
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q
′
= i

i1, v1 i2, v2i1 = i = i2, v1 = v

v2 − v1 = q
c

Similarly an inductor with inductance l has an extra variable of state p with graph
R3 // R, and pictures:

i
′
= p

i1, v1 i2, v2i1 = i = i2, v1 = v

v2 − v1 = lp

Using the operations of TSpanR,R(Graph) one can now evaluate a network of resis-
tors, capacitors and inductors. For example the circuit of an inductance and a capacitance

l

c

evaluates as
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i, v1, v2, p, q

(−i)′ = p

q′ = i
q
c
= v1 − v2 = lp

A behaviour consists of five functions from R to R, namely i(t), v1(t), v2(t), q(t), p(t)
such that i

′
= −p, q′ = i and q

c
= v2 − v1 = lp.
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Lawrence Breen, Université de Paris 13: breen@math.univ-paris13.fr
Ronald Brown, University of North Wales: ronnie.profbrown(at)btinternet.com
Valeria de Paiva: valeria.depaiva@gmail.com
Ezra Getzler, Northwestern University: getzler(at)northwestern(dot)edu
Kathryn Hess, Ecole Polytechnique Fédérale de Lausanne : kathryn.hess@epfl.ch
Martin Hyland, University of Cambridge: M.Hyland@dpmms.cam.ac.uk
Anders Kock, University of Aarhus: kock@imf.au.dk
Stephen Lack, Macquarie University: steve.lack@mq.edu.au
F. William Lawvere, State University of New York at Buffalo: wlawvere@buffalo.edu
Tom Leinster, University of Edinburgh, Tom.Leinster@ed.ac.uk
Ieke Moerdijk, University of Utrecht: moerdijk@math.uu.nl
Susan Niefield, Union College: niefiels@union.edu
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