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SITE CHARACTERIZATIONS FOR
GEOMETRIC INVARIANTS OF TOPOSES

OLIVIA CARAMELLO

Abstract. We discuss the problem of characterizing the property of a Grothendieck
topos to satisfy a given `geometric' invariant as a property of its sites of de�nition, and
indicate a set of general techniques for establishing such criteria. We then apply our
methodologies to speci�c invariants, notably including the property of a Grothendieck
topos to be localic (resp. atomic, locally connected, equivalent to a presheaf topos),
obtaining explicit site characterizations for them.

1. Introduction

In this paper we provide a set of general methodologies for obtaining bijective site char-
acterizations for `geometric' invariants of toposes, that is criteria of the kind `a topos
Sh(C, J) satis�es the property I if and only if the site (C, J) satis�es a property P(C,J)
(explicitly written in the language of the site (C, J))', holding for any site (C, J) or for
appropriate classes of sites.

Throughout the past years, site characterizations have been established for several
important geometric invariants of toposes, including the property of a topos to be atomic,
locally connected, equivalent to a presheaf topos etc. (cf. in particular [Barr and Dia-
conescu, 1980] and [Barr and Paré, 1980], and [Johnstone, 2002] as a general reference);
however, all of these characterizations are of form `A Grothendieck topos satis�es an in-
variant I if and only if there exists a site of de�nition (C, J) of it satisfying a certain
property P(C,J)'. As such, these characterizations are only partially satisfactory, since
they allow to infer properties of toposes Sh(C, J) starting from properties of sites (C, J)
but not conversely; in fact, not even the proofs of these results provide information which
one can exploit to obtain site characterizations going in the other direction.

In order to obtain bijective site characterizations, the problem thus needs to be com-
pletely reconsidered and approached from a di�erent angle; we do so in this paper, by
adopting the point of view of separating sets of toposes. In fact, it turns out that most
of the geometric invariants of toposes considered in the literature, notably including the
property of a topos to be localic (resp. atomic, locally connected, equivalent to a presheaf
topos, coherent), can be expressed in terms of the existence of a separating set of objects
for the topos satisfying some invariant property. In this paper, amongst other things, we
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show that expressing topos-theoretic invariants in terms of the existence of a separating
set of objects of the topos satisfying some property paves the way for natural `unravelings'
of such invariants as properties of the sites of de�nition of the topos, and hence for criteria
of the desired form.

Concerning the applicability of the results obtained in this paper, we remark that
bijective site characterizations of the kind `a topos Sh(C, J) satis�es the property I if
and only if the site (C, J) satis�es a property P(C,J) are particularly relevant in connection
to the philosophy `toposes as bridges' introduced in [Caramello, 2010]. Speci�cally, in
[Caramello, 2010] it is argued that Grothendieck toposes can e�ectively act as unifying
spaces in Mathematics serving as `bridges' for transferring information between distinct
mathematical theories. The transfer of information between Morita-equivalent theories
(i.e., theories classi�ed by the same topos), represented by di�erent sites of de�nition (C, J)
and (C ′, J ′) of their classifying topos, takes place by expressing topos-theoretic invariant
properties (resp. constructions) on the topos in terms of properties (resp. constructions)
of its two di�erent sites of de�nition. For each invariant, we thus have a `bridge'

Sh(C, J) ' Sh(C ′, J ′)

(C, J) (C ′, J ′)

whose `deck' is the equivalence of toposes Sh(C, J) ' Sh(C ′, J ′) and whose `arches',
represented by the dashed arrows, are given by site characterizations corresponding to
the given invariant.

Now, in presence of any Morita-equivalence, any such criterion gives us the possibility
to operate an automatic transfer of information between the two theories, leading to
concrete mathematical results of various nature. Particular cases of these general results
have already been applied by the author in several di�erent contexts (cf. for example
[Caramello, 2012c] and [Caramello, 2012b]), and in fact the primary aim of this paper
is to make a systematic investigation of the problem of obtaining site characterizations
which can be conveniently applied in connection to our general philosophy `toposes as
bridges' (notice that, on the other hand, the classical characterizations cannot be directly
applied in connection to this philosophy, since the criteria that they give rise to only allow
one to enter a given bridge (i.e., to pass from the property P(C,J) of the site (C, J) to the
invariant I) and not to exit from it).

The paper is organized as follows. In section 2, we make some general remarks about
the problem of obtaining site characterizations for geometric invariants of toposes, leading
to a metatheorem giving su�cient conditions for a topos-theoretic invariant (of a general
speci�ed form) to admit bijective site characterizations holding for a given class of sites,
while in the following sections we investigate the speci�c invariants mentioned above in
more detail, obtaining natural site characterizations for them of the desired kind. Besides
their technical interest, these results are meant to provide the reader with a general idea
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of how the technique `toposes as bridges' introduced in [Caramello, 2010] actually works
in a variety of di�erent cases.

This work should be considered as a companion to [Caramello, 2012b], where several
syntactic characterizations of geometric invariants on toposes in terms of the theories
classi�ed by them were obtained.

1.1. Terminology and notation Our terminology and notation is borrowed from
[Johnstone, 2002], if not otherwise indicated.

Moreover, we will employ the following conventions.
Given a Grothendieck site (C, J), we denote by aJ : [Cop,Set] → Sh(C, J) the as-

sociated sheaf functor, by cJ the universal closure operation on subobjects of [Cop,Set]
corresponding to it and by η the unit of the adjunction between aJ and the canonical inclu-
sion Sh(C, J) ↪→ [Cop,Set]. We denote by l : C → Sh(C, J) the composite of the Yoneda
embedding Y : C → [Cop,Set] with the associated sheaf functor aJ : [Cop,Set]→ Sh(C, J).

To mean that c is an object of a category C, we simply write c ∈ C.
All the toposes considered in this paper will be Grothendieck toposes, if not otherwise

stated.

2. Geometric invariants of toposes

Several topologically-inspired invariants of Grothendieck toposes have been considered in
the literature. In fact, as emphasized by Grothendieck himself, a topos can be conveniently
considered as a generalized space apt to be studied by adopting a topological intuition.
Indeed, a topos Sh(C, J) can be seen as a sort of completion of the site (C, J), on which
one can de�ne invariants which correspond to (in the sense of being logically equivalent,
or implied by) natural `geometric' properties of sites, thus representing analogues, in the
topos-theoretic setting, of classical properties of topological spaces.

The natural topos-theoretic analogue of the notion of basis of a topological space is
the notion of separating set of objects of a topos. Indeed, a basis of a topological space X
can be considered as a full subcategory B of the poset category O(X) of open sets of X
which is JX-dense, where JX is the canonical topology on O(X); similarly, a separating
set of a topos E can be regarded as a full subcategory of E which is JE -dense, where JE is
the canonical topology on the topos E . Note that if B is a basis of a topological space X
then

Sh(X) ' Sh(B, JX |B),

by Grothendieck's Comparison Lemma; similarly, if C is a separating set of a topos E then

E ' Sh(C, JE |C) .

The notion of separating set is intimately related to that of site; in fact, the separating
sets of a topos E are (up to the obvious notion of isomorphism) precisely the sets of the
form L(C,J) := {l(c) | c ∈ C}, where (C, J) is a site of de�nition of E and l : C → Sh(C, J)
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is the functor given by the composite of the Yoneda embedding with the associated sheaf
functor.

We can thus naturally expect the properties of (sober) topological spaces which can
be expressed in terms of the existence of a basis for the space satisfying a certain property
P to be naturally generalizable to the topos-theoretic setting, by replacing bases with
separating sets and the property P with an appropriate topos-theoretic analogue. For ex-
ample, the property of a topos to be atomic (resp. locally connected, coherent) represents
a natural topos-theoretic analogue of the property of a space to be discrete (resp. locally
connected, coherent).

Of course, not all the natural properties of topological spaces can be expressed in
terms of the existence of a basis satisfying a certain condition; for instance, many can be
expressed as frame-theoretic properties P of the top element of their frame of open sets,
in which case natural topos-theoretic analogues of them can be obtained by replacing
the top element of the frame of open sets with the terminal object of the topos and the
property P with an appropriate topos-theoretic analogue. For example, the property of a
topos to be two-valued (resp. compact) represents a natural topos-theoretic analogue of
the property of a topological space to be trivial (resp. compact).

In this paper we shall mostly be concerned with invariants of the �rst kind, that is
of the form `to have a separating set of objects satisfying some property P ', but the
techniques that we shall elaborate will be also adaptable to invariants of the second kind.

The problem of �nding e�ective site characterizations for invariants of one kind or
another of course admits a satisfactory solution or not depending on the speci�c invariant
under consideration; nonetheless, one can identify some properties which are responsible
for such invariants to admit explicit site characterizations.

A general remark which, as we will see, turns out to be extremely useful in practice
is the following: if the property P descends along epimorphisms (that is, for any epimor-
phism f : A → B in the topos, if A satis�es P then B satis�es P ) then one can try to
obtain an explicit site characterization of the invariant `to have a separating set of objects
satisfying the property P ', as follows. A topos Sh(C, J) has a separating set of objects
satisfying P if and only if every object of Sh(C, J) of the form l(c) is covered by an epi-
morphic family of arrows whose domains satisfy P . Clearly, if the property P descends
along epimorphisms then we can suppose, without loss of generality, this family of arrows
to consist entirely of monomorphisms, which can be supposed to be, up to isomorphism,
of the form aJ(S � C(−, c)) for some (J-closed) sieve S on c. Therefore, provided that
the property P is su�ciently well-behaved to the extent of admitting an `unraveling' of
the condition of an object of the kind aJ(S) to satisfy P as an explicit condition on S
written in the language of the site (C, J), we have an explicit site characterization for
our invariant of the required form. Examples of application of this method are given in
sections 3, 4, 5 and 7.

Of course, if the property P does not descend along epimorphisms, it still make sense
to look for explicit site characterizations for the given invariant, holding for large classes
of sites if not for all sites; an example is given by the property of a topos to be equivalent
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to a presheaf topos, which is expressible as the requirement `to have a separating set
of irreducible objects', which we shall discuss in section 6. In fact, for any given topos-
theoretic invariant I which can be expressed as the existence of a set of objects of the topos
satisfying some invariant property P , the essential condition is that it be provable, for
any site (C, J) (or at least for some identi�able classes of them), that the topos Sh(C, J)
satis�es I if and only if there exists a set of objects of Sh(C, J) satisfying property P all
of which are (provably) isomorphic to an object of the form aJ(S) for some (J-closed)
sieve S on C.

On the other hand, many geometrically motivated invariant properties of toposes can
be naturally expressed in terms of the existence of a separating set for the topos satisfying
a property which cannot be expressed as the requirement that all the objects in the sepa-
rating set satisfy a certain condition. For example, the property of a topos to be coherent
can be expressed as the existence of a separating set of compact objects which is closed
under �nite limits in the topos (cf. [Caramello, 2012b]). Invariants of this kind are in
general more hardly tractable, from the point of view of site characterizations, than those
discussed above; nonetheless, as witnessed by the past literature on the subject (cf. for
example [Johnstone, 2002]), partial or even complete characterizations for them (holding
for large classes of sites) can be achieved, by exploiting the particular `combinatorics' of
the sites of de�nition of the topos in relation to the given invariant.

In connection with the problem of `unraveling' the condition on a set of object of the
form aJ(S) to satisfy an invariant property P as an explicit condition on S written in the
language of the site (C, J), we remark that if P can be logically formulated in terms of the
condition that certain monomorphisms m in the topos [Cop,Set] be cJ -dense, where cJ is
the universal closure operation on subobjects of [Cop,Set] corresponding to the canonical
geometric inclusion Sh(C, J) ↪→ [Cop,Set], and such m are built out of objects of the
form S (and arrows between them) through topos-theoretic constructions (that is, small
limits, colimits, exponentials and subobject classi�er) in [Cop,Set] then an `unraveling' of
the required form is possible.

Summarizing, we have the following metatheorem.

2.1. Theorem. Let I be an invariant property of toposes which is logically equivalent to
the requirement that there should be a class of objects and arrows in the topos satisfying
some (invariant) property P . Let K be a class of sites (C, J) such that

(i) for any (C, J) in K, the topos Sh(C, J) satis�es I if and only if there exists a class
A(C,J) of objects of Sh(C, J) of the form aJ(S) and arrows aJ(S)→ aJ(S

′) between
them of the form aJ(h) (where h : S → S ′ is an arrow in [Cop,Set]) which satis�es
P , and

(ii) there exists a class of monomorphisms m in the topos [Cop,Set], built out of objects
of the form S and arrow between them through topos-theoretic constructions, such
that A(C,J) satis�es P if and only if a logical condition entirely expressible in terms
of the cJ-denseness of such monomorphisms m holds.

Then I admits a bijective site characterization holding for all sites (C, J) in K.
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Proof. If condition (i) is satis�ed then for any site (C, J) in K the property of the topos
Sh(C, J) to satisfy I can be expressed as a condition involving objects of the form aJ(S)
and arrows aJ(S) → aJ(S

′) between them of the form aJ(h) (where h : S → S ′ is an
arrow in [Cop,Set]), while by (ii) such condition can in turn be expressed as a logical
condition involving the denseness of monomorphisms m in [Cop,Set] built out of objects
of the form S and arrows between them through topos-theoretic constructions.

Now, if m is such a monomorphism then the condition that m should be cJ -dense
admits an explicit formulation in terms of objects and arrows of the category C as well as
of the topology J ; indeed, small limits and colimits in [Cop,Set] admit explicit descriptions,
they being computed pointwise, the subobject classi�er of the topos and the exponential
of two objects of the form S admit elementary descriptions in terms of the geometry of
the category C, and the condition of a monomorphism A� P in [Cop,Set] to be cJ -dense
can be formulated explicitly as follows: for any c ∈ C and any x ∈ P (c), {f : dom(f) →
c | P (f)(x) ∈ A(dom(f))} ∈ J(c).

The hypotheses of the theorem precisely ensure that for any (C, J) in K the condition
that the topos Sh(C, J) satis�es property I can be reformulated as a logical condition
entirely expressible in terms of the cJ -denseness of monomorphisms m of the above-
mentioned form; it thus follows that, under these hypotheses, property I admits a bi-
jective site characterization holding for all sites in K, as required.

2.2. Remarks.

(a) The class of invariants which are logically equivalent to the requirement that there
should be a class of objects and arrows in the topos satisfying some (invariant) prop-
erty is very extensive. For instance, in addition to the usual topological properties of
toposes, its completion up to Boolean combinations (that is, the class of invariants
which are logically equivalent to a Boolean combination of invariants of this form)
contains all the invariants which can be expressed in a �rst-order way in the language
of Category Theory (or, more generally, of elementary topos theory), such as for ex-
ample all the usual logical properties of toposes (to be Boolean, to be De Morgan
etc.). This can be shown by an easy induction on the structure of the �rst-order
sentence φ in the language of elementary topos theory which de�nes I; indeed, if φ
is of the form (∃x)ψ(x) then I can be expressed as the condition that there exists a
class of objects (and arrows) in the topos satisfying the property of being a singleton
whose only element satis�es property ψ, while if φ is of the form (∀x)ψ(x) then I can
be expressed as the condition that there exists a class of objects (and arrows) in the
topos satisfying the property of being the total class and that each of its elements
satis�es property ψ (the case of Boolean combinations is obvious, and that of atomic
sentences is equally clear since the validity of any such sentence is formally equivalent
to the existence of a set of objects of the topos (vacously) satisfying this property,
since a set of objects of the topos always exists).

Also, any invariant which can be expressed as the condition that a certain speci�ed
class of objects and arrows in the topos satis�es a property P (for example, the
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property of a topos to be compact, which can be expressed as the condition that the
terminal object of the topos enjoys the property that any covering of it can be re�ned
by a �nite subcovering) belongs to this class of invariants; indeed, such an invariant
is logically equivalent to the condition that there should exist a class of objects and
arrows in the topos satisfying the joint property of being equal to the speci�ed class
and of satisfying property P .

(b) Let I be an invariant property of toposes which is logically equivalent to the re-
quirement that there should be a separating set of objects in the topos each of which
satisfying some (invariant) property P . Then, if P descends along epimorphisms (that
is, for any epimorphism in a Grothendieck topos, if its domain satis�es P then its
codomain satis�es P as well), I satis�es condition (i) in the statement of Theorem
2.1 for any site (C, J). Indeed, for any site (C, J), if Sh(C, J) has a separating set of
objects satisfying property P then every object of the form l(c) can be covered by a
family of objects with property P , and the fact that P descends along epimorphisms
ensures that we can suppose these objects to be subobjects of l(c), that is objects (up
to isomorphism) of the form aJ(S) (for a J-closed sieve S in C on c); the set A(C,J) of
all such objects thus satis�es condition (i) in the statement of Theorem 2.1.

(c) If property P can be reformulated as a logical condition entirely expressible in terms
of the property that certain monomorphisms m in Sh(C, J) built out of objects of
the form aJ(S) and arrows aJ(S) → aJ(S

′) between them of the form aJ(h) (where
h : S → S ′ is an arrow in [Cop,Set]) through geometric constructions (that is, con-
structions only involving �nite limits or colimits in the topos Sh(C, J)) be isomor-
phisms then condition (ii) in the statement of Theorem 2.1 is satis�ed. Indeed,
�nite limits and colimits are preserved by aJ : [Cop,Set] → Sh(C, J), the inclu-
sion Sh(C, J) ↪→ [Cop,Set] preserves monomorphisms and for any monomorphism
m : A → B in [Cop,Set] is cJ -dense if and only if aJ(m) is an isomorphism in
Sh(C, J).

(d) The classical site characterizations for geometric invariants of toposes (such as the
property of being localic, atomic, locally connected, equivalent to a presheaf topos,
coherent etc.) of the form `A Grothendieck topos satis�es an invariant I if and only
if there exists a site of de�nition (C, J) of it satisfying a certain property P(C,J)'
mentioned in section 1 can all be obtained, if the invariant can be expressed as the
existence of a separating set of objects of the topos satisfying a certain property P , by
considering the sites (C, J) such that the set C̃ := {l(c) | c ∈ C} satis�es property P ;
in this case, and more generally for obtaining characterizations of the kind `If (C, J)
satis�es a certain property then the topos Sh(C, J) satis�es the given invariant', only
condition (ii) of Theorem 2.1 becomes relevant; in particular, provided that one can
formulate the condition of the set C̃ to satisfy property P as a logical condition entirely
expressible in terms of the cJ -denseness of monomorphisms in Sh(C, J) built out of
objects of the form aJ(S) and arrows aJ(S)→ aJ(S

′) between them of the form aJ(h)
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(where h : S → S ′ is an arrow in [Cop,Set]) through geometric constructions, such a
characterization exists (cf. Remark 2.2(c)).

2.3. Examples.

(a) The property of a topos to be localic (respectively, to be locally connected, atomic, to
have a separating set of well-supported objects) satis�es the hypotheses of Theorem
2.1. Indeed, the validity of condition (i) follows from the fact that all these invariants
can be expressed in terms of the existence of a separating set of objects of the topos
satisfying a property (respectively, to be subterminal, indecomposable, an atom, well-
supported) which descends along epimorphisms (by Remark 2.2 - see sections 3, 4, 5,
6, 7 below for detailed proofs of these descent properties), while the fact that condition
(ii) holds can be proved as follows.

• For any site (C, J), the condition for an object of the form aJ(S) to be sub-
terminal can be expressed as the requirement that the equalizer of the kernel
pair of its unique arrow to the terminal object of Sh(C, J) (which can be built
from aJ(S → 1[Cop,Set]) : aJ(S) → aJ(1[Cop,Set]) ∼= 1Sh(C,J) through geometric
constructions) should be an isomorphism.

• For any site (C, J), the condition for an object of the form aJ(S) to be inde-
composable can be expressed as the requirement that any covering by pairwise
disjoint subobjects (which are necessarily of the form aJ(i) : aJ(S

′) � aJ(S) for
a canonical inclusion i : S ′ � S) should contain an isomorphism.

• For any site (C, J), the condition for an object of the form aJ(S) to be an atom
can be expressed as the requirement that for any subobject aJ(i) : aJ(S

′) �
aJ(S) of aJ(S), either aJ(i) is an isomorphism (that is, i is cJ -dense) or aJ(S

′)
is isomorphic to zero (that is, the canonical morphism ∅ � S ′ in [Cop,Set] is
cJ -dense).

• For any site (C, J), the condition for an object of the form aJ(S) to be well-
supported can be expressed as the requirement that the morphism aJ(S →
1[Cop,Set]) : aJ(S) → aJ(1[Cop,Set]) ∼= 1Sh(C,J) be epic, which is in turn equivalent
to the condition that the monic part of the cover-mono factorization of the unique
morphism S → 1[Cop,Set] in [Cop,Set] be cJ -dense.

(b) The property of a topos to be equivalent to a presheaf topos satis�es condition (i)
in the statement of Theorem 2.1 for any site, and condition (ii) for any subcanonical
site. Indeed, a topos is equivalent to a presheaf topos if and only if it has a separating
set of irreducible objects; condition (i) is satis�ed since for any site (C, J) and any
irreducible object A of the topos Sh(C, J), the fact that A is covered by objects of
the form l(c) implies that A is a retract of one of these objects and hence that it is,
up to isomorphism, of the form aJ(S) (where S is a covering sieve in C, say on an
object d), while if (C, J) is subcanonical condition (ii) is satis�ed since in order to
prove that such an object aJ(S) is irreducible it su�ces to check that any covering
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sieve on it generated by arrows having as domain objects of the form l(c) contains
the identity, and if (C, J) is subcanonical then the condition that such an arrow
u : l(c) → aJ(S) should be split epic can be formulated in terms of the existence
of an arrow s : C(−, c) → S in [Cop,Set] such that aJ(s) ∼= u and of an arrow
h : S → C(−, c) in [Cop,Set] such that the composite s ◦ h is sent by aJ to an
isomorphism (notice that the condition of an arrow in a presheaf topos to be sent
by a given associated sheaf functor to an isomorphism can always be reformulated in
terms of the condition of certain monomorphisms to be dense, namely the equalizer
of the kernel pair of the morphism and the image of the morphism).

(c) The property of a topos to be coherent satis�es the hypotheses of Theorem 2.1 for any
site (C, TC), where TC is the trivial topology on C (that is, the Grothendieck topology
whose only covering sieves are the maximal ones); see section 7 below.

In the following sections we shall analyze the invariants mentioned above in more
detail, obtaining explicit site characterizations for them, as predicted by Theorem 2.1.

3. Localic toposes

In this section we shall address the problem of �nding bijective site characterizations for
the property of a topos to be localic.

Recall that a Grothendieck topos E is said to be localic if it has a separating set of
subterminal objects. We seek criteria for a topos Sh(C, J) of sheaves on a site (C, J) to
be localic.

We start by observing that the objects of the form l(c) := aJ(C(−, c)) are a separating
set for Sh(C, J); so this topos is localic if and only if for every c ∈ C the family of arrows
from subterminal objects to aJ(C(−, c)) is jointly epimorphic. Notice that the property
of being a subterminal objects descends along epimorphisms, that is, if f : a → b is an
epimorphism in a topos E and a is a subterminal then b is a subterminal; indeed, if a is
a subterminal then f is a monomorphism and hence an isomorphism.

Now, any arrow from a subterminal to l(c) is monic (by de�nition of subterminal
object) and hence, up to isomorphism, of the form aJ(S � C(−, c)) for a (J-closed) sieve
S on c1. On the other hand, for any sieve S on an object c, aJ(S) is a subterminal object
of Sh(C, J) if and only if the equalizer of the kernel pair of its unique arrow to the terminal
object of Sh(C, J) should be an isomorphism. Now, this equalizer can be represented as
aJ(ES), where ES � S � S is the equalizer of the two natural projections S × S → S,
so it is an isomorphism if and only if the subobject ES � S � S in [Cop,Set] is cJ -dense,
i.e. for every arrows f, g : d→ c in S the sieve Ef,g := {k : dom(k)→ d | f ◦ k = g ◦ k} is
J-covering.

Therefore, we obtain the following criterion for Sh(C, J) to be localic.

1This argument replaces the one given in the previous version of this paper, which worked only for
subcanonical sites (C, J). The statement of Theorem 3.1 and the proofs of its two corollaries have also
been modi�ed accordingly.
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3.1. Theorem. Let (C, J) be a site. Then, with the above notation, the topos Sh(C, J)
is localic if and only if for every c ∈ C there exists a family Fc of (J-closed) sieves on c
in C such that the sieve ∪

S∈Fc

S is J-covering and any S in Fc satis�es the property that

for every arrows f, g : d → c in S the sieve Ef,g := {k : dom(k) → d | f ◦ k = g ◦ k} is
J-covering.

It is interesting to apply the theorem to presheaf toposes and to toposes of sheaves on
a geometric site.

3.2. Corollary. Let C be a small category. Then the topos [Cop,Set] is localic if and
only if C is a preorder.

Proof. We can apply Theorem 3.1 by regarding [Cop,Set] as the topos Sh(C, J) where
J is the trivial topology on C. The theorem yields that [Cop,Set] is localic if and only if
for any object c of C, any two arrows f, g : d → c in C are equal, in other words if and
only if C is a preorder.

3.3. Corollary. Let (C, JC) be a geometric site. Then the topos Sh(C, JC) is localic if
and only if for every object c ∈ C there exists a covering family of arrows {fi : dom(fi)→
c | i ∈ I} such that for every i ∈ I and every object d ∈ C and every arrows g, h : d →
dom(fi), fi ◦ g = fi ◦ h.

Proof. It su�ces to notice, using Theorem 3.1, that, by de�nition of geometric topology,
the J-closed sieves are precisely those generated by a single arrow, and a family Fc of
sieves of the form (fi), where fi is an arrow in C with codomain c, satis�es the hypotheses
of the theorem if and only if for every i ∈ I and any arrows m,n : d → c which factor
through fi are equal (note that the J-covering sieves are generated by covering, and in
particular epimorphic, families of arrows in C).

4. Atomic toposes

In this section we shall investigate atomic toposes from the point of view of their site
characterizations.

Given a topos E , we recall that an object a of E is said to be an atom of E if the only
subobjects of a in E are the identity subobject and the zero one, and they are distinct
from each other.

The following lemma, expressing the fact that atoms descend along epimorphisms, will
be useful to us.

4.1. Lemma. Let f : a→ b be an epimorphism in a topos E. If a is an atom then b is an
atom.
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Proof. Let m : b′ → b be a monomorphism in E . Consider the pullback in E of m along
the arrow f .

f ∗(b′)

f∗(m)

��

g // b′

m

��
a

f
// b

The arrow f ∗(m) : f ∗(b′) → a is a monomorphism (being the pullback of a monomor-
phism), and hence either f ∗(m) = 1a or f

∗(m) is equal to the zero subobject of a. On the
other hand, the arrow g is an epimorphism, it being the pullback of an epimorphism. So,
if f ∗(m) = 1a then by the uniqueness (up to isomorphism) of the epi-mono factorizations
of arrows in a topos it follows that m is an isomorphism, while if f ∗(b′) ∼= 0 then we have
an epimorphism g : 0→ b′ and hence b′ ∼= 0.

We shall also need the following proposition.

4.2. Proposition. Let (C, J) be a site and S be a J-closed sieve on an object c of C.
Then aJ(S) is an atom of Sh(C, J) if and only if ∅ /∈ J(dom(f)) for some f ∈ S, and
for every subsieve S ′ ⊆ S, either for every f ∈ S f ∗(S ′) ∈ J(dom(f)) or for every g ∈ S ′
∅ ∈ J(dom(g)).

In particular, l(c) is an atom if and only if for every sieve S on c, either for every arrow
f : dom(f)→ c in C2, f ∗(S) ∈ J(dom(f)) or for every arrow g ∈ S, ∅ ∈ J(dom(g)).

Proof. We start observing that for any local operator j on a topos E , with associated
sheaf functor aj : E → shj(E), an object a of E satis�es aj(a) ∼= 0shj(E) if and only if,
denoted by a � a′ � 1 the epi-mono factorization of the unique arrow a → 1 in E ,
aj(a

′) ∼= 0shj(E); this immediately follows from the fact that for any epimorphism in a
topos its domain is isomorphic to zero if and only if its codomain is isomorphic to zero,
combined with the observation that the associated sheaf functor preserves epimorphisms.
Note in passing that this remark can be used to obtain explicit characterizations of the
presheaves which are sent to the zero sheaf by a given associated sheaf functor.

Given a site (C, J), we would like to understand when a certain sieve S on an object
c ∈ C has the property that aJ(S) ∼= 0. We consider the epi-mono factorization S �
IS � 1 of the unique arrow S � C(−, c) → 1 in [Cop,Set]. Since 1 is a J-sheaf the
associated sheaf functor applied to a subterminal object U coincides with its J-closure
cJ(U). Therefore aJ(S) ∼= 0 if and only if cJ(IS) ∼= 0. Now, IS is clearly given by the
formula IS = {dom(f) | f ∈ S}, from which it follows, recalling that the zero subterminal
in Sh(C, J) corresponds to the ideal {c ∈ C | ∅ ∈ J(c)}, that aJ(S) ∼= 0 if and only if for
every f ∈ S, ∅ ∈ J(dom(f)).

Now we want to investigate under what conditions aJ(S) is an atom of Sh(C, J). We
have already characterized the conditions that make it non-zero. We observe that every
subobject in Sh(C, J) of l(c) is of the form aJ(i) for some inclusion of subsieves i : S ′ ⊆ S,
and we have that aJ(i) is an isomorphism if and only if i is cJ -dense (as a subobject in

2The condition �f : dom(f)→ c in C� incorrectly read �f ∈ S� in the previous version of this paper.
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[Cop,Set]), equivalently if cJ(S)
′ ∼= cJ(S) (or, alternatively, S ⊆ cJ(S

′)). The thesis thus
follows immediately from the explicit description of the closure operator cJ .

4.3. Remark. Notice that if aJ(S) is an atom of the topos Sh(C, J) and f ∈ S is such
that ∅ /∈ J(dom(f)) then aJ((f)) � 0 and hence aJ((f)) ∼= aJ(S). So, from the proof of
the proposition we see that, to check that aJ(S) is an atom it is equivalent to verify that
for any arrow g such that g∗((f)) ∈ J(dom(g))3, either the sieve generated by it is sent
by aJ to zero (equivalently, ∅ ∈ J(dom(g))) or f ∗((g)) ∈ J(dom(f)).

Now we would like to understand in concrete terms what it means for a topos Sh(C, J)
to have a separating set of atoms. First, we observe that this condition is equivalent to
saying that for every c ∈ C, l(c) can be covered by an epimorphic family of arrows whose
domains are atoms of Sh(C, J). By Lemma 4.1, we can suppose without loss of generality
(by possibly replacing any arrow in the given epimorphic family by its image), that all the
arrows in the family are monic. Therefore, they are all of the form aJ(S � C(−, c)) for
some sieve S on c. By Remark 4.3, we can suppose that S to be the J-closure of a sieve
generated by a single arrow. Therefore, using Proposition 4.2, we obtain the following
characterization theorem.

4.4. Theorem. Let (C, J) be a site. Then the topos Sh(C, J) is atomic if and only
if for every c ∈ C there exists a J-covering sieve on c generated by arrows f with the
property that ∅ /∈ J(dom(f)) and for every arrow g such that g∗((f)) ∈ J(dom(g)), either
∅ ∈ J(dom(g)) or f ∗((g)) ∈ J(dom(f)).

5. Locally connected toposes

In this section we address the problem of establishing site characterizations for locally
connected toposes.

Recall that a Grothendieck topos is locally connected if the inverse image functor
of the unique geometric morphism from the topos to Set has a left adjoint. Locally
connected toposes can be equivalently characterized as the Grothendieck toposes which
have a separating set of indecomposable objects (cf. [Caramello, 2012b]). Recall that
a object of a Grothendieck topos is said to be indecomposable if it does not admit any
non-trivial (set-indexed) coproduct decompositions.

Let us start with a lemma, which expresses the fact that indecomposable objects
`descend' along epimorphisms.

5.1. Lemma. Let f : a → b be an epimorphism in a Grothendieck topos E. If a is
indecomposable then b is indecomposable.

3The condition �for any arrow g such that g∗((f)) ∈ J(dom(g))� replaces the incorrect condition �for
any arrow g which factors through f � stated in the previous version of this paper. Idem for the statement
of Theorem 4.4.
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Proof. This follows immediately from the fact that if f : a→ b is an epimorphism then
the pullback functor E/b→ E/a is logical and conservative (cf. [Mac Lane and Moerdijk,
1992]), in light of the fact that coproducts in a topos can be characterized as epimorphic
families of pairwise disjoint subobjects.

Let us now turn to the problem of characterizing the indecomposable objects in a
general topos Sh(C, J).

5.2. Proposition. Let (C, J) be a site. Then an object of the form l(S), where S is a
J-closed sieve on an object c of C, is indecomposable if and only if the sieve S satis�es
the property that for any family {Si | i ∈ I} of subsieves Si ⊆ S such that for any distinct
i, i′ and any f ∈ Si ∩ Si′, ∅ ∈ J(dom(f)), if the union S ′ of the Si is cJ-dense in S (i.e.,

for any arrow f ∈ S, f ∗(∪
i∈I
Si) ∈ J(dom(f))) then some Si is cJ-dense in S (i.e., for any

arrow f in S, f ∗(Si) ∈ J(dom(f))).

Proof. It su�ces to recall that coproducts in a topos can be characterized as epimor-
phic families of pairwise disjoint subobjects, and observe that, up to isomorphism, any
subobject of l(S) in Sh(C, J) is, up to isomorphism, of the form aJ(i) : aJ(T ) → aJ(S)
where i is the canonical inclusion of a subsieve T of S into S.

We shall call a sieve S satisfying the property in the statement of the proposition a
J-indecomposable sieve.

Using this Proposition, we can easily get a site characterization for a topos Sh(C, J)
to be locally connected.

5.3. Theorem. Let (C, J) be a site. Then the topos Sh(C, J) is locally connected if and
only if for every c ∈ C there exists a family {Si | i ∈ I} of J-closed J-indecomposable

sieves on c such that the union∪
i∈I
Si is J-covering.

Proof. The topos Sh(C, J) is locally connected if and only if it has a separating set of
indecomposable objects, equivalently for every c ∈ C, the family of arrows from inde-
composable objects to l(c) is epimorphic. By Lemma 5.1, we can suppose without loss
of generality that the arrows belonging to this family are monic, and hence are, up to
isomorphism, of the form aJ(i) : aJ(S) � l(c) ∼= aJ(C(−, c)) where i is the canonical
inclusion S � C(−, c) of a J-closed sieve S into C(−, c). Clearly a family of arrows of
this form is epimorphic in Sh(C, J) if and only if the union of the corresponding sieves is
J-covering on c, from which our thesis follows.

6. Toposes which are equivalent to a presheaf topos

In this section we consider the invariant property of a topos to be equivalent to a presheaf
topos in relation to the problem of obtaining site characterizations for it.

Let us start with a technical lemma.
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6.1. Lemma. Let (C, J) be a site and S be a J-closed sieve on an object c of C. Then for
any sieve R on l(S) in Sh(C, J), R is covering if and only if S is equal to the J-closure
of the sieve {f ∈ S | lS(f) ∈ R} (where lS(f) denotes the factorization of l(f) through
the canonical monomorphism aJ(S) � l(c)). In particular, a sieve R is epimorphic on
l(c) if and only if the sieve R̃S := {f ∈ S | l(f) ∈ R} is J-covering.

Proof. Given a sieve R on l(S), let us consider its pullback in [Cop,Set] along the unit
ηc of the re�ection corresponding to the subtopos Sh(C, J) ↪→ [Cop,Set] at the object
C(−, c). For any f ∈ R, we can cover η∗c (l(dom(f))) in [Cop,Set] with an epimorphic
family whose domains are representable functors. By the fullness of the Yoneda Lemma,
the arrow obtained by composing any such arrow C(−, d) → dom(f) �rst with η∗c (l

S(f))
and then with the canonical monomorphism S � C(−, c) is of the form C(−, h) for some
arrow h : d→ c in C. Notice that the arrows of the form C(−, h) corresponding to a given
arrow f ∈ R are jointly epimorphic on η∗c (l(dom(f))) and hence their images under the
associated sheaf functor aJ yield a jointly epimorphic family Tf on l(dom(f)).

η∗c (l(dom(f)))
η∗c (l

S(f)) //

��

S

��

// C(−, c)
ηc

��
l(dom(f))

lS(f) // l(S) // l(c)

Now, clearly, R is epimorphic if and only if the sieve Rm on l(S) obtained by `multi-
composing' R with the sieves Tf (for f ∈ R) is epimorphic. Notice that Rm is generated
by the factorizations through the canonical monomorphism aJ(S) � l(c) of arrows of the
form l(h) where h is an arrow in C with codomain c. De�ne the sieve A on c as

A := {k ∈ S | lS(k) ∈ R} .

Clearly, the sieve Al of arrows of the form lS(k) for k ∈ A is contained in R and contains
Rm, from which it follows that it is jointly epimorphic if and only if R (equivalently, Rm)
is. From this our thesis clearly follows, since Al is jointly epimorphic if and only if the
image of the canonical monomorphism A� S under aJ is an epimorphism (equivalently,
an isomorphism), that is if and only if A� S is cJ -dense, where cJ is the closure operator
associated to the Grothendieck topology J .

We notice that the particular case of Lemma 6.1 when the sieve S is maximal was
observed, but not proved, at p. 911 of [Johnstone, 2002].

Another useful remark concerning the relationship between sieves and their images
under l functors is provided by the following proposition.

6.2. Proposition. Let (C, J) be a site and S be a sieve on an object c of C. Then the
sieve

S = {f : dom(f)→ c | l(f) factors through l(g) for some g ∈ S}
is contained in the J-closure of S.
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Proof. Suppose that l(f) factors through l(g) for some g ∈ S. The canonical monomor-
phism p : f ∗(R) � C(−, dom(f)) can be identi�ed with the pullback of the canonical
monomorphism q : S � C(−, c) along C(−, f). Hence, if l(f) factors through l(g), aJ(p)
is isomorphic to the pullback of aJ(q) along any factorization of l(f) through l(g); there-
fore, if g ∈ S this latter pullback is an isomorphism and hence p is cJ -dense, in other
words f ∗(R) is J-covering, i.e. f belongs to the J-closure of S.

We say that a sieve S on an object c is l-closed if S = S. Note that the l-closed sieves
are precisely those of the form T̃ for some sieve T on c.

Notice that if J is subcanonical then every sieve is l-closed, since the functor l is full
and faithful.

We can use the lemma to characterize the irreducible objects of a topos Sh(C, J).
Recall that an object of a Grothendieck topos is said to be irreducible if every covering
sieve on it is maximal.

Suppose that P is an irreducible object of Sh(C, J). We can cover P with a family of
arrows whose domains are of the form l(c) for c ∈ C; there is thus an arrow of the family,
say e : l(c)→ P , which is split epic, that is such that there is a monic arrow m : P → l(c)
such that e◦m = 1P . Now,m being mono, P is, up to isomorphism, of the form l(S) where
S is a sieve on c. Now, consider the family of monomorphisms {l((f)) � l(S) | f ∈ S}.
This family covers l(S) and hence, by the irreducibility of P , l(S) ∼= l((f)) for some f ∈ S.
Notice that the canonical monomorphism (f) � C(−, c) is the monic part of the epi-
mono factorization of the arrow C(−, f) : C(−, dom(f))→ C(−, c) in [Cop,Set] and hence
m : l((f)) � l(c) is the monic part of the epi-mono factorization of l(f) : l(dom(f))→ l(c)
in Sh(C, J). Let us denote by e′ : l(dom(f)) → l((f)) the epic part of this factorization
(notice that this arrow is in fact split epic by the irreducibility of l((f))).

Now, given a sieve R on l((f)), R is maximal if and only if f ∈ R̃. Therefore the
condition that for any sieve R on l((f)), R is epimorphic if and only if it is maximal can
be equivalently expressed as the condition that R̃ is dense in the cJ -closure of (f) if and
only if it is maximal.

In order to obtain a criterion for irreducibility which does not involve constructions
within the topos Sh(C, J), we would like to replace the quanti�cation over the sieves R
in the topos Sh(C, J) with a quanti�cation over sieves in the category C. To this end, we
investigate whether if l((f)) is irreducible then it is the case that for every subsieve S of
(f) - not just those of the form R̃ for a sieve R on l((f)) - S is cJ -dense in the cJ -closure
of (f) if and only if it is equal to ((f)), and if not, whether it is possible to characterize
intrinsically a class of subsieves which enjoy this property. Notice that S is cJ -dense in
the cJ -closure of (f) if and only if the sieve Sp on l((f)) generated by the arrows of the
form l(f)(g) for g ∈ S is covering on l((f)), while, by Proposition 6.2, Sp is maximal if
and if and only if S = (f). Therefore the required property is satis�ed by all the l-closed
sieves S; that is for any such sieve S, S is cJ -dense in the cJ -closure of (f) (equivalently,
f ∗(S) ∈ J(dom(f))) if and only if it is equal to (f) (equivalently, f ∈ S).

Therefore we can conclude the following result.
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6.3. Proposition. Let (C, J) be a site and f be an arrow of C. Then the object l((f))
is irreducible in Sh(C, J) if and only if for every l-closed sieve S ⊆ (f) on c, f ∗(S) ∈
J(dom(f))) if and only if f ∈ S. The requirement of S to be l-closed can be omitted if
the topology J is subcanonical.

We now proceed to obtain, by using Proposition 6.3, an intrinsic site characterization
of the toposes which are equivalent to presheaf toposes.

6.4. Theorem. Let (C, J) be a site. Then the topos Sh(C, J) has a separating set of
irreducible objects (equivalently, is equivalent to a presheaf topos) if and only if for every
object c of C there exists a family {(ki, wi) | i ∈ I} of pairs of composable arrows such
that the sieve generated by the family {wi ◦ ki | i ∈ I} is J-covering and for every l-closed
sieve S ⊆ (ki) on cod(ki), k

∗
i (S) ∈ J(dom(ki)) implies ki ∈ S. The requirements of the

sieves to be l-closed can be omitted if the topology J is subcanonical.

Proof. The topos Sh(C, J) has a separating set of irreducible objects if and only if every
object of the form l(c) for an object c of C is covered by a sieve generated by arrows
whose domains are irreducible objects. Given any such arrow u : P → l(c) in the family
(where P is an irreducible object), let us �rst show that there is a split epic arrow to P
of the form e : l(d)→ P , with splitting m : P � l(d), which, composed with u, gives an
arrow of the form l(w). Consider the pullback u′ : P ′ → C(−, c) of u in [Cop,Set] along
the unit ηc : C(−, c) → l(c); P ′, regarded as an object of [Cop,Set], can be covered by
an epimorphic family whose domains are representable functors. By the fullness of the
Yoneda Lemma, any arrow obtained by composing such an arrow C(−, d) → P ′ with u′

is of the form C(−, w) for some arrow w : d→ c in C. Notice that the arrows of the form
C(−, w) are jointly epimorphic on P ′ and hence their images under the associated sheaf
functor aJ yield a jointly epimorphic family on P , which, by the irreducibility of P , must
contain a split epic arrow, with monic splitting m : P → l(d). By the argument preceding
Proposition 6.3, the monomorphism m : P → l(d) can be identi�ed with the monic part
of the epi-mono factorization l(dom(k)) � l((k)) = P � l(d) = l(cod(k)) of an arrow of
the form l(k) where k is an arrow dom(k)→ d in C, and P ∼= l((k)). Let us denote by z
the epic part l(dom(k)) � l((k)) of this factorization. Then the arrow u ◦ z is equal to
l(w ◦ k), since u = u ◦ 1P = u ◦ e ◦m ◦ z = l(w) ◦m ◦ z = l(w) ◦ l(k) = l(w ◦ k). Therefore,
since the arrow z is epic, the family of the arrows of the form l(w ◦ k), where w and k
vary as u does in the original epimorphic family, is epimorphic on l(c), equivalently the
sieve generated by the family of arrows {w ◦ k} is J-covering on c. Thus we can conclude
that Sh(C, J) has a separating set of irreducible objects if and only if for every object c
of C there exists a family {(ki, wi) | i ∈ I} of pairs of composable arrows such that the
sieve generated by the family {wi ◦ ki | i ∈ I} is J-covering and l((ki)) is irreducible for
each i ∈ I. Our thesis now follows by invoking Proposition 6.3.

6.5. Remark. If C is Cauchy-complete and J is subcanonical then the criterion of The-
orem 6.4 signi�cantly simpli�es, as shown in [Caramello, 2012b], since all the irreducible
objects in Sh(C, J) are of the form l(c) for some object c ∈ C.
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7. Other invariants

In this section we consider other two invariants on Grothendieck toposes, with the purpose
of illustrating additional examples of invariants for which natural site characterizations
can be achieved.

The �rst invariant that we shall investigate is the property of having a separating
set of well-supported objects. Recall that an object A of a topos E is said to be well-
supported if the unique arrow A → 1 is an epimorphism. Notice that the property of
being well-supported descends along any arrow, that is for any arrow f : A→ B in E , if
A is well-supported then B is well-supported.

Let (C, J) be a site. Clearly, the topos Sh(C, J) has a separating set of well-supported
objects if and only if every object of the form l(c) (for c ∈ C) can be covered by a family
of arrows whose domains are well-supported objects. By de�nition of epimorphic family,
if the covering family on l(c) is empty then l(c) is isomorphic to zero, while if the family
is non-empty then l(c) is well-supported; from this remark we conclude (classically) that
Sh(C, J) has a separating set of well-supported objects if and only if for every c ∈ C,
either l(c) ∼= 0 or l(c) is well-supported. Now, l(c) is well-supported if and only if every
object of C is covered by a J-covering sieve generated by arrows whose domains are objects
which admit an arrow to c, while l(c) ∼= 0 if and only if ∅ ∈ J(c). Therefore, we have the
following result.

7.1. Theorem. Let (C, J) be a site. Then the topos Sh(C, J) has a separating set of
well-supported objects if and only if for every c ∈ C, either ∅ ∈ J(c) or for every d ∈ C
there exists a sieve S ∈ J(d) such that for every f ∈ S there exists an arrow dom(f)→ c
in C.

We can straightforwardly apply this result to presheaf toposes and to toposes of sheaves
on a geometric site.

7.2. Corollary. Let C be a small category. Then the topos [Cop,Set] has a separating
set of well-supported objects if and only if for any objects c, d ∈ C there exists an arrow
c→ d in C.

7.3. Corollary. Let (C, J) be a geometric site. Then the topos Sh(C, J) has a separating
set of well-supported objects if and only if for every c ∈ C, either c ∼= 0C or the unique
arrow c→ 1C in C is a cover.

Finally, we consider a fundamental topos-theoretic invariant, namely the property of
a topos to be coherent, from the point of view of site characterizations. The property of
coherence for a topos is more problematic in relationship to bijective site characterization
of the kind we seek than the other invariants considered above in the paper. In [Caramello,
2012b] we observed that a topos is coherent if and only if it has a separating set of compact
objects which is closed under �nite limits. The problem with this characterization is that
we cannot suppose the separating set to be closed under quotients and therefore we cannot
apply the usual technique of making the relevant property descend along epimorphisms.
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On the other hand, the weaker invariant property of having a separating set of compact
objects clearly admits a site characterization of the required form, since the property of
an object of a topos to be compact descends along epimorphisms. Still, it is possible to
achieve bijective site characterizations for the property of a topos to be coherent which
hold for large classes of sites (cf. for example [Beke, 2004] for the case of presheaf toposes).
For instance, by using the fact that in a presheaf topos all the representable functors are
irreducible objects and that any retract of a coherent object in a coherent topos is coherent,
one can immediately deduce that if [Cop,Set] is coherent then all the representable functors
y(c) are coherent objects; in particular, any �nite product y(c1) × · · · × y(cn) of them is
compact and the equalizer of any pair of arrows between such objects is compact (note that
both conditions can be expressed as genuine properties of the category C; for example, the
latter can be expressed by saying that for any arrows f, g : c→ d in C, the sieve consisting
of all the arrows h with codomain c such that f ◦ h = g ◦ h is generated by a �nite
family of arrows). Notice in passing that this kind of characterizations can be pro�tably
applied in presence of any Morita-equivalence involving a presheaf topos according to
the philosophy `toposes as bridges' of [Caramello, 2010]; for example, they allow us to
see that the syntactic property of a theory of presheaf type to be coherent has semantic
consequences at the level of the `geometry' of its category of �nitely presentable models
(for instance, the characterization provided by Theorem 2.1 [Beke, 2004] implies that for
any theory of presheaf type T, if T is coherent then its category of �nitely presentable
models has fc �nite colimits, in the sense of [Beke, 2004]).

This last example is just meant to give the reader an idea of the great amount of con-
crete mathematical results in distinct �elds that can be obtained, in a `uniform' and es-
sentially automatic way, by using site characterizations for geometric invariants of toposes
such as the ones that we have established in the present paper in connection with the phi-
losophy `toposes as bridges'; other notable applications of the same general methodology
can be found in [Caramello, 2012c], [Caramello, 2012b] and [Caramello, 2010].

Acknowledgements: I am very grateful to the anonymous referee for his comments
and helpful suggestions, which have led to a more comprehensive and systematic presen-
tation of the results in the paper.

References

[Artin, Grothendieck and Verdier, 1972] M. Artin, A. Grothendieck and J. L. Verdier,
Théorie des topos et cohomologie étale des schémas, Séminaire de Géométrie Al-
gébrique du Bois-Marie, année 1963-64; second edition published as Lecture Notes in
Math., vols 269, 270 and 305 (Springer-Verlag, 1972).

[Barr and Diaconescu, 1980] M. Barr and R. Diaconescu, Atomic toposes, J. Pure Appl.
Alg. 17 (1980), 1-24.



728 OLIVIA CARAMELLO

[Barr and Paré, 1980] M. Barr and R. Paré, Molecular toposes, J. Pure Appl. Alg. 17
(1980), 127-152.

[Beke, 2004] T. Beke, Theories of presheaf type, J. Symbolic Logic, 69, 3 (2004), 923-934.

[Caramello, 2010] O. Caramello, The uni�cation of Mathematics via Topos Theory,
arXiv:math.CT/1006.3930.

[Caramello, 2011] O. Caramello, Atomic toposes and countable categoricity, Applied Cat-
egorical Structures 20 (4), 379-391 (2012).

[Caramello, 2012a] O. Caramello, Syntactic characterizations of properties of classifying
toposes, Theory and Applications of Categories, 26 (6), 176-193 (2012).

[Caramello, 2012b] O. Caramello, Fraïssé's construction from a topos-theoretic perspec-
tive,
arXiv:math.CT/0805.2778v3.

[Johnstone, 2002] P. T. Johnstone, Sketches of an Elephant: a topos theory compendium.
Vols. 1-2, vols. 43-44 of Oxford Logic Guides (Oxford University Press, 2002).

[Mac Lane and Moerdijk, 1992] S. Mac Lane and I. Moerdijk, Sheaves in geometry and
logic: a �rst introduction to topos theory (Springer-Verlag, 1992).

Department of Pure Mathematics and Mathematical Statistics,
University of Cambridge,
Centre for Mathematical Sciences, Wilberforce Road,
Cambridge, CB3 0WB,
United Kingdom
Email: O.Caramello@dpmms.cam.ac.uk

This article may be accessed at http://www.tac.mta.ca/tac/ or by anonymous ftp at
ftp://ftp.tac.mta.ca/pub/tac/html/volumes/26/25/26-25.{dvi,ps,pdf}



THEORY AND APPLICATIONS OF CATEGORIES (ISSN 1201-561X) will disseminate articles that
signi�cantly advance the study of categorical algebra or methods, or that make signi�cant new contribu-
tions to mathematical science using categorical methods. The scope of the journal includes: all areas of
pure category theory, including higher dimensional categories; applications of category theory to algebra,
geometry and topology and other areas of mathematics; applications of category theory to computer
science, physics and other mathematical sciences; contributions to scienti�c knowledge that make use of
categorical methods.
Articles appearing in the journal have been carefully and critically refereed under the responsibility of
members of the Editorial Board. Only papers judged to be both signi�cant and excellent are accepted
for publication.
Full text of the journal is freely available in .dvi, Postscript and PDF from the journal's server at
http://www.tac.mta.ca/tac/ and by ftp. It is archived electronically and in printed paper format.

Subscription information Individual subscribers receive abstracts of articles by e-mail as they
are published. To subscribe, send e-mail to tac@mta.ca including a full name and postal address. For in-
stitutional subscription, send enquiries to the Managing Editor, Robert Rosebrugh, rrosebrugh@mta.ca.

Information for authors The typesetting language of the journal is TEX, and use of LATEX2e
is strongly encouraged. Articles should be submitted by e-mail directly to a Transmitting Editor. Please
obtain detailed information on submission format and style �les at http://www.tac.mta.ca/tac/.

Managing editor Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca

TEXnical editor Michael Barr, McGill University: barr@math.mcgill.ca

Assistant TEX editor Gavin Seal, Ecole Polytechnique Fédérale de Lausanne:
gavin_seal@fastmail.fm

Transmitting editors

Clemens Berger, Université de Nice-Sophia Antipolis, cberger@math.unice.fr
Richard Blute, Université d' Ottawa: rblute@uottawa.ca
Lawrence Breen, Université de Paris 13: breen@math.univ-paris13.fr
Ronald Brown, University of North Wales: ronnie.profbrown(at)btinternet.com
Valeria de Paiva: valeria.depaiva@gmail.com
Ezra Getzler, Northwestern University: getzler(at)northwestern(dot)edu
Kathryn Hess, Ecole Polytechnique Fédérale de Lausanne : kathryn.hess@epfl.ch
Martin Hyland, University of Cambridge: M.Hyland@dpmms.cam.ac.uk
Anders Kock, University of Aarhus: kock@imf.au.dk
Stephen Lack, Macquarie University: steve.lack@mq.edu.au
F. William Lawvere, State University of New York at Bu�alo: wlawvere@buffalo.edu
Tom Leinster, University of Edinburgh, Tom.Leinster@ed.ac.uk
Ieke Moerdijk, University of Utrecht: moerdijk@math.uu.nl
Susan Nie�eld, Union College: niefiels@union.edu
Robert Paré, Dalhousie University: pare@mathstat.dal.ca
Jiri Rosicky, Masaryk University: rosicky@math.muni.cz
Giuseppe Rosolini, Università di Genova: rosolini@disi.unige.it
Alex Simpson, University of Edinburgh: Alex.Simpson@ed.ac.uk
James Stashe�, University of North Carolina: jds@math.upenn.edu
Ross Street, Macquarie University: street@math.mq.edu.au
Walter Tholen, York University: tholen@mathstat.yorku.ca
Myles Tierney, Rutgers University: tierney@math.rutgers.edu
Robert F. C. Walters, University of Insubria: robert.walters@uninsubria.it
R. J. Wood, Dalhousie University: rjwood@mathstat.dal.ca


