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BIMONADICITY AND THE EXPLICIT BASIS PROPERTY

MATÍAS MENNI

Abstract. Let L a R : X → Y be an adjunction with R monadic and L comonadic.
Denote the induced monad on Y by M and the induced comonad on X by C. We
characterize those C such that M satisfies the Explicit Basis property. We also discuss
some new examples and results motivated by this characterization.

1. The Explicit Basis and Redundant Coassociativity properties

In May 2010 Lawvere conjectured that the unit law implies the associative law for comon-
ads arising from EB monads as defined in [14]. The present paper grew out of the intention
to understand that conjecture.

Let C = (C, ε, δ) be a comonad on a category X .

1.1. Definition. A pre-coalgebra is a pair (X, s) where s : X → CX is a map in X such
that the diagram below

X
s //

id ""

CX

ε

��
X

commutes.

(Of course, pre-coalgebras are just ‘coalgebras for the co-pointed endofunctor (C, ε)’; but
we will need to consider both coalgebras and pre-coalgebras for the comonad C and, for
this, it is more efficient to have a different name.)

Now fix an adjunction L a R : X → Y with unit η : Id→ RL and counit ε : LR→ Id.
Let C = LR : X → X and denote the induced comonad on X by C = (C, ε, δ).

Every pre-coalgebra (X, s) induces a coreflexive pair

RX

ηR //

Rs
//
RLRX = RCXRεoo

in Y , with Rε as a common retraction of the subobjects ηR and Rs. (As in other contexts
[10], it is possible to give in this case a useful meaning to the idea that the two subobjects
united by Rε are ‘opposite’. See Section 3.)
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1.2. Definition. The canonical restriction of a pre-coalgebra (X, s) is the map in Y
denoted by s : Xs → RX and such that the square on the left below

Xs

s
��

s // RX

ηR

��

Xs
s // RX

η //

Rs
// RLRX

RX
Rs
// RLRX

is a pullback (in Y) and, equivalently, the fork on the right is an equalizer.

Canonical restrictions clearly exist if Y has equalizers or finite intersections of subob-
jects. Also, essentially due to Beck is the fact that existence of canonical restrictions is
equivalent to the existence of a right adjoint to a canonical ‘comparison’ functor. (See
Section 2 for details.)

Now let M = (M, η, µ) be a monad on a category Y , denote its category of algebras by
X , the forgetful functor by R : X → Y and its left adjoint by L : Y → X , so that M = RL.
Consider now the comonad C = (C, ε, δ) induced by the adjunction L a R where C = LR.
In this notation, the functor C : X → X assigns to each algebra (A, a : MA→ A), the
algebra C(A, a) = (MA,µ). The counit ε : C(A, a)→ (A, a) is the canonical presentation
a : (MA,µ)→ (A, a); and the comultiplication δ : C(A, a)→ C(C(A, a)) is the canonical
section Mη : (MA,µ)→ (MMA,µM) of the canonical presentation of (MA,µ).

1.3. Lemma. Let s : (A, a)→ C(A, a) = (MA,µ) be a morphism in X . Then the pair
((A, a), s) is a pre-coalgebra if and only if s is a section of the canonical presentation of
(A, a) if and only if as = id. Moreover, such a section is a coalgebra if and only if the
following diagram

A s //MA
Mη //

Ms
//MMA

commutes.

Proof. The axiom defining pre-coalgebras specializes to the commutativity of the fol-
lowing diagram

(A, a) s //

id %%

(MA,µ)

a

��
(A, a)

in X . Such a pre-coalgebra ((A, a), s) is a coalgebra if and only if the diagram on the left
below

(A, a)

s

��

s // C(A, a)

δ
��

A

s

��

s //MA

Mη

��
C(A, a)

Cs
// C(C(A, a)) MA

Ms
//MMA

commutes, if and only if the diagram on the right above commutes.
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In other words, a pre-coalgebra ((A, a), s) is a coalgebra if and only if s : A→MA is
a strong Kleisli-idempotent in the sense of Definition 4.2 in [14].

For a pre-coalgebra ((A, a), s) as above, its canonical restriction in the sense of Def-
inition 1.2 coincides with the canonical restriction in the sense of Definition 2.1 in [14].
That is: the map s : As → A making the following diagrams

As

s
��

s // A

η

��

As
s // A

η //

s
//MA

A s
//MA

a pullback and an equalizer respectively.

1.4. Definition. The monad M = (M, η, µ) is said to satisfy the Explicit Basis property
if for every pre-coalgebra ((A, a), s) as above the canonical restriction exists and the map

MAs
Ms //MA

a // A

is an iso.

This is one form of the Explicit Basis (EB) property (see Definition 2.4 in [14]).
It seems worth recalling some relevant terminology. If f : U → A is a morphism in
Y , the composition a(Mf) : MU → A underlies a morphism (MU,µ)→ (A, a) of alge-
bras. The map f is called independent (w.r.t. the algebra (A, a)) if the induced map
a(Mf) : MU → A is mono; it is called spanning if a(Mf) : MU → A is regular epi; and
it is called a basis if it is both independent and spanning. In this terminology M satis-
fies the EB property if for every algebra (A, a) and section s : (A, a)→ (MA,µ) of the
canonical presentation, the canonical restriction of s is a basis for (A, a).

Proposition 2.5 in [14] shows that the EB property is a strengthening of the classical
condition ‘projectives are free’. Lawvere suggested the following informal explanation: if
one understands s as a ‘proof that (A, a) is projective’ then the EB property gives a simple
algorithm that produces a system of free generators from any given proof of projectivity.

What does not appear in [14] is the role of the comonadic notions that we have used in
the paragraphs above. These became evident only after Lawvere formulated the conjecture
mentioned in the first paragraph. We can now start to explain it. As in the beginning,
let C = (C, ε, δ) be a comonad on a category X .

1.5. Definition. A map f : (X, s)→ (X ′, s′) of pre-coalgebras is a map f : X → X ′ in
X such that the diagram below

X

f
��

s // CX

Cf
��

X ′
s′
// CX ′

commutes.

Let XC be the category of pre-coalgebras and morphisms between them. Clearly, the
category XC of C-coalgebras is a full subcategory XC → XC.
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1.6. Definition. We say that C satisfies the Redundant Coassociativity property if the
embedding XC → XC is an equivalence.

Immediate from Lemma 1.3 is the following.

1.7. Corollary. Let M = (M, η, µ) be a monad on Y and denote the induced comonad
on the category YM of algebras by C. Then C satisfies Redundant Coassociativity if and
only if for every algebra (A, a) and every section s : (A, a)→ (MA,µ) of the canonical
presentation of (A, a), the map s : A→MA is a strong Kleisli idempotent.

Corollary 1.7, together with Proposition 4.5 in [14], implies that if M preserves in-
tersections then Redundant Coassociativity is equivalent to the Explicit Basis property.
This is already a strong connection, but we will show that there is a more elegant rela-
tion between the two properties which, in particular, explains the existence of canonical
restrictions via a right adjoint.

The examples discussed in [14] suggest that it is not uncommon for EB monads to have
an intersection-preserving and conservative (i.e. faithful and iso-reflecting) underlying
functor. Since the forgetful functor from algebras is conservative and creates limits, the
free-algebra functor is, in the examples, intersection-preserving and conservative. Such left
adjoints are comonadic by Beck’s Theorem. So the Eilenberg-Moore adjunctions induced
by EB monads are, in many cases, bimonadic in the following sense.

1.8. Definition. An adjunction L a R : X → Y is called bimonadic if R : X → Y is
monadic and L : Y → X is comonadic.

The main result in the paper (to be proved in Section 2) is an extension of Beck’s
comonadicity theorem and implies the following.

1.9. Corollary. Let L a R : X → Y be a bimonadic adjunction. If we denote the in-
duced monad on Y by M and the induced comonad on X by C then M is EB if and only
if C satisfies the Redundant Coassociativity property.

We stress that bimonadicity of L a R : X → Y does not imply that the induced monad
on Y is EB. The examples of non-EB monads over Set discussed in [14] induce bimonadic
adjunctions by Barr’s characterization in [1]. As another example, consider the bimonadic
adjunction F a U : Cat→ Set⇒ where U assigns, to each small category, its underlying
non-reflexive graph. The induced monad on Set⇒ is not EB, as shown in Example 5.5 in
[14]. This example should be contrasted with the conservative EB monad determined by

the forgetful U : Cat→ ∆̂1 from categories to reflexive graphs (Corollary 5.4 loc. cit.).
In Sections 4 and 5 we discuss two sources of EB monads that were recognized as such

only after the comonadic perspective explained in this paper was clear. The last sections
present two simple applications showing how the EB property may be used in the contexts
where it holds: in Section 7 we give an alternative proof of the characterization of modular
categories by Carboni and Janelidze and, in Section 8, we prove one of the basic facts
about Peano algebras.
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We assume familiarity with [14] and with Beck’s (Co)Monadicity Theorem [2]. See
also Theorem 2.5 in [16] for a sharp statement distinguishing the different properties of
the comparison adjunction. Also in [16], a monad M on a category Y is said to be of
effective descent type if the free-algebra functor Y → YM is comonadic.

2. The extended comparison

Fix an adjunction L a R : X → Y with unit η : Id→ RL and counit ε : LR→ Id. Let
C = LR : X → X and denote the induced comonad on X by C = (C, ε, δ). The stan-
dard comparison functor K : Y → XC assigns, to each object Y in Y , the coalgebra
(LY, Lη : LY → CLY ) and makes the following diagram

X

Y
K

66

L

>>

K // XC

OO

// XC

aa

commute, where XC → X and XC → X are the obvious forgetful functors, and the functor
K : Y → XC is the composition of K with the embedding XC → XC. The next result is
then obvious.

2.1. Lemma. If L is comonadic and Redundant Coassociativity holds then the extended
comparison K : Y → XC is an equivalence.

We will prove that the converse holds and relate the fact with the EB property. First,
following Beck, we ask when does K : Y → XC have a right adjoint. The answer is in
Proposition 2.3, which needs the next extension of Lemma 2.10 in [14].

2.2. Lemma. Let f : Y → RX and g : LY → X be adjuncts. For any pre-coalgebra (X, s)
the following are equivalent:

1. the map g underlies a pre-coalgebra map KY = (LY, Lη)→ (X, s);

2. the diagram

LRX
ε //

=
X

s

��
LY

Lf

OO

Lf
//

g

::

LRX

commutes (i.e. Lf = sε(Lf) or, equivalently, sg = Lf);

3. the diagram

Y
f // RX

ηR //

Rs
// RLRX

commutes.
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Proof. If the third item holds the diagram below

LY
Lf // LRX

ε

��

LηR //

LRs
// LRLRX

εLR

��
X s

// LRX

shows that sε(Lf) = ε(Lη)(Lf) = Lf , so the second item holds. If this is the case, the
next diagram

LY

Lη

��
Lf

++

Lf // LRX
ε // X

s

��
LRLY

LRLf
// LRLRX

LRε
// LRX

proves that ε(Lf) = g : (LY, Lη)→ (X, s), so the first item holds. Finally, if we assume
that the rectangle above commutes then, applying R and precomposing with the unit
η : Y → RLY it is easy to confirm that the third item holds.

Apart from its mathematical content, the next result shows that the condition ‘canon-
ical restrictions exist’ used in [14] is not ad-hoc.

2.3. Proposition. The functor K : Y → XC has a right adjoint if and only if canonical
restrictions exist. Moreover, in this case, the right adjoint maps each pre-coalgebra (X, s)
to the domain of its canonical restriction s : Xs → RX.

Proof. Assume first that the functor K : Y → XC has a right adjoint that we denote
by N : XC → Y . Also, let us denote the counit of K a N by ξ : K(N(X, s))→ (X, s).
For brevity we temporarily denote N(X, s) by S, an object in Y . In this notation
ξ : (LS,Lη)→ (X, s). The underlying map ξ : LS → X has a transposition that we de-
note by τ : S → RX. We claim that the following diagram

S
τ // RX

ηR //

Rs
// RLRX

is an equalizer in Y . For this, assume that f : Y → RX is such that ηf = (Rs)f . By
Lemma 2.2, this is equivalent to the transposition g : LY → X of f underlying a map
(LY, Lη)→ (X, s) of pre-coalgebras. By hypothesis, there exists a unique map g′ : Y → S
such that ξ(Kg′) = g. That is, ξ(Lg′) = g : LY → X in Y . Transposition shows that g′

is the unique map such that τg′ = f : Y → RX. So the fork above is indeed an equalizer
and this shows that the canonical restriction of (X, s) exists.

Conversely, assuming that canonical restrictions exist, we now show that the map
ε(Ls) : KXs → (X, s) is universal from K to (X, s). For this let g : KY → (X, s) be a
map in XC. By Lemma 2.2 the transposition f : Y → RX of g : LY → X factors through
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the canonical restriction s : Xs → X, say, via a map f ′ : Y → Xs. The next diagram

LY

Lf ′

��
Lf

$$

g

))
LXs Ls

// LRX ε
// X

completes the proof.

The right adjoint to K : Y → XC will be denoted by N : XC → Y . The composition

XC
// XC

N // Y

will be denoted by N and is obviously right adjoint to K : Y → XC. It is therefore the
well-known adjoint in Beck’s Theorem. Part of Beck’s result characterizes coreflexivity of
the adjunction K a N in terms of regularity of the unit η. This easily extends as follows.

2.4. Corollary. The functor K : Y → XC is full and faithful if and only if K : Y → XC

is. If, moreover, K has a right adjoint then the above are also equivalent to the following
diagram being an equalizer

Y
η //MY

ηM //

Mη
//MMY

for every Y in Y, where M = RL : Y → Y.

Proof. The first equivalence holds because XC → XC is full and faithful. If K has a
right adjoint then K full and faithful means that the unit λ : Id→ NK is an iso. Since
KY = (LY, Lη), this is equivalent to the vertical map below

Y

λ
��

η

%%
N(KY )

Lη

// RLY
η //

RLη
// RLRLY

being an iso. (The relation between K and the equalizer diagram is, of course, part of
Beck’s comonadicity theorem.)

We now discuss the corresponding ‘reflection’ conditions.

2.5. Lemma. If N : XC → Y exists then N is full and faithful if and only if for every
pre-coalgebra (X, s) the morphism

LXs
Ls // LRX

ε // X

is an iso in X . Also, N : XC → Y is full and faithful if and only if for every coalgebra
(X, s) the following diagram

LXs Ls
// LRX

LηR //

LRs
// LRLRX

is an equalizer.
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Proof. By Proposition 2.3, the transposition of id : N(X, s)→ N(X, s) (i.e. the counit
KN(X, s)→ (X, s)) is determined by the map ε(Ls) : LXs → X.

Also, we have already mentioned that if N exists then its restriction to XC is N . So
the final part is a fraction of Beck’s theorem.

In other words N : XC → Y is full and faithful if and only if L : Y → X ‘respects’
canonical restrictions. In contrast, we do not know any conditions on L alone that imply
reflexivity of the adjunction K a N .

2.6. Proposition. If the functor N : XC → Y exists then it is full and faithful if and
only if both N : XC → Y is full and faithful and Redundant Coassociativity holds.

Proof. One direction is trivial because if N is fully faithful and the vertical functor below
is an equivalence

Y XC
Noo

full and faithful
��
XC

N

``

then N is fully faithful. Conversely, assume that N is full and faithful. Then, clearly,
so is N . So all we need to prove is that Redundant Coassociativity holds. Let (X, s)
be a pre-coalgebra. Lemma 2.2 and the definition of s imply that the ‘long fork’ in the
diagram below

LXs Ls
//

Ls

++
LRX ε

// X s
// LRX

LηR //

LRs
// LRLRX

commutes. As ε(Ls) is epi by Lemma 2.5, (LηR)s = (LRs)s, which means that the pre-
coalgebra (X, s) is coassociative.

Summarizing the above discussion we obtain the following result.

2.7. Corollary. The extended comparison K : Y → XC is an equivalence if and only if
L : Y → X is comonadic and Redundant Coassociativity holds.

Proof. One direction is just Lemma 2.1. For the converse assume that K : Y → XC is
an equivalence. Then it is full and faithful and it has a full and faithful right adjoint
N : XC → Y . Corollary 2.4 implies that K : Y → XC is full and faithful. Proposition 2.6
implies that N : XC → Y is full and faithful and Redundant Coassociativity holds. Then
K a N is an equivalence (so L is comonadic) and Redundant Coassociativity holds.

Now let M = RL : Y → Y and M = (M, η, µ) be the monad on Y induced by the
adjunction L a R. If R : X → Y is monadic then we can work with X is if it was the
category YM of M-algebras. From this perspective, the functor C : X → X assigns, to
each algebra (A, a : MA→ A), the algebra C(A, a) = (MA,µ).
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2.8. Corollary. If R : X → Y is monadic the following hold:

1. N : XC → Y exists and is full and faithful if and only if the EB property holds.

2. K : Y → XC is an equivalence if and only if EB holds and M reflects isos.

Proof. Lemma 2.5 applied in the present context says that N is full and faithful if
and only if for every algebra (A, a) and section s : (A, a)→ (MA,µ) of the canonical
presentation of (A, a), the map

MAs
s //MA

a // A

is an iso; but this is the EB property (Definition 1.4). Finally, for general reasons,
K : Y → XC is an equivalence if and only if it reflects isos and it has a full and faithful
right adjoint N : XC → Y ; but the concrete definition of K implies that it reflects isos if
and only if L : Y → X does.

Corollaries 2.7 and 2.8 imply the the next variation of Beck’s comonadicity theorem.

2.9. Theorem. If R : X → Y is monadic the following are equivalent:

1. K : Y → XC is an equivalence.

2. L : Y → X is comonadic and Redundant Coassociativity holds.

3. The induced monad on Y reflects isos and satisfies the Explicit Basis property.

Of course, in this case, the adjunction L a R : X → Y is bimonadic.

Corollary 1.9 in the introduction follows.
Also, as a corollary of Proposition 2.6, together with Lemma 2.5, we obtain the next

more directly applicable ‘crude’ version.

2.10. Corollary. If Y has finite intersections and L preserves them then N : XC → Y
is full and faithful if and only if Redundant Coassociativity holds.

Again, as a by product of the results here we can reprove Proposition 4.5 in [14] which
was mentioned after Corollary 1.7.

2.11. Corollary. Let M = (M, η, µ) be a monad on Y. If Y has finite intersections of
subobjects and M preserves them then the following are equivalent:

1. M satisfies the Explicit Basis property.

2. For every algebra (A, a) and section s : (A, a)→ (MA,µ) of the canonical presen-
tation of (A, a), s : A→MA is a strong Kleisli idempotent.

Proof. Let X be the category of M-algebras and C be the comonad on X induced by
the monadic adjunction X → Y . By Corollary 2.8, M is EB if and only if N : XC → Y
is full and faithful. In turn, this is equivalent to Redundant Coassociativity of C by
Corollary 2.10. Corollary 1.7 completes the proof.
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To end this section we introduce a piece of convenient terminology.

2.12. Definition. A monad satisfying the conditions of the third item in Theorem 2.9
will be called a CEB monad.

Every CEB monad has a conservative underlying functor.

3. A definite notion of ‘opposite’

In this section we assume that Y has equalizers. Fix an adjunction L a R : X → Y with
unit η : Id→ RL and counit ε : LR→ Id. As mentioned in the beginning every pre-
coalgebra (X, s) for the comonad induced by L a R determines a coreflexive pair

RX

ηR //

Rs
//
RLRXRεoo

in Y , with Rε as a common retraction of the subobjects ηR and Rs. In the terminology
of [10], Rε : RLRX → RX is a Unity and Identity (UI) of the ‘opposites’ ηR and Rs.
The terminology is justified, among other reasons, because it is usually possible to give
“a useful meaning to the idea that the two subobjects united by a UI are ‘opposite’ ”
(see p. 169 loc. cit.). In this section we describe a definite notion of ‘opposite’ relevant to
UIs above. Notice that an opposition is already manifest in the fact that while one of the
sections is in the image of R the other is not, unless the diagram is trivial. Indeed, if ηR
was equal to Rγ for some γ : X → LRX then ε : LRX → X would be a section of γ and
so an iso, with inverse s = γ.

Let us stress that we are not understanding ‘opposite’ as the two sections satisfying
respective conditions whose conjunction is inconsistent. Instead, the idea we have just
described is that the conjunction implies a certain extreme situation. This practice of
using simple negative phrases to signify ‘implying a trivial case’ of course requires that it
be explained in each situation what the trivial case is. For example, one might say that a
Boolean atom is an object with no subobjects. It is also worth mentioning that Läuchli’s
completeness result for intuitionistic first order logic relies on the fact that he understood
negation in the spirit suggested above: the usual definition of ¬p is p⇒⊥ but in various
contexts it may be more appropriate to replace ⊥ with some other value. (See [15] and
references therein.)

Let f : RX → RY be a map in Y . The diagram

RLRX

Rε
��

RLf // RLRY

Rε
��

RX
f

// RY

need not commute. In any case, we can take the equalizer of the two compositions
RLRX → RY .
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3.1. Definition. The (L a R)-core of f is the equalizer of the maps below

RLRX
Rε // RX

f // RY RLRX
RLf // RLRY

Rε // RY

from RLRX to RY in Y .

Since the adjunction is fixed we will refer to the core of f instead of its (L a R)-core.
Now, how small can it be?

3.2. Lemma. The unit ηR : RX → RLRX factors through the core of f .

Proof. The diagram below

RX

f

��

id

**
ηR // RLRX

RLf

��

Rε // RX

f

��
RY

id

44ηR // RLRX Rε // RY

shows that (Rε)(RLf)ηR = f(Rε)ηR : RX → RY . (Bare in mind that the square on the
right above does not necessarily commute.)

We are therefore led to the following.

3.3. Definition. The map f : RX → RY is reluctant (w.r.t. X and Y ) if its core is
ηR : RX → RLRX.

The following simple fact suggests that it is fair to say that reluctant maps are not in
the image of R.

3.4. Lemma. Let g : X → Y be a map in X . Then Rg : RX → RY is reluctant if and
only if ηR : RX → RLRX is an iso.

Proof. The maps gεX , εY (LRg) : RLX → Y are equal by naturality, so the core of Rg is
an iso. If Rg is reluctant it means that ηR : RX → RLRX is an iso. On the other hand,
if ηR : RX → RLRX is an iso then it is the core of Rg by Lemma 3.2.

In other words, if f is in the image of R and is reluctant then its domain is of a very
restricted form. Notice that Lemma 3.2 implies that if X is such that ηR : RX → RLRX
is an iso then every map f : RX → RY is reluctant.

3.5. Lemma. The unit ηR : RX → RLRX is reluctant w.r.t. X and LRX.

Proof. The core of ηR : RX → RLRX is the equalizer the maps

RLRX Rε // RX
ηR // RLRX RLRX

id ,,

RLηR // RLRLRX

RεLR

��
RLRX

so it must be the unit ηR : RX → RLRX because (RεX)ηRX = idRX .
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So, in the coreflexive pair determined by a pre-coalgebra s : X → LRX, the sections
involved are opposite in the sense that one is in the image of R and the other is reluctant.

Assume from now on that R is monadic and let M = (M, η, µ) be the induced monad
on Y . In this case, the material above admits a more concrete intuition. Let f : A→ B
be a map in Y and let (A, a) and (B, b) be M-algebras. The diagram

MA

a

��

Mf //MB

b
��

A
f

// B

need not commute. The core of f (w.r.t. (A, a) and (B, b)) is the equalizer of the maps
below

MA a // A
f // B MA

Mf //MB b // B

from MA to B in Y . So f underlies an algebra map (A, a)→ (B, b) if and only if its
core is an iso. In this context, a reluctant map may be called reluctantly homomorphic or
strongly non-homomorphic.

In many cases, strongly non-homomorphic homomorphisms don’t exist. For example,
for the monad on Set induced by any consistent algebraic theory with a constant, there
are no objects A such that η : A→MA is an iso. On the other hand, for the monad
determined by the algebraic category of monoid actions of some non-trivial monoid, A = ∅
is the only set such that η : A→MA is an iso.

4. Descent data induce CEB monads

In this section we show that the typical examples of monads arising in ‘Monadic Descent
Theory’ [8] are CEB (Definition 2.12). Fix a category E with finite limits. For any
object I of E the forgetful E/I → E is comonadic and it is not difficult to check that the
resulting comonad on E satisfies the Redundant Coassociativity property. Applying this
observation to a slice category one obtains the following result which we learned from
R. Wood (who said that probably others had observed it before).

4.1. Proposition. For any map p : I → J in E the comonad on E/J determined by
Σp a p∗ : E/J → E/I satisfies the Redundant Coassociativity property.

Denote the induced monad on E/I by M = (M, η, µ). It follows that if p is effective
descent (i.e. p∗ is monadic) then M is EB by Corollary 1.9. We now show that M is EB
regardless of whether p is effective descent or not.

The functor M maps (X, x : X → I) to (I ×X, π0). The unit η : (X, x)→M(X, x)
is defined as the horizontal map on the left below

X

x
##

〈x,id〉 // I ×X
π0
��

I × I ×X

π0
&&

π0×X // I ×X
π0
��

I I
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and the multiplication µ : MM(X, x)→M(X, x) is defined as on the right above. Alge-
bras for this monad are sometimes called descent data.

4.2. Lemma. An algebra for M is a triple ((X, x), a) with a : M(X, x)→ (X, x) so that
the following diagram

I ×X

π0
##

a // X

x

��
I

commutes, and such that unit and associativity hold, so that the following

X

id ##

〈x,id〉 // I ×X
a

��

I × I ×X
π0×X

��

I×a // I ×X
a

��
X I ×X a

// X

commute.

A section s : ((X, x), a)→ (M(X, x), µ) for the canonical presentation of such an al-
gebra is determined by a map s : X → I ×X in E such that the following diagrams

X

x
##

s // I ×X
π0
��

X

id ##

s // I ×X
a

��

I×s // I × I ×X
π0×X
��

I X s
// I ×X

commute.

4.3. Lemma. For s : X → I ×X as above, the composition

X
s // I ×X π1 // X

is idempotent.

Proof. Denote the composition π1s by e : X → X. First we show that the following
diagram

I ×X
a

��

π1 // X

e

��
X e

// X

commutes. Indeed, the square on the left below commutes

X

s

��
e

yy

I ×X

π1 --

a

��

I×s // I × I ×X
π0×X

��

π1×X // I ×X
π1
��

X

e

44
s // I ×X π1 // X
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because s is an algebra map and the square on the right commutes trivially. Finally, to
prove that e is idempotent, pre-compose with s and calculate as below

X

id ##

e

&&s // I ×X
a

��

π1 // X

e

��
X e

// X

using that s is a section of a.

4.4. Proposition. The monad M on E/I is CEB.

Proof. It is easy to check thatM reflects isos. To prove that the EB property holds we use
Corollary 2.11. Finite intersections exist in E/I because we have assumed that pullbacks
exist in E and the forgetful E/I → E creates them. Also for this reason, and because
products preserve pullbacks, M preserves pullbacks and, in particular, intersections. So
we are left to prove that sections of canonical presentations are strong Kleisli idempotents.
For this, let ((X, x), a) be an algebra and s a section for its canonical presentation as above.
To prove that s is a strong Kleisli idempotent we must check that the fork below

X
s // I ×X

I×〈x,id〉//

I×s
// I × I ×X

commutes in E . If we post-compose with π0 : I × I ×X → I then, clearly, the result-
ing maps X → I are equal (to π0s). To prove that the two maps are equal after post-
composing with π1 : I × I ×X → I, just observe that the following

X s // I ×X
π1
��

I×s // I × I ×X
π1
��

X

x

44s // I ×X π0 // I

commutes because s : (X, x)→ (I ×X, π0) in E/I. Finally, use Lemma 4.3 to prove that
the two maps are the same after composing with π2 : I × I ×X → X.

The usual trick with slices implies the promised result (which was suggested by a talk
by R. Rosebrugh based on [9] in a Seminar organized by R. F. C. Walters at Como in
2010).

4.5. Corollary. If E has pullbacks then, for any p : I → J in E, the monad on E/I
determined by Σp a p∗ : E/J → E/I is CEB.

One of the main results in [16] states that a functor is comonadic if and only if
the associated Eilenberg-Moore adjunction is bimonadic. This result can be applied to
Σp : E/I → E/J but we don’t know if the Redundant Coassociativity proved in Proposi-
tion 4.1 ‘lifts’ to the induced Eilenberg-Moore adjunction in general.
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5. Extensivity, additivity and modularity

Let D be a category with finite coproducts.

5.1. Definition. An object D in D is called detachable if the monad induced by the
right adjoint D/D → D is CEB.

Let us be more explicit.

5.2. Lemma. D is detachable if and only if the following hold:

1. For every a : D → A and s : A→ D + A such that the following diagrams

D

in0 ##

a // A

s

��

A

id ##

s // D + A

[a,id]

��
D + A A

commute, the equalizer/intersection

As
s // A

in1 //

s
// D + A

exists and the map [a, s] : D + As → A is an iso.

2. The following diagram

X

in1

��

in1 // D +X

in1

��
D +X

D+in1

// D + (D +X)

is a pullback for every X in D.

Proof. Let X = D/D → D = Y be the forgetful functor. The induced monad is CEB if
and only if both K : Y → XC and N : XC → Y are full and faithful. By Corollary 2.8, N
is full and faithful if and only if the EB property holds. In turn the EB property for the
monad D + ( ) is equivalent to the first item. Finally, the second item is equivalent to
the equalizer condition of Corollary 2.4, which is equivalent to K being fully faithful.

For example, Proposition 2.7 in [14] shows that if D is extensive then all the monads
induced by functors D/D → D are EB. Moreover, the second item of Lemma 5.2 always
holds in extensive categories so all objects in an extensive category are detachable.

5.3. Example. If (D,∨, 0) is a ∨-semilattice, then all the monads induced by D/D → D
are idempotent and so, satisfy the Explicit Basis property. But 0 is the only detachable
object of D, because D ∨ ( ) does not reflect isos if 0 < D.

For brevity, let us introduce the following terminology.
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5.4. Definition. A category with finite coproducts is called weakly extensive if all objects
are detachable.

In this section we show that modular categories are weakly extensive. But first we
discuss the more familiar case of additive categories with kernels.

For the rest of the section assume that D has finite products and coproducts.
If the unique map 0→ 1 from the initial to the terminal object is an iso then 0 : X → Y

denotes the zero map X → 1 = 0→ Y .

5.5. Definition. D is called linear if 0→ 1 is an iso and for every X, Y in D,

X + Y

 id 0
0 id


// X × Y

is an iso.

The terminology is taken from [12, 13]. Mitchell calls these categories semi-additive
(see I.18 in [17]) and Freyd calls them half-additive (see 1.591 in [7]). (Co)products in
linear categories will be denoted by ⊕.

5.6. Lemma. Let D be linear with kernels. For a : D → A and s : A→ D ⊕ A as in
Lemma 5.2, the canonical restriction s : As → A exists and can be built as the kernel of

A s // D ⊕ A π0 // D

where π0 : D ⊕ A→ D is the projection from the product D ⊕ A.

Proof. Let f : A→ D be the composition π0s. The pullback rectangle below

ker f

��

// A

in1

��

! // 0

!

��
A s

// D ⊕ A π0
// D

exists by hypothesis and the square on the right is a pullback by the elementary properties
of finite products. Then the square on the left is a pullback and it shows that ker f is the
canonical restriction s : As → A.

Additive categories are typically defined as categories enriched in abelian groups. We
will use the following alternative taken from 1.591 in [7].

5.7. Definition. D is called additive if 0→ 1 is an iso and for every f : X → Y , the
morphism

X + Y

 id f
0 id


// X × Y

is an iso.

A key result about additive categories with kernels is that the domain of a split epi is
canonically iso to the sum of its codomain with its kernel.
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5.8. Lemma. If D is additive with kernels then it is weakly extensive.

Proof. For a : D → A and s : A→ D ⊕ A as in Lemma 5.2, a is a section of the map
f = π0s : A→ D. By Lemma 5.6 the kernel of f is s : As → A. By Proposition I.18.5 in
[17] the map [a, s] : D ⊕ As → A is an iso. This proves the first item of Lemma 5.2. To
prove the second just observe that in a linear category the following square

X

〈0,id〉
��

g // Y

〈0,id〉
��

D ⊕X
D⊕g

// D ⊕ Y

is a pullback for any g : X → Y .

On the other hand, the result above does not hold for arbitrary linear D.

5.9. Example. Consider the linear category SL of semilattices and the ∨-semilattice
A = {0 < ε < 1} therein. Let a : D → A be the sub-semilattice determined by {0, ε}. We
now show that the monad induced by D/SL→ SL is not EB. The semilattice D ⊕ A may
be pictured as follows:

(ε, 1)

(ε, ε)

;;

(0, 1)

cc

(ε, 0)

;;

(0, ε)

cc ;;

(0, 0)

cc ;;

and the injection D → D ⊕ A maps x ∈ D to (x, 0) in D ⊕ A. Consider now the map
s : A→ D ⊕ A given by s0 = (0, 0), sε = (ε, 0) and s1 = (ε, 1). Clearly, the triangles
below

D
a

{{
in0

��

a

##
A s

// D ⊕ A
[a,id]

// A

commute, and the bottom composition [a, id]s : A→ A equals the identity. The canonical
restriction s : As → A may be calculated as the equalizer of the maps s, in1 : A→ D ⊕ A
or as the kernel of π0s : A→ D. Either way, it is easy to see that As is initial and so
D ⊕ As ' D does not have enough elements to be iso to A.

The same example shows that D/CMon→ CMon does not induce an EB monad,
where CMon is the category of commutative monoids. On the other hand, as observed
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in [3], the fact that retractions are summands also holds in modular categories. So it is
not surprising that EB monads also arise in that context.

5.10. Definition. D satisfies the modular law if for every f : X → Z, the canonical map(
〈in0, f〉
in1 × Z

)
: X + (Y × Z) −→ (X + Y )× Z

is an iso for every Y in D.

The modular law plays a key role in Carboni’s definition of modular category. But
before we recall these, let us observe the following.

5.11. Proposition. Let D have finite limits and finite coproducts. If D/U satisfies the
modular law for every U in D then the monad induced by D/D → D is EB for every D
in D.

Proof. Let a : D → A and s : A→ D + A be as in Lemma 5.2. Take U = D + A and
contemplate the modular law in D/(D+A) with f being a over D + A as in the diagram
on the left below

D

X=in0 ##

a // A

s=Z
��

A

in1=Y

��
D + A D + A

and Y being the injection in1 : A→ D + A as on the right above. Then Y × Z is the
intersection of the subobjects in1 : A→ D + A and s : A→ D + A. That is, Y × Z is
the composition As → D + A in the equalizer diagram below

As
s // A

in1 //

s
// D + A

On the other hand, the coproduct X + Y in the slice D/(D + A) is the terminal object
id : D + A→ D + A. So (X + Y )× Z = Z. Altogether, the modular law implies that
the following map

D + As

D+s=[in0,in1s]
%%

[a,s] // A

s
{{

D + A

is an iso in D/(D + A).

We now want to discuss modular categories in the sense of Carboni. From the proof
of the main result in [4] one can extract the next one.
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5.12. Lemma. If D has finite coproducts and finite limits the following are equivalent:

1. The diagram

X

f

��

in1 // U +X

U+f
��

U
in1

// U + U

is a pullback for every f : X → U in D.

2. The previous condition holds for every f : X → 1.

3. The diagram

X

g

��

in1 // U +X

U+g

��
Y

in1

// U + Y

is a pullback for every g : X → Y and U in D.

Proof. Trivially, the first item implies the second and the third implies the first. To
prove that the second item implies the third use the Pasting Lemma to conclude that the
square on the left below

X

in1

��

g // Y

in1

��

! // 1

in1

��
U +X

1+g
// U + Y

1+!
// 1 + 1

is a pullback.

5.13. Definition. A category D with finite limits and coproducts is called modular if
the following two conditions hold:

1. For every U in D, D/U satisfies the modular law.

2. The equivalent conditions of Lemma 5.12 hold.

This is, almost exactly, Carboni’s definition in [4]. It is clear that modular categories
are stable under slicing.

5.14. Example. Additive categories with kernels are modular. See [4] for a proof using
embeddings into the category of abelian groups, and Chapter 1 of [18] for an elementary
proof. It follows that slices of additive categories are modular and, in fact, the main result
in [4] shows that these are all the examples. We sketch a proof in Proposition 7.2 below.

Modular lattices fail to be modular categories because of the second item in Defini-
tion 5.13 which, on the other hand, allows to prove the following.
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5.15. Corollary. Modular categories are weakly extensive.

Proof. By Proposition 5.11 all monads induced by functors D/D → D are EB. The third
item in Lemma 5.12 implies that they reflect isos.

As observed in [3], modular categories satisfy the much stronger kernel equivalence.
But notice that this property never holds for non-trivial extensive categories or lattices.
The notion of weakly extensive category isolates a non-trivial common aspect of exten-
sivity and modularity. (See Section 3 in [19] for a different but related comparison.)

6. Additive coslices

A basic fact about modularity is that when D is modular then 1/D is additive and the
induced comonad on 1/D is of a very special form as discussed in the present section.
The material is known, but not in the form we need it for the results in Section 7. Let
C = (C, ε, δ) be a comonad on a category X . Assume that X has initial object 0 and that
coproducts with C0 exist in X .

6.1. Definition. The pair (X ,C) satisfies the coslice condition if for every k : X → CA
such that the map on the left below

C0 +X
[C!,k] // CA X k // CA ε // A

is an iso, the map on the right above is also an iso.

Let D be a category with finite coproducts and fix an object D in D. The algebraic
functor D/D → D induces a comonad on D/D that we denote by C = (C, ε, δ). For
any object (A, a : D → A) in the coslice D/D, C(A, a) = (D + A, in0), and the counit
ε : (D + A, in0)→ (A, a) is given by [a, id] : D + A→ A. The initial object 0 in D/D is
(D, id) and coproducts with C0 = (D +D, in0) exist because for any (X, x), the coproduct
C0 + (X, x) = (X +D, in0x) exists, in turn, because the following

D

in0

��

x // X

in0

��
D +D

x+D
// X +D

is a pushout in D.

6.2. Lemma. The pair (D/D,C) satisfies the coslice condition.

Proof. Let k : (X, x)→ (D + A, in0) be such that

C0 + (X, x) = (X +D, in0x)
[k,in1a]// (D + A, in0)



574 MATÍAS MENNI

is an iso. Its inverse must be of the form [in0x, α] : D + A→ X +D for some map
α : A→ X +D. We must show that the maps below

X
k // D + A

[a,id] // A A
α // X +D

[id,x] // X

are inverse to each other. The next diagram

A

in1 **

α // X +D

[k,in1a]

((

[id,x] // X
k // D + A

[a,id]
��

D + A

[in0x,α]

OO

id
// D + A

[a,id]
// A

proves that the map A→ X is a section of the one X → A. An analogous calculation
shows that it is also a retraction. We write down the relevant diagrams for the reader’s
convenience. First observe that αa = in1 : D → X +D as the next diagram

D

in1

��

a // A

in1

��

α

((
X +D

id

66[k,in1a]
// D + A

[in0x,α]
// X +D

shows. Finally, the diagram below

X

in0 **

k // D + A
[in0x,α]

((

[a,id] //

[in1,α]

**
A

α // X +D

[id,x]

��
X +D

[k,in1a]

OO

id
// X +D

[id,x]
// X

proves that the composition X → X is the identity.

A comonad C = (C, ε, δ) on a category X with finite products is called nullary if the
map 〈C!, ε〉 : CA→ C1× A is an iso for all A in X [5]. This means that the category of
coalgebras is equivalent to X/C1.

6.3. Lemma. Let (X ,C) satisfy the coslice condition. If X is additive with kernels then
C is nullary.

Proof. Let Z be the zero object in X and denote (co)products by ⊕. Also, let us write
z : Z → A and ! : A→ Z for the unique maps to and from A. Of course, Cz : CZ → CA
has retraction C! : CA→ CZ and, since X is additive with kernels, CA is the coprod-
uct of Cz : CZ → CA with the kernel k : X → CA of the retraction. In other words,
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[Cz, k] : CZ ⊕X → CA is an iso. Using that k is the kernel of C! : CA→ CZ, it is easy
to check that the following diagram

CZ ⊕X
[Cz,k]

��

CZ⊕εk

&&
CA

〈C!,ε〉
// CZ ⊕ A

commutes, and the coslice condition implies that εk : X → A is an iso. So both vertical
and diagonal maps in the diagram above are isos, and hence, the horizontal map is an
iso.

Let D have finite limits and coproducts and let C be the comonad induced by the
adjunction F a U : 1/D → D.

6.4. Lemma. If 1/D is additive then C coincides with (F1)× ( ) : 1/D → 1/D. There-
fore, if it also holds that F : D → 1/D is comonadic then the comparison D → (1/D)/(F1)
is an equivalence and D is modular.

Proof. Finite limits in D imply that 1/D has kernels. The terminal object 1 in D coin-
cides with UZ and so, F1 = CZ where C = FU : 1/D → 1/D. Finally, if F is comonadic,
D is modular by Example 5.14.

Lemma 6.4 is probably well-known because it is related to the notion of essential
affineness [3], but it is not explicit there nor in [5].

7. Modularity without descent

The characterization of modular categories proved at the end of [5] rests on Theorem 2.1
loc. cit. which characterizes when the monad determined by the functor XC → X/C0 is
nullary, where C is an internal category in X and C0 is its object of objects. We prove an
extension of the characterization of modular categories avoiding the descent machinery.
At the same time we sketch a proof of Carboni’s characterization in [4].

7.1. Lemma. If D is modular, 1/D is additive with kernels.

Proof. The proof in [4] rests on the peculiar properties of the monad on D induced by
the monadic 1/D → D. First, the Kleisli category is equivalent to the Eilenberg-Moore
category because one can apply the modular law to a point p : 1→ X to conclude that
1 + (0×X)→ (1 + 0)×X = X is an iso. Second, every free-algebra has a unique abelian
group structure. The proofs in [3] and [19] prove that the ‘fibration of points’ is additive
(reducing the problem to additivity of D/0) and then observe that its fiber over 1 coincides
with 1/D.
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Putting together the results in the previous sections we obtain the following extension
of the characterizations of modular categories given in [4] and [5].

7.2. Proposition. Let D be a category with finite limits and finite coproducts. The
following are equivalent.

1. D is modular.

2. 1/D is additive and D → 1/D is comonadic.

3. 1/D is additive and the monad induced by 1/D → D is CEB.

Moreover, in this case, the canonical D → (1/D)/(1 + 1, in0) is an equivalence.

Proof. The first item implies the third by Corollary 5.15 and Lemma 7.1. The third
item implies the second by Theorem 2.9. Finally, by Lemma 6.4, the second item implies
the first and also the last part of the result.

The following corollary (analogous to Theorem 3.4 in [5]) emphasizes the difference
between additive and modular categories. Let Ab(D) denote the category of abelian
groups in D and Ab(D)→ 1/D be the obvious forgetful functor. Also, denote by M the
monad induced by 1/D → D. We say that the monad is trivial if the functor 1/D → D
is an equivalence.

7.3. Corollary. If Ab(D)→ 1/D is an equivalence the following hold:

1. D is additive if and only if M is trivial.

2. D is modular if and only if M is CEB.

It is worth mentioning that if D is modular the left adjoint D → 1/D preserves pull-
backs [19]. This connects with Bourn’s characterization of modular categories, because
pullback-preservation and conservativity imply that essential affineness of 1/D is reflected
into D. (See Example 2 in Section 4 of [3].)

8. Peano algebras

Let Y be a Heyting category and M = (M, η, µ) a monad on it.

8.1. Definition. The subobject of extreme elements associated with an M-algebra (A, a)
is the subobject of A given by

{x ∈ A | (∀v ∈MA)(av = x⇒ v = ηx)} → A

We denote this subobject by a? : bA, ac → A.

This was introduced in Section 14 in [14] where some examples are discussed. We
consider here a different example. Let κ be an object in the topos Set/N. This object of
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‘operations indexed by their arity’ induces a free algebraic theory (Theorem II.2.1 in [11])
and so, a monad on Set that we denote by Mκ. One explicit construction of MκS is given
by the set of inductively defined terms using the elements of κ and S. An Mκ-algebra
(A, a) is determined by a set A together with a family (f : An → A)n∈N,f∈κn, where κn
denotes the fiber of κ over n ∈ N. Each of the functions f : An → A is often called an
operation of the algebra.

8.2. Lemma. For any Mκ-algebra (A, a), the subset bA, ac → A is given by the elements
of A that are not values of any of the operations of the algebra.

Proof. Straightforward.

An Mκ algebra (A, a) is called an induction algebra if the subset bA, ac → A is gener-
ating (p. 503 of [6]). The terminology does not seem appropriate for other monads so let
us introduce the following generalization.

8.3. Definition. An M-algebra (A, a) is called extremally generated if the composition

MbA, ac Ma? //MA
a // A

is regular epi.

The following is a minor rewording of Definition 4.1 loc. cit.

8.4. Definition. An Mκ algebra is called a Peano algebra if the following ‘generalized
Peano axioms’ hold:

(P1) all operations are injective,

(P2) the ranges of the operations are pairwise disjoint,

(P3) it is extremally generated.

(Diener actually considers the operations to be partial functions, but we will not deal with
this sort of generality.)

One fundamental result about Peano algebras is that they are free. The proof in [6]
follows as a corollary of Theorem 4.22 there which, in turn, is an application of a careful
study of the algebraic predecessor relation introduced in Definition 3.1 loc. cit. Explicitly
for an Mκ-algebra (A, a), and x, y in A, x <(A,a) y if there exists an f ∈ κn for some n
and a n-tuple ~z ∈ An containing x such that f~z = y. The key technical result is that if
(A, a) is Peano then the algebraic predecessor relation <(A,a) is well-founded.

On the other hand, free algebraic theories induce EB monads (Section 7 in [14]). So
the following alternative proof suggests itself.

8.5. Lemma. If (A, a) is Peano then its canonical presentation has a section.
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Proof. By hypothesis, the composition (MbA, ac, µ)→ (A, a) is the coequalizer of its
kernel pair π0, π1 : K → (MbA, ac, µ). So it is enough to prove that the ‘twisted fork’
below

K
π0 //

π1
// (MbA, ac, µ)

Ma? ++

Ma? // (MA,µ) a // (A, a)

s

��
(MA,µ)

commutes, inducing the indicated map s : (A, a)→ (MA,µ). In order to do this, let
f [~x], g[~y] ∈MbA, ac be such that f(~x) = g(~y) in A. We show, by induction on the
number of symbols forming f [~x] and g[~y], that f [~x] = g[~y] ∈MA. First assume that
f [~x] = ηx ∈MbA, ac for some x ∈ bA, ac. Then x = g(~y) ∈ A and since x is extreme,
g[~y] = ηx; so f [~x] = g[~y] ∈MA. Similarly if g[~y] = ηy. This completes the base case.
Now assume that f [~x] and g[~y] are non-trivial. That is, f [~x] = f0(p1[~x], . . . , pm[~x]) and
g[~y] = g0(q1[~y], . . . , qn[~y]) for some ‘operations’ f0 ∈ κm and g0 ∈ κn. Then, by hypothesis,
f(~x) = f0(p1~x, . . . , pm~x) and g(~y) = g0(q1~y, . . . , qn~y) in A. Since operations are disjoint,
f0 = g0 and m = n. As operations are injective pi~x = qi~y ∈ A for every 1 ≤ i ≤ m. So
pi[~x] = qi[~y] ∈MbA, ac by inductive hypothesis and the proof is complete.

The rest follows from the elementary theory of EB monads in Heyting categories.

8.6. Proposition. Every Peano algebra is free on its subset of extreme elements. More
explicitly: if (A, a) is a Peano algebra then the canonical map MbA, ac → A is an iso.

Proof. It is easy to check that for every set S, bMS, µc →MS coincides with the
unit η : S →MS. So Proposition 14.2 in [14] is applicable and implies that the canon-
ical restriction of the section s : (A, a)→ (MA,µ) built in Lemma 8.5 coincides with
bA, ac → A.

Lawvere’s construction of the algebraic theory associated to an algebraic category
makes it evident that the properties of free algebras are closely related to properties of
the theory. The work on Peano algebras suggests a specific condition that is closely related
to the Explicit Basis property. Fix a monad M on a category Y .

8.7. Definition. An M-algebra (A, a) is said to have monic operations if the canonical
factorization

MA

��

∆

&&
E //M(A× A)

Mπ0 //

Mπ1
//MA

a // A

of M∆ : MA→M(A× A) via the equalizer E →M(A× A) is an iso.

The following simple result gives a more external feeling for the definition.
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8.8. Lemma. Let (A, a) have monic operations. If the diagram on the left below commutes

X
x //MU

Mf //

Mg
//MA

a // A X
x //MU

Mf //

Mg
//MA

then so does the diagram on the right.

For example, if (A, a) is an algebra for Mκ induced by κ ∈ Set/N as discussed above
then it has monic operations in the sense of Definition 8.7 if and only if for every f ∈ κn,
the function f : An → A is injective.

8.9. Proposition. Let Y have finite limits, L a R : X → Y be a bimonadic adjunction
and M be the induced monad. If every free M-algebra has monic operations then M is
EB.

Proof. If s : (A, a)→ (MA,µ) is a section for the canonical presentation of (A, a) then
the diagram on the left below

A
s //MA

Mη //

Ms
//MMA

µ //MA A
s //MA

Mη //

Ms
//MMA

commutes. So the diagram on the right commutes by Lemma 8.8. In other words,
Redundant Coassociativity holds.

This gives a different explanation for why free theories are EB. The simplest non-free
example is probably the theory presented with two unary operations f and g subject to
the equation fg = gf . Another simple example is the theory presented with two unary
operations f and g and a constant c such that fc = gc. The characterization of the
algebraic theories that induce EB monads remains an open problem.
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[19] M. Thiébaud. Modular categories. SLMN, 1488:386–400, 1991.

M. Menni
Depto. de Matemática de la UNLP
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