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RANGE CATEGORIES I: GENERAL THEORY

J.R.B. COCKETT, XIUZHAN GUO AND PIETER HOFSTRA

Abstract. In this two-part paper, we undertake a systematic study of abstract partial
map categories in which every map has both a restriction (domain of definition) and a
range (image). In this first part, we explore connections with related structures such
as inverse categories and allegories, and establish two representational results. The
first of these explains how every range category can be fully and faithfully embedded
into a category of partial maps equipped with a suitable factorization system. The
second is a generalization of a result from semigroup theory by Boris Schein, and says
that every small range category satisfying the additional condition that every map is
an epimorphism onto its range can be faithfully embedded into the category of sets and
partial functions with the usual notion of range. Finally, we give an explicit construction
of the free range category on a partial map category in terms of certain types of labeled
trees.

1. Introduction

1.1. Background and Motivation The pervasiveness of partiality both in mathemat-
ics and in theoretical computer science has led several researchers to develop categorical
approaches to partial maps. For the present purposes, the work by Di Paola and Heller on
dominical categories [Di Paola & Heller 1987], which was aimed at a categorical treatment
of classical computability theory and Gödel’s incompleteness theorems, is particularly rel-
evant, as it was the first approach in which the partiality of a map was captured by an
idempotent rather than a subobject. This prompted Robinson and Rosolini to define a
class of abstract partial map categories called P-categories [Robinson & Rosolini 1988];
furthermore, they proved representational results for those categories in terms of tradi-
tional partial map categories (by which we mean categories where the morphisms are
spans (m, f) where m belongs to a suitable class of monics; see Section 4 for details.) For
a more detailed account of the history of categories of partial maps, as well as the rela-
tions to semigroup theory, we refer the reader to the introduction of the paper [Cockett
& Manes 2009].

In 2002, Cockett and Lack proposed a more general axiomatization of partial map
categories, called restriction categories. The characteristic feature of restriction categories
is that the partiality of a map f : A → B is captured by an idempotent f : A → A on A;
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in the case of sets and partial functions, this map f would be defined as

f(x) =

{
x if x ∈ dom(f)
undefined otherwise.

The behaviour of the operator f 7→ f can then be axiomatized by means of four
equations (see Section 2). What sets apart restriction categories from P-categories, and
hence in particular from the more special dominical categories, is that the definition
doesn’t require products; and unlike traditional partial map categories no pullbacks are
required to define composition. As such, restriction categories are both economical and
general.

Further developments include the study of partial map categories with additional
categorical structure or properties. For example, extensive categories, and in particular
the extensive completion of a category appear in [Cockett 1993], while partial cartesian
closed categories were considered by in [Curien & Obtulowitz 1989]. An improved setting
for the study of abstract computability theory was put forward in [Cockett & Hofstra
2007]; furthermore, a term logic for partial cartesian categories was presented in [Cockett
& Hofstra 2010].

In this paper we continue the development of the theory of partial map categories
with additional categorical structure by studying the class of range categories : these are
categories of partial maps in which every morphism has a range, or image. The category
of sets and partial functions is a typical such category, and in the category of spaces and
partial continuous functions with open domain the maps with range are precisely1 the
open maps. Another motivating example is the category of partial recursive functions;
both the domain and range of such a function are recursively enumerable. However, other
similar categories, obtained by replacing the standard recursion theoretic model by a more
general model of partial combinatory logic, need not have enumerable ranges, and hence
this is a non-trivial extra property of a model of computation. Finally, an important class
of examples comes from semigroup theory: every inverse monoid is a range category, as
is the idempotent splitting of an inverse semigroup.

Our interest in range categories and our motivation for developing the basic theory as
reported on in these papers is at least threefold. First, we believe the theory is of intrinsic
interest, much in the same way as the theory of allegories is interesting in its own right.
It has a simple algebraic axiomatization, is more general than other classes of categories
which aim at modeling partial maps with images, and yet captures all of the motivating
examples.

Second, the theory of restriction categories in general and of more specific classes
such as range categories can play a bridging role between (inverse) semigroup theory and
category theory. Various concepts and constructions in semigroup theory, for example
certain kinds of (co)completions, can be carried out on the level of restriction categories
(we shall see several examples in the present papers, but the reader may consider [Cockett

1Assuming a mild separation axiom; see Section 3 for details.
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& Manes 2009] for others); this means that restriction categories play an organizational
role, bringing out the categorical content of semigroup-theoretic results. Since restriction
categories are much closer in spirit to (inverse) semigroups than partial map categories are,
understanding the categorical contents of semigroup theory is much easier when working
with restriction categories.

And third, in the development of computability theory within the setting of [Cockett
& Hofstra 2007] it rapidly became apparent that it would be highly beneficial to have
available a logic which would allow for standard computability-theoretic definitions and
arguments to be interpretable in a suitable class of categories. This class of categories is
that of discrete cartesian range categories, and the term logic, which will be described in
Part II, is precisely the internal language of this class of categories. Consequently, (and
this was in fact the immediate catalyst for the work) a clear understanding of this class
(which is slightly larger than that of regular categories) was required.

1.2. Related work Various aspects of ranges and related concepts in the categorical
context have already been considered in varying levels of detail in the literature. We
mention here some of those, while throughout the text we elaborate on the connections
with the present work more precisely.

The work which is closest (both in spirit and in terms of actual results) to ours is
that of Rosolini, who introduces ranges in the setting of P-categories, notes a connection
with factorization systems, and proves a representational result [Rosolini 1988]. The first
difference with our approach is that we develop ranges without assuming the presence
of finite products (which P-categories have by definition). The second difference is the
approach in loc. cit. imposes a non-algebraic axiom which we do not take as part of
our basic axiomatization. Therefore, the basic theory of ranges which we develop in this
paper is more general; we recover the concepts from P-categories by adding subsequent
layers of structure/properties to our setting. In particular, a restriction category-theoretic
analogue of Rosolini’s representation theorem is presented in part II of this paper.

In [Di Paola & Heller 1987] the authors consider recursion categories with images.
These can be seen as a special class of P-categories with ranges, and thus are again more
special than the range categories we consider here. Their goal, namely to give a categorical
treatment of recursion theory, was also one of our motivations; however, Di Paolo and
Heller did not develop the theory of ranges in much detail, instead they moved straight
to recursion-theoretic applications.

Another related piece of work which should be mentioned here is the paper [Hughes
& Jacobs 2002] on the connection between factorization systems and fibrations; the au-
thors show that every factorization system gives rise to a bicomplete fibration, and that
this fibration satisfies the Beck-Chevalley condition whenever the factorization system is
pullback-stable. In the present paper, we prove a representational result for range cate-
gories in terms of factorization systems; the close relationship between this result and the
one by Hughes and Jacobs is that every range category comes naturally equipped with
a bifibration (in an appropriate restriction-categorical sense). Furthermore, in part 2 of
this paper the Beck-Chevalley condition for range categories with products is examined.
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Since range categories are related to factorization systems, fibrations and regular cat-
egories, there are close connections between results in these areas and some of the results
about range categories developed in this paper. In fact, once one understands the de-
tails concerning the connections, one could in principle translate parts of the theory of,
say, factorization systems into the language of range categories. While we will attempt
throughout the paper to point out when a particular result could have been obtained in
this manner, we believe there are reasons to develop the theory from the perspective of
range categories.

The primary reason is that our aim is to give a coherent and self-contained presen-
tation which does not heavily rely on other results. While it would indeed have been
possible in certain cases to take a shortcut by referring to facts found in the literature, we
usually prefer to give direct proofs which exemplify and illustrate reasoning about range
categories. For example, one can deduce from the fact that one may freely add equalizers
to a category that, as long as one is willing to split idempotents, each restriction category
has a meet completion. However, this does not give a concrete description of what the
resulting category then looks like, and doesn’t explain how the construction relates to the
meet-completion in semigroup theory. Our direct construction (Part II, Section 2.5) is
elementary and immediately makes the connection with the semigroup-theoretic variant
clear.

The second reason is that in some cases definitions or results about ranges do not
correspond nicely to well-known results in neighbouring areas. For example, the term
logic for discrete range categories which we present in Part II is quite natural from a
proof-theoretic point of view, but it turns out to be strictly weaker than regular logic.
As such, it doesn’t really correspond to a well-studied fragment of categorical logic in
the total world. Moreover, the inference rule which would have to be added to the logic
in order to bridge the gap makes the system much less transparent. Closely related is
the fact that while the regular completion of a category with finite limits is a simple and
elegant construction, its partial analogue is a lot more complicated and is best viewed
as a two step process, the first of which freely adds ranges, making the corresponding
factorization system proper and pullback-stable, and the second of which forces the this
factorization system to be the regular epi-mono factorization by means of a category of
fractions construction. Because of such tensions, we prefer to give our primary attention
to the natural unfolding of the theory on the level of restriction categories, only to focus
on connections with related theory after that.

1.3. Contributions The main focus of the first part of this paper is on describing the
fundamental structures and concepts involved, on developing the material in a systematic
and reasonably self-contained fashion, and on generalizing and unifying various strands
of research in this direction. The second part will deal with the interaction of ranges with
other types of structure (in particular, the partial analogue of finite limits) as well as a
term logic for reasoning about such categories.

The main contributions of the present paper are the following:

1. A thorough and systematic development of the basic theory of categories with
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ranges, some examples, and their positioning with respect to other classes of cate-
gories such as allegories, categories with factorization systems, and fibrations with
existential quantification.

2. A representation theorem for range categories, which says that every range category
can be fully embedded into the partial map category associated to a category with
a suitable factorization system, and moreover that every range category in which
idempotents split is of that form.

3. A generalization of a result from semigroup theory by Boris Schein, which says that
every small range category satisfying the additional condition that every morphism
is an epimorphism onto its range can be embedded faithfully (but generally not
fully) in the category of sets and partial functions.

4. A direct description of the free range category on a category or on a restriction
category.

1.4. Outline The paper is organized as follows. First, we consider categories equipped
with a support operator; such an operator captures the idea that to every map we can
associate a domain, in the form of an idempotent. This setting is precisely sufficient
to specify the notion of an open map, and we may then consider categories where all
maps are open. Such categories then turn out to have a cosupport, or range, operator
which is compatible with the support operator. We then develop the elementary theory
of range categories and open maps, and establish various characterizations of ranges,
both equationally and in terms of fibrations. We also prove a technical result needed for
the representation theorem in Section 4, stating that range categories are stable under
idempotent splitting.

Section 3 explores some examples of range categories and connections with more fa-
miliar concepts. Every allegory (abstract category of relations) admits a support and
cosupport operator, and we show how there is a maximal subcategory which is a range
category, namely by selecting the “simple maps” (single-valued relations). Next, we con-
sider categories satisfying the axiom of choice, which in this setting means that every
morphism admits a partial section. Such a category always admits a range operator. As
a special case, we consider inverse categories; these are a generalization of inverse semi-
groups, and have the defining property that every map has a partial inverse. Finally, we
consider ranges and open maps in the context of topological spaces and locales.

Next, we turn to the basic representational results. Sections 4.1– 4.8 show how split-
ting of idempotents of a range category gives a category whose underlying category of
total maps admits a factorization system, and conversely how every suitable factorization
system gives rise to a split range category. Section 4.11 is concerned with a generalization
of Boris Schein’s result about semigroups with domains and ranges (as explained in Jack-
son and Stokes [Jackson & Stokes 2009]); we prove that every range category satisfying
an additional condition can be embedded into sets and partial functions via a faithful
functor which preserves domain and range.



RANGE CATEGORIES I: GENERAL THEORY 417

Finally, Section 5 is devoted to a construction of the free range category on a restriction
category. The key technical idea is that suitable equivalence classes of labeled trees can
be used to represent the domains and ranges in the free category. The main result is then
that the construction is a left adjoint to the forgetful functor from range categories to
restriction categories.

Acknowledgements We would like to express our gratitude towards the anonymous
referee, whose insightful comments, questions and suggestions have improved the quality
of the paper.

2. Basic Theory

This section develops the basic theory of range categories and open maps. While the
presentation is largely self-contained, we only briefly rehearse the main elements of the
theory of restriction categories; the reader is referred to [Cockett & Lack 2002] for a
detailed treatment.

2.1. Support and RestrictionThe starting point for our investigations is the concept
of a category equipped with a support operator ; such an operator captures the idea that
morphisms in such a category have a domain of definition, represented by an idempotent
on the source of the morphism.

Formally, a support (operator) on a category C is an operation on morphisms

f : X → Y

f : X → X

which satisfies the following four equational axioms:

[R.1] ff = f

[R.2] gf = fg whenever dom(f) = dom(g)

[R.3] gf = gf whenever dom(f) = dom(g)

[wR.4] gf = gf whenever cod(f) = dom(g)

The fourth axiom is actually a weakening of the following axiom (which, for reasons
to become clear later, is called the axiom of determinism):

[R.4] fgf = gf whenever cod(f) = dom(g)

If a support operators satisfies [R.4] then we shall call it a restriction operator, and a
category equipped with a restriction operator is called a restriction category. The general
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theory of such abstract categories of partial maps was developed in detail in [Cockett &
Lack 2002]; here we shall content ourselves with a brief review of those aspects pertinent
to the present objectives and with some observations concerning the differences between
restrictions and the more general supports.

The map f represents the domain of f ; hence maps for which f = 1 are called
total. Total maps are closed under composition, and identities are total; hence we have a
subcategory Tot(C) of C on the total maps.

We call morphisms f which satisfy f = f restriction idempotents. (This terminology
will be used both in general support categories and in restriction categories.) For a fixed
object A, the collection of all restriction idempotents on A is denoted by O(A). This set
(assuming the ambient category is locally small) is in fact a meet-semilattice with top
element. This structure is given by (for restriction idempotents e, e′):

⊤ = 1A

e ≤ e′ ⇔ ee′ = e

e ∧ e′ = ee′

Given a morphism f : B → A, there is an induced function

f ∗ : O(A) → O(B); e 7→ f ∗(e) := ef.

which we refer to as pullback along f . This function always preserves the ordering; it
preserves the top element if and only if f is total. If the support operator is a restriction,
then f ∗ also preserves binary meets.

Categories with support are automatically order-enriched: given parallel maps f, g :
A → B set

f ≤ g ⇔ f = gf.

The ordering on the idempotent lattice O(A) arises by restriction of the ordering on
C(A,A). Importantly, however, the orderings C(A,B) generally do not have a top element,
nor do they have binary meets.

2.2. Examples.

1. The paradigmatic example of a restriction category is Par, the category of sets and
partial functions. For an object A, we have O(A) ∼= P(A), the full powerset of A.

2. Topological spaces and partial continuous functions with open domain form a re-
striction category, with O(A) the lattice of opens of the space A.

3. Partial recursive functions N → N form a restriction category (monoid). The re-
striction idempotents correspond to recursively enumerable sets.

4. Every category can be regarded as a restriction category in a trivial way via f = 1
for all f . This shows that a category can be a restriction category in more than
one way, and hence that a restriction is additional structure on a category, not a
property.
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5. The category Rel of sets and relations is supported, but not a restriction category.
One verifies easily that a relation f satisfies fgf = gf for all g if and only if f
is (the graph of) a partial function. The precise connection between categories of
relations and support categories is explored in Section 3.1.

When C is a category with support, then a map f is called deterministic if fgf = gf
for all g. Deterministic maps form a subcategory and include all restriction idempotents.
Therefore:

2.3. Proposition. Given a support category C, the subcategory on the deterministic
maps is a restriction category.

For example, in the category Rel, the deterministic maps are precisely the partial
functions. Note also that the order-enrichment of Rel qua support category is not the
same as that of Rel qua allegory : according to the latter, we have f ⊆ g whenever the
graph of f is contained in the graph of g, but according to the former, we have f ≤ g
whenever f can be obtained from g by restricting it to a subset. Thus we have f ≤ g
implies f ⊆ g, but not vice versa. For deterministic maps f, g, the two orderings coincide.

We conclude this section by organizing restriction categories into a 2-category.
A functor F : C → D between two restriction categories is said to be a restriction

functor if F (f) = F (f) for every f . Restriction categories and restriction functors form
a category, denoted by Rcat0. There is an obvious forgetful functor Ur : Rcat0 → Cat0

to the category of categories, which forgets the restriction structure. In [Cockett & Lack
2002] a left adjoint was explicitly given.

Given two restriction functors F,G : C → D, a family of morphisms αA : FA → GA is
called a strict natural transformation if it is a natural transformation in the usual sense
and all of its components are total. It is a lax natural transformation if the naturality
squares commute up to inequality:

FA

≤Ff

��

αA // GA

Gf

��

FB αB

// GB

Restriction categories, restriction functors, and strict natural transformations thus form
a 2-category, denoted Rcat. Similarly, restriction categories, restriction functors and lax
natural transformations form a 2-category denoted Rcatl.

2.4. Open Maps An important example of a restriction category is the category of
topological spaces and partial continuous functions with open domains. Our notation
O(A) for the poset of restriction idempotents is directly motivated by this example, and
we often wish to think of this poset as the poset of open subobjects of A. It is natural
to investigate to which extent topological notions can be given a sensible interpretation
in the context of restriction categories. In this section we carry this out for the notion of
open map. Before doing so, however, we remark that the idea of axiomatizing open maps
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in a category goes back to work by Joyal and others (see for example [Joyal & Moerdijk
1994]); however, the ambient setting in loc. sit. was one of much more richly structured
categories, such as pretoposes.

In topology, a continuous function f : X → Y is called an open map if the direct image
function which sends a subset U ⊆ X to f [U ] ⊆ Y restricts to a map f! : O(X) → O(Y ),
i.e., when the direct image under f of an open set is again open. In this situation, f! is
left adjoint to f−1.

In order to generalize this, consider a category C with support, and a morphism
f : A → B. The associated “inverse image” function f ∗ : O(B) → O(A) has the property
that it actually lands in O(A)/f : given any e ∈ O(B) we have f ∗(e) = ef ≤ f . Of course,
the meet-semilattice O(A)/f is the principal downset ↓ (f) ⊆ O(A); categorically, this is
the same thing as the slice over f .

2.5. Definition. [Open map] A morphism f : A → B in a category with supports is
called open when the poset map f ∗ : O(B) → O(A)/f has a left adjoint f! ⊣ f ∗ satisfying
the Frobenius identity

f!(e ∧ f ∗(e′)) = f!(e) ∧ e′

for any two restriction idempotents e ∈ O(A) and e′ ∈ O(B).

We note that the inequality

f!(e ∧ f ∗(e′)) ≤ f!(e) ∧ f!(f
∗(e′)) ≤ f!(e) ∧ e′

holds regardless.
There is a slight reformulation of this definition which is sometimes convenient:

2.6. Lemma. In a support category a map f : A → B is open if and only if there is a
poset morphism ∃f : O(A) → O(B) such that

[Open. 1] ∃ff
∗(e′) ≤ e′ for all e′ ∈ O(B)

[Open. 2] e ∧ f ∗(e′) ≤ f ∗(∃f(e) ∧ e′) for all e ∈ O(A) and e′ ∈ O(B)
[Open. 3] e′ ∧ ∃f (e) ≤ ∃f (f

∗(e′) ∧ e) for all e ∈ O(A) and e′ ∈ O(B)

Note that the last inequality gives Frobenius reciprocity as the inequality running in
the other direction is always present.

Proof.

(⇒) Suppose f is open so that f ∗ has a Frobenius left adjoint f! : O(A)/f → O(B).
Then define the new ∃f (e) := f!(f ∧ e), so that

∃f (f
∗(e′)) = f!(f ∧ f ∗(e′)) = f!(f) ∧ e′ ≤ e′

e ∧ f ∗(e′) = e ∧ f ∧ f ∗(e′) ≤ f ∗(f!(f ∧ e)) ∧ f ∗(e′)

= f ∗(f!(f ∧ e) ∧ e′) = f ∗(∃f (e) ∧ e′)

e′ ∧ ∃f(e) = e′ ∧ f!(f ∧ e) = f!(f
∗(e′) ∧ f ∧ e)

= ∃f (f
∗(e′) ∧ e).
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(⇐) Note that ∃f(f ∧ e) = ∃f (e) as

∃f (ef ∧ e) ≤ ∃f (e) as f ∧ e ≤ e

and
∃f (e) = 1B ∧ f!(e) ≤ ∃f (f

∗(1B) ∧ e) = ∃f (f ∧ e)

Therefore we may view ∃f as acting on the slice O(A)/f . Moreover, we have

e ∧ f = e ∧ f ∗(1B) ≤ f ∗(∃f (e) ∧ 1B) = f ∗(∃f (e)).

The Frobenius condition is immediate.

Given a support category C, we are now interested in the subcategory on the open
maps. which we will denote by Copen. First, we verify that this is indeed a category with
support.

2.7. Lemma. In any support category all restriction idempotents are open maps and open
maps are closed under composition.

Proof. We must establish the three conditions from the previous lemma for a support
idempotent e. This is easy: set ∃e(e

′) = ee′. Then:

∃e(e
∗(e′)) = eee′ ≤ e′

e′ ∧ e∗(e′′) = e′ee′′ ≤ e∗(∃e(e
′) ∧ e′′)

e′ ∧ ∃e(e
′′) = e′ee′′ = ∃e(e

∗(e′) ∧ e′′)

It remains to show that open maps compose: if f and g are open maps which compose
set ∃gf = ∃g∃f . We then have:

∃g(∃f(f
∗(g∗(e)))) ≤ ∃g(g

∗(e)) ≤ e

e ∧ f ∗(g∗(e′)) ≤ f ∗(∃f(e) ∧ g∗(e′)) ≤ f ∗(g∗(∃g(∃f (e)) ∧ e′)

e′ ∧ ∃g(∃f (e)) = ∃g(g
∗(e′) ∧ ∃f (e)) = ∃g(∃f (f

∗(g∗(e′)) ∧ e))

(where e is an idempotent on dom(f) and e′ an idempotent on cod(g)).

2.8. Remark. As an aside we note that restriction functors do not, in general, preserve
open maps. Therefore taking the subcategory on the open maps is not a functorial
construction.

The open maps in a support category C are those which have a well-defined range.
We put

f̂ := ∃f (1),

and refer to f̂ as the range, or cosupport of the map f . Thus we have an operator of the
following type:

f : X → Y

f̂ : Y → Y

This operator satisfies the axioms dual to those of a support operator.
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2.9. Lemma. The operator f 7→ f̂ is a support operator on the category (Copen)
op.

Proof.

f̂ f = ∃f(1A)f = f∃f(1A)f = ff ∗(∃f(1A) ∧ 1B) ≥ 1A ∧ f ∗(1A) = ff = f

f̂ ĝ = ∃f(1A) ∧ ∃g(1A′) = ∃g(1A′) ∧ ∃f(1A) = ĝf̂

̂̂
fg = ˆ∃f(1A)g = ∃∃f (1A)g(1A′) = ∃∃f (1A)(∃g(1A′)) = ∃f (1A) ∧ ∃g(1A′) = f̂ ĝ

ĝf̂ = ∃gf̂(1B) = ∃g(∃f̂ (1B)) = ∃g(f̂) = ∃g(∃f (1A)) = ∃gf(1A) = ĝf .

What is more, this cosupport operator is compatible with the support, in the sense
that

f̂ = f̂ ; f̂ = f.

A category C with a support and a cosupport which are compatible in this sense will
be called a bisupport category. We now have the main observation of this section:

2.10. Theorem. When C is a support category, then the subcategory on the open maps
Copen is a bisupport category whose support agrees with that of C, and which contains all
restriction idempotents. Moreover, when the support on C is actually a restriction, then
Copen is the largest bisupport subcategory of C.

In particular, this says that a bisupport category in which the support is a restriction is
the same thing as a restriction category where all maps are open. See also Proposition 2.13.

Proof. We have already established that the open maps form a subcategory with all
the stated properties. It remains to be shown that it is the largest such category when
the support is a restriction. For this note that if a map f is included in a bisupport
subcategory then it must be an open map as one may define ∃f(e) = f̂ e. This has the
required properties:

∃f (f
∗(e′)) = f̂ e′f = ê′f = e′f̂ ≤ e′

e ∧ f ∗(e′) = e′e′f = e′fe = e′f̂ efe ≤ e′f̂ ef = f ∗(∃f (e) ∧ e′)

e′ ∧ ∃f (e) = e′f̂ e = ê′fe = f̂ e′fe = ∃f(f
∗(e′) ∧ e)

Hence f is an open map.

It should be noted that the cosupport is hardly ever a corestriction; see Section 3.9 for
the exception. We also point out the the condition that the support is a restriction (which
was used in the first step of the proof) cannot be omitted: in the bisupport category Rel,
a map is open if and only if it is deterministic.
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2.11. Ranges We now turn to our main objects of study, namely range categories. A
range category may be defined as a bisupport category in which the support is a restriction.
Before we turn to an alternative characterization, we observe that given a support operator

on a category there exists at most one compatible cosupport. Indeed, suppose that (̃−)
is a second cosupport combinator; then we compute

f̂ =
̂̃
f f = f̃ f̂ = f̂ f̃ =

˜̂
f f = f̃ .

Therefore, while a category may have many different support operators, having a compat-
ible cosupport is a property of a support category. (Of course, one may also deduce this
from the unicity of adjoints to pullback functors.) Consequently, being a range category
is a property of a restriction category.

We now give the alternative definition of a range category:

2.12. Definition. [Range Category] A restriction category C is a range category if it
has an operator

f : X → Y

f̂ : Y → Y

satisfying the following four axioms:

[RR.1] f̂ = f̂

[RR.2] f̂ f = f

[RR.3] ĝf = gf̂ for all maps f, g with codom(f) = dom(g)

[RR.4] ĝf̂ = ĝf for all maps f, g with codom(f) = dom(g)

So far, we thus have three different ways of describing range categories:

2.13. Proposition. For a restriction category C, the following are equivalent:

(i) C is a range category

(ii) C has a compatible cosupport

(iii) all maps in C are open

Proof. We have already shown that the second two conditions are equivalent (The-
orem 2.10). The straightforward calculation that a combinator f 7→ f̂ a compatible
cosupport if and only if it is a range combinator is omitted.

The following lemma collects some useful basic facts about ranges. The proof is a
straightforward exercise in the use of the axioms and is left to the reader.
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2.14. Lemma. In a range category,

(i)
̂̂
f g = f̂ ĝ if codom(f) = codom(g)

(ii) f̂ = 1 if f is epi. In particular, 1̂ = 1

(iii) f̂ = f for all f

(iv) ĝ f ĝ = ĝ f if codom(f) = dom(g)

A restriction functor F : C → D between two restriction categories is a range functor
if it preserves not only the restriction but also the range:

F (f) = F (f); F (f̂) = F̂ (f).

The latter requirement is not automatic. For example, consider the category of sets,
regarded with trivial restriction (and hence also range) structure. The inclusion into the
category of sets and partial maps preserves the restriction but not the range.

Range restriction categories and range restriction functors form a category, denoted
by RRcat0, which can be enriched with either strict or lax transformations. There are
evident forgetful functors

RRcat0 → Rcat0 → Cat0,

which forget the restriction and range structures. Since range restriction categories are
defined equationally, we know that U : RRcat0 → Cat0 is monadic via a finitary monad
so that RRcat0 is locally finitely presentable. In Section 5 we give an explicit description
of the free functor.

We note that there is another functor RRcat0 → Cat0 which sends a range category
to the subcategory on those maps which are total and cototal, i.e. satisfy f = 1, f̂ = 1.
The left adjoint to this functor equips a category with the trivial restriction and range.

2.15. Idempotent Splitting We now prove a technical result which will be used in
Section 4, namely that the idempotent splitting of a range category is again a range
category. In [Cockett & Lack 2002] it was already shown that the idempotent splitting of a
restriction category is again a restriction category, and that split restriction categories are
precisely partial map categories arising from systems of monics. Thus here we only focus
on making sure the range structure is also well-behaved with respect to this construction.

2.16. Definition. A restriction idempotent f is split if it can be written as f = mr
with rm = 1. In this case m, the monic part, is called a restriction monic. A restriction
category is said to be split if all of its restriction idempotents split.

If f splits as f = mr then f = r, because we have f = mr = mr = r since m is monic,
hence total.

We now consider a range category C and construct its splitting Split(C) by splitting
the restriction idempotents. Explicitly:
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Objects: restriction idempotents of C,

Maps: a map f from (e1 : A → A) to (e2 : B → B) is given by a map f : A → B such
that e1fe2 = f ,

Composition: as in C,

Identities: 1e = e for any object e of Split(C).

We observe that Split(C) inherits restriction and ranges from C. To show this, it
suffices to show that the restriction and range of a map are maps of Split(C).

2.17. Lemma. If f : e1 → e2 is a map of Split(C), then so are f : e1 → e1 and f̂ : e2 → e2.

Proof. The equalities
fe1 = fe1 = fe1 = fe1 = f,

e1f = fe1 = f,

e2f̂ = e2f̂ = ê2f = ê2f = f̂

and
f̂ e2 = e2f̂ = f

show that f : e1 → e1 and f̂ : e2 → e2 are maps in Split(C), as desired.

This shows that Split(C) is a range category. We record:

2.18. Proposition. If C is a range category, then so is Split(C) with the split restriction
structure given by the restriction in C.

By the same process in the proof of Proposition 2.27 [Cockett & Lack 2002], we may
regard the 2-category of split range categories RRcats as a full reflexive sub-2-category
of RRcat: the 2-functor Split : RRcat → RRcats, taking C to Split(C), is a left adjoint to
the inclusion RRcats →֒ RRcat.

We point out that the above proposition also holds when we split all idempotents in
C, not just the restriction idempotents.

3. Examples and Connections

The time is ripe for some examples of range categories. We have already seen that given
a restriction category C, the subcategory of open maps is a range category. In Par, every
map is open, so this is a range category. In the category of spaces and partial continuous
functions with open domain, the open maps which are open in the usual topological sense
are open in our sense. The converse is true provided we impose the T1 separation axiom
(points are closed). To see why this is needed, consider the category of Alexandroff spaces;
such spaces are characterized by the fact that for each subset of X there exists a smallest
open set containing it. Given a continuous map between such spaces, we may define its
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range to be the smallest open set containing its set-theoretic image. This does define a
range category, but clearly not every map is open in the topological sense.

In the category of partial recursive functions (of one variable, say), every map is open
as well: this may be seen as a consequence of the fact that this category satisfies the
axiom of choice (see Section 3.5). Explicitly, given f , the range of f is the domain of the
function y 7→ µx.f(x) = y. (In some texts, the definition of r.e. set is taken to be the
image of a computable function; while this does stress the idea of enumerating a subset,
it does not agree well with the axiomatic categorical approach, according to which one
needs to have domains before one can have ranges.)

In the following sections, we construct more examples by investigating the connections
between range categories and neighbouring areas.

3.1. Allegories Just as restriction categories are abstract categories of partial maps,
allegories ([Freyd & Scedrov 1990]) are abstract categories of relations. For us, two rel-
evant connections between allegories and range categories are that every allegory is a
bisupport category, and that from every allegory one can extract a range category by
taking deterministic maps.

Let us first rehearse the relevant definitions. An involution on a category C is a
functor (−)◦ : C → Cop which is the identity on objects, and which satisfies f ◦◦ = f for
all morphisms f .

3.2. Definition. An allegory is an order-enriched category equipped with an order-
preserving involution. (We denote the ordering on the homsets by ⊆.) Moreover, each
homset is required to have binary meets, and these are to satisfy the modular law

gf ∩ h ⊆ g(f ∩ g◦h)

Note that this does not imply that the binary meets in the homsets are preserved by
composition. The statement that the involution preserves the ordering means that f ⊆ g
if (and only if) f ◦ ⊆ g◦.

The motivating example of an allegory is the category Rel of sets and relations; more
generally, for any regular category C we may construct the allegory Rel(C) of relations in
C.

Each map f in an allegory has a support defined by

A
f

// B

A
f=f◦f∩1A

// A

and dually each map has a cosupport:

A
f

// B

B
f̂=ff◦∩1B

// B

Towards the verification of the axioms of a (co)support, it is useful to observe the
following:
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3.3. Lemma. In an allegory, if h, h′ ⊆ 1 then hh′ = h′h = h ∩ h′, hh = h, and h = h◦.

Proof. We show that hh′ = h∩h′. To this end, note that hh′ ⊆ h1 = h and hh′ ⊆ 1h′ =
h′, so certainly hh′ ⊆ h ∩ h′. Conversely, h ∩ h′ ⊆ h(1 ∩ h◦h′) ⊆ h(1 ∩ h′) ⊆ hh′. All of
the desired equalities follow from this.

We now show:

3.4. Proposition. Every allegory is a bisupport category, with support and cosupport
defined as above.

Proof. We verify the four support axioms.

ff = f(f ◦f ∩ 1) ⊆ f1 = f

f = f ∩ f ⊆ f(f ◦f ∩ 1) = ff

so ff = f .
To establish that f g = g f it suffices to show f g = f ∩ g. However, note that f ⊆ 1

and g ⊆ 1, meaning that f, g are subidentities, so that the result follows from the previous
Lemma.

To establish that g f = gf we show that for any subidentity h ⊆ 1 we have g h = gh.

g h = g ∩ h = 1 ∩ g◦g ∩ h = 1 ∩ h ∩ g◦g

= 1 ∩ h◦h ∩ g◦g ⊆ 1 ∩ h◦h(1 ∩ hh◦g◦g)

⊆ 1 ∩ h◦g◦gh = gh

gh = 1 ∩ h◦g◦gh ⊆ 1 ∩ g◦g = g

gh = 1 ∩ h◦g◦gh ⊆ h(g◦gh ∩ h◦(1 ∩ h◦g◦gh)) ⊆ h(h◦g◦gh) ⊆ h

So gh ⊆ g ∩ h = gh whence the identity holds.
To show that gf = gf we first note that, using the first three restriction identities,

gf ⊆ f as f ∩ gf = f gf = gff = gf . We then have:

gf = 1 ∩ fgf = 1 ∩ f ◦(1 ∩ g◦g)f

⊆ 1 ∩ f ◦g◦gf = gf

gf = ggf ⊆ gf

The cosupport axioms follow by duality. Both structures agree on their subidentities
and thus the support and cosupport are compatible.
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In general, the support in an allegory is not a restriction: the axiom [R.4] fails, because
not all morphisms need be deterministic. However, we may take the subcategory on the
deterministic maps, and this is a range category.

Another relevant subcategory of an allegory is given by the simple morphisms : a
morphism f : A → B is simple if ff ◦ ⊆ 1B. The simple maps are also closed under
composition and contain all restriction idempotents. Every simple map is deterministic,
so that the simple maps form a range category as well. Moreover, morphisms between
allegories preserve simple maps, so this process is functorial.

3.5. Choice Assuming the axiom of choice, the category Par of sets and partial functions
has as one of its special features that every morphism has a partial section: given a partial
function f : A → B we may define m : B → A by

m(b) =

{
a where a is such that f(a) = b
↑ if no such a exists.

In the category of partial recursive functions, a similar construction works (making use
of the well-ordering structure on the natural numbers).

3.6. Definition. Let C be a restriction category.

(i) A map f is called a partial retraction when there exists m such that fm = m and
fmf = f . In this case m is called a partial section of f .

(ii) A map f is called a partial isomorphism when there exists f−1 such that f−1f = f
and ff−1 = f−1.

(iii) A restriction category satisfies the axiom of choice if every map has a partial section.

Our aim in this section is to show that such categories always have a range: given f ,
choose a partial section m and set f̂ = m. In order to prove that this satisfies the axioms
of a range, we need to establish some basic properties of partial retractions and partial
sections.

The first thing to note is that partial retractions do not always compose. However,
we have the following observations:

3.7. Lemma. In any restriction category:

(i) A partial isomorphism is a partial retraction, and a partial retraction which is a
partial section is a partial isomorphism.

(ii) Partial isomorphisms compose and have unique partial inverses.

(iii) If f and gf are partial retractions with partial sections m and k respectively then fk
is a partial section of gm.

(iv) If f is a partial retraction and g is a partial isomorphism then gf is a partial re-
traction.
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(v) If f is a partial retraction with partial section m and e is a restriction idempotent
then ef is a partial retraction with partial section me.

Proof.

(i) The first part of the statement is easy. For the second part, suppose f is both a
partial retraction and a partial section, say with m = fm, fmf = f , f = gf and
gfg = g (so that m is a partial section of f , and f is a partial section of g). We show
that mf = f , which implies that f is a partial isomorphism with partial inverse m.
Note first that

m = mm = mfm = fm.

Then
mf = fmf = gfmf = gf = f

and we’re done.

(ii) If f, g are partial isomorphisms then f−1g−1gf = f−1gf = f−1fgf = fgf = gf , so
that indeed f−1g−1 is a partial inverse of gf . The second claim is left to the reader.

(iii) Note that from gfk = k it follows that gfk = fk = k. To show that fk is a partial
section of gm we compute

(gm)(fk) = gfmfk = gfk = k = fk

and
(gm)(fk)(gm) = gfmfkgfm = gfkgfm = gfm = gm

where in the first identity we use m = fm twice, in the second we use fmf = f ,
and in the third (gf)k(gf) = gf .

(iv) Suppose that m is a partial section of f . Then mg−1 is a partial section of gf :

(gf)(mg−1) = gmg−1 = gg−1mg−1 = g−1mg−1 = mg−1

and
(gf)(mg−1)(gf) = gmgf = ggmf = gmf = gfmf = gf.

(v) This follows from the previous item, since any restriction idempotent is a partial
isomorphism.
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Having these elementary facts at our disposal, we now state and prove:

3.8. Proposition. For any restriction category C with choice, the assignment f̂ = m,
where m is any partial section of f , defines a range on C. Moreover, any restriction
functor out of C preserves this range.

The first step in the proof is to observe that this definition of range is independent of
the chosen partial section. So let m,m′ be two partial sections of f , and compute

m = fm = fm′fm = m′m

so that m ≤ m′. By symmetry m = m′.
Next, we verify the range axioms.

For [RR.1], consider a partial section m of f , and calculate f̂ = m = m = f̂ .
For [RR.2], let m be a partial section of f again, so that f̂ f = mf = fmf = f .
For [RR.3] we first use part (v) of Lemma 3.7 with e = g: this gives that mg is a

partial section of gf . Then
ĝf = mg = g m = g f̂ .

For [RR.4] suppose two partial retractions f, g are given; let m be a partial section
of f , and k be a partial section of gf . By item (ii) of the lemma we know that fk is a
partial section of gm. Then

ĝf̂ = ĝm = fk = k = ĝf

as needed.
For the last claim, we simply observe that any restriction functor preserves partial

retractions and partial sections.
Looking ahead to the representation of range categories in terms of categories with

factorization systems (Section 4), we point out that range categories with choice can be
embedded into partial map categories of categories with a factorization system in which
the E-maps are split epis.

3.9. Inverse categories Inverse categories generalize inverse monoids, which in turn
are inverse semigroups with unit (see the textbook [Lawson 1998] for an exposition of
these notions). We briefly describe now how inverse categories arise, and discuss some
well-known alternative definitions.

3.10. Definition. A restriction category is said to be an inverse category when each
arrow is a partial isomorphism.

For an easy example, note that any groupoid can be regarded as an inverse category
in which the restriction is trivial (i.e., f = 1 for all f).

Another key example comes from inverse semigroups: when S is an inverse semigroup,
we may form its idempotent splitting: the objects of the resulting category are the idem-
potents e of S, while a morphism e → f is an element s ∈ S for which fs = s = se. As is
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well-known (see for example [Lawson & Steinberg 2004]) this is an inverse category with
s = s∗s, ŝ = ss∗. The partial inverse of s is of course s∗.

From the results in the previous section (Proposition 3.8) we immediately get that an
inverse category is a range category. The restriction is then x = x−1x and the range is
x̂ = xx−1. In fact, the range is also a corestriction (meaning that the axiom gf̂ = ĝfg
holds). However, note that the converse does not hold: there exist codeterministic range
categories which are not inverse. For the simplest counterexample, consider a category
with two objects and only one non-trivial map A → B.

From the fact that partial isomorphisms compose and that every restriction idempotent
is a partial isomorphism we see that given any restriction category C, the subcategory on
the partial isomorphisms is an inverse category containing all restriction idempotents of
C.

Importantly an inverse category may be described in a number of different ways.
A common approach is to define an inverse category as a category equipped with an
involution (−)−1 satisfying the following equations:

(x−1)−1 = x, (xy)−1 = y−1x−1, xx−1x = x, and xx−1yy−1 = yy−1xx−1.

This forces the inverse to be unique in the sense that if xyx = x and yxy = y then
y = x−1. The calculation is well-known but quite tricky. First we note y = yxx−1 and by
symmetry y = x−1xy because

y = yxy = yy−1yxx−1xyy−1y = yxx−1y−1yxyy−1y = yxx−1y−1yy−1y = yxx−1.

Then we have y = yxx−1 = x−1xyxx−1 = x−1xx−1 = x−1.
Alternatively, recall that semigroup theorists call a map f regular (category theorists

might prefer – to avoid confusion with regular monics and regular epics – to call f retractive
as in the idempotent splitting it is a retraction) if there is a g such that fgf = f . A
regular inverse (or retractive inverse) of a map f is a g such that fgf = f and gfg = g.
An inverse category may then be described as a category in which each map f has a
unique regular (or retractive) inverse f−1.

Finally, just as for categories with choice, it is worth observing that any restriction
functor automatically preserves inverses, so that the image of an inverse category is always
an inverse category.

3.11. Indexed meet-semilattices and frames We have already mentioned the cat-
egory of topological spaces and partial continuous maps with open domain, as well as the
fact that we tend to think of the meet-semilattices of restriction idempotents as lattices
of open subobjects. This section will explain how each restriction category has associated
to it an indexed meet-semilattice, which generalizes the usual subobject fibration of a
category (see e.g. [Jacobs 1999] for an exposition of fibrations and related notions). We
then investigate this fibred structure in the case of range categories, and also consider the
special case where the restriction idempotents actually form frames.

Our starting point is the category ∧SLatp whose objects are meet-semilattices with
top element and whose morphisms are meet-preserving functions. (It is not required
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that the top element is preserved.) Then ∧SLatopp becomes a restriction category when
we define, for a meet-semilattice homomorphism f : X → Y , its restriction to be the
function f : Y → Y given by f(y) = f(⊤) ∧ y. Clearly the total maps in this category
correspond to the homomorphisms which do preserve the top element. We write ∧SLatop

for Total(∧SLatopp ).
For a restriction category C, we may now regard the so-called fundamental functor,

which takes the form
O : C → ∧SLatopp ;

it sends an object to its meet-semilattice of restriction idempotents, and a morphism
f : A → B to f ∗ : O(B) → O(A). Note that in the special case where C = ∧SLatopp this
functor is the identity. The fundamental functor is in fact a restriction functor; this leads
to the following lemma (whose proof is immediate):

3.12. Lemma. For any restriction category C, we have a pullback diagram:

Total(C) //

��

C

O

��

∧SLatop // ∧SLatopp

The left-hand vertical map may now be regarded as an ordinary subobject fibration,
with the only difference that the subobjects are restriction idempotents. Observe in
particular that this fibration admits comprehension (in the form of a right adjoint to the
functor which sends an object C to the terminal idempotent on C, namely the identity)
precisely when the restriction idempotents of C split.

Naturally, we consider the subcategory of ∧SLatopp on the open maps which by defini-
tion is now a range category. Explicitly, the open morphisms of ∧SLatopp are those which,
when regarded in the opposite category, have a Frobenius left adjoint.

Denoting the subcategory of C on the open maps by Copen, we find that the following
diagram is a pullback.

Copen

O

��

// // C

O

��

∧SLatopopen,p // // ∧SLatopp

Putting this together with the previous lemma, we find that for a range category C,
we have an associated fibration on Total(C) of restriction idempotents which is actually a
bifibration, i.e., which has existential quantification. This opens the way to the connection
between range categories

and factorization systems, see next section for details. Whenever one has a C-indexed
meet-semilattice P, one may form a restriction category whose objects are those of C,
but whose restriction idempotents at an object A are given by the meet-semilattice P(A)
(see [Cockett & Guo 2006]). This process is part of an adjunction between the category
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of restriction categories and that of indexed meet-semilattices (the right adjoint being the
assignment of the fundamental functor to a category), and is to be thought of as freely
adding partiality (as specified by the indexed semilattice) to a category. The categories
so obtained have interesting structural properties; for example, they are unitary (in the
sense of inverse semigroups).

The above construction can be adapted to produce range categories: suppose that we
are given a category D, and a functor P : D → ∧SLatopopen, i.e., an indexed meet-semilattice

in which each reindexing functor f ∗ : P(B)/f → P(A) has a Frobenius left adjoint. Then
from this data we can construct a range category D[P] whose objects are those of D and
whose idempotent lattice at A is P(A). (The proof follows the same lines as in [Cockett
& Guo 2006].)

The category of meet-semilattices has an important subcategory, namely the category
of frames Frmp of frames and ∧,

∨
-preserving functions, but where the morphisms are

not required to preserve the top element. Morphisms in this category always have a right
adjoint, and hence are Frobenius left adjoints. This means that the category Locp of
locales, the opposite of Frmp, is a range category. There is a slightly different description
of this category: it is isomorphic to the category Par(Loc,Open) of locales and partial
maps with open domain. Indeed, any map f : A → B in Locp factors uniquely through
the open sublocale of A determined by f ∗(1B).

4. Representation Theorems

The main representational result for restriction categories, proved in [Cockett & Lack
2002], states that every restriction category is embeddable in a category of partial maps.
More precisely, every category of partial maps is a split restriction category, and every
split restriction category is of this form.

In this section we first extend this result to range categories. The partial map cat-
egories corresponding to range categories will be seen to have a factorization system on
their total map category satisfying a certain stability condition.

After that, we prove a different representational result, which states that every small
range category which satisfies an additional axiom can be represented as a (non-full)
subcategory of Par, the category of sets and partial functions. For semigroups with ranges,
this result is due to Boris Schein (see the exposition in [Jackson & Stokes 2009]); the result
presented here extends his surprising proof.

4.1. Factorization systems and partial maps In a category, a collection M of
monics which includes all isomorphisms and is closed under composition, is called a system
of monics. A system of monicsM is said to be stable if for anym ∈ M and any f : A → B
the pullback of m along f exists and belongs to M. In practice, all systems of monics we
discuss here will be stable, so in order to reduce clutter we drop this adjective.

Given a category C with a system of monics M, one may form the category of partial
maps Par(C,M) with:



434 J.R.B. COCKETT, XIUZHAN GUO AND PIETER HOFSTRA

Objects: A ∈ C,

Maps: a map from A to B is a pair (m, f), where m : A′ → A is in M and f : A′ → B
is an arbitrary map in C:

A′

m

~~~~
~~

~~
~

f

&&NNNNNNNNNNNNN

A B

factored out by the equivalence relation: (m, f) ≈ (m′, f ′) whenever there exists an
isomorphism α in C such that m′α = m and f ′α = f ,

Identities: (1A, 1A) : A → A,

Composition: (m′, g)(m, f) = (mm′′, gf ′), where f ′ and m′′ are given by the pullback
diagram (∗):

A′′

(∗)

m′′

~~||
||

||
|| f ′

''PPPPPPPPPPPPPPP

A′

m

~~~~
~~

~~
~

f
((PPPPPPPPPPPPPPPP B′

m′

~~}}
}}

}}
}

g

&&NNNNNNNNNNNNN

A B C

The original maps in C can be embedded into Par(C,M) by f 7→ (1, f).

4.2. Theorem. [Cockett & Lack 2002], Proposition 3.1 Let C be a category equipped with
a system of monics M. Then Par(C,M) has a split restriction given by (m, f) = (m,m).
Furthermore, the total maps in Par(C,M) are precisely those in the image of C.

We now consider factorization systems (E ,M) in a category C. The factorization
systems we consider are strong, in the sense that diagonal fillers are unique. (See [Adamek
et. al 1990] for an exposition of the general theory of factorization systems.) We say that
(E ,M) is M-stable when for every map f = mfef , with mf ∈ M and ef ∈ E , and a ∈ M
we have that

•

a′′

��

m′

f

��
@@

@@
@@

@

•

e′
f

88p
p

p
p

p
p

p
f ′ //

a′

��

•

a

��

•

mf

@@
@

��
@@

@

•
f

//

efpppppp

88pppppp

•



RANGE CATEGORIES I: GENERAL THEORY 435

where f ′ and m′
f are pullbacks of f and mf along a, and e′f is the pullback of ef along

a′′, respectively, then f ′ = m′
fe

′
f is the (E ,M)-factorization of f ′.

It is clear that a factorization system in a category where pullbacks along M-maps
exist is M-stable when the E-maps are stable under pullback along M.

4.3. Example. It is well-known that the category Top of spaces and continuous maps is
not regular because the regular epi-monic factorization is not pullback-stable. However,
when we let M be the regular monics and E be the class of epimorphisms, then M is a
system of monics, and we get a factorization system which is pullback stable (along all
maps, not just M-maps).

In [Hughes & Jacobs 2002] it is explained how anM-stable factorization system (E ,M)
on a category C induces a fibration whose total category isM, regarded as a subcategory of
C→. This fibration then has some distinguishing features: it has existential quantification,
and it has full subset types. Conversely, it is proved in loc. cit. that such fibrations always
arise from factorization systems. In the next two subsections we shall prove directly (i.e.,
without invoking fibrations) that split range categories correspond to stable factorization
systems. In principle, we could have deduced this result from the correspondence exhibited
in loc. cit., by using the fact that, as explained in Section 3.11, the total map category of
a range category comes equipped with a fibration in which reindexing functors have left
adjoints. However, we opt to complete the triangle by directly showing how the range
structure gives rise to a factorization system and vice versa.

4.4. Range categories from factorization systemsNext, we extend Theorem 4.2
by showing that if a category with a system of monics M has the additional feature of
having an M-stable (E ,M) factorization system, then the resulting partial map category
has ranges. Formally:

4.5. Theorem. Let C be a category equipped with an M-stable factorization system
(E ,M). Then the partial map category Par(C,M) is a split range category.

Proof. From Theorem 4.2 we already know that Par(C,M) is a split restriction category
with restriction (m, f) = (m,m). Therefore it suffices to define the range operator and to
show that the axioms [RR.1]-[RR.4] are satisfied.

To define the range of a morphism (m, f), consider the (E ,M)-factorization of f =
mfef . Then define

(̂m, f) := (mf , mf).

We now have:

[RR.1] (̂m, f) = (mf , mf) = (mf , mf ) = (̂m, f).

[RR.2] (̂m, f)(m, f) = (mf , mf)(m, f) = (m, f) since the following (*) is a pullback
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diagram:
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~ mf

&&M
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[RR.3] Let (n′, f ′) be the pullback of (n, f) and (n′′, m′
f ) the pullback of (n,mf ). Then

there is a unique map e′f : D → D′ in C such that m′
fe

′
f = f ′ and n′′e′f = efn

′ and so
(n′, e′f ) is a pullback of (n′′, ef ):

E
n′

~~}}
}}

}}
}

f ′

''PPPPPPPPPPPPPPP

e′
f

//_______ F

n′′
}}

}

~~}}
}

m′

f

��

A′

m

~~~~
~~

~~
~

ef
//

f
''PPPPPPPPPPPPPPP D

mf

��

B′

n
~~}}

}}
}}

}} n

&&NNNNNNNNNNNNN

A B B

Hence, by hypothesis, f ′ = m′
fe

′
f is the (E ,M)-factorization of f ′ and therefore nf ′ =

(nm′
f )e

′
f is the factorization of nf ′ since nm′

f ∈ M and e′f ∈ E . Thus,

̂(n, g)(m, f) = ̂(n, n)(m, f)

= ̂(mn′, nf ′)

= (mnf ′ , mnf ′)

= (nm′
f , nm

′
f ) (since nf ′ = (nm′

f )e
′
f)

= (n, n)(mf , mf) (since (n′′, m′
f ) is the pullback of (n,mf ))

= (n, g)(̂m, f).

[RR.4] Suppose that (f ′, n′) and (m′
f , n

′′) are pullbacks of (f, n) and (mf , n), respectively.
Again, there is a unique map e′f : E → F such that m′

fe
′
f = f ′ and n′′e′f = efn

′ and so
(n′, e′f ) is a pullback of (n′′, ef ):

E
n′
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}
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If gm′
f = m1e1 is the factorization of gm′

f , then gf ′ = g(m′
fe

′
f) = m1(e1e

′
f ) is the factor-

ization of gf ′. Thus,

̂
(n, g)(̂m, f) = ̂(n, g)(mf , mf)

= ̂(mfn′′, gm′
f)

= (mgm′

f
, m1)

= (mgf ′ , mgf ′)

= ̂(mgf ′ , mgf ′)

= ̂(n, g)(m, f),

as desired.

4.6. Factorization systems from range categoriesWe now embark on the proof
of the converse of Theorem 4.5, namely that any split range category gives rise to a stable
factorization system on its category of total maps.

4.7. Theorem. Let C be a split range category. Then Total(C), the subcategory on the
total maps, admits an M-stable (E ,M)-factorization system with

E = {f |f = 1, f̂ = 1}; M = {m|m = 1, m is a partial isomorphism}

Proof. We first show that E-maps are stable under pullback along M-maps. Let e ∈ E
and m ∈ M. Since m is a partial section there exists r such that m = rm, rmr = r. By
the fact that M is a stable system of monics, we know that the pullback of e along m
exists:

A
e′=rem′

//

m′

��

B

m

��

C e
// D

r

aa

Moreover, we may take it to be e′ = rem′, where we denote the pullback of m along e by
m′; the latter is again a partial section, say with partial retraction r′. Now

ê′ = r̂em = r̂em′r̂ = r̂em′r′ = r̂ere = r̂e = r̂ = 1

This shows that ê′ = 1; since we already know that e′ = 1, it follows that e′ ∈ E .
Next, we show that (E ,M) is a factorization system. It is clear that E is closed under

composition, since if e, e′ ∈ E then ê′e = ê′ê = ê′ = 1. Suppose that f : X → Y is a total
map; since f̂ is a split restriction idempotent, we may factor it as f̂ = mfrf for some maps
rf : Y → Z and mf : Z → Y . with rfmf = 1Z . We claim that the (E ,M)-factorization

of f is f = mf (rff). First, note that f = f̂ f = mfrff , so that f indeed factors as such.
Next, note that mf ∈ M since it is a restriction monic. Next, we prove that rff ∈ E : we

have rff = mfrff = mfrff = f = 1, and r̂ff = r̂f f̂ = ̂rfmfrf = r̂f = 1.
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To prove that E-maps are orthogonal to M-maps, consider a commutative square

A
e //

p

��

B

q

��

C
m // D

r

��

where e ∈ E , m ∈ M and where r is a partial retraction of m. We claim that rq : B → C
is a diagonal filler. That this map is total follows right away from the fact that q = mrq
is total. It is also easy to see that rqe = rmp = p. To show that mrq = q, we derive first
that

rm̂p = m̂rmp = m̂p

whence m̂p ≤ r. Using this, we find

mr = r ≥ m̂p = q̂e = q̂

and therefore mrq̂ = q̂. Now the desired equality

mrq = mrq̂q = q̂q = q

follows.
Finally, from the fact that m is monic it follows that the filler rq is unique.

4.8. Main Result We now make precise in which sense categories with factorization
systems are the same thing as range categories.

Let MFac be the 2-category with

0-cells: categories C equipped with a factorization systems (E ,M), which is stable under
pullbacks of M-maps, and where all M-maps are monic.

1-cells: a 1-cell from (C, E ,M) to (D,F ,N ) is a functor F : C → D which sends E-maps
to F -maps and M-maps to N -maps, and which preserves pullback squares along
M-maps.

2-cells: M-cartesian natural transformations, i.e., natural transformations whose natu-
rality squares involving M-maps are pullback squares.

We are now in a position to state the main results. Recall thatRRcats is the 2-category
whose 0-cells are split range categories, whose 1-cells are range-preserving restriction
functors and whose 2-cells are total natural transformations.

4.9. Theorem. The 2-categories MFac and RRcats are 2-equivalent.
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Proof. We have shown that the assignments

Total : RRcats → MFac, Par : MFac → RRcats

are well-defined on objects. We know that these constructions form a 2-equivalence when
regarded as 2-functors between the 2-category of split restriction categories and the 2-
category of categories equipped with systems of monics. Hence we only need to show that
they are well-defined on 1-cells.

Concretely, this means that we have to show that a range functor F between split
range categories gives a functor Total(F ) which preserves E- and M-maps. Conversely,
we need that the restriction functor Par(G) associated to a 1-cell G in MFac preserves
ranges.

For the first of these claims, recall that the E-maps are defined to be those f for which
f = 1 and f̂ = 1; it is clear that any range functor preserves these. Similarly, the M-maps
are preserved because any restriction functor preserves restriction monics.

For the second part, consider a morphism (m, f) in Par(C,M, E), and its range
(mf , mf) (where mf is the M-part of f). Since the morphisms in MFac preserve factor-
izations, any such morphism F will send f = mfef to Ff = mFfeFf . This shows that
(Fmf , Fmf) = (mFf , mFf) is the range of F (m, f), as needed.

4.10. Theorem. Any range category embeds via a full and faithful range preserving func-
tor into a range category of the form Par(C, E ,M).

Proof. Given a range category C, consider Split(C), which is a split range category.
There is a full and faithful range preserving functor C → Split(C). Now apply the pre-
vious theorem, which implies that Split(C) ∼= Par(Total(Split(C)), E ,M), for the induced
factorization system (E ,M).

4.11. A Generalization of Schein’s Theorem While the representational results
in the previous section hold for all range categories, this section is concerned with those
which satisfy the additional axiom

[RR.5] gf = hf ⇒ gf̂ = hf̂ .

In particular, this axiom says that maps for which f̂ = 1 are epimorphisms, and hence
it excludes pathological examples of range categories such as the category of Alexandroff
spaces, or the trivial restriction and range on a category. It is interesting to note that
earlier authors [Di Paola & Heller 1987, Rosolini 1988], took this axiom together with
[RR.2] as definition of range. The connection then is:

4.12. Lemma. A combinator satisfying [RR.1], [RR.2] and [RR.5] also satisfies the
other range axioms.
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Proof. We first prove [RR.4]: we have

ĝfgf = gf by [RR.2]

⇔ ĝfgf̂ = gf̂ by [RR.5]

⇔ ĝf ĝf̂ = ĝf̂ by [RR.5]

so that ĝf̂ ≤ ĝf , and similarly

ĝf̂gf̂ = gf̂ by [RR.2]

⇔ ĝf̂gf = gf by [RR.5]

⇔ ĝf̂ ĝf = ĝf by [RR.5]

so that ĝf ≤ ĝf̂ .

Next, observe that we have k = k k and hence by [RR.5] k̂ = k k̂ = k. Now [RR.3]
follows, since

gf̂ = ĝf̂ as this is a restriction idempotent

= ĝf by [RR.4]

In terms of the representation of range categories using factorization systems, the range
categories satisfying this extra axiom are precisely those corresponding to factorization
systems of which the E-maps are epimorphisms.

The representation to which we now turn is much more specific: it says that we can
faithfully represent a small range category satisfying [RR.5] into the category of sets
and partial functions. The price we pay for this gain in concreteness is the fact that this
representation is generally not full.

Our reworking of Schein’s original result (which was concerned with the special case of
semigroups with ranges) follows the exposition in Jackson and Stokes [Jackson & Stokes
2009].

The aim is, for a range category C satisfying [RR.5], to define a faithful range functor

S : C → Par.

Towards the definition of this functor, consider an object X of C. A stickleback γ on
X is a zigzag of maps of the following form:

Y0

γ0

{{vvvvvvvvv
γ′

0

  
AA

AA
AA

A
Y1

γ1

~~}}
}}

}}
} γ′

1

  
AA

AA
AA

A
... Yn

γn

~~}}
}}

}}
}}

X = Z0 Z1 Z2
... Zn
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where γ0 = γ′
0, γ̂

′
0 = γ̂1, γ1 = γ′

1 , ..., γ̂′
n−1 = γ̂n. This stickleback has length n: the

shortest stickleback has one arrow.
Suppose that, in the above diagram, there exists a map x making

Yi

γi

����
��

��
� γ′

i

!!C
CC

CC
CC

C

Zi Zi+1

x

hh

commute. Then it follows that x ≥ γ̂′
i, since

xγ̂′
i = x̂γ′

i = γ̂′
iγi = γ̂′

iγ
′
i = γ̂′

i.

This allows us to define a new stickleback, which is the same as γ except for that we
replace the fragment

Yi

γi

����
��

��
�� γ′

i

!!C
CC

CC
CC

C
Yi+1

γi+1

||xx
xx

xxx
x

by

Yi+1

xγi+1

}}{{
{{

{{
{{

Zi Zi+1 Zi

The stickleback so obtained is called a shortening of γ via x, and the new map xγi+1

is called the contracted map. We say that a stickleback is short when it does not admit
any shortenings. The key fact about shortenings is the following lemma:

4.13. Lemma. Any stickleback on X can be shortened to a short stickleback, which does
not depend on the choice or order of shortenings.

In effect, this says that shortening, considered as a reduction relation on sticklebacks,
is strongly normalizing. It is clear of course that it is terminating, since shortening strictly
decreases the length of a stickleback.

Proof. Consider a shortening as above, induced by a morphism x : Zi+1 → Zi. Suppose
that x′ : Zi+1 → Zi also induces a shortening. Then we have:

xγ′
i = γi = x′γ′

i ⇒ xγ̂i = x′γ̂′
i

⇒ xγ̂i+1 = x′γ̂i+1

⇒ xγ̂i+1γi+1 = x′γ̂i+1γi+1

⇒ xγi+1 = x′γi+1

so that x and x′ give rise to the same shortening. The first implication is where the axiom
[RR.5] is used.

Finally, we have to show that shortenings can be applied in any order. This is clear
when the shortenings are not adjacent. When they are (say via x : Zi+1 → Zi, y :
Zi+2 → Zi+1) then first shortening via x leaves a new stickleback which we shorten via
yx; alternatively, first shortening via y leaves a stickleback which we shorten via x. Either
way, the resulting stickleback has xyγi+2 as contracted map.
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The short stickleback associated to γ will be denoted by sh(γ). We now define S(X)
to be the set of all short sticklebacks on X . For a morphism f : X → Y , let S(f) be the
partial function which sends the stickleback γ to the shortening of

Y0

fγ0

{{vvvvvvvvv
γ′

0

  
AA

AA
AA

A
Y1

γ1

~~}}
}}

}}
} γ′

1

  
AA

AA
AA

A
... Yn

γn

~~}}
}}

}}
}}

Y = Z0 Z1 Z2
... Zn

provided fγ0 = γ0, and which is undefined otherwise.
The restriction of S(f) corresponds to the set of sticklebacks γ for which fγ0 = γ0.

Because fγ0 = fγ0, this is the same as S(f).
The range of S(f) corresponds to all sticklebacks with first leg fγ0. Clearly such

sticklebacks are in the domain of S(f̂); conversely if a stickleback δ on Y is in the domain

of S(f̂), that means that f̂ δ0 = δ0, i.e. that f̂ δ0 = δ0. Then consider the following
stickleback γ on X :

X
δ̂0f

��~~
~~

~~
~~ δ̂0f

��
??

??
??

??
Y0

δ0

����
��

��
�� δ′

0

##H
HHHHHHHH Y1

δ1

{{vvvvvvvvv
δ′
1

  A
AA

AA
AA

... Yn

δn

~~}}
}}

}}
}}

X Y Y = Z0 Z1
... Zn

It is now readily verified that this is indeed a stickleback and that S(f)(γ) = δ. Remaining
details are left to the reader.

The result is now:

4.14. Theorem. [Schein’s Theorem for Range Categories] Every small range category in
which [RR.5] holds admits a faithful (but generally not full) embedding into the partial
map category of a regular category, namely sets and partial functions.

We remark that the condition [RR.5] is not only sufficient but also necessary, because
in a regular category, every map is an epimorphism onto its range.

5. Free Range Categories

Since range categories are defined equationally, the category RRcat0 of range categories
and functors is monadic over the category of directed graphs. In this section we provide
some insight into the explicit construction of the free range category. Consider first the
following chain of forgetful functors:

DirGraph Cat0
oo Rcat0

oo RRcat0.oo

It is well-known that categories are monadic over directed graphs, and in [Cockett & Lack
2002] an explicit construction of the left adjoint to the forgetful functor from restriction
categories to categories was given. Here we extend this picture by constructing the left
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adjoint to the forgetful functor from range categories to restriction categories. In the MSc.
thesis of the second author the left adjoint to the forgetful functor from range categories
to graphs was constructed; the construction presented here is an adaptation of the one
presented there.

5.1. Labeled TreesThe main technical ingredient for the construction of the free range
category on a restriction category C is a specific type of tree, suitably labeled by arrows
from C. These trees will represent the freely added range idempotents. Throughout this
section, C is a fixed small restriction category.

First, define the category Tree∗ as follows. The objects are finite trees with designated
base point ∗, that is, finite directed graphs in which for every pair a, b of distinct vertices
there is a unique sequence

[a = v0, e0, v1, e1, . . . , ek−1, vk = b]

where the vi are pairwise distinct vertices and ei is an edge from vi to vi−1 or from vi−1 to
vi. We usually suppress the base point from the notation, unless there is risk of confusion.
The morphisms between such based trees are graph homomorphisms which preserve the
base point.

Given a tree T we shall call a graph homomorphism α : T → C a C-labeling of T . The
object α(∗) is referred to as the base point of α; as we shall see, the labeling α specifies
a formal idempotent on the object α(∗). A typical labeling might look something like

A4 A1

f4
��
�

�

�
A2 A3

A3 A0

f6

``BBBBBBBB

f5
  A

A
A

A
A0

f2

OO

f3

>>||||||||

f7

  A
A

A
A

A1

f4
��
�

�

�

A2 A0

f3
``AAAAAAAA

f2

oo

f1

//___ A
f0

// A0 A1f4

oo_ _ _

The base point of this tree is the underlined object. Note that certain subtrees occur mul-
tiple times. This tree would represent the intersection of the following three idempotents
on A:

f̂1f2 f3
̂
f5f̂4f6 f0 f̂4f̂4f̂7f2 f3

We make a typographical distinction between arrows which point towards the basepoint
and those pointing away from it. The former are drawn dashed, and represent ranges; the
latter are drawn solid and represent domains.

We refer to a tree with labeling α as above as a C-tree. We denote such a structure by
(T, α), or often simply by T (we will not often encounter multiple labelings of the same
tree). We also call a tree with α(∗) = A a tree based at A. We have a category C-Tree of
C-labeled trees and graph homomorphisms which respect the base point and the labeling.
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5.2. Operations on Trees Since trees based at A are to represent idempotents at A,
we need to identify trees which give rise to the same idempotent. For example, the trees

A0

f

��
@

@
@

@

A0 f
//___ A A0 f

//___ A

both represent the idempotent f̂ = f̂ ∩ f̂ on A. We now develop several operations on
trees which capture this invariance; together, these generate an equivalence relation on
trees which we denote by ∼.

Most of these operations depend on tree grafting. Given a tree T , a chosen vertex
A ∈ T , and another tree T ′ with a chosen vertex also labeled A, we define

T ∪A T ′

to be the result of identifying the two copies of A in the disjoint union (coproduct) of the
trees T, T ′. We depict this as follows:

A A

T T ′

7−→

A

T T ′

T ∪A T ′

Duplication Given a tree T , a vertex x labeled A and a subtree T ′ of T containing A,
we may form a new tree T ∪A T ′ by first taking the disjoint union of T and T ′ and then
identifying the two copies of A. Graphically:

A

T

T ′

A

T T ′

∼

Here the base point may be in T , it may be equal to A, or it may be in T ′, in which
case it may occur in either copy (but of course not in both).

Identities The tree consisting of a single vertex A (which then necessarily is the base
point) is equal to the tree consisting of one edge labeled by 1A. The base point may be
on either side.

A
1A // A ∼ A ∼ A

1A //___ A

Composition Suppose T can be decomposed as

T = T1 ∪A ( A
f

// B
g

// C ) ∪C T2.
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Assume moreover that B is not the base point of the tree. Then this tree is equivalent to

the “contracted” tree T1 ∪A ( A
gf

// C )∪C T2. The base point may occur on either side.
Graphically this may be depicted as

A B
f

C
g

A C
gf

T1 T2 T1 T2∼

Restriction Given a tree T and vertex labeled by A, and an outgoing edge A →h B
where B is a leaf, we may replace h : A → B by an edge labeled h : A → A.

T ∪A ( A
h // B ) ∼ T ∪A ( A

h // A )

Here, the base point must be in T (possibly A) but not B.

Sliding Subtrees may be moved across idempotents, using the identity

T1 ∪A ( A
e // A ) ∪A T2 ∪A T3 ∼ T1 ∪A T2 ∪A ( A

e // A ) ∪A T3

Here, the base point may occur on either side, and it may also be slid across. Graphically:

A A
e

T1 T2
T3

A A
e

T1 T3
T2∼

Determinism Given a tree at A or at B which decomposes as

T = T1 ∪A ( A
f

// B ) ∪B T2 ∪B T3

we may split at f to form

T1 ∪A (( A
f

// B ) ∪B T2) ∪A (( A
f

// B ) ∪B T3)

where again the base point may occur anywhere (if the base point was B, then we may
choose either of the two copies).

A B
f

T1 T2
T3

B A B
f f

T2 T1 T3

∼

We write (T, α) ∼ (T ′, α′) to say that these two trees can be transformed into each
other using the above manipulations.
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5.3. Construction We now turn to the definition of the category R(C), the free range
category on the restriction category C. The objects will be those of C, and the morphisms
will be equivalence classes of pairs (f, T ), where f is a morphism of C subsumed by the
tree T . Formally:

5.4. Definition. A map f : A → B is subsumed by a tree T if

• T is based at dom(f) = A

• Adding f as a new outgoing edge to T results in an equivalent tree.

An equivalence relation on pairs (f, T ) is generated by:

• (f, T ) ∼ (f, T ′) when T ∼ T ′

• (f, T ) ∼ (fe, T ) when e = e is subsumed by T .

The equivalence class of (f, T ) will be denoted [f, T ].

Given a morphism f : A → B and a tree S based at B, we define a new tree f ∗S at
A by

f ∗S = (A →f B) ∪B S

i.e. by grafting in the edge labeled by f at B and letting A be the new base point.

5.5. Lemma. The operation f ∗ is well-defined w.r.t. the equivalence relation on trees, i.e.
if S ∼ S ′ then f ∗S ∼ f ∗S ′. Moreover, it has the property that f ∗(S ∪B S ′) ∼ f ∗S ∪A f ∗S ′.

Proof. The first claim is clear by inspection of each of the manipulations on trees. The
second claim follows from the determinism rule.

Next, we define an operation ∃f , for f : A → B sending trees on A to trees on B by
letting

∃fT = T ∪A (A →f B)

Again it is easily proved that this is well-defined.

5.6. Definition. Let (f, T ) and (g, S) be two suitable pairs, where f : A → B, g : B →
C.

1. The composite [g, S][f, T ] is defined to be [gf, T ∪A f ∗S].

2. The restriction of [f, T ] is defined to be [1A, T ]

3. The range of [f, T ] is defined to be [1B, ∃fT ].

5.7. Lemma. The composition law on R(C) is well-defined.

Proof.We already know that S ∼ S ′ implies f ∗S ∼ f ∗S ′, and T∪Af
∗S ∼ T∪Af

∗S ′. But
we also have (f, T ) ∼ (fe, T ), so that T ∪A (fe)∗S ∼ (A →e A)∪A T ∪A f ∗S ∼ T ∪A f ∗S,
where we used sliding for the first equivalence. The result now follows easily.
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5.8. Theorem. Under the above definitions of composition, restriction and range, R(C)
is a range category.

Proof. First, we check that the composition is unital and associative. The identity at A
is the map [1A, {1A}], where it doesn’t matter because of sliding whether we take this to
be an ingoing or outgoing edge. Then

[f, T ][1A, {1A}] = [f, {1A} ∪A 1∗AT ∪A {1A}] = [f, T ].

Similarly
[1B, {1B}][f, T ] = [f, T ∪A f ∗{1B}] = [f, T ∪A {f}] = [f, T ].

For associativity, consider

([h,R][g, S])[f, T ] = [hg, S ∪B g∗R][f, T ]

= [hgf, T ∪A f ∗(S ∪B g∗R)]

= [hgf, T ∪A f ∗S ∪A f ∗g∗R]

= [hgf, T ∪A f ∗S ∪A (gf)∗R]

= [h,R][gf, T ∪A f ∗S]

= [h,R]([g, S][f, T ])

Next, we verify the restriction identities. It is clear that the restriction operation is
well-defined on equivalence classes.

[R.1] Given [f, T ] : A → B we have

[f, T ][f, T ] = [f, T ][1, T ]

= [f, T ∪A 1∗T ]

= [f, T ∪A T ]

= [f, T ]

[R.2] Given [f, T ], [g, S] : A → B we have

[f, T ] [g, S] = [1, T ][1, S]

= [1, T ∪A 1∗S]

= [1, T ∪A S]

= [1, S][1, T ]

= [g, S] [f, T ]

[R.3] Given [f, T ], [g, S] : A → B we have

[g, S][f, T ] = [g, S][1, T ]

= [g, S ∪A T ]

= [1, S ∪A T ]

= [g, T ] [f, S]
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[R.4] Given [f, T ] : A → B, g : B → C we have

[f, T ][g, S][f, T ] = [f, T ][gf, T ∪A f ∗S]

= [f, T ][1, T ∪A f ∗S]

= [f, T ∪A T ∪A f ∗S]

= [f, T ∪A f ∗S]

= [1, S][f, T ]

= [g, S][f, T ]

[RR.1] Given [f, T ] : A → B, note that [̂f, T ] = [1, ∃fT ] is a restriction idempotent.
[RR.2] Given [f, T ] : A → B, consider

[̂f, T ][f, T ] = [1, ∃fT ][f, T ] = [f, f ∗∃fT ] = [f, T ]

where the last equality uses determinism.
[RR.3] Given [f, T ] : A → B and [g, S] : B → C, we have

̂[g, S][f, T ] = ̂[1, S][f, T ] = ̂[f, T ∪A f ∗S] = [1, ∃f(T ∪A f ∗S)]

Using determinism again, the tree ∃f (T ∪A f ∗S) is equivalent to S ∪B ∃fT as needed.
[RR.4] Given [f, T ] : A → B and [g, S] : B → C, we have

̂
[g, S][̂f, T ] = ̂[g, S][1, ∃FT ] = ̂[g, ∃fT ∪B S] = [1, ∃g(S ∪B ∃fT )]

while
̂[g, S][f, T ] = ̂[gf, T ∪A f ∗S] = [1, ∃gf(T ∪A f ∗S)].

These are equivalent trees using determinism once again.

5.9. Universal PropertyThe categories C andR(C) have the same objects, and given
a map f : A → B in C, there is an induced morphism [f, {f}] : A → B in R(C).

5.10. Lemma. The above assignment is a restriction functor ι : C → R(C).

Proof. Given f : A → B, g : B → C we have

[g, {g}][f, {f}] = [gf, {gf, f}] = [gf, {gf}]

using duplication and composition.
To see that the restriction is preserved, consider f : A → B and calculate

[f, {f}] = [1, {f}] = [1, {f}] = [f, {f}]

using restriction of f and the equivalence relation on the first component of maps.
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Next, we aim to show that this functor is universal amongst restriction functors into
range categories.

Now, consider a restriction functor F : C → D where D is a range category. Given a
tree (T, α) on A, we define an idempotent F (T, α) on FA as follows. Denote the incoming
edges at A by f1 : A1 → A, . . . , fk : Ak → A and the outgoing edges by g1 : A → B1, . . . gl :
A → Bl, with residual trees T1, . . . , Tk, S1, . . . , Sl respectively. Then by induction the
idempotents F (T1, A1), . . . F (Tk, Ak) and F (S1, B1), . . . F (Sl, Bl) are defined, and so we
may define

F (T,A) :=
k⋂

i=1

∃fi(F (Ti, Ai)) ∩
l⋂

i=1

g∗i (F (Si, Bi)).

The value at the empty tree is defined to be the identity. Note that F (T,A) is order-
reversing in the sense that if T ′ is a subtree of T based at A, then F (T,A) ≤ F (T ′, A).
Also note that for trees T, S both based at A, we have

F (T ∪A S,A) = F (T,A) ∩ F (S,A).

Here, the operation ∩ is the meet in the lattice of idempotents.

5.11. Lemma. For trees T, T ′ based at A for which T ∼ T ′, we have F (T,A) = F (T ′, A).

Proof. Inspection of all the manipulation steps on trees. Invariance under duplication
easily follows from the remarks preceding the statement of the lemma. The identities
clause is also obvious.

Next, consider the operation of composition. One case is as follows: we have a decom-
position of T as

T = T1 ∪A ( A
f

// B
g

// C ) ∪C T2,

where A is the base. Then we get

F (T,A) = F (T1, A) ∩ f ∗(g∗F (T2, C)) = F (T1, A) ∩ (gf)∗F (T2, C).

Similarly, if the base is C we would use the fact that ∃g∃f = ∃gf . Other possible cases
are handled inductively.

For restriction, suppose that f : A → B is a branch of T with B a leaf. We assume
that A is the base point. Then F (T,A) = F (T,A) ∩ Ff , and the result follows from the
identities

(gf)∗(e) = f ∩ g∗(e)

and
∃fg(e) = ∃g(e) ∩ f

For sliding, there are two cases, depending on the location of the base point. In the
first, we have

F (T1, A) ∩ e∗(F (T2, A) ∩ F (T3, A)) = F (T1, A) ∩ e∗F (T2, A) ∩ e∗F (T3, A)

= F (T1, A) ∩ F (T2, A) ∩ e∗F (T3, A)
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using the fact that for idempotents e, e′ we have e∗(e′) = ee′. In the other case we calculate

∃eF (T1, A) ∩ F (T2, A) ∩ F (T3, A) = e ∩ F (T1, A) ∩ F (T2, A) ∩ F (T3, A)

using the identity ∃e(e
′) = ee′.

Finally, for determinism we first consider the case where the base point is A. Then
observe that f ∗(e ∩ e′) = f ∗e ∩ f ∗e′. Thus if F (T2, B) = e, F (T3, B) = e′ then

F (T,A) = F (T1, A) ∩ Ff ∗(e ∩ e′) = F (T1, A) ∩ Ff ∗e ∩ Ff ∗e′

and the latter is the value associated to the tree in which f has been duplicated according
to the determinism rule. When the base point is B, we use the Frobenius property.

We now define the extension of the functor F : C → D to F̃ : R(C) → D to be

F̃A = FA F̃ [f, T ] = (Ff)F (T,A).

It is readily seen that this is well-defined: we already have shown invariance under reduc-
tion of T , and if [f, T ] = [fe, T ] then we have F (T,A) ≤ Fe, so that

F̃ [f, T ] = (Ff)F (T,A) = (Ff)FeF (T,A) = F (Fe)F (T,A) = F̃ [Fe, T ]

as needed.
For composition, observe that

(Fg)F (S,B)(Ff)F (T,A) = (Fg)(Ff)(Ff)∗(F (S,B))F (T,A)

= F (gf)F (f ∗S,A)F (T,A)

= F (gf)F (f ∗S ∪A T )

as needed.
It is clear from the definition of restriction and range that these are preserved by

F̃ . It is also clear that F̃ is an extension of F . Finally, we show uniqueness of this
extension: given another extension G of F (where G is a range functor). Consider a map
[f, T ] : A → B. This map may be factored as [f, {f}][1, T ], so that G[f, T ] = (Ff)G[1, T ],
and hence it suffices to show that F̃ and G agree on restriction idempotents.

Given [T ] at A, we show by induction on T that G[T ] = F [T,A]. If T consists of
the identity only, then this is clear. Denote the incoming edges of T at A by f1 : A1 →
A, . . . , fk : Ak → A and the outgoing edges by g1 : A → B1, . . . gl : A → Bl, with
residual trees T1, . . . , Tk, S1, . . . , Sl respectively. Then by induction we have F (T1, A1) =
G[T1], . . . , F (Tk, Ak) = G[Tk] and F (S1, B1) = G[S1], . . . , F (Sl, Bl) = G[Sl]

F (T,A) =

k⋂

i=1

∃fi(F (Ti, Ai)) ∩
l⋂

i=1

g∗i (F (Si, Bi))

=

k⋂

i=1

∃fiG[Ti] ∩
l⋂

i=1

g∗iG[Si]

= G[T ]
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since G commutes with intersections of restriction idempotents, with pullback functors
f ∗
i and with direct image maps ∃gi.
We conclude:

5.12. Theorem. The assignment C 7→ R(C) underlies a functor Rcat0 → RRcat0 which
is left adjoint to the forgetful functor from range categories to restriction categories.
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