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KAN EXTENSIONS AND LAX IDEMPOTENT PSEUDOMONADS

F. MARMOLEJO AND R.J. WOOD

Abstract. We show that colax idempotent pseudomonads and their algebras can be
presented in terms of right Kan extensions. Dually, lax idempotent pseudomonads and
their algebras can be presented in terms of left Kan extensions. We also show that a
distributive law of a colax idempotent pseudomonad over a lax idempotent pseudomonad
has a presentation in terms of Kan extensions.

1. Introduction

This paper follows [Marmolejo and Wood, 2010] and builds on the idea in [Manes, 1976],
which was actually preceded by [Walters, 1970], that a monad can be presented without
iterating the underlying endofunctor. [Marmolejo and Wood, 2010] extended Manes’
notion of an extension operator to handle algebras but we note now that algebras were
treated in a somewhat similar manner in [Walters, 1970] too. Our treatment of algebras
also enabled “no iteration” descriptions of distributive laws and wreaths. Because the
values of the endofunctor of a monad are term objects, the no iteration description in
effect removes the need to mention terms of terms and (terms of terms of terms). This is
particularly helpful in the descriptions of distributive laws and wreaths where the intent
is to rewrite M-terms of A-terms as A-terms of M-terms.

When we turn to higher dimensional monads the no iteration idea is even more helpful.
For then the terms tend to be n-sorted, with n ≥ 2. For example, in completion monads
with respect to classes of limits, the terms are categorical diagrams comprised of both
objects and arrows. It is in fact completion monads, precisely colax idempotent pseu-
domonads, about which we have most to say. Such a pseudomonad (D, d,m, · · ·) is what
is also called a “coKZ doctrine”, and characterized by adjunctions dD ⊣ m ⊣ Dd. We
caution the reader that in [Marmolejo, 1997], our main reference for these pseudomonads,
the subject matter is presented in terms of lax idempotent pseudomonads “KZ doctrines”,
for which the adjunctions are reversed to give Dd ⊣ m ⊣ dD.

The extension operator in [Manes, 1976] and those in [Marmolejo and Wood, 2010]
satisfy equations. It will come as no surprise that if pseudomonads (on 2-categories say)
are described in similar terms then the equalities of those papers must be replaced with
invertible 2-cells — which must themselves satisfy equations. However, colax idempotent
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pseudomonads have all but one of their 2-cell equations given by adjunction equations.
Thus it might be hoped that if colax (or lax) idempotent pseudomonads are described by
extension operators then their 2-cell equations might also mediate universal properties.
This is the case. The extensions which appear in describing colax [lax] idempotent pseu-
domonads are right [left] Kan extensions! The precise definition (Definition 3.1) in terms
of Kan extensions is somewhat similar to the conditions given in [Bunge, 1974] in what is
called a coherently closed family of U-extensions (U is a 2-functor), furthermore, the way
we extend the function of objects to a pseudofunctor from the data given in Definition
3.1 is similar to the construction of a lax adjoint to U given in [Bunge, 1974].

The algebras for a colax (or lax) idempotent pseudomonad are also defined in terms
of Kan extensions and proven to be essentially the same as the usual algebras.

In Section 2 we begin by recalling the characterization of a colax idempotent pseudo-
monad D = (D, d, · · ·) and its algebras, in terms of adjunctions, as given in [Mar-
molejo,1997]. Important equations involving the derived modification δ : dD → Dd are
also recalled. In Section 3 we define right Kan pseudomonads and algebras for these. Sec-
tion 4 provides a construction of a right Kan pseudomonad D′ from a colax idempotent
pseudomonad D and a construction of a colax idempotent pseudomonad D′ from a right
Kan pseudomonad D. In Section 5 we show that starting with either notion as D, the
2-category of algebras for D is 2-equivalent to the 2-category of algebras for D′.

We recall in Section 6 that morphisms between pseudomonads on 2-categories can
be described in terms of 2-functors between their underlying 2-categories, together with
liftings to their 2-categories of algebras. Moreover, these can also be described, see [Mar-
molejo and Wood, 2008] in terms of transitions which are a pseudo version of Street’s
morphisms of monads [Street, 1972]. In Section 6 we use the work of the previous sec-
tions and these observations to give a description of transitions between colax idempotent
pseudomonads in terms of extensions. Since distributive laws can be elegantly described
in several ways in terms of extensions and one of their duals we are able in Section 7
to give a description of distributive laws between certain pseudomonads in terms of ex-
tensions. We note that the distributive law described in [Marmolejo, Rosebrugh, Wood,
2002], whose algebras are constructively completely distributive lattices, was produced
this way, as a Kan extension. Another example is the distributive law of the small limit
completion pseudomonad over the small colimit completion, whose algebras are the com-
pletely distributive categories [Marmolejo, Rosebrugh, Wood, to appear]; we also have
the lextensive categories as algebras for the pseudomonad obtained from a distributive
law of the finite completion pseudomonad over the finite sum completion pseudomonad;
or regular categories as algebras for the finite limit completion pseudomonad over the
regular factorizations pseudomonad with base catker as defined in [Centazzo and Wood,
2002], and many more. To illustrate how these distributive laws work in the setting of
Kan extensions we examine, in Section 8, the distributive law of coFam over Fam.
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2. Preliminaries

For the convenience of the reader, we recall in this section the definition of co-lax idem-
potent pseudomonad (also known as co-KZ pseudomonad). They first appeared in the
papers of Kock [Kock, 1973] and Zöberlein [Zöberlein,1976]. In this section we largely
follow (the dual of) the development given in [Marmolejo, 1997].

Let K be a 2-category. A co-lax idempotent pseudomonad D = (D, d,m, α, β, η, ε) on
K consists of a pseudofunctorD :K → K, together with strong transformations d : 1K → D
and m :D2 → D, and modifications

D

D2

D

dD ��??????
1D //

m

??������
α ≃
��

D2

D

D2

m
??������

1D2

//

dD

��??????

β
��

D2

D

D2

m ��??????

1D2 //

Dd

??������

η
��

D

D2

D,

Dd
??������

1D
//

m

��??????

ε ≃
��

(1)

with α and ε invertible, that render dD ⊣ m ⊣ Dd, and such that the coherence condition

1K D

D2

D2

D
d //

Dd
::tttttt

dD $$JJJJJJ

m

$$JJJJJJ

m

::tttttt

1D
//

ε ��

α ��

= 1K

D

D

D2 D

d
::ttttttt

d $$JJJJJJJ

Dd

$$JJJJJJ

dD

::tttttt

m
//dd

��
(2)

is satisfied. It is shown in [Marmolejo, 1997] that any such structure induces a pseudo-
monad, whose structure is given by (D, d,m, α−1, ε−1, µ), where µ is the pasting

D3

D2

D3

D

D2

D,
mD   AAAAAAAA

1D3 //

dD2

>>}}}}}}}}

m
//

Dm //

dD
>>}}}}}}}}

m

  AAAAAAA

1D
//

ηD
�� dm ��

66666

66666

α−1

��
(3)

and furthermore, that for a pseudomonad (D, d,m, α−1, ε−1, µ) to be co-lax idempotent
it suffices that there exists a modification β such that α, β : dD ⊣ m is an adjunction;
equivalently, that there exists a modification η such that η, ε :m ⊣ Dd is an adjunction.

Recall as well that we can then produce a 2-cell δ : dD → Dd as the pasting

D

D2

D

D2,
dD

??������

1D
//

m

��??????

1D2 //

Dd

??������

η
��α−1

��

that this pasting is equally the pasting of ε−1 and β at m, that δ · d = d−1
d , that m · δ =

ε−1α−1, and that δ ·m is the pasting of β and η at 1D2 .
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The 2-category D-Alg of D-algebras is defined as follows. Its objects are adjunctions
ζ, ζ̂ : dB ⊣ B,

B B

DB

1B //

dB ""EEEEEEE

B

<<yyyyyyy
ζ ≃
��

DB DB

B

1DB

//

B
<<yyyyyyy

dB

""EEEEEEE

ζ̂
��

(4)

with invertible unit. The invertibility of ζ is automatic if d is fully faithful. Recall as well
that ζ̂ is completely determined by ζ as the pasting

DB D2B DB,

B

dDB
**

DdB

44

B

33

1DB

77DB
//

dB

%%
δB ��

Dζ−1

��

d−1
B ��

and that all we have to do to verify that a ζ as above determines an object in D-Alg is to
show that the equation

DB D2B DB,

B B

dDB
**

DdB

44

B

33

1DB

77DB
//

B

;;wwwwwwwwww

1B //

dB

%%
δB ��

Dζ−1

��

d−1
B ��

ζ
��

= 1B (5)

is satisfied. (Note that replacing B by D, B by m, and ζ by α in the definition of ζ̂ gives
us β = α̂.)

A 1-cell from (B, B, ζ) to (A, A, ξ) is a 1-cell H :B → A such that the pasting

DB

B

DB

A

DA

A
B

<<yyyyyyy

1DB

//

dB

""EEEEEEE
H //

DH
//

dA ""EEEEEEE
1A //

A

<<yyyyyyyζ̂ ��
d−1
H ��

ξ
�� (6)

is invertible. GivenH,K : (B, B, ζ) → (A, A, ξ), a 2-cell in D-Alg is simply a 2-cell τ :H →
K in K. Provisionally write D′ for the pseudomonad (D, d,m, α−1, ε−1, µ) described above.
It is shown in [Marmolejo, 1997] that D-Alg is 2-isomorphic to D′-Alg, the usual category
of algebras for a pseudomonad, since the associativity constraint needed to complete a
D-algebra (B, B, ζ) to a D′-algebra is given uniquely by the pasting

D2B

DB

D2B

B

DB

B,
mB   AAAAAAAA

1D2B //

dDB

>>}}}}}}}}

B
//

DB //

dB
>>}}}}}}}}

B

  AAAAAAAA

1B
//

ηB
�� dB ��

66666

66666

ζ−1

��
(7)
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while for a 1-cell H : (B, B, ζ) → (A, A, ξ), the pasting (6) uniquely completes H to a
1-cell of D′-algebras.

3. Right Kan pseudomonads and their algebras

We define co-lax pseudomonads in terms of right Kan extensions. Later on we shall
show that they are the usual co-lax pseudomonads as in the previous section, but for the
moment (and just to be able to distinguish one from the other in this paper) we will call
them right Kan pseudomonads.

3.1. Definition. A right Kan pseudomonad D on K is given as follows:
i) A function D : Ob(K) → Ob(K).
ii) For every A ∈ K, a 1-cell dA :A → DA.
iii) For every 1-cell F :B → DA, a right Kan extension of F along dB

B DB

DA

dB //

F
""EEEEEEEEEEE

FD

��

DF

~� ����
����

(8)

with DF invertible (the latter being automatic if the 1-cell dB is fully faithful).
Subject to the axioms
a) For every A in K,

A DA

DA

dA //

dA
""EEEEEEEEEEE

1DA

��
����

����

exhibits 1DA as a right Kan extension of dA along dA.
b) For every G :C → DB and F :B → DA the 2-cell

C DC

DB

DA

dC //

G
""EEEEEEEEEEE

GD

��
GD

��

FD

��

DG

~� ����
����

(9)

exhibits FDGD as a right Kan extension of FDG along dC.
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3.2. Remark. Observe that we can also define an effect ( )D on 2-cells: given φ : F →
G :B → DA in K, we define φD :FD → GD as the unique 2-cell such that

B DB

DA

G

((

dB //

FD

��

GD

��

φD
ks

DG

}� �����
�����

=

B DB

DA.

dB //

F

��
G

++

FD

��

DF

{� �����
�����

φ

{� ������

We clearly obtain a functor ( )D :K(B, DA) → K(DB, DA).
We now define the 2-category of algebras for a a right Kan pseudomonad D in terms

of right Kan extensions. We denote it by D-Alg and we define it as follows. An object B
in D-Alg consists of an object B in K together with an assignment, to every F :C → B,
of a right Kan extension F B :DC → B of F along dC

C DC

B

dC //

F
$$IIIIIIIIIII

FB

��

BF

{� ������
(10)

with BF invertible (automatic if dC fully faithful), in such a way that for every G :X →
DC in K, the diagram

X DX

DC

B

dX //

G
""EEEEEEEEEEE

GD

��

FB

��

DG

~� ����
����

(11)

exhibits F B ·GD as a right Kan extension of F B ·G along dX.
A 1-cell H :B → A in D-Alg is a 1-cell H :B → A in K such that for every F :C → B,

the diagram

C DC

B

A

dC //

F
""EEEEEEEEEEE

FB

��

H

��

BF

~� ����
����

(12)

exhibits F B ·H as a right Kan extension of F ·H along dC. A 2-cell τ :H → K :B → A
is simply a 2-cell τ :H → K in K. Composition is as in K. It is not hard to show that
composition of 1-cells in D-Alg results in a 1-cell in D-Alg.
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3.3. Remark. As in Remark 3.2 we can, for any B in D-Alg, induce an effect ( )B on
2-cells: given φ : F → G :C → B, we define φB :F B → GB as the unique 2-cell such that

C DC

B

G

))

dC //

FB

��

GB

��

φB
ks

BG

}� �����
�����

=

C DC

B,

dC //

F

��G

++

FB

��

BF

{� �����
�����

φ

{� ������

thus inducing a functor ( )B :K(C,B) → K(DC,B).

4. Right Kan pseudomonads versus co-lax idempotent pseudomonads 1

In this section we construct a colax idempotent pseudomonad from a right Kan pseudo-
monad, and vice versa. The constructions are given in the following two theorems.

4.1. Theorem. Every right Kan pseudomonad on K induces a co-lax idempotent pseudo-
monad on K.

Proof. Assume we have a right Kan pseudomonad D on K. We first extend D to a
pseudofunctor D :K → K. Given φ :F → F ′ :B → A in K, define DF = (dA · F )D, and
define Dφ :DF → DF ′ as (dA · φ)D, that is, Dφ is the unique 2-cell such that

B DB

A DA

dB //

F ′

��

dA
//

DF

��

DF ′

��

DφksDdA·F ′

x� zzzz
zzzz =

B DB

A DA

dB //

DF

��

dA
//

F

��
F ′

��

φks DdA·F
x� zzzz

zzzz

(using the fact that the left most square exhibits DF ′ as a right Kan extension). It is then
immediate that D(1F ) = 1DF and that for ψ :F ′ → F ′′ we have D(ψφ) = (Dψ)(Dφ). If
G :C → B, define DG,F :DF ·DG→ D(F ·G) as the unique (invertible) 2-cell such that

C DC

B DB

A DA

dC //

G
��

DG

""EEEEEEE

D(F ·G)

��
F
�� DF||yyyyyyy

dA
//

DG,F
ks

DdA·F ·G

y� zzzzz
zzzzz

=

C DC

B DB

A DA

dC //

G
��

DG
��

dB
//

F
��

DF
��

dA
//

DdB·G

y� zzzzz
zzzzz

DdA·F
y� zzzzz

zzzzz
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Observe that the inverse of the 2-cell DG,F is the unique 2-cell ρ :D(F · G) → DF ·DG
such that

C DC

B DB

DA

dC //

G
��

DG
�� D(F ·G)

		

dB
//

DF ��::::::

DdB·G

y� zzzzz
zzzzz

ρ

~� ����
���� =

C DC

B DB

DB DA.

dC //

G
��

D(F ·G)

��

F
//

dB
�� dA ''PPPPPPPPPP

DF
//

DdA·F ·G

{� ������

������

D−1
dA·F

~� ����
����

(using (9)). It is not hard to see that for any γ :G→ G′ and φ :F → F ′

D(F · γ)DG,F = DG′,F (DF ·Dγ) and D(φ ·G)DG,F = DG,F ′
(Dφ ·DG).

Since both 1DA and D(1A) are right Kan extensions of dA along dA, there is a unique
isomorphism DA : 1DA → D(dA) such that

A DA

A DA

dA //

1A

��

dA
//

1DA

��

D(1A)

��

DAksDdA·1A

v~ tttt
tttt = 1dA.

It is not hard to see that

DF,1A(DA ·DF ) = 1DF = D1B,F (DF ·DB),

as well as
DG·H,F (DF ·DH,G) = DH,F ·G(DG,F ·DH),

therefore D :K → K is a pseudofunctor.
Then we extend d to a strong transformation d : 1K → D by defining dF = DdA·F

for F :B → A (all the relevant equations necessary to show that d is indeed a strong
transformation appear above).

Next we define m :D2 → D such that for every A,

mA = 1DA
D,

and, using (9), define for F :B → A, mF :DF · mB → mA · D2F as the unique 2-cell
such that

DB D2B

DA D2A

DB

DA

dDB //

DF

��

1DA

55

1DB
D

**UUUUUUUUUU

D2F

��

dDA
//

1DA
D **UUUUUUUUU DF

��

DdDA·DF

{� ������

������

mF

w� wwwwww
wwwwww

D 1DA

�� 










=

DB

D2B

DB DA.

dDB

=={{{{{{{{{{

1DB

//

1DB
D

!!CCCCCCCCCC

DF
//

D 1DB ��
(13)
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The inverse of mF is the unique 2-cell θ such that

DB D2B

DB

DA

D2A =

dDB //

1DB
""EEEEEEEEEEE

mB
��

D2F

��=========

DF
��=========

mA

��

D 1DB

~� ����
����

θks

DB D2B

DA D2A

DA

dDB //

DF

��
D2F

��
dDA //

1DA
%%KKKKKKKKKKKK

mA

��

DdDA·DF

{� �����
�����

D 1DA

~� ����
����

.

It is not hard to see that m : D2 → D is a strong transformation.
Now define αA = D1DA

−1, then (13) tells us that α : 1DA → m · dD is a modification.
Define εA :mA ·DdA → 1DA as the unique 2-cell such that

A DA

D2A

DA

dA //

DdA

""EEEEEEEEEE

1DA

&&

mA

��

εA

�� ������

������
=

A DA

DA D2A

DA

dA //

dA

��
DdA

��
dDA //

1DA
%%KKKKKKKKKKKK

mA

��

DdDA·dA

{� �����
�����

D 1DA

~� ����
����

.

The inverse of εA is the unique 2-cell ρ such that

A DA

DA D2A

DA

dA //

dA
��

DdA
�� 1DA

		

dDA
//

1DA

22
mA ��::::::

DdDA·dA

~� ����
����

ρ

~� ����
����

D 1DA

~� ����
����

= 1dA. (14)

It is not hard to show that ε :m · Dd → 1D is a modification by pasting the relevant
equation with dF . Define βA : dDA ·mA → 1D2A as the unique 2-cell such that

DA D2A DA

D2A

dDA // mA //

1DA ,,

dDA

��

βA

{� �����
�����

=

DA

D2A

DA D2A.

dDA

<<yyyyyyyyyy

mA

""EEEEEEEEEE

1DA

// dDA //

D 1DA
��

Finally define ηA : 1D2A → DdA ·mA as the unique 2-cell such that

DA D2A

DA D2A

dDA //

1DA
%%KKKKKKKKKKKK

mA

��

1D2A

%%KKKKKKKKKKKK

DdA
//

αA−1

~� ����
����

ηA{� ����
���� =

DA D2A

DA D2A.

DdA
//

1DA

99ssssssssssss
mA

OO
dDA //

1D2A

99ssssssssssssεA−1 ��
4444

4444
βA

�#
????

????
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By Section 2, the 2-cell above is δA : dDA → DdA. It is not hard to see that β and η are
modifications and that they determine, together with α and ε, adjunctions dD ⊣ m ⊣ Dd.
Furthermore, the coherence condition (2) is given by (14).

4.2. Theorem. Every co-lax idempotent pseudomonad D on K induces a right Kan
pseudomonad on K.

Proof. Let D be a co-lax idempotent pseudomonads with structure (1). We then take D
and d on objects for items i) and ii) of Definition 3.1. For item iii) we define FD = mA·DF
and show that

B DB

DA D2A

DA

dB //

F

��
DF

��
dDA //

1DA
""EEEEEEEEEEE

mA

��

dF

{� ������

������

αA−1

~� ����
����

(15)

exhibits FD as a right Kan extension of F along dB. So take H :DB → DA and ψ :H ·
dB → F . We show that the 2-cell

DB D2B D2A DA

DA

dDB
,,

DdB

22

DF

66

H

55

DH
//

mA
//

dDA

&&NNNNNNNNNNNNNN 1DA

''
δB ��

d−1
H ��

Dψ
��

αA
��

(16)

is the unique 2-cell H → FD that produces ψ when pasted with (15). So paste the above
2-cell with (15), substitute δB · dB by d−1

dB, then substitute the pasting of d−1
H , d−1

dB, Dψ
and dF by dDA · ψ, and cancel αA with its inverse, thus obtaining ψ. Assume now that
we have a 2-cell θ :H → FD such that pasting it with (15) equals ψ. Substitute Dψ in
(16) by D of the pasting of θ with (15). We show that the resulting 2-cell equals θ. For
this replace the pasting of δB and DdF by the pasting of dDF and δDA. Now replace
the pasting of d−1

H , Dθ and dDF by the pasting of θ and d−1
mA. Paste µA and its inverse

at the composite mA ·DmA (where µ :m ·Dm → m ·mD is the pasting (3)). Replace
the pasting of αA, d−1

mA and µA by mDA · αDA, and the pasting of µ−1 and DαA−1 by
mA · εDA. The pasting of αDA, δDA and εDA is the identity, leaving just θ.
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The proof of a) is similar, given κ :K · dA → dA, the relevant 2-cell to consider is

DA D2A D2A DA.

DA

dDA
,,

DdA

22

DdA

66

1DA

66

K

55

DK
//

mA
//

dDA

&&NNNNNNNNNNNNNN 1DA

''
δA ��

d−1
K ��

Dκ
��

αA
��

εA
��

And the proof of b) is also similar, for a 2-cell ψ :L · dC → mA · DF · G, the relevant
2-cell is

DC D2C D2A DA.

DA

D2B D3A D2A

DB

dDC
,,

DdC

22

DG
&&NNNNNNNNNNNNNN

L

33

DL
//

mA
//

dDA

&&NNNNNNNNNNNNNN 1DA

''

D2F
//

mB
%%KKKKKKKKKKKK

DmA

<<yyyyyyyyyy

mDA
//

mA

<<yyyyyyyyyy

DF

88pppppppppppppp

δC ��

d−1
L ��

Dψ
��

αA
��

µA
��

m−1
F ��

We compare these constructions in Section 6 below.

5. D-Alg versus D-Alg
5.1. Theorem. Let D be a right Kan pseudomonad on K, and produce the colax idem-
potent pseudomonad (also called D) as in Theorem 4.1. There is a 2-equivalence Φ :D-
Alg → D-Alg such that the diagram

D-Alg Φ //

""EEEEEEEE
D-Alg

||yyyyyyyyy

K

commutes, where the un-labeled arrows are forgetful 2-functors.

Proof. We define Φ :D-Alg → D-Alg as follows. For τ :H → K :B → A in D-Alg, define
Φ of it as τ :H → K :B−1

1B
→ A−1

1A
. Φ will be a 2-functor if we can show that B−1

1B
and H

are in D-Alg. To show the first of these we must show that equation (5) is satisfied, in
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this case the equation is

DB D2B DB,

B B

dDB
**

DdB

44

1B
B

33

1DB

77D1B
B

//
1B

B

;;wwwwwwwwww

1B //

dB

%%
δB ��

D(D1B
)
��

d−1

1B
B ��

D−1
1B ��

= 11BB ,

but this follows from the fact that (10), with F = 1B, is a right Kan extension. Again,
since for F = 1B, (12) is a right Kan extension, we obtain the inverse of

DB

B

DB

A

DA

A
1B

B <<yyyyyyy

1DB

//

dB

""EEEEEEE
H //

DH
//

dA ""EEEEEEE
1A //

1A
A

<<yyyyyyyB̂−1
1B ��

d−1
H ��

A−1
1A ��

as the unique 2-cell γ such that

C DC

B

A

DA =

dC //

1B
""EEEEEEEEEEE

1B
B

��

DH

��=========

H

��
1A

A
�����������

BF

~� ����
����

γks

B DB

A DA

DA

dB //

H

��
DH

��
dA //

dC
""EEEEEEEEEEE

1A
A

��

dH

{� ����
����

A1A

{� ����
����

In the opposite direction define Ψ :D-Alg → D-Alg as follows. For an algebra ζ as
in (4), we define Ψ(ζ) such that for every H :X → B, its extension is B · DH, and the
corresponding 2-cell is

X DX

B DB

B

dX //

H

��
DH

��
dB //

1B
""EEEEEEEEEEE

B

��

dH

{� ������

������

ζ−1

~� ����
����

(17)

To see that Ψ(ζ) is well defined, we must show that (17) exhibits B ·DH as a right Kan
extension of H along dX. Given K :DX → B and κ :K · dX → H, the unique 2-cell



KAN EXTENSIONS AND LAX IDEMPOTENT PSEUDOMONADS 13

K → B ·DH that pasted with (17) equals κ is

DX D2X DB B.

B

dDX
,,

DdX

22

DH

77

K

55

DK
//

B
//

dB

&&NNNNNNNNNNNNNNN 1B

&&
δX ��

d−1
K ��

Dκ
��

ζ
��

Furthermore, we must show that for any G :Y → DX and H :X → B, the 2-cell

Y DY

DX D2X

DX DB B

dY //

G

��
DG

��
dDX //

1DX
""EEEEEEEEEEE

mX

��
DH //

dG

{� ������

������

αX−1

~� ����
����

B //

(18)

exhibits B · DH · mX · DG as a right Kan extension of B · DH · G along dY. Given
N :DY → B and ν :N · dY → B ·DH ·G, the 2-cell

DY D2Y DB B,

B

D2X D2B DB

DX

dDY
,,

DdY

22

DG
&&NNNNNNNNNNNNNN

N

33

DN
//

B
//

dB

&&NNNNNNNNNNNNNNN 1B

&&

D2H
//

mX
%%KKKKKKKKKKKK

DB

<<yyyyyyyyyy

mB
//

B

<<yyyyyyyyyy

DH

88pppppppppppppp

δY ��

d−1
N ��

Dν
��

ζ
��

ζ2
��

m−1
H ��

where ζ2 is the 2-cell given by (7), is the unique 2-cell that pasted with (18) equals ν.
We thus conclude that Ψ(ζ) is an object of D-Alg.
Given a 1-cell L : ζ → ξ (with ξ : idC → C · dC) in D-Alg, we want to show that

L : Ψ(ζ) → Ψ(ξ) is a 1-cell in D-Alg. Thus we must show that

X DX

B DB

B C

dX //

H

��
DH

��
dB //

1B
""EEEEEEEEEEE

B

��
L //

dH

{� ������

������

ζ−1

~� ����
����

(19)
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exhibits L ·B ·DH as right Kan extension of L ·H along dX for any H :X → B. Given
N :DX → C and ν :N · dX → L ·H, the unique 2-cell N → L ·B ·DH that pasted with
(19) equals ν is

DX D2X DC C,

C

DB B

dDX
,,

DdX

22

DH
&&NNNNNNNNNNNNNN

N

33

DN
//

C
//

dC

&&NNNNNNNNNNNNNNN 1C

&&

DL

55jjjjjjjjjjjjjjjjjjjjjj
L

<<yyyyyyyyyyy

B
//

δX ��

d−1
N ��

Dν
��

ξ
��

χ
��

where χ is the inverse of the 2-cell induced by L that corresponds to (6), given by the
fact that L is a 1-cell of algebras. Thus we define Ψ(L) = L.

For a 2-cell λ :L→ L′ : ζ → ξ in D-Alg, define Ψ(λ) = λ.
It is routine to verify that Φ ◦ Ψ and Ψ ◦ Φ are isomorphic to the corresponding

identities.

Similar arguments produce the following

5.2. Theorem.Given colax idempotent pseudomonad D, produce its associated right Kan
pseudomonad (also called D), as in Theorem 4.2. Then D-Alg and D-Alg are equivalent.

6. Right Kan pseudomonads versus co-lax idempotent pseudomonads 2

If U and D are pseudomonads on the 2-categories L and K respectively then, following
[Marmolejo, 1999] we can describe morphisms from (L,U) to (K,D) in terms of liftings

of 2-functors F :L → K to 2-functors F̂ :U-Alg → D-Alg (that commute with the for-
getful 2-functors). In Theorem 3.5 of [Marmolejo and Wood, 2008] we showed that such
liftings are essentially the same as transitions from U to D along F . The latter are a
pseudo version of the morphisms of monads found in [Street, 1972] (where they are called
monad functors) and consist of strong transformations r :DF → FU together with two
invertible modifications (corresponding to the two equalities of [Street, 1972]) subject to
two equations. We refer the reader to [Marmolejo and Wood, 2008] for the definitions of
these and of coherent isomorphisms between them.

We consider the particular case of D = (D, d,m, αD, βD, ηD, εD) and U = (U, u, n, αU, βU,
ηU, εU) colax idempotent pseudomonads (with D as in (1), but with subindex D on the
2-cells that conform D, and we use the same letters for the corresponding 2-cells that
conform U, but with subindex U; thus the structure for U is

U

U2

U

uU ��??????
1U //

n

??������
αU ≃

��

U2

U

U2

n
??������

1U2

//

uU

��??????

βU
��

U2

U

U2

n ��??????

1U2 //

Uu

??������

ηU
��

U

U2

U.

Uu
??������

1U
//

n

��??????

εU ≃
��

(20)
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We follow the same pattern with δ, thus δD : dD → Dd, and δU :uU → Uu). It follows from
the previous Section that morphisms of monads between them and hence also transitions,
can be described in terms of algebras for the corresponding right Kan pseudomonads.

6.1. Theorem. Let U and D be colax idempotent pseudomonads on 2-categories L and
K respectively. A transition from U to D along a 2-functor F :L → K can be given
by the following data: for every A in L, a D-algebra (FUA, ( )λ), such that for every
L :B → UA in L,

F (LU) : (FUB, ( )λ) → (FUA, ( )λ)

is a morphism of D-algebras. Every transition from U to D along F is coherently isomor-
phic to one that arises in this way.

Proof. For every A in L define rA = (FuA)λ and ω1A = λFuA:

FA DFA

FUA

dFA //

FuA
**

(FuA)λ= rA

��

ω1A=λFuA

}� �����
�����

To make r a strong transformation observe that, for every G :B → A, rA · dFG =
(FuA)λ · DdFA·FG exhibits rA · DFG as a right Kan extension of rA · dFA · FG along
dFB. Thus we define rG as the unique 2-cell such that

FB DFB

FA DFA

FUA

FUB

dFB //

FG

��

DFG

��

rB

!!BBBBBBBBBBBB

dFA
//

FuA
##HHHHHHHHHHHHH

rA

��
FUG

}}||||||||||||

dFG

�� 










ω1A
~� ����

����
rGks

=

FB DFB

FA DFA

FUA.

dFB //

FuB
##HHHHHHHHHHHHH

rB

��

FG

��

FuA
##HHHHHHHHHHHHH

FUG

��

ω1B

~� ����
����

FuG

~� ����
����

The inverse of rG is the unique 2-cell θ (given by the fact that FUG · ω1B = F ((uA ·
G)U) · λFuB exhibits FUG · rB as a right Kan extension of FUG · FuB along dB) such
that

FB DFB

FUB

FUA

DFA

dFB //

FuB
##HHHHHHHHHHHHH

rB

��

DFG

!!BBBBBBBBBBBB

FUG

��
rA

}}||||||||||||

ω1B

{� ����
����

θks
=

FB DFB

FA DFA

FUB FUA.

dFB //

FG

!!BBBBBBBBBBBB

FuB

��

DFG

��

dFA
//

FuA
##HHHHHHHHHHHHH

rA

��

FUG
//

dFG

}� ������

������

ω1A

~� ����
����

Fu−1
G

~� ����
����
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It is routine to verify that r :DF → FU is a strong transformation and the equation
defining rG above tells us that ω1 : r · dF → Fu is a modification.

To define ω2A we observe that rA · αFA−1 = (FuA)λ ·D1DFA
exhibits rA ·mFA as

a right Kan extension of rA ·mFA along dDFA, thus we can define ω2A as the unique
2-cell such that

DFA D2FA DFUA

FU2A

DFA FUA

dDFA //

1DFA

��::::::::::::::::::::::::
DrA //

mFA

��

rUA

��

FnA

��

rA
//

αDFA−1

{� ������

������

ω2A

}� ������

������

=

DFA D2FA

FUA DFUA

FU2A

FUA

dDFA //

rA
��

DrA
��

dFUA //

FuUA ((QQQQQQQQQQQQ

1FUA
,,

rUA
��

FnA��

drA

y� zzzzz
zzzzz

ω1UA
t| qqqqq

qqqqq

FαUA
−1

v~ vvvvv
vvvvv

(This is the equation in Theorem 2.3 of [Marmolejo and Wood, 2008].) To induce the
inverse of ω2A we observe first that rUA ·DrA ∼= (FuUA · rA)λ: in one direction take
the unique 2-cell χ such that

DFA D2FA

FUA DFUA

FU2A

dDFA //

rA

��

DrA

��
(FuUA·rA)λ

||

dFUA
//

FuUA
##HHHHHHHHHHHHH

rUA
��

dFG

�� 










ω1UA
{� ������

χks
=

DFA D2FA

FUA FU2A,

dDFA //

rA

��

(FuUA·rA)λ

��

FuUA
//

λFuUA·rA

�� 















while in the other take the unique 2-cell π such that

DFA D2FA

FUA FU2A

DFUA

dDFA //

rA

��

DrA

��::::::::::

(FuUA·rA)λ

��

FuUA
//

rUA

������������
λFuUA·rA

}� �����
�����

πks
=

DFA D2FA

FUA DFUA

FU2A.

dDFA //

rA

��

DrA

��

dFUA
//

FuUA
##HHHHHHHHHHHHH

rUA

��

dFG

y� zzzzz
zzzzz

ω1UA

{� ������

The isomorphism χ just exhibited and the equality FnA = F ((1UA)
U) show that the

pasting of drA, ω1UA and Fα−1
A exhibits FnA · rUA ·DrA as a right Kan extension of
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rA along dDFA. Thus, the inverse of ω2A is the unique 2-cell θ such that

DFA D2FA

FUA DFUA

FU2A

FUA

DFA

dDFA //

rA
��

DrA
��

mFA

��
dFUA //

FuUA ((QQQQQQQQQQQQ

1FUA
,,

rUA
��

FnA�� rAuu

drA

y� zzzzz
zzzzz

ω1UA
t| qqqqq

qqqqq

FαUA
−1

v~ vvvvv
vvvvv

θks
=

DFA D2FA

DFA

FUA.

dDFA //

1DFA
&&NNNNNNNNNNNNNN

mFA

��

rA

��

αDFA−1

v~ vvvvv
vvvvv

We need to verify that ω2 :Fn ·rU ·Dr → r ·mF is a modification. Given any G :B → A,
one shows that the pasting of dDFG and αDFA

−1 followed by rA exhibits rA·mFA·D2FG
as a right Kan extension of rA ·DFG along dFB. Then one has to prove that the two
pastings that need to be equal to show that ω2 is a modification, are equal when preceded
by dDFB and pasted with dDFG and αDFA

−1.
The coherence conditions in Definition 2.1 of [Marmolejo and Wood, 2008] remain to

be shown. The first ends in r, so it suffices to show that both pastings are equal when
preceded by dF and pasted with ω1. The following commutative diagram shows this:

Fn·rU ·Dr·DdF ·dF r·mF ·DdF ·dF

Fn·rU ·Dr·dDF ·dF r·mF ·dDF ·dF

r·dFFn·rU ·dFU ·r·dF Fn·FuU ·r·dF

Fn·rU ·DFu·dF Fn·rU ·dFU ·Fu Fn·FuU ·Fu

Fu.Fn·FUu·r·dF Fn·FUu·Fu

ω2·DdF ·dF //
Fn·rU ·Dr·ddF

++WWWWWWWWWWWWWW

Fn·rU ·Dω1·dF

��

r·mF ·ddF �� r·εDF ·dF

''OOOOOOOOOOOOOOOOOOOOO

ω2·dDF ·dF
//

Fn·rU ·dr �� r·αDF
−1·dF

++WWWWWWWWWWWWWWWWW

ω1

��

Fn·rU ·dFU ·ω1 ��

Fn·ω1U ·r·dF
//

α−1
U ·r·dF

//

Fn·FuU ·ω1��

Fn·rU ·dFu

//

Fn·r−1
u ·dF ��

Fn·ω1U ·Fu //
α−1
U ·Fu

++WWWWWWWWWWWWWWWWW

Fn·FUu·ω1

//
Fn·Fuu

33ggggggggggggggg

FεU·Fu
//

For the other condition, observe first that, for every A, rA ·mFA · αDDFA
−1 exhibits

rA·mFA·mDFA as a right Kan extension of rA·mFA along dD2FA. It then suffices to
show that both pastings are the same when preceded by dD2F and pasted with αDDF

−1.
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The following commutative diagram shows that these are equal:

r·mF ·DmF ·dD2F r·mF ·mDF ·dD2F

Fn·rU ·Dr·DmF ·dD2F

Fn·rU ·Dr·dDF ·mF

r·mF ·dDF ·mF

Fn·rU ·DFn·DrU ·D2r·dD2F

Fn·rU ·DFn·DrU ·dDFU ·Dr

Fn·rU ·DFn·dFU2·rU ·Dr

Fn·rU ·dFU ·r·mF

Fn·FUn·rU2·DrU ·D2r·dD2F

Fn·FUn·rU2·dFU2·rU ·Dr

Fn·rU ·dFU ·Fn·rU ·Dr
Fn·FuU ·r·mF

Fn·FnU ·rU2·DrU ·D2r·dD2F

Fn·FnU ·rU2·dFU2·rU ·Dr

Fn·FuU ·Fn·rU ·Dr

Fn·FUn·FuU2·rU ·Dr Fn·rU ·Dr

r·mF

Fn·FnU ·rU2·DrU ·dDFU ·Dr

Fn·FnU ·FuU2·rU ·Dr

Fn·rU ·mFU ·dDFU ·Dr

r·mF ·mDF ·dD2F

Fn·rU ·mFU ·D2r·dD2F Fn·rU ·Dr·mDF ·dD2F.

r·µDF ·dD2F //
r·mF ·dmF

..\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

r·mF ·αDDF−1

��$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

ω2·DmF ·dD2F

OO

Fn·rU·Dr·dmF 00aaaaaaaaaaaaaaaaaaaa
ω2·dDF ·mF

11cccccccccccc

Fn·rU·dr ·mF

%%LLLLLLLLLLLLL
r·αDF−1·mF

��,,,,,,,,,,,,,,,,,,,,,,,,,,

Fn·rU·

Dω2·dD2F

OO

Fn·rU·DFn·DrU·dDr

GG����������������������

Fn·r−1
n ·DrU·D2r·dD2F

��

Fn·rU·DFn·drU ·Dr
((QQQQQQ

Fn·rU·dFn·rU·Dr

''OOOOOOOOO

Fn·r−1
n ·dFU2·rU·Dr

��

Fn·ω1U·r·mF

  AAAAAAAAA

FµU·rU2·DrU·D2r·dD2F

��

FµU·rU2·dFU2·rU·Dr

��

Fn·FUn·ω1U
2·rU·Dr

##FFFFFFFFFFFF

Fn·rU·dFU·ω2

88ppppppppppppppp

Fn·ω1U·Fn·rU·Dr

& &MMMMMMMMMMMM

Fα−1
U ·r·mF ''PPPPPPPPPP

Fn·ω2U·

Dr·dD2F

��

Fn·FnU·rU2·DrU·dDr **VVVVVVVVVVVVVV
Fn·FnU·ω1U

2·rU·Dr

//

Fn·FuU·ω2

<<yyyyyyyyyyy

Fα−1
U ·Fn·rU·Dr

��=========

Fn·Fun·rU·Dr

99rrrrrrrrrrrr

FµU·FuU2·rU·Dr
%%JJJJJJJJJJJJ

ω2

::uuuuuuuuuuuuuuuu

Fn·FnU·rU2·drU ·Dr

OO

Fn·ω2U·dDFU·Dr
//

Fn·FαUU−1·rU·Dr
>>}}}}}}}}}}

Fn·rU·αDFU−1·Dr

PP               

r·mF ·αDDF−1

HH������������

Fn·rU·mFU·dDr

11dddddddddddddddddddddddddddddddddddddddddd

Fn·rU·m−1
r ·dD2F

//

Fn·rU·Dr·αDDF−1

]]

ω2·mDF ·

dD2F

PP!!!!!!!!!!!!!!!!!!!!!!

Assume now that we have a transition (r, ω1, ω2) from U to D along F . Consider the
composite

U-Alg D-Alg D-Alg,F̂ // Ψ //

where F̂ :U-Alg → D-Alg is the lifting of F determined by the transition (r, ω1, ω2) as in
Proposition 2.2 of [Marmolejo and Wood, 2008], and Ψ :D-Alg → D-Alg was defined in
the proof of Theorem 5.1. If we apply this composite to the free U-algebra αUA, A in
L, we obtain the following U-algebra structure on FUA: for H :X → FUA, Hλ is the
composite

DX DFUA FU2A FUA
DH // rUA // DnA //
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and λH is the pasting

X DX

FUA DFUA

FU2A

FUA.

dX //

H

��
DH

��
dFUA //

FuUA &&MMMMMMMMMMM

1FUA

**

rUA
��

FnA

��

dH

{� ����
����

ω1UA

{� ����
����

FαUA
−1

{� ����
����

(21)

Furthermore, since for every L :B → UA we have that LU :αUB → αUA is a mor-
phism of U-algebras, the same composite of functors tells us that F (LU) : (FUB, ( )λ) →
(FUA, ( )λ) is a D-algebra morphism. According to the first part of this proof, the ω̂1 of
the induced transition from U to D along F is

FA DFA

FUA DFUA

FU2A

FUA,

dFA //

FuA

��
DFuA

��
dFUA //

FuUA &&MMMMMMMMMMM

1FUA

**

rUA
��

FnA
��

dFuA

{� ����
����

ω1UA

{� ����
����

FαUA
−1

{� ����
����

with its corresponding ω̂2, and the invertible modification that makes this and (r, ω1, ω2)
coherently isomorphic is given by

DF DFU FU2 FU.

FU

DFu
//

r
55llllllllllllll

rU
//

Fn
//

FUu

))RRRRRRRRRRRRR 1FU

((
ru �� Fε−1

U ��

This completes the proof.

7. Distributive laws

In this section we deal with distributive laws. We treat the particular case of a distributive
law of a colax idempotent pseudomonad over a lax idempotent pseudomonad, but observe
that the other cases are similar. We point out that the composite pseudomonad resulting
from a distributive law of a colax idempotent pseudomonad over another colax idempotent
pseudomonad turns out to be colax idempotent (see Theorem 11.7 in [Marmolejo, 1999]).
We begin with the following
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7.1. Lemma. Let D be a pseudomonad on K and let U be a colax idempotent monad (as
in (20)) on K. If there is a distributive law of U over D, then

(i) For every A, d−1
uA exhibits dUA as a right Kan extension of DuA · dA along uA.

(ii) For every L :B → UA in K,

B UB

UA

DUA

uB //

L
""EEEEEEEEEEE

LU

��

dUA

��

UL

�� 










exhibits dUA · LU as a right Kan extension of dUA · L along uB.

Proof. Let (r, ω1, ω2, ω3, ω4) be a distributive law of U over D as in Proposition 5.1 in
[Marmolejo and Wood, 2008]. Actually, the only part of the structure for a distributive
law that we need to prove this is r, w1, w2 and the coherence condition (10) of that article.
For (i) let H :UA → DUA and θ :H ·uA → DuA ·dA, then the unique 2-cell H → dUA
that pasted with d−1

uA is θ is given by the pasting

UA U2A UDUA DU2A DUA.

DUA

UDA
DUA

uUA
++

UuA

33

H

33

UdA,,

dUA

44

UH
//

rUA
//

DnA
//

uDUA
""EEEEEEEEEEE

DuUA

((

1DUA

''

UDuA

55lllllllllll

rA
--[[[[[[[[[[[

DUuA

88pppppppppppppp 1DUA

66δUA ��

u−1
H �� ω1UA−1

�� ������ DαUA ��

Uθ ��

ω2A ��

r−1
uA ��

DεUA ��

For (ii) let M :UB → DUA and λ :M · uB → dUA · L, then the unique 2-cell M →
dUA · LU that pasted with dUA · UL is λ is given by the pasting

UB U2B UDUA DU2A DUA,

DUA

U2A

UA

uUB
++

UuB

33

M

33

UL
,,

LU 11

UM
//

rUA
//

DnA
//

uDUA
""EEEEEEEEEEE

DuUA

((

1DUA

''

UdUA

55llllllllllll
dU2A

55

nA ++VVVVVVVVVVVV
dUA

88
δUB ��

u−1
M �� ω1UA−1

�� ������ DαUA ��

Uλ ��

σ ��

ω2UA �� dnA ��

where σ :nA ·UL→ LU is the unique 2-cell that pasted with UL equals the pasting of uL
and αUA.
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For the next theorem we take U a colax idempotent pseudomonad with structure as
in (20), but D is now a lax idempotent pseudomonad. We take the data for D as follows:

D

D2

D

Dd ��??????
1D //

m

??������
ηD ≃

��

D2

D

D2

m
??������

1D2

//

Dd

��??????

εD
��

D2

D

D2

m ��??????

1D2 //

dD

??������

αD
��

D

D2

D

dD
??������

1D
//

m

��??????

βD ≃
��

so that Dd ⊣ m ⊣ dD.

7.2. Theorem. Assume that U is a colax idempotent monad on K, and that D is a lax
idempotent monad on K such that the conditions (i) and (ii) of Lemma 7.1 are satisfied.
Then a distributive law of U over D can be given by the following data:

(iii) For every A in K, a U-algebra structure (DUA, ( )λ),

such that the following two conditions are satisfied:

(iv) For every L :B → UA, D(LU) : (DUB, ( )λ) → (DUA, ( )λ) is 1-cell of U-algebras.

(v) For every H :C → DUA, (Hλ)D : (DUC, ( )λ) → (DUA, ( )λ) is an algebra mor-
phism.

Proof. According to Theorem 6.1 we get a transition from U to U along D if we define,
for every A in K, rA = (DuA)λ, define ω1A as the 2-cell λDuA:

DA UDA

DUA,

uA //

DuA
$$IIIIIIIIIII

(DuA)λ

��

λDuA

{� ������

define rG, for G :B → A, as the unique 2-cell such that

DB UDB

DA UDA

DUA

DUB

uDB //

DG

��

UDG

��

rB

!!BBBBBBBBBBBB

uDA
//

DuA

##HHHHHHHHHHHHH

rA

��
FUG

}}||||||||||||

uDG

�� 










ω1A
~� ����

����
rGks

=

DB UDB

DA UDA

DUA,

uDB //

DuB
##HHHHHHHHHHHHH

rB

��

DG

��

DuA
##HHHHHHHHHHHHH

DUG

��

ω1B

~� ����
����

DuG

~� ����
����
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and define ω3A as the unique 2-cell such that

UDA U2DA UDUA

DU2A

UDA DUA

uUDA //

1UDA

��::::::::::::::::::::::::
UrA //

nDA

��

rUA

��

DnA

��

rA
//

αUDA−1

{� ������

������

ω3A

}� ������

������

=

UDA U2DA

DUA UDUA

DU2A

DUA

uUDA //

rA
��

UrA
��

uDUA //

DuUA ((QQQQQQQQQQQQ

1DUA
,,

rUA
��

DnA��

urA

y� zzzzz
zzzzz

ω1UA
t| qqqqq

qqqqq

DαUA
−1

v~ vvvvv
vvvvv

We define ω2A as the unique 2-cell such that such that

A UA

UDA

DA DUA

uA //

dA

��

UdA

!!BBBBBBBBBBBB

DuA
//

dUA

��
rA

}}||||||||||||
d−1
uA

{� ������

������
ω2Aks

=

A UA

DA UDA

DUA.

uA //

dA

��

UdA

��
uDA //

DuA

##HHHHHHHHHHHHH

rA

��

udA

y� zzzzz
zzzzz

ω1A

v~ vvvvv
vvvvv

Then ω2 is an invertible modification. Now we define ω4A as the unique 2-cell such that

D2A

UD2A

DUDA

D2UA

DA DUA

UDA

uD2A
77nnnnnnnnn

mA

��

rDA

''PPPPPPPPP

UmA

��
DrA
��
DrA
��

mUA
��

DuA
//

uDA

77nnnnnnnnnn

rA

''PPPPPPPPPP

umA

~� �������

�������
ω4A

y� zzzzz
zzzzz

ω1A ��

=

D2A

UD2A

DUDA

D2UA

DA DUA.

uD2A
77nnnnnnnnn

DuDA
//

D2uA ..mA

��

rDA

''PPPPPPPPP

DrA
��
DrA
��

mUA
��

DuA
//

ω1DA ��

Dω1A

~� ����
����

m−1
uA

{� ������

������

One induces the inverse of ω4A using the fact that

D2A

UD2A

DUDA D2UA DUA

uD2A
77nnnnnnnnn

DuDA
//

rDA

''PPPPPPPPP

DrA // mUA //
ω1DA

��

exhibits mUA ·DrA ·rDA as a right Kan extension of mUA ·DrA ·DuDA along uD2A;
the proof that it is indeed a right Kan extension follows from the fact that mUA ·DrA ≃
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(rA)D = ((DuA)λ)D : (DUDA, ( )λ) → (DUA, ( )λ) is a 1-cell of U-algebras. To show
that ω4 is a modification, one shows that for every G :B → A,

D2B

UD2B

D2A

UD2A

DA

UDA

DUA

uD2A 77oooooo

D2G ''OOOOOO

UD2G
''OOOOOO

uD2A

77oooooo

mA ''OOOOOOO

UmA

''OOOOOOO

uDA
77ooooooo

DuA
//

rA

''OOOOOOO

uD2G

��

umA ��
ω1A ��

exhibits rA ·UmA ·UD2G as a right Kan extension of DuA ·mA ·D2G, since rA ·UmA ·
UD2G ≃ (DuA ·mA ·D2G)λ.

Next we show that (r, ω2, ω4) is an op-transition from D to D along U . Coherence
condition (7) of [Marmolejo and Wood, 2008] follows from the fact that ω1A exhibits rA
as a right Kan extension of DuA along uDA, using the defining equation of ω2A. And
coherence condition (8) of [Marmolejo and Wood, 2008] follows from the fact that

D3A

UD3A

D2A

UD2A

DA

UDA

DUA

uD3A 77oooooo

DmA ''OOOOOO

UDmA
''OOOOOO

uD2A

77oooooo

mA ''OOOOOOO

UmA

''OOOOOOO

uDA
77ooooooo

DuA
//

rA

''OOOOOOO

uDmA

��

umA ��
ω1A ��

exhibits rA ·UmA ·UDmA as a right Kan extension of DuA ·mA ·DmA along uD3A,
this because rA · UmA · UDmA ≃ (DuA ·mA ·DmA)λ.

Thus we have a transition (r, ω1, ω3) from U to U along D and an op-transition
(r, ω2, ω4) from D to D along U . We are left with the verification that the coherence
conditions of Proposition 5.1 of [Marmolejo and Wood, 2008] are satisfied. Condition
(10) of that paper is the defining equation of ω2, while (11) of the same paper follows
from the fact that dUA · α−1

U exhibits dUA · nA as a right Kan extension of dUA along
uUA. And (12) of that paper is the defining equation for ω4, leaving us only with co-
herence condition (13) of the same paper. This coherence condition follows from the fact
that rA ·UmA ·αUDA exhibits rA ·UmA ·nD2A as a right Kan extension of rA ·UmA
along uUD2A (since rA · UmA · nD2A ≃ (rA · UmA)λ).

We must now show that every distributive law of U over D, with U colax idempotent
and D lax idempotent, arises essentially in this way. Let (r, ω1, ω2, ω3, ω4) be a distributive
law of U over D. Then we have that conditions (i) and (ii) of Lema 7.1 are satisfied, and we
must obtain conditions (iii), (iv) and (v) of Theorem 7.2, and show that the distributive
law obtained from Theorem 7.2 is essentially the distributive law (r, ω1, ω2, ω3, ω4).
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Observe that (D,ω1, ω3) is a transition from U to U along D. Then Theorem 6.1 gives
us the U-algebra structure on DUA corresponding to (21), which in this case assigns to
an H :X → DUA the right Kan extension

X UX

DUA UDUA

DU2A

DUA,

uX //

H

��
UH

��
uDUA //

DuUA &&MMMMMMMMMMM

1DUA

**

rUA
��

DnA
��

uH

{� ����
����

ω1UA

{� ����
����

DαUA
−1

{� ����
����

and for every L :B → UA, D(LU) is a 1-cell of U-algebras. This gives us conditions (iii)
and (iv) of Theorem 7.2.

We are left with showing that, for any H :C → DUA, (Hλ)D : (DUC, (−)λ) →
(DUA, (−)λ) is a U-algebra morphism. To do this we observe that (DUC, (−)λ) and
(DUA, (−)λ) are the images under the 2-functor Ψ :U-Alg→ U-Alg of the U-algebras
given by

DUC

UDUC

DU2C

DUC

uDUC

��>>>>>>>>>>>>>>>>

DuUC **UUUUUUUUUUUUUUU
1DUC //

rUC

<<yyyyyyy

DnC

<<yyyyyyy

ω1UC−1

��

DαUC ��

and

DUA

UDUA

DU2A

DUA

uDUA

��>>>>>>>>>>>>>>>>

DuUA **UUUUUUUUUUUUUUU
1DUA //

rUA

<<yyyyyyy

DnA

<<yyyyyyy

ω1UA−1

��

DαUA ��

respectively (these in turn are the images of the free algebras αUC and αUA under the
lifting U-Alg → U-Alg induced by the transition (D,ω1, ω3)), thus it suffices to show that

(Hλ)D = DUC DUDUA D2U2A D2UA DUA
DUH // DrUA // D2nA // mUA //

is a 1-cell between these latter U-algebras. According to (6), we must show that

DnA · rUA · UmUA · UD2nA · UDrUA · UDUH · UDnC · UrUC · δUDUC

is invertible; and one uses the available isomorphisms to produce nDUC just after δUDUC
to conclude that the above 2-cell is indeed invertible. One then applies the construction
given in Theorem 7.2 to produce a new distributive law (s, π1, π2, π3, π4). The claim is
that the original distributive law (r, ω1, ω2, ω3, ω4) is coherently isomorphic to this new
one in the following sense:
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7.3. Definition. Let U and D be pseudomonads on K, and let (r, ω1, ω2, ω3, ω4) and
(s, π1, π2, π3, π4) be distributive laws of U over D. We say that the distributive laws
are coherently isomorphic if there is an invertible α : r → s that makes the transitions
(r, ω1, ω3) and (s, π1, π3) coherently isomorphic, and makes the op-transitions (r, ω2, ω4)
and (s, π2, π4) coherently isomorphic.

7.4. Theorem. Let U be a colax idempotent monad, D a lax idempotent monad on K,
and (r, ω1, ω2, ω3, ω4) a distributive law of U over D. If (s, π1, π2, π3, π4) is the distributive
law produced just before Definition 7.3, then (r, ω1, ω2, ω3, ω4) and (s, π1, π2, π3, π4) are
coherently isomorphic distributive laws.

Proof. Theorem 6.1 already gives us (r, ω1, ω3) and (s, π1, π3) coherently isomorphic by
the 2-cell

UD UDU DU2 DU.

DU

UDu
//

r
55lllllllllllll

rU
//

Dn
//

DUu

))RRRRRRRRRRRRR 1DU

((
ru �� Dε−1

U ��
(22)

We must show that it also makes (r, ω2, ω4) and (s, π2, π4) coherently isomorphic. We
have that sA = DnA · rUA · UDuA and, π1 is the pasting

DA UDA

DUA UDUA

DU2A

DUA.

uDA //

DuA

��
UDuA

��
uDUA //

DuUA &&MMMMMMMMMMM

1DUA

**

rUA
��

DnA

��

uDuA

{� ����
����

ω1UA

{� ����
����

DαUA
−1

{� ����
����

To show that (22) at A pasted with π2 equals ω2 we use the fact that d−1
uA exhibits dUA

as a right Kan extension of DuA · dA along uA and the defining equation of π2, namely

A UA

UDA

DA DUA

uA //

dA

��

UdA

!!BBBBBBBBBBBB

DuA
//

dUA

��
DnA·rUA·UDuA

}}||||||||||||
d−1
uA

{� ������

������
π2Aks

=

A UA

DA UDA

DUA.

uA //

dA

��

UdA

��
uDA //

DuA
##HHHHHHHHHHHHH

DnA·rUA·UDuA

��

udA

y� zzzzz
zzzzz

π1A

v~ vvvvv
vvvvv

The case for ω3 and π3 is similar to the one just shown.
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7.5. Remark. Of course we still have not shown that Definition 7.3 is good, in the sense
that the structures induced (liftings, composite pseudomonads, coherent structures) are
essentially the same for two coherently isomorphic distributive laws. However, this would
take us too far from the objectives of the present paper. We defer the treatment of this
issue to a paper that will deal with the “no-iteration” version of the algebras for a general
pseudomonad, and the corresponding version of a distributive law.

8. Example

Let U be coFam on Cat. That is, U : Ob(Cat) → Ob(Cat) is given as follows. For a
category A, the objects of UA are finite families ⟨Ai⟩i∈I of objects of A. A morphism
⟨Ai⟩i∈I → ⟨Bj⟩j∈J in UA consists of a function φ : J → I together with a family of
morphisms ⟨fj :Aφ(j) → Bj⟩j∈J in A. The identity on ⟨Ai⟩i∈I is (1I , ⟨1Ai

⟩i∈I), whereas
composition of (φ, ⟨fj⟩j∈J) : ⟨Ai⟩i∈I → ⟨Bj⟩j∈J and (ψ, ⟨gk⟩k∈K) : ⟨Bj⟩j∈J → ⟨Ck⟩k∈K is
(φψ, ⟨gk · fψ(k)⟩k∈K).

The functor uA :A → UA sends an object A to the family with exactly one element
⟨A⟩{∗}, and f :A→ B to (1{∗}, ⟨f⟩{∗}).

We observe that UA has finite products. Given a finite set I, and for every i ∈ I an
element ⟨Aij⟩j∈Ji in UA, then∏

i∈I

⟨Aij⟩j∈Ji = ⟨Aij⟩(i,j)∈⨿i∈I Ji
,

with the i-th projection given by

(σi : Ji →
⨿

i∈IJi, ⟨1Aij
⟩j∈Ji) : ⟨Aij⟩(i,j)∈⨿i∈I Ji

→ ⟨Aij⟩j∈Ji .

Given a functor F :B → UA, FU :UB → UA is such that F (⟨Bj⟩j∈J) =
∏

j∈J FBj,

and given a morphism (γ, ⟨gj⟩j∈J) : ⟨Ck⟩k∈K → ⟨Bj⟩j∈J , define FU on it such that the
diagram

FU(⟨Ck⟩k∈K) FCγ(j)

FU(⟨Bj⟩j∈J) FBj

πγ(j) //

FU((γ,⟨gj⟩j∈J ))
��

gj
��πj //

commutes for every j ∈ J . Then the diagram

B UB

UA

uB //

F $$IIIIIIIIII

FU

��
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commutes (provided we make the convention that a unary product is simply the object
involved). And it exhibits FU as a right Kan extension of F along uB. Indeed, given

B UB

UA,

uB //

F $$IIIIIIIIII

H
��

θ
�� ������

then the unique natural transformation θ̂ :H → FU that preceded by uA is θ, is given,
at ⟨Bj⟩j∈J , by the morphism that makes the diagram

H(⟨Bj⟩j∈J) H(⟨Bj⟩{∗})

FU(⟨Bj⟩j∈J) FU(⟨Bj⟩j∈J)

H((pjq,⟨1Bj
⟩{∗}))

//

θ̂⟨Bj⟩j∈J
��

FU((pjq,⟨1Bj
⟩{∗}))

//

θBj
��

commute for all j ∈ J .
It is a routine exercise to verify that FU :UB → UA preserves finite products, and

that ⟨Bj⟩j∈J =
∏

j∈J⟨Bj⟩{∗} in UB. Then we can verify condition b) of Theorem 3.1.

Indeed, given G :C → UB, H :UC → UA and θ :H · uC → FU · G, then the unique
natural transformation θ̂ :H → FU · GU that preceded by uC is θ is given, at ⟨Ci⟩i∈I in
UC, by the unique arrow that makes the diagram

H(⟨Ci⟩i∈I) H(⟨Ci⟩{∗})

FUGU(⟨Ci⟩i∈I) FUGU(⟨Ci⟩{∗})

H(πi) //

θ̂⟨Ci⟩i∈I
��

FUGU(πi)
//

θCi
��

commute for all i ∈ I.
We have shown, using the techniques of this paper, that U is a colax idempotent

monad. It is well known that the algebras for U are categories with finite products and
functors that preserve finite products.

Dually, as D we take Fam. Thus DA = (U(Aop))op, and the rest of the structure can
be read from this from the description of U. Of course, D is a lax idempotent monad.

It is well known that there is a distributive law of U over D; the main ingredient being
the fact that if A has finite products then FamA also has finite products. Here we verify
the conditions of this paper.

We observe first that DUA has finite products. Indeed, given a finite set I, and for
every i ∈ I an element ⟨⟨Aijk⟩k∈Kij

⟩j∈Ji in DUA, then the product of the family is given
by the object

⟨⟨Ait(i)k⟩k∈⨿i∈I Ki,t(i)
⟩t∈∏i∈I Ji

,
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with the i-th projection given by the projection πi :
∏

i∈I Ji → Ji together with, for every
t ∈

∏
i∈I Ji, the morphism

(σi :Kit(i) →
⨿

i∈IKit(i), ⟨1Ait(i)k
⟩k∈Kit(i)

) : ⟨Ait(i)k⟩k∈⨿i∈I Ki,t(i)
→ ⟨Aijk⟩k∈Kij

.

It is not hard to verify that the conditions of Lemma 7.1 are satisfied. Indeed, to see
that d−1

uA exhibits dUA as a right Kan extension of DuA ·dA along uA, take θ :H ·uA →
DuA · dA, then the unique 2-cell θ̂ :H → dUA that pasted with d−1

uA produces θ is
constructed as follows. Given ⟨Ai⟩i∈I in UA, we observe that∏

i∈I

⟨⟨Ai⟩{∗}⟩{∗} = ⟨⟨Ai⟩i∈I⟩{∗}

in DUA. Thus θ̂⟨Ai⟩i∈I :H(⟨Ai⟩i∈I) → dUA(⟨Ai⟩i∈I) = ⟨⟨Ai⟩i∈I⟩{∗} is the unique arrow
such that the diagram

H(⟨Ai⟩i∈I) H(⟨Ai⟩{∗})

⟨⟨Ai⟩i∈I⟩{∗} ⟨⟨Ai⟩{∗}⟩{∗}

H((piq,⟨Ai⟩{∗})) //

θ̂⟨Ai⟩i∈I

��
θAi

��

πi
//

commutes.
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Giuseppe Rosolini, Università di Genova: rosolini@disi.unige.it
Alex Simpson, University of Edinburgh: Alex.Simpson@ed.ac.uk
James Stasheff, University of North Carolina: jds@math.upenn.edu
Ross Street, Macquarie University: street@math.mq.edu.au
Walter Tholen, York University: tholen@mathstat.yorku.ca
Myles Tierney, Rutgers University: tierney@math.rutgers.edu
Robert F. C. Walters, University of Insubria: robert.walters@uninsubria.it
R. J. Wood, Dalhousie University: rjwood@mathstat.dal.ca


