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KAN EXTENSIONS AND LAX IDEMPOTENT PSEUDOMONADS

F. MARMOLEJO AND R.J. WOOD

ABSTRACT. We show that colax idempotent pseudomonads and their algebras can be
presented in terms of right Kan extensions. Dually, lax idempotent pseudomonads and
their algebras can be presented in terms of left Kan extensions. We also show that a
distributive law of a colax idempotent pseudomonad over a lax idempotent pseudomonad
has a presentation in terms of Kan extensions.

1. Introduction

This paper follows [Marmolejo and Wood, 2010] and builds on the idea in [Manes, 1976],
which was actually preceded by [Walters, 1970], that a monad can be presented without
iterating the underlying endofunctor. [Marmolejo and Wood, 2010] extended Manes’
notion of an extension operator to handle algebras but we note now that algebras were
treated in a somewhat similar manner in [Walters, 1970] too. Our treatment of algebras
also enabled “no iteration” descriptions of distributive laws and wreaths. Because the
values of the endofunctor of a monad are term objects, the no iteration description in
effect removes the need to mention terms of terms and (terms of terms of terms). This is
particularly helpful in the descriptions of distributive laws and wreaths where the intent
is to rewrite M-terms of A-terms as A-terms of M-terms.

When we turn to higher dimensional monads the no iteration idea is even more helpful.
For then the terms tend to be n-sorted, with n > 2. For example, in completion monads
with respect to classes of limits, the terms are categorical diagrams comprised of both
objects and arrows. It is in fact completion monads, precisely colax idempotent pseu-
domonads, about which we have most to say. Such a pseudomonad (D, d, m,---) is what
is also called a “coKZ doctrine”, and characterized by adjunctions dD 4 m - Dd. We
caution the reader that in [Marmolejo, 1997|, our main reference for these pseudomonads,
the subject matter is presented in terms of lax idempotent pseudomonads “KZ doctrines”,
for which the adjunctions are reversed to give Dd 4 m - dD.

The extension operator in [Manes, 1976] and those in [Marmolejo and Wood, 2010]
satisfy equations. It will come as no surprise that if pseudomonads (on 2-categories say)
are described in similar terms then the equalities of those papers must be replaced with
invertible 2-cells — which must themselves satisfy equations. However, colaz idempotent
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pseudomonads have all but one of their 2-cell equations given by adjunction equations.
Thus it might be hoped that if colax (or lax) idempotent pseudomonads are described by
extension operators then their 2-cell equations might also mediate universal properties.
This is the case. The extensions which appear in describing colax [lax] idempotent pseu-
domonads are right [left] Kan extensions! The precise definition (Definition 3.1) in terms
of Kan extensions is somewhat similar to the conditions given in [Bunge, 1974] in what is
called a coherently closed family of U-extensions (U is a 2-functor), furthermore, the way
we extend the function of objects to a pseudofunctor from the data given in Definition
3.1 is similar to the construction of a lax adjoint to U given in [Bunge, 1974].

The algebras for a colax (or lax) idempotent pseudomonad are also defined in terms
of Kan extensions and proven to be essentially the same as the usual algebras.

In Section 2 we begin by recalling the characterization of a colax idempotent pseudo-
monad D = (D,d,---) and its algebras, in terms of adjunctions, as given in [Mar-
molejo,1997]. Important equations involving the derived modification §:dD — Dd are
also recalled. In Section 3 we define right Kan pseudomonads and algebras for these. Sec-
tion 4 provides a construction of a right Kan pseudomonad D’ from a colax idempotent
pseudomonad D and a construction of a colax idempotent pseudomonad I’ from a right
Kan pseudomonad D. In Section 5 we show that starting with either notion as D, the
2-category of algebras for D is 2-equivalent to the 2-category of algebras for .

We recall in Section 6 that morphisms between pseudomonads on 2-categories can
be described in terms of 2-functors between their underlying 2-categories, together with
liftings to their 2-categories of algebras. Moreover, these can also be described, see [Mar-
molejo and Wood, 2008] in terms of transitions which are a pseudo version of Street’s
morphisms of monads [Street, 1972]. In Section 6 we use the work of the previous sec-
tions and these observations to give a description of transitions between colax idempotent
pseudomonads in terms of extensions. Since distributive laws can be elegantly described
in several ways in terms of extensions and one of their duals we are able in Section 7
to give a description of distributive laws between certain pseudomonads in terms of ex-
tensions. We note that the distributive law described in [Marmolejo, Rosebrugh, Wood,
2002], whose algebras are constructively completely distributive lattices, was produced
this way, as a Kan extension. Another example is the distributive law of the small limit
completion pseudomonad over the small colimit completion, whose algebras are the com-
pletely distributive categories [Marmolejo, Rosebrugh, Wood, to appear]; we also have
the lextensive categories as algebras for the pseudomonad obtained from a distributive
law of the finite completion pseudomonad over the finite sum completion pseudomonad;
or regular categories as algebras for the finite limit completion pseudomonad over the
regular factorizations pseudomonad with base catye, as defined in [Centazzo and Wood,
2002], and many more. To illustrate how these distributive laws work in the setting of
Kan extensions we examine, in Section 8, the distributive law of coFam over Fam.
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2. Preliminaries

For the convenience of the reader, we recall in this section the definition of co-lax idem-
potent pseudomonad (also known as co-KZ pseudomonad). They first appeared in the
papers of Kock [Kock, 1973] and Zdberlein [Zéberlein,1976]. In this section we largely
follow (the dual of) the development given in [Marmolejo, 1997].

Let K be a 2-category. A co-lax idempotent pseudomonad D = (D,d, m,«, 5,7n,¢) on
IC consists of a pseudofunctor D : K — K, together with strong transformations d: 1x — D
and m: D? — D, and modifications

1

D # D D D2 D2 D2 D2
P ZE A SN 7 T
D? D? = D? D D———D,

with a and ¢ invertible, that render dD - m - Dd, and such that the coherence condition

Dd D* d D Dd
i 1/%

D s D = K
W o} N b
D D

2

~—

Lic D*—~>D (2

is satisfied. It is shown in [Marmolejo, 1997] that any such structure induces a pseudo-
monad, whose structure is given by (D, d,m,a™ ', &7 ), where yu is the pasting

D s Dm
nD D m
IR A 2N ®)
D? D D,
m 1p

and furthermore, that for a pseudomonad (D, d, m,a ', ™! 1) to be co-lax idempotent

it suffices that there exists a modification g such that «, 8:dD - m is an adjunction;

equivalently, that there exists a modification i such that n,e:m - Dd is an adjunction.
Recall as well that we can then produce a 2-cell 6 :dD — Dd as the pasting

p?—2 D2,
VP

d
D

1
1p
that this pasting is equally the pasting of e~! and 8 at m, that § - d = d;l, that m -6 =

e la™!, and that § - m is the pasting of 3 and 7 at 1pe.
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_The 2-category D-Alg of D-algebras is defined as follows. Its objects are adjunctions

¢.C:dB 4 B,
B e B B
B 27 (@)
DB DB DB

with invertible unit. The invertibility of ¢ is automatic if d is fully faithful. Recall as well
that ¢ is completely determined by ( as the pasting

513@

DdB DC 1

1ps

and that all we have to do to verify that a ( as above determines an object in D-Alg is to
show that the equation

5Bﬂ

DdB DC_

=1p (5)

1pB

is satisfied. (Note that replacing B by D, B by m, and { by « in the definition of E gives
us f = a.)
A 1-cell from (B, B,() to (A, A,¢) is a 1-cell H:B — A such that the pasting

B il A ta A
S N N (©)
DB —— DB DA

is invertible. Given H, K : (B, B, () — (A, A,§), a 2-cell in D-Alg is simply a 2-cell 7: H —
K in K. Provisionally write D for the pseudomonad (D, d, m,a~', 71, 1) described above.
It is shown in [Marmolejo, 1997| that D-Alg is 2-isomorphic to I'-Alg, the usual category
of algebras for a pseudomonad, since the associativity constraint needed to complete a

D-algebra (B, B, () to a D'-algebra is given uniquely by the pasting

g 2B pg DB pp
nB dB B
WA %;B dfx /Clm (7)
DB B B,
B 1
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while for a 1-cell H:(B,B,() — (A, A,¢), the pasting (6) uniquely completes H to a
1-cell of D'-algebras.

3. Right Kan pseudomonads and their algebras

We define co-lax pseudomonads in terms of right Kan extensions. Later on we shall
show that they are the usual co-lax pseudomonads as in the previous section, but for the
moment (and just to be able to distinguish one from the other in this paper) we will call
them right Kan pseudomonads.

3.1. DEFINITION. A right Kan pseudomonad ID on K is given as follows:
i) A function D :Ob(K) — Ob(K).
ii) For every A € K, a 1-cell dA: A — DA.
iii) For every 1-cell F:B — DA, a right Kan extension of F' along dB

B—®- DB
XF/lFD
DA

with Dg invertible (the latter being automatic if the 1-cell dB is fully faithful).
Subject to the axioms
a) For every A in K,

A—2- DA

DA

exhibits 1pa as a right Kan extension of dA along dA.
b) For every G:C — DB and F:B — DA the 2-cell

dC

C DC

N (9)
DB

FJD)

DA

exhibits FPGP as a right Kan extension of FPG along dC.
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3.2. REMARK. Observe that we can also define an effect ( )® on 2-cells: given ¢ : F —
G:B — DA in K, we define ¢”: FP — GP as the unique 2-cell such that

B 9B DB B 4B DB
Da F Dp
D
/ G]D) P FD — / F]D)
G G
DA DA.

We clearly obtain a functor ( )?: (B, DA) — K(DB, DA).

We now define the 2-category of algebras for a a right Kan pseudomonad D in terms
of right Kan extensions. We denote it by D-Alg and we define it as follows. An object B
in D-Alg consists of an object B in K together with an assignment, to every F: C — B,
of a right Kan extension F®: DC — B of F along dC

dC
%ﬁ (10)
B

with Bp invertible (automatic if dC fully faithful), in such a way that for every G: X —
DC in K, the diagram

C

X —%. px
VAr (11)
DC

G

F]B

B

exhibits F® - G as a right Kan extension of F* - G along dX.
A l-cell H:B — A in D-Algis a 1-cell H: B — A in K such that for every F': C — B,

the diagram

C dC

DC
% o (12)

F

B

H

A

exhibits F® - H as a right Kan extension of F' - H along dC. A 2-cell 7: H — K:B — A
is simply a 2-cell 7: H — K in K. Composition is as in K. It is not hard to show that
composition of 1-cells in D-Alg results in a 1-cell in D-Alg.
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3.3. REMARK. As in Remark 3.2 we can, for any B in D-Alg, induce an effect ( )B on
2-cells: given ¢ : F — G :C — B, we define ¢®: ['® — G® as the unique 2-cell such that

C C

© -~ DpcC

E% GIB‘/J}:IBB B =
NG

B

thus inducing a functor ( )®:K(C,B) — K(DC,B).

4. Right Kan pseudomonads versus co-lax idempotent pseudomonads 1

In this section we construct a colax idempotent pseudomonad from a right Kan pseudo-
monad, and vice versa. The constructions are given in the following two theorems.

4.1. THEOREM. Every right Kan pseudomonad on IC induces a co-lax idempotent pseudo-
monad on K.

PROOF. Assume we have a right Kan pseudomonad D on K. We first extend D to a
pseudofunctor D: K — K. Given ¢: F — F':B — A in K, define DF = (dA - F)P, and
define Dyp: DF — DF" as (dA - )P, that is, Dy is the unique 2-cell such that

B—® -~DB B—® DB
F'lDdA'F/ DF /’i’é\\ DF = F'| é)FDdAlF lDF
ARNY, &)
A———DA A———DA

(using the fact that the left most square exhibits DF” as a right Kan extension). It is then
immediate that D(1r) = 1pp and that for ¢ : ' — F" we have D(¢p) = (D) (Dyp). If
G:C — B, define DY : DF - DG — D(F - G) as the unique (invertible) 2-cell such that

dC dC

C DC C DC
DG DyB.

G1l3 P per g = GB le];’G

Fl DdA‘F% A’ F CIlD)]?lA-% lDF

A—— DA A——">DA
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Observe that the inverse of the 2-cell D% is the unique 2-cell p: D(F - G) — DF - DG

such that

dC DC C dC

C

G\L DdB% DG\L \D(F-G) \LG DdAAF%

B DB r /) = B DB D(F-G)
dB / l F D;;F/ m

DF\ j dB
DA

DB

DF

(using (9)). It is not hard to see that for any v: G — G" and ¢: F' — F’
D(F -4)D%" = D¥F(DF - Dv) and D(¢ - G)D* = D" (Dy - DG).

Since both 1p4 and D(1a) are right Kan extensions of dA along dA, there is a unique

isomorphism Dy : 1pa — D(dA) such that

DA
IAJ Dga. 12(1A /DA> pa = lga.

/ "

DA

It is not hard to see that
DF'A(Dy - DF) = 1pp = D'"®F(DF - Dg),

as well as
DG~H,F(DF_DH,G) — DH,F-G(DG',F . DH),

therefore D : I — K is a pseudofunctor.

Then we extend d to a strong transformation d:1x — D by defining dp = Dya.p
for F:B — A (all the relevant equations necessary to show that d is indeed a strong

transformation appear above).
Next we define m: D? — D such that for every A,

mA = 1pa”,

and, using (9), define for F:B — A, mp: DF - mB — mA - D?F as the unique 2-cell

such that
DB dDB DQBIKBD DQB
DFL DdDAD/ LD2F DB = CV w\m
mp Dipp
DA~ DA lDF DB ——,,—— DB

DlDA/m;DA

1pa
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The inverse of mp is the unique 2-cell 6 such that

dDB

DB —“" DB DB D*B
D1 5
1ps DB/LHB - DFl DdDA'Dy DiF
DB ,D?A = DA
NS Dipa
[\N LmA \/ mA
DA DA

It is not hard to see that m : D? — D is a strong transformation.
Now define aA =D, ', then (13) tells us that a: 1ps — m - dD is a modification.
Define cA :mA - DdA — 1pa as the unique 2-cell such that

dA dA

A

DA A DA

DdA dAJ ]D)dDA‘di/ DdA

1 D
oa lmA W mA
DA DA

The inverse of €A is the unique 2-cell p such that

A 4 . DA

2
DA D2A = 1dA- (14)

\&n

It is not hard to show that e:m - Dd — 1p is a modification by pasting the relevant
equation with dg. Define ﬂA :dDA - mA — 1p24 as the unique 2-cell such that

DA% D2A DA
N 2
DA — DA 25

Finally define 77A: 1p2a — DdA - mA as the unique 2-cell such that

D?A DA D?A.
vy B
/ = \ mA
77A cA~
DA ————— D?A

DdA DdA



10 F. MARMOLEJO AND R.J. WOOD

By Section 2, the 2-cell above is 0A :dDA — DdA. It is not hard to see that g and 7 are
modifications and that they determine, together with o and ¢, adjunctions dD 4 m = Dd.
Furthermore, the coherence condition (2) is given by (14). "

4.2. THEOREM. FEwvery co-lax idempotent pseudomonad D on K induces a right Kan
pseudomonad on K.

PROOF. Let D be a co-lax idempotent pseudomonads with structure (1). We then take D
and d on objects for items i) and ii) of Definition 3.1. For item iii) we define F® = mA-DF
and show that

DA -5 D2A (15)

DA

exhibits FP as a right Kan extension of F' along dB. So take H: DB — DA and ¢ : H -
dB — F. We show that the 2-cell

DA

Ipa
i dDA
aps 4| o4
DB__ 8| _DB——p;>D?A———— DA (16)
DdB Dwﬂ/
DF

is the unique 2-cell H — F” that produces 1 when pasted with (15). So paste the above
2-cell with (15), substitute 6B - dB by d 5, then substitute the pasting of d};', d 5, D
and dr by dDA -1, and cancel aA with its inverse, thus obtaining 1. Assume now that
we have a 2-cell §: H — FP such that pasting it with (15) equals 1. Substitute D1 in
(16) by D of the pasting of § with (15). We show that the resulting 2-cell equals #. For
this replace the pasting of B and Ddp by the pasting of dpr and dDA. Now replace
the pasting of dj;', D and dpy by the pasting of # and d;fA. Paste pA and its inverse
at the composite mA - DmA (where p:m - Dm — m - mD is the pasting (3)). Replace
the pasting of aA, d_ ' and pA by mDA - aDA, and the pasting of y~! and DaA~! by
mA - eDA. The pasting of aDA, dDA and eDA is the identity, leaving just 6.
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The proof of a) is similar, given x: K - dA — dA, the relevant 2-cell to consider is

DA lpa

K dDA
dDA dt OLA\U/

T T
DA __ oA} D?A——F—D?A———7—>DA

DdA Dnﬂ/ eAu

DdA

1pa

And the proof of b) is also similar, for a 2-cell ¥: L - dC — mA - DF - G, the relevant

2-cell is

D*B——— D*A —
—1
RmFW
DB

We compare these constructions in Section 6 below.

5. D-Alg versus D-Alg

5.1. THEOREM. Let D be a right Kan pseudomonad on K, and produce the colax idem-
potent pseudomonad (also called D) as in Theorem 4.1. There is a 2-equivalence ®:D-
Alg — D-Alg such that the diagram

D-Alg D-Alg

\/

commutes, where the un-labeled arrows are forgetful 2-functors.

PROOF. We define ® : D-Alg — D-Alg as follows. For 7: H — K :B — A in D-Alg, define
®ofitas 7:H — K:By! — A;,. ® will be a 2-functor if we can show that By} and H
are in D-Alg. To show the first of these we must show that equation (5) is satisfied, in
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this case the equation is

R.J. WOOD

K N
B

513@ D2B
1ps

1B]B7

but this follows from the fact that (10), with £ = 1g, is a right Kan extension. Again,
since for F' = 1g, (12) is a right Kan extension, we obtain the inverse of

B H
T
DB————>DB

as the unique 2-cell v such that

d;ﬂ
D

C DC
Br DH
1 / IB]B
B ~ DA =
<«
H Lok
A

In the opposite direction define W:D-Alg —

A A A
N
— DA

B DB
HL dV DH
A % DA
A
X 1AA\

DA

D-Alg as follows. For an algebra ( as

in (4), we define ¥(({) such that for every H:X — B, its extension is B - DH, and the

corresponding 2-cell is

X —%- DX
HL dy DH
B dl;_l DB (17)
Nl
B

To see that U(() is well defined, we must show th

at (17) exhibits B - DH as a right Kan

extension of H along dX. Given K:DX — B and x: K - dX — H, the unique 2-cell
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K — B - DH that pasted with (17) equals & is
B

1
K dB
x| 4
X_ x| DX—5-—>DB = B.
DdX D”ﬂ
DH

Furthermore, we must show that for any G: Y — DX and H : X — B, the 2-cell

Yy —Y. Dy

GL v ar
DX -PX pex (18)

aX™
/ mX

1px

DX -2 pg—2 -B

exhibits B - DH - mX - DG as a right Kan extension of B - DH - G along dY. Given
N:DY - Bandv:N-dY — B-DH - G, the 2-cell

Z\

D*X —;— D*B——5—> DB
—1
kaW
DX

where (s is the 2-cell given by (7), is the unique 2-cell that pasted with (18) equals v.
We thus conclude that ¥(¢) is an object of D-Alg.
Given a l-cell L:( — ¢ (with :ide — C - dC) in D-Alg, we want to show that
L:U(¢) — U(€) is a 1-cell in D-Alg. Thus we must show that

X —%. px
HL d% DH

B—"-DB (19)
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exhibits L - B - DH as right Kan extension of L - H along dX for any H : X — B. Given
N:DX — Cand v: N -dX — L- H, the unique 2-cell N — L - B - DH that pasted with

(19) equals v is
5 Xde x\
/ XM

where x is the inverse of the 2-cell induced by L that corresponds to (6), given by the
fact that L is a 1-cell of algebras. Thus we define ¥(L) = L.

For a 2-cell \: L — L':{ — & in D-Alg, define W(\) = A.

It is routine to verify that ® o U and ¥ o ® are isomorphic to the corresponding
identities. ]

N

/<

Similar arguments produce the following

5.2. THEOREM. Given colaz idempotent pseudomonad D, produce its associated right Kan
pseudomonad (also called D), as in Theorem 4.2. Then D-Alg and D-Alg are equivalent.m

6. Right Kan pseudomonads versus co-lax idempotent pseudomonads 2

If U and D are pseudomonads on the 2-categories £ and K respectively then, following
[Marmolejo, 1999] we can describe morphisms from (£,U) to (IC,D) in terms of liftings
of 2-functors F: £ — K to 2-functors F :U-Alg — D-Alg (that commute with the for-
getful 2-functors). In Theorem 3.5 of [Marmolejo and Wood, 2008] we showed that such
liftings are essentially the same as transitions from U to D along F'. The latter are a
pseudo version of the morphisms of monads found in [Street, 1972] (where they are called
monad functors) and consist of strong transformations r: DF — FU together with two
invertible modifications (corresponding to the two equalities of [Street, 1972]) subject to
two equations. We refer the reader to [Marmolejo and Wood, 2008] for the definitions of
these and of coherent isomorphisms between them.

We consider the particular case of D = (D, d, m, ap, Op, Np, ép) and U = (U, u, n, ay, Bu,
nu, ey) colax idempotent pseudomonads (with D as in (1), but with subindex D on the
2-cells that conform D, and we use the same letters for the corresponding 2-cells that
conform U, but with subindex U; thus the structure for U is

U $> U U 2 Ly 2 2
NN NSV e @
U U —,—~U? U U—F0—U.
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We follow the same pattern with 0, thus op : dD — Dd, and dy : uU — Uw). It follows from
the previous Section that morphisms of monads between them and hence also transitions,
can be described in terms of algebras for the corresponding right Kan pseudomonads.

6.1. THEOREM. Let U and D be colax idempotent pseudomonads on 2-categories L and
IC respectively. A transition from U to D along a 2-functor F:L — K can be given
by the following data: for every A in L, a D-algebra (FUA,( )*), such that for every
L:B—UA in L,

F(LY):(FUB, ()*) = (FUA, ()"

1s a morphism of D-algebras. Every transition from U to D along F' is coherently isomor-
phic to one that arises in this way.

PROOF. For every A in £ define rA = (FuA)* and wjA = Apya:

FA dFA
wlA:AFuA
FuA

To make r a strong transformation observe that, for every G:B — A, rA - dpg =

(FuA)* - Dypa.rpg exhibits rA - DFG as a right Kan extension of rA - dFA - FG along
dFB. Thus we define rg as the unique 2-cell such that

DFA

(FuA)*=rA

FUA

FB—%2. DrB FB—%2. DrB
w1 B
FG dFG/DFG &\ FG FUBl/ rB
FA——>DFA FUB = FA DFA
G Fu
w1 A < G/
N\A A M FuG
FUA FUA.

The inverse of r¢ is the unique 2-cell 6 (given by the fact that FUG - w1B = F((uA -
G)Y) - Apup exhibits FUG - rB as a right Kan extension of FUG - FuB along dB) such
that

FB—“2. DFB FB dFB DFB
w1 B
FuB 1 / T]\mj R\ oF % DFG
FUB ~ DFA = mB FA———~DFA
é wlﬁ/
FuG rA Fual/ FuA rA
FUA FUB FUA.
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It is routine to verify that r: DF — FU is a strong transformation and the equation
defining r¢ above tells us that wy : 7 - dF — Fu is a modification.

To define wy A we observe that 7A - «FA™! = (FuA)* - Dy, exhibits rA - mFA as
a right Kan extension of rA - mF' A along dDF A, thus we can define wyA as the unique
2-cell such that

DFA_ dDFA DQFA DrA DFUA DFA dDFA DQFA

rAl d% \LDTA
FA-1 rUA dFUA
D FUA ———DFUA
— wiUA

1pra mEA FU2A o W \LTUA
wz% FnA FapA~! FUQA
lrua J/F"A

DFA FUA FUA

rA

(This is the equation in Theorem 2.3 of [Marmolejo and Wood, 2008].) To induce the
inverse of wy A we observe first that TUA - DrA = (FuUA - rA)*: in one direction take
the unique 2-cell x such that

dDFA

DFA——D?FA
Al gy ooa DFA —"~ D2FA
FUA TAFUA DFUA (FuUATAY = A ’\FuUA‘”’/ (FuUA-rA)>
oJlUA/ <:X A
FuUANUA FUA —5a FUA,
FU?A
while in the other take the unique 2-cell 7 such that
DFA—2- p2pa DFA-™A p2pa
DrA
rA dra DrA
(FuUA-rA)? \ /
rA <7F:DFUA = FUAWDFUA
>\FuUA<rA/ wUA
rUA FuUA /| rua
FUA FU?A FU?A.

FuUA

The isomorphism Y just exhibited and the equality FnA = F((1ya)V) show that the
pasting of d.p, wiUA and F oz: exhibits F'nA - rUA - DrA as a right Kan extension of
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rA along dDFA. Thus, the inverse of wsA is the unique 2-cell # such that

dDFA 2

DFA D FA D dDFA D2FA

rAi aLD)FA 1

mFA

FUA —72- DFUA\ k

wiU4 DFA = DFA
N VA 8
FayA~Y F'U2A rA
FnA

trua F(¢/ A FUA.

We need to verify that wy: F'n-rU - Dr — r-mF is a modification. Given any G: B — A,
one shows that the pasting of dprg and apFA~! followed by r A exhibits rA-mFA-D*FG
as a right Kan extension of rA - DF'G along dFB. Then one has to prove that the two
pastings that need to be equal to show that w, is a modification, are equal when preceded
by dDFB and pasted with dprg and apF AL

The coherence conditions in Definition 2.1 of [Marmolejo and Wood, 2008] remain to
be shown. The first ends in r, so it suffices to show that both pastings are equal when
preceded by dF' and pasted with w;. The following commutative diagram shows this:

wa-DdF-dF
Fn.rU-Dr-DdF-dF

Wj.d“

FnoU-Dr-dDF-dF —————>
e wg-dDF-dF

r-mF-DdF-dF
T'mF'ddFi/
r-mF-dDF-dF

T’-EDF‘dF

Fn-rU-Dw1-dF Fn-'rU~dT\L rapF~1.dF
FnorU-dFU-r-dFF ———— > Fn-FuU-r-dF r-dF
Fn-w U-r-dF ot dF
FnrU-dFU-w; l i/Fn-FuU-wl v
Fn- w1U Fu
FnorU-DFu-dF ————> FnoU-dFU-Fu ——— > Fn-FuU -Fu 1 w1
Fn-rU-dg,, oy Fu
Frorg 1-dFi /{Fuu, \
Fn-FUu-r-dF Fn-FUu-Fu Fu

B —
Fn-FUu-w1 Fey-Fu

For the other condition, observe first that, for every A, rA - mFA - apDFA™! exhibits
rA-mFA-mDFA as aright Kan extension of rA-mF A along dD?FA. Tt then suffices to
show that both pastings are the same when preceded by dD*F and pasted with apDF 1.
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The following commutative diagram shows that these are equal:

r-mF-DmF-dD2F

roupF-dD2F

wy-DmF-dD2F
F

Fn-rU-Dr-DmF-dD2F

FnrU-DFn-
Fn-rU-
Duwy-dD2F Fnorp L.dFU2.rU-Dr
Fn-rU-DFn-DrU-dp,
Fn-FUn-rU?2
Fn-rU-DFn-DrU-D2r-dD?F

Fnory L.DrU-D2rdD2F

Fuy-rU2.dFU2.rU-Dr

Fn-FUn-rU2?-DrU-D2r-dD?F
Fuy-rU2.DrU-D2r-dD2F

Fn-FnU-rU?2
Fn-FnU-rU2.-DrU-D2r.dD?F

Fn-FnU-rU2-DrU-dpy

Fn-wpU-

Dr-dD2F

'r-mF-aDDF71

n-rU-Dr-d,,

/’//E—/>

FnorU-DFn-DrU-dDFU-Dr

W‘TU'DF’IL'dTU'DT

Fn-FnU-rU2-DrU-dDFU-Dr

r-mF-mDF-dD?F

r-mF-dDF-mF

Fn-rU-Dr-dDF-mF w2 dDF-mF

rapF~l.mF
Fn-rU-dp-mF

Fn-orU-dFU-r-mF

Fn-rU-dFU-wg
Fn-.wiU-r-mF

Fn-FuU-r-mF

FnrU-dFU-Fn-rU-Dr
Fn-FuU-wy
Fn.wU-Fn-rU-Dr Fa71<7'-mF
U
T

-dFU2.rU-Dr

dFU2.rU-Dr
Fn.-rU-dp,-rU-Dr

-mF

[

r-mF-mDF-dD2F

Fn-FuU-Fn-rU-Dr
-1
Fn-FUn-wyU2.rU-Dr Fay-Fn-rU-Dr
wg

Fn-Fun-rU-Dr

Fn-FUn-FuU2-rU-Dr
n<Fa[UU*1~TU<D7‘

‘mF-apDF~1
Fn-rU-Dr

Fuy-FuU2.rU-D?P

«{dFU2.rU-Dr ———> Fn-FnU-FuU2.rU-Dr
Fn-FnU-w U2.7U-Dr
Fn-rU<aDFU_1-Dr

Fn-FnU-rU2.dg;-Dr wo-mDF-

FnaU-mFU-dDFU-D aD2F
Fn-woU-dDFU-Dr nrt-m r

Fn~rU<Dr~aDDF*1\
Fn.rU-mFU-dp,

FnrU-mFU-D2r-dD2F

Fn-rU-m;l-dDQF

Assume now that we have a transition (r,w;,ws) from U to D along F'. Consider the

composite

U-Alg

F

D—Alg T, H))-Alg7

where F':U-Alg — D-Alg is the lifting of F determined by the transition (r,wr,ws) as in
Proposition 2.2 of [Marmolejo and Wood, 2008], and ¥ :D-Alg — D-Alg was defined in
the proof of Theorem 5.1. If we apply this composite to the free U-algebra ayA, A in
L, we obtain the following U-algebra structure on FUA: for H:X — FUA, H” is the

composite
DH

DX

DFUA ——

rUA DnA

FU?A FUA

Fn-rU-Dr-mDF-dD?F.
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and Ag is the pasting
dx

X DX
Hi d}% DH
FUA LU;A DFUA
w1
N rUA (21)
_FU?A
FaUA 1
lrua / FnA
FUA.

Furthermore, since for every L:B — UA we have that LV:ayB — apA is a mor-
phism of U-algebras, the same composite of functors tells us that F(LY): (FUB, ( )}) —
(FUA, ()*) is a D-algebra morphism. According to the first part of this proof, the Wy of
the induced transition from U to D along F' is

FA—"2 . DFA
FuA dF“V DFuA
FUA LU;; DFUA

N A
FU?A
FCY[UA
lrua / FnA
FUA.,

with its corresponding ws, and the invertible modification that makes this and (7, w;,ws)
coherently isomorphic is given by

FU 1ry
r FUu
/ | Fezt)
DF o DFU e FU? o FU.
This completes the proof. [

7. Distributive laws

In this section we deal with distributive laws. We treat the particular case of a distributive
law of a colax idempotent pseudomonad over a lax idempotent pseudomonad, but observe
that the other cases are similar. We point out that the composite pseudomonad resulting
from a distributive law of a colax idempotent pseudomonad over another colax idempotent
pseudomonad turns out to be colax idempotent (see Theorem 11.7 in [Marmolejo, 1999]).
We begin with the following
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7.1. LEMMA. Let D be a pseudomonad on K and let U be a colaz idempotent monad (as
in (20)) on K. If there is a distributive law of U over D, then

(i) For every A, d;}; exhibits dUA as a right Kan extension of DuA - dA along uA.
(ii) For every L:B — UA in K,

uB

UB
UL/ v

UA

B

L

dUA

DUA
exhibits dUA - LY as a right Kan extension of dUA - L along uB.

PROOF. Let (r,w;,ws,ws,wy) be a distributive law of U over D as in Proposition 5.1 in
[Marmolejo and Wood, 2008]. Actually, the only part of the structure for a distributive
law that we need to prove this is r, w;, wy and the coherence condition (10) of that article.
For (i) let H:UA — DUA and 6: H-uA — DuA -dA, then the unique 2-cell H — dUA
that pasted with d;}; is @ is given by the pasting

DUA 1DUA
DuUA
A Ugr ﬂ uDUANW1UA™ // DaUAﬂ

5UA@ UDUA DU?A
W) Ue% %DEUAU
1

dUA

For (i) let M :UB — DUA and A\: M -uB — dUA - L, then the unique 2-cell M —
dUA - LY that pasted with dUA - Uy, is A is given by the pasting

DUA Lpua
uUB M\U/ um

CMUA
UB 5UBU UDUA U2A

"m dUA

UA

DUA,

L[U

where o :nA - UL — LV is the unique 2-cell that pasted with U, equals the pasting of u,
and ayA. n
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For the next theorem we take U a colax idempotent pseudomonad with structure as
in (20), but D is now a lax idempotent pseudomonad. We take the data for D as follows:

1

D2

D—2 D D D P2 D?
N A NG VA N
D2 D2 1,2 D2 D Dl—D>D

so that Dd 4m - dD.

7.2. THEOREM. Assume that U is a colax idempotent monad on IC, and that D is a lax
idempotent monad on IKC such that the conditions (i) and (ii) of Lemma 7.1 are satisfied.
Then a distributive law of U over D can be given by the following data:

(iii) For every A in K, a U-algebra structure (DUA, (1)}),
such that the following two conditions are satisfied:
(iv) For every L:B — UA, D(LY): (DUB, ( )*) — (DUA, ()?*) is 1-cell of U-algebras.

(v) For every H:C — DUA, (H?:(DUC,( )*) — (DUA,( )*) is an algebra mor-
phism.

PROOF. According to Theorem 6.1 we get a transition from U to U along D if we define,
for every A in K, rA = (DuA)?, define w; A as the 2-cell Apya:

uA

DA UDA

ADu

DUA.,

define ¢4, for G:B — A, as the unique 2-cell such that

uDB uDB

DB UDB DB UDB
DGl o / UDG K DG DqulB/ B
DA——~UDA  DUB = DA UDA
w1A/ é Duc/
DuArA FUG DuA bva

DUA DUA,
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and define w3A as the unique 2-cell such that

UDA uUDA

U?DA UDUA

rUA
OLUDA71

lwpa ar DU’A =
wgy DnA

DUA

UDA

rA
We define wy A as the unique 2-cell such that such that

uA

A UA A UA
UdA
dA UdA UdA

dUA ‘ uD A/

dA A UDA = DA————UDA
-} < "JlA/

% rA DuA rA

DA DUA DUA.

Then w» is an invertible modification. Now we define wsA as the unique 2-cell such that

uD?A UD*A rDA uD?A UD*A rDA
// s e ;;j;ﬂ)/m
mA UDA R D?UA mA D*uA et D2UA
P e el N 4%

One induces the inverse of wyA using the fact that

_— UD?A
/tulDAﬂ \ A

DUDA -2~ D2y A "2~ DUA

D?A DuDA

exhibits mUA - DrA -rDA as a right Kan extension of mUA - DrA - DuDA along uD?A;
the proof that it is indeed a right Kan extension follows from the fact that mUA - DrA ~



KAN EXTENSIONS AND LAX IDEMPOTENT PSEUDOMONADS 23

(rA)? = ((DuA))P: (DUDA,( )*) — (DUA,( )*) is a 1-cell of U-algebras. To show
that wy is a modification, one shows that for every G: B — A,

UW/A/UDQB%G
D?’B “DQGﬂ UD2A DA
% o ﬂ \

/w1A

DuA

DUA

exhibits A -UmA -UD?@ as a right Kan extension of DuA -mA - D*G, since rA -UmA -
UD*G ~ (DuA - mA - D*G)*.

Next we show that (r,ws,w,) is an op-transition from D to D along U. Coherence
condition (7) of [Marmolejo and Wood, 2008] follows from the fact that w; A exhibits rA
as a right Kan extension of DuA along uDA, using the defining equation of wyA. And
coherence condition (8) of [Marmolejo and Wood, 2008] follows from the fact that

. 1)3/A/ U DSA%”A
D3A “DmAﬂ UD*A

D% u
pa A
\

/

DuA

DUA

exhibits 7A - UmA - UDmA as a right Kan extension of DuA - mA - DmA along uD3A,
this because rA - UmA - UDmA ~ (DuA - mA - DmA)*.

Thus we have a transition (r,w;,ws) from U to U along D and an op-transition
(r,we,wy) from D to D along U. We are left with the verification that the coherence
conditions of Proposition 5.1 of [Marmolejo and Wood, 2008] are satisfied. Condition
(10) of that paper is the defining equation of wy, while (11) of the same paper follows
from the fact that dUA - ay;' exhibits dUA - nA as a right Kan extension of dUA along
uUA. And (12) of that paper is the defining equation for wy, leaving us only with co-
herence condition (13) of the same paper. This coherence condition follows from the fact
that rA -UmA - ayDA exhibits rA - UmA -nD?A as a right Kan extension of rA - UmA
along uUD?A (since 7A - UmA - nD?*A ~ (rA - UmA)*). u

We must now show that every distributive law of U over I, with U colax idempotent
and D lax idempotent, arises essentially in this way. Let (r,wy,ws, ws, wy) be a distributive
law of U over D. Then we have that conditions (i) and (ii) of Lema 7.1 are satisfied, and we
must obtain conditions (iii), (iv) and (v) of Theorem 7.2, and show that the distributive
law obtained from Theorem 7.2 is essentially the distributive law (r, wy, ws, w3, wy).
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Observe that (D, w;,ws) is a transition from U to U along D. Then Theorem 6.1 gives
us the U-algebra structure on DUA corresponding to (21), which in this case assigns to
an H:X — DUA the right Kan extension

uX

X UX
H uh% UH
DUA “DUUAAUDUA
N rua
 DU?A
DQUA

1pua / DnA
DUA,

and for every L:B — UA, D(LV) is a 1-cell of U-algebras. This gives us conditions (iii)
and (iv) of Theorem 7.2.

We are left with showing that, for any H:C — DUA, (H*)?:(DUC,(-)") —
(DUA, (—)*) is a U-algebra morphism. To do this we observe that (DUC, (—)") and
(DUA, (—)") are the images under the 2-functor ¥:U-Alg— U-Alg of the U-algebras
given by

lpvc

DUC

DUC

DCMUC\U//
DuUC DnC

uDUC wlUC*ﬂ DU*C

rUC
UDUC

lpva

DUA

DUA

DCMUA\H/
DuUA DnA

uDUA wlUAflﬂ DU?A

rUA

UDUA

and

respectively (these in turn are the images of the free algebras ayC and ayA under the
lifting U-Alg — U-Alg induced by the transition (D, w;,ws3)), thus it suffices to show that

DrUA

(HM? = puc 22 pupuA 294~ prpza 204 pria YA DUA

is a 1-cell between these latter U-algebras. According to (6), we must show that
DnA -rUA -UmUA -UD?*nA -UDrUA -UDUH -UDnC - UrUC - 5y DUC

is invertible; and one uses the available isomorphisms to produce nDUC just after 6y DUC
to conclude that the above 2-cell is indeed invertible. One then applies the construction
given in Theorem 7.2 to produce a new distributive law (s, 7y, o, 73, m4). The claim is
that the original distributive law (7, w;, ws,ws,wy) is coherently isomorphic to this new
one in the following sense:
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7.3. DEFINITION. Let U and D be pseudomonads on K, and let (r,wy,ws,ws,ws) and
(s, M1, T, M3, m4) be distributive laws of U over D. We say that the distributive laws
are coherently isomorphic if there is an invertible a.:r — s that makes the transitions
(r,wi,ws) and (s,m,m3) coherently isomorphic, and makes the op-transitions (r,ws,ws)
and (s, o, m4) coherently isomorphic.

7.4. THEOREM. Let U be a colax idempotent monad, D a lax idempotent monad on IC,
and (r,wy,ws, w3, ws) a distributive law of U over D. If (s, 1, 7o, w3, m4) is the distributive
law produced just before Definition 7.3, then (r,wi,ws,ws,wy) and (s,my, T, T3, T4) are
coherently isomorphic distributive laws.

PROOF. Theorem 6.1 already gives us (r,w;,ws) and (s, m, 73) coherently isomorphic by
the 2-cell

DU lpu
/ Tuu DUu DE&TIU/ (22)
UD~—>UDU ———= DU? ———> DU.

We must show that it also makes (7, ws,w,) and (s, ms,m4) coherently isomorphic. We
have that sA = DnA -rUA - UDuA and, 7 is the pasting

uDA

DA UDA
DuA Wt/ lubua
DUA % UDUA
\ N rUA

puua i DUA
lpva / DnA
DUA.

To show that (22) at A pasted with 7 equals w, we use the fact that d, 4 exhibits dUA
as a right Kan extension of DuA - dA along uA and the defining equation of 7y, namely

uA uA

UdA A HV -
dUA DA
“* A UDA = DA—"2-UDA
-1 <7r2: ﬂ-lA/
d
% %T’UIXUDuA DuA DnA-rUA-UDuA
DA —5. 3~ DUA DUA.

The case for w3 and w3 is similar to the one just shown. [



26 F. MARMOLEJO AND R.J. WOOD

7.5. REMARK. Of course we still have not shown that Definition 7.3 is good, in the sense
that the structures induced (liftings, composite pseudomonads, coherent structures) are
essentially the same for two coherently isomorphic distributive laws. However, this would
take us too far from the objectives of the present paper. We defer the treatment of this
issue to a paper that will deal with the “no-iteration” version of the algebras for a general
pseudomonad, and the corresponding version of a distributive law.

8. Example

Let U be coFam on Cat. That is, U:Ob(Cat) — Ob(Cat) is given as follows. For a
category A, the objects of UA are finite families (A;);c; of objects of A. A morphism
(Ai)ier — (Bj)jes in UA consists of a function ¢:J — I together with a family of
morphisms (f;: Ag;y — Bj)jes in A. The identity on (A;)ier is (17, (14,)ier), whereas
composition of (¢, (f;)jes) : (AiYicr = (Bj)jes and (U, (gr)rer) : (Bj)jes = (Ci)rek is

(o, (g - fw(lc)>keK)'
The functor uA : A — UA sends an object A to the family with exactly one element

<A>{*}, and f: A — B to (1{*}, <f>{*})
We observe that UA has finite products. Given a finite set I, and for every ¢ € I an
element (A;;) ey, in UA, then

H<Aij>jeJi = <Aij>(iaj)€]_[iel Jis
i€l

with the i-th projection given by
(0i:di = ierJis (Lag)jer)  (Aij) Gpell,e, 1 — (Aij)je-

Given a functor F:B — UA, FV:UB — UA is such that F((B;)jes) = [[;c, F'B;,
and given a morphism (7, (g;)jes) : (Ck)kex — (Bj)jes, define FV on it such that the
diagram

T (5)
FU(<Ck>k€K> — FCv(j)
FU((v,<gj>jEJ>>l igj
FY((B;)jes) —— F'B;

commutes for every j € J. Then the diagram

uB

B

UB

UA
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commutes (provided we make the convention that a unary product is simply the object
involved). And it exhibits F'V as a right Kan extension of F' along uB. Indeed, given

uB

B

UB
Y s
UA,

then the unique natural transformation 0:H — FU that preceded by uA is 6, is given,
at (B;);es, by the morphism that makes the diagram

H((’_j—l7<1Bj>{*}))

H({Bj)jeJ) H({Bj) )
§<Bj>je‘ll \LOBJ'
FY((Bj);e) FY((Bj)jer)

FU((T7(1B;) ()))

commute for all j € J.

It is a routine exercise to verify that F'V:UB — UA preserves finite products, and
that (Bj)jes = [l;c;(Bj){«p in UB. Then we can verify condition b) of Theorem 3.1.
Indeed, given G:C — UB, H:UC — UA and 0: H - uC — FY . @G, then the unique
natural transformation 6: H — FU - GV that preceded by uC is @ is given, at (C;)es in
UC, by the unique arrow that makes the diagram

H(m;)

H((Ci)ier) H((Ci)gxy)
§<ci>ie,l iaci
FYGY((Ci)ier) gy FUG((Ci) )

commute for all ¢ € I.

We have shown, using the techniques of this paper, that U is a colax idempotent
monad. It is well known that the algebras for U are categories with finite products and
functors that preserve finite products.

Dually, as D we take Fam. Thus DA = (U(A°P))°P, and the rest of the structure can
be read from this from the description of U. Of course, D is a lax idempotent monad.

It is well known that there is a distributive law of U over I); the main ingredient being
the fact that if A has finite products then FamA also has finite products. Here we verify
the conditions of this paper.

We observe first that DU A has finite products. Indeed, given a finite set I, and for
every ¢ € I an element ((Ajji)rex,;)jes, in DUA, then the product of the family is given
by the object

((Ait(iyk ) kel Les Kooy 1€l Tiey Jis
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with the i-th projection given by the projection 7;: [[,.; Ji = J; together with, for every
t € [],e; /i, the morphism

(05 Kirtsy = Hier Kiray, <]‘Ait(i)k>keKit<i)) (Air(r) kell,e, Kiwwy 7 (Aijr)rer,;

It is not hard to verify that the conditions of Lemma 7.1 are satisfied. Indeed, to see
that d exhibits dUA as a right Kan extension of DuA -dA along uA, take 0: H -uA —

DuA - dA, then the unique 2-cell 0:H — dUA that pasted with d;i produces 6 is
constructed as follows. Given (A;);c;r in UA, we observe that

H<<Ai>{*}>{*} = ((Ai)icr) ()

~

in DUA. Thus 6(A;)icr: H((Ai)ier) = dUA((Ai)ier) = ((Ai)ier){+ is the unique arrow
such that the diagram

H((rl—l7<A’b>{*}))

H((Ai)ier) H((4:) 1)
0(Ai)icr J{f)Ai

((Ai)ier) =) ™ (i)

commutes.
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