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HIGHER CATEGORIFIED ALGEBRAS VERSUS BOUNDED
HOMOTOPY ALGEBRAS

DAVID KHUDAVERDYAN, ASHIS MANDAL, AND NORBERT PONCIN

Abstract. We define Lie 3-algebras and prove that these are in 1-to-1 correspondence
with the 3-term Lie infinity algebras whose bilinear and trilinear maps vanish in degree
(1, 1) and in total degree 1, respectively. Further, we give an answer to a question of
[Roy07] pertaining to the use of the nerve and normalization functors in the study of
the relationship between categorified algebras and truncated sh algebras.

1. Introduction

Higher structures – infinity algebras and other objects up to homotopy, higher categories,
“oidified” concepts, higher Lie theory, higher gauge theory... — are currently intensively
investigated. In particular, higher generalizations of Lie algebras have been conceived
under various names, e.g. Lie infinity algebras, Lie n-algebras, quasi-free differential
graded commutative associative algebras (qfDGCAs for short), n-ary Lie algebras, see e.g.
[Dzh05], crossed modules [MP09]... See also [AP10], [GKP11].

More precisely, there are essentially two ways to increase the flexibility of an algebraic
structure: homotopification and categorification.

Homotopy, sh or infinity algebras [Sta63] are homotopy invariant extensions of dif-
ferential graded algebras. This property explains their origin in BRST of closed string
field theory. One of the prominent applications of Lie infinity algebras [LS93] is their
appearance in Deformation Quantization of Poisson manifolds. The deformation map
can be extended from differential graded Lie algebras (DGLAs) to L∞-algebras and more
precisely to a functor from the category L∞ to the category Set. This functor transforms
a weak equivalence into a bijection. When applied to the DGLAs of polyvector fields
and polydifferential operators, the latter result, combined with the formality theorem,
provides the 1-to-1 correspondence between Poisson tensors and star products.

On the other hand, categorification [CF94], [Cra95] is characterized by the replace-
ment of sets (resp. maps, equations) by categories (resp. functors, natural isomorphisms).
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Rather than considering two maps as equal, one details a way of identifying them. Cat-
egorification is a sharpened viewpoint that leads to astonishing results in TFT, bosonic
string theory... Categorified Lie algebras, i.e. Lie 2-algebras (alternatively, semistrict Lie
2-algebras) in the category theoretical sense, have been introduced by J. Baez and A.
Crans [BC04]. Their generalization, weak Lie 2-algebras (alternatively, Lie 2-algebras),
has been studied by D. Roytenberg [Roy07].

It has been shown in [BC04] that categorification and homotopification are tightly
connected. To be exact, Lie 2-algebras and 2-term Lie infinity algebras form equivalent
2-categories. Due to this result, Lie n-algebras are often defined as sh Lie algebras concen-
trated in the first n degrees [Hen08]. However, this ‘definition’ is merely a terminological
convention, see e.g. Definition 4 in [SS07b]. On the other hand, Lie infinity algebra struc-
tures on an N-graded vector space V are in 1-to-1 correspondence with square 0 degree
-1 (with respect to the grading induced by V ) coderivations of the free reduced graded
commutative associative coalgebra Sc(sV ), where s denotes the suspension operator, see
e.g. [SS07b] or [GK94]. In finite dimension, the latter result admits a variant based on
qfDGCAs instead of coalgebras. Higher morphisms of free DGCAs have been investigated
under the name of derivation homotopies in [SS07b]. Quite a number of examples can be
found in [SS07a].

Besides the proof of the mentioned correspondence between Lie 2-algebras and 2-term
Lie infinity algebras, the seminal work [BC04] provides a classification of all Lie infinity
algebras, whose only nontrivial terms are those of degree 0 and n− 1, by means of a Lie
algebra, a representation and an (n+1)-cohomology class; for a possible extension of this
classification, see [Bae07].

In this paper, we give an explicit categorical definition of Lie 3-algebras and prove that
these are in 1-to-1 correspondence with the 3-term Lie infinity algebras, whose bilinear
and trilinear maps vanish in degree (1, 1) and in total degree 1, respectively. Note that
a ‘3-term’ Lie infinity algebra implemented by a 4-cocycle [BC04] is an example of a Lie
3-algebra in the sense of the present work.

The correspondence between categorified and bounded homotopy algebras is expected
to involve classical functors and chain maps, like e.g. the normalization and Dold-Kan
functors, the (lax and oplax monoidal) Eilenberg-Zilber and Alexander-Whitney chain
maps, the nerve functor... We show that the challenge ultimately resides in an incompat-
ibility of the cartesian product of linear n-categories with the monoidal structure of this
category, thus answering a question of [Roy07].

The paper is organized as follows. Section 2 contains all relevant higher categorical
definitions. In Section 3, we define Lie 3-algebras. The fourth section contains the proof
of the mentioned 1-to-1 correspondence between categorified algebras and truncated sh
algebras — the main result of this paper. A specific aspect of the monoidal structure of
the category of linear n-categories is highlighted in Section 5. In the last section, we show
that this feature is an obstruction to the use of the Eilenberg-Zilber map in the proof of
the correspondence “bracket functor – chain map”.
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2. Higher linear categories and bounded chain complexes of vector spaces

Let us emphasize that notation and terminology used in the present work originate in
[BC04], [Roy07], as well as in [Lei04]. For instance, a linear n-category will be an (a
strict) n-category [Lei04] in Vect. Categories in Vect have been considered in [BC04] and
also called internal categories or 2-vector spaces. In [BC04], see Sections 2 and 3, the
corresponding morphisms (resp. 2-morphisms) are termed as linear functors (resp. linear
natural transformations), and the resulting 2-category is denoted by VectCat and also
by 2Vect. Therefore, the (n + 1)-category made up by linear n-categories (n-categories
in Vect or (n + 1)-vector spaces), linear n-functors... will be denoted by Vect n-Cat or
(n+ 1)Vect.

The following result is known. We briefly explain it here as its proof and the involved
concepts are important for an easy reading of this paper.

2.1. Proposition.The categories Vect n-Cat of linear n-categories and linear n-functors
and Cn+1(Vect) of (n + 1)-term chain complexes of vector spaces and linear chain maps
are equivalent.

We first recall some definitions.

2.2. Definition. An n-globular vector space L, n ∈ N, is a sequence

Ln

s,t

⇒ Ln−1

s,t

⇒ . . .
s,t

⇒ L0 ⇒ 0, (1)

of vector spaces Lm and linear maps s, t such that

s(s(a)) = s(t(a)) and t(s(a)) = t(t(a)), (2)

for any a ∈ Lm, m ∈ {1, . . . , n}. The maps s, t are called source map and target map,
respectively, and any element of Lm is an m-cell.

By higher category we mean in this text a strict higher category. Roughly, a linear
n-category, n ∈ N, is an n-globular vector space endowed with compositions of m-cells,
0 < m ≤ n, along a p-cell, 0 ≤ p < m, and an identity associated to any m-cell, 0 ≤ m <
n. Two m-cells (a, b) ∈ Lm × Lm are composable along a p-cell, if tm−p(a) = sm−p(b).
The composite m-cell will be denoted by a ◦p b (the cell that ‘acts’ first is written on the
left) and the vector subspace of Lm × Lm made up by the pairs of m-cells that can be
composed along a p-cell will be denoted by Lm ×Lp Lm. The following figure schematizes
the composition of two 3-cells along a 0-, a 1-, and a 2-cell.
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2.3. Definition. A linear n-category, n ∈ N, is an n-globular vector space L (with
source and target maps s, t) together with, for any m ∈ {1, . . . , n} and any p ∈ {0, . . . ,m−
1}, a linear composition map ◦p : Lm ×Lp Lm

// Lm and, for any m ∈ {0, . . . , n− 1}, a
linear identity map 1 : Lm

// Lm+1, such that the properties

• for (a, b) ∈ Lm ×Lp Lm,

if p = m− 1, then s(a ◦p b) = s(a) and t(a ◦p b) = t(b),

if p ≤ m− 2, then s(a ◦p b) = s(a) ◦p s(b) and t(a ◦p b) = t(a) ◦p t(b),

•
s(1a) = t(1a) = a,

• for any (a, b), (b, c) ∈ Lm ×Lp Lm,

(a ◦p b) ◦p c = a ◦p (b ◦p c),

•
1m−p
sm−pa ◦p a = a ◦p 1m−p

tm−pa = a

are verified, as well as the compatibility conditions

• for q < p, (a, b), (c, d) ∈ Lm ×Lp Lm and (a, c), (b, d) ∈ Lm ×Lq Lm,

(a ◦p b) ◦q (c ◦p d) = (a ◦q c) ◦p (b ◦q d),

• for m < n and (a, b) ∈ Lm ×Lp Lm,

1a◦pb = 1a ◦p 1b.

The morphisms between two linear n-categories are the linear n-functors.

2.4. Definition. A linear n-functor F : L // L′ between two linear n-categories is
made up by linear maps F : Lm

//L′
m, m ∈ {0, . . . , n}, such that the categorical structure

— source and target maps, composition maps, identity maps — is respected.

Linear n-categories and linear n-functors form a category Vect n-Cat, see Proposition
2.1. To disambiguate this proposition, let us specify that the objects of Cn+1(Vect) are
the complexes whose underlying vector space V = ⊕n

i=0Vi is made up by n+ 1 terms Vi.

The proof of Proposition 2.1 is based upon the following result.
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2.5. Proposition. Let L be any n-globular vector space with linear identity maps. If sm
denotes the restriction of the source map to Lm, the vector spaces Lm and L′

m := ⊕m
i=0Vi,

Vi := ker si, m ∈ {0, . . . , n}, are isomorphic. Further, the n-globular vector space with
identities can be completed in a unique way by linear composition maps so to form a linear
n-category. If we identify Lm with L′

m, this unique linear n-categorical structure reads

s(v0, . . . , vm) = (v0, . . . , vm−1), (3)

t(v0, . . . , vm) = (v0, . . . , vm−1 + tvm), (4)

1(v0,...,vm) = (v0, . . . , vm, 0), (5)

(v0, . . . , vm) ◦p (v′0, . . . , v′m) = (v0, . . . , vp, vp+1 + v′p+1, . . . , vm + v′m), (6)

where the two m-cells in Equation (6) are assumed to be composable along a p-cell.

Proof. As for the first part of this proposition, if m = 2 e.g., it suffices to observe that
the linear maps

αL : L′
2 = V0 ⊕ V1 ⊕ V2 ∋ (v0, v1, v2) 7→ 12v0 + 1v1 + v2 ∈ L2

and

βL : L2 ∋ a 7→ (s2a, s(a− 12s2a), a− 1s(a−12
s2a

) − 12s2a) ∈ V0 ⊕ V1 ⊕ V2 = L′
2

are inverses of each other. For arbitrary m ∈ {0, . . . , n} and a ∈ Lm, we set

βLa =

(
sma, . . . , sm−i(a−

i−1∑
j=0

1m−j
pjβLa

), . . . , a−
m−1∑
j=0

1m−j
pjβLa

)
∈ V0⊕. . .⊕Vi⊕. . .⊕Vm = L′

m,

where pj denotes the projection pj : L
′
m

// Vj and where the components must be com-
puted from left to right.

For the second claim, note that when reading the source, target and identity maps
through the detailed isomorphism, we get s(v0, . . . , vm) = (v0, . . . , vm−1), t(v0, . . . , vm) =
(v0, . . . , vm−1 + tvm), and 1(v0,...,vm) = (v0, . . . , vm, 0). Eventually, set v = (v0, . . . , vm) and
let (v, w) and (v′, w′) be two pairs of m-cells that are composable along a p-cell. The
composability condition, say for (v, w), reads

(w0, . . . , wp) = (v0, . . . , vp−1, vp + tvp+1).

It follows from the linearity of ◦p : Lm ×Lp Lm
// Lm that (v + v′) ◦p (w + w′) =

(v ◦p w) + (v′ ◦p w′). When taking w = 1m−p
tm−pv and v′ = 1m−p

sm−pw′ , we find

(v0 + w′
0, . . . , vp + w′

p, vp+1, . . . , vm) ◦p (v0 + w′
0, . . . , vp + w′

p + tvp+1, w
′
p+1, . . . , w

′
m)

= (v0 + w′
0, . . . , vm + w′

m),

so that ◦p is necessarily the composition given by Equation (6). It is easily seen that,
conversely, Equations (3) – (6) define a linear n-categorical structure.
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Proof of Proposition 2.1 We define functors N : Vect n-Cat // Cn+1(Vect) and
G : Cn+1(Vect) // Vect n-Cat that are inverses up to natural isomorphisms.

If we start from a linear n-category L, so in particular from an n-globular vector space
L, we define an (n + 1)-term chain complex N(L) by setting Vm = ker sm ⊂ Lm and
dm = tm|Vm : Vm

// Vm−1. In view of the globular space conditions (2), the target space
of dm is actually Vm−1 and we have dm−1dmvm = 0.

Moreover, if F : L // L′ denotes a linear n-functor, the value N(F ) : V // V ′ is
defined on Vm ⊂ Lm by N(F )m = Fm|Vm : Vm

// V ′
m. It is obvious that N(F ) is a linear

chain map.

It is obvious that N respects the categorical structures of Vect n-Cat and Cn+1(Vect).

As for the second functor G, if (V, d), V = ⊕n
i=0Vi, is an (n + 1)-term chain complex

of vector spaces, we define a linear n-category G(V ) = L, Lm = ⊕m
i=0Vi, as in Proposition

2.5: the source, target, identity and composition maps are defined by Equations (3) – (6),
except that tvm in the RHS of Equation (4) is replaced by dvm.

The definition of G on a linear chain map ϕ : V // V ′ leads to a linear n-functor
G(ϕ) : L //L′, which is defined on Lm = ⊕m

i=0Vi by G(ϕ)m = ⊕m
i=0ϕi. Indeed, it is readily

checked that G(ϕ) respects the linear n-categorical structures of L and L′.

Furthermore, G respects the categorical structures of Cn+1(Vect) and Vect n-Cat.

Eventually, there exist natural isomorphisms α : NG ⇒ id and γ : GN ⇒ id.

To define a natural transformation α : NG ⇒ id, note that L′ = (NG)(L) is the
linear n-category made up by the vector spaces L′

m = ⊕m
i=0Vi, Vi = ker si, as well as by

the source, target, identities and compositions defined from V = N(L) as in the above
definition of G(V ), i.e. as in Proposition 2.5. It follows that αL : L′ // L, defined by
αL : L′

m ∋ (v0, . . . , vm) 7→ 1mv0 + . . . + 1vm−1 + vm ∈ Lm, m ∈ {0, . . . , n}, which pulls the
linear n-categorical structure back from L to L′, see Proposition 2.5, is an invertible linear
n-functor. Moreover α is natural in L.

It suffices now to observe that the composite GN is the identity functor.

Next we further investigate the category Vect n-Cat.

2.6. Proposition. The category Vect n-Cat admits finite products.

Let L and L′ be two linear n-categories. The product linear n-category L×L′ is defined
by (L×L′)m = Lm×L′

m, Sm = sm× s′m, Tm = tm× t′m, Im = 1m× 1′m, and ⃝p = ◦p×◦′p.
The compositions ⃝p coincide with the unique compositions that complete the n-globular
vector space with identities, thus providing a linear n-category. It is straightforwardly
checked that the product of linear n-categories verifies the universal property for binary
products.
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2.7. Proposition. The category Vect 2-Cat admits a 3-categorical structure. More pre-
cisely, its 2-cells are the linear natural 2-transformations and its 3-cells are the linear
2-modifications.

This proposition is the linear version (with similar proof) of the well-known result
that the category 2-Cat is a 3-category with 2-categories as 0-cells, 2-functors as 1-cells,
natural 2-transformations as 2-cells, and 2-modifications as 3-cells. The definitions of
n-categories and 2-functors are similar to those given above in the linear context (but
they are formulated without the use of set theoretical concepts). As for (linear) natural
2-transformations and (linear) 2-modifications, let us recall their definition in the linear
setting:

2.8. Definition. A linear natural 2-transformation θ : F ⇒ G between two linear
2-functors F,G : C //D, between the same two linear 2-categories, assigns to any a ∈ C0
a unique θa : F (a) //G(a) in D1, linear with respect to a and such that for any α : f ⇒ g
in C2, f, g : a // b in C1, we have

F (α) ◦0 1θb = 1θa ◦0 G(α) . (7)

If C = L× L is a product linear 2-category, the last condition reads

F (α, β) ◦0 1θt2α,t2β
= 1θs2α,s2β

◦0 G(α, β),

for all (α, β) ∈ L2 × L2. As functors respect composition, i.e. as

F (α, β) = F (α ◦0 12t2α, 12s2β ◦0 β) = F (α, 12s2β) ◦0 F (12t2α, β),

this naturality condition is verified if and only if it holds true in case all but one of the
2-cells are identities 12−, i.e. if and only if the transformation is natural with respect to
all its arguments separately.

2.9. Definition. Let C,D be two linear 2-categories. A linear 2-modification µ : η V
ε between two linear natural 2-transformations η, ε : F ⇒ G, between the same two linear
2-functors F,G : C //D, assigns to any object a ∈ C0 a unique µa : ηa ⇒ εa in D2, which
is linear with respect to a and such that, for any α : f ⇒ g in C2, f, g : a // b in C1, we
have

F (α) ◦0 µb = µa ◦0 G(α). (8)

If C = L× L is a product linear 2-category, it suffices again that the preceding mod-
ification property be satisfied for tuples (α, β), in which all but one 2-cells are identities
12−. The explanation is the same as for natural transformations.

Beyond linear 2-functors, linear natural 2-transformations, and linear 2-modifications,
we use below multilinear cells. Bilinear cells e.g., are cells on a product linear 2-category,
with linearity replaced by bilinearity. For instance,
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2.10. Definition. Let L, L′, and L′′ be linear 2-categories. A bilinear 2-functor
F : L×L′ //L′′ is a 2-functor such that F : Lm×L′

m
//L′′

m is bilinear for all m ∈ {0, 1, 2}.
Similarly,

2.11. Definition. Let L, L′, and L′′ be linear 2-categories. A bilinear natural 2-
transformation θ : F ⇒ G between two bilinear 2-functors F,G : L×L′ //L′′, assigns
to any (a, b) ∈ L0 × L′

0 a unique θ(a,b) : F (a, b) // G(a, b) in L′′
1, which is bilinear with

respect to (a, b) and such that for any (α, β) : (f, h) ⇒ (g, k) in L2 × L′
2, (f, h), (g, k) :

(a, b) // (c, d) in L1 × L′
1, we have

F (α, β) ◦0 1θ(c,d) = 1θ(a,b) ◦0 G(α, β) . (9)

3. Homotopy Lie algebras and categorified Lie algebras

We now recall the definition of a Lie infinity (strongly homotopy Lie, sh Lie, L∞−) algebra
and specify it in the case of a 3-term Lie infinity algebra.

3.1. Definition. A Lie infinity algebra is an N-graded vector space V = ⊕i∈NVi

together with a family (ℓi)i∈N∗ of graded antisymmetric i-linear weight i− 2 maps on V ,
which verify the sequence of conditions∑

i+j=n+1

∑
(i,n−i) – shuffles σ

χ(σ)(−1)i(j−1)ℓj(ℓi(aσ1 , . . . , aσi
), aσi+1

, . . . , aσn) = 0, (10)

where n ∈ {1, 2, . . .}, where χ(σ) is the product of the signature of σ and the Koszul sign
defined by σ and the homogeneous arguments a1, . . . , an ∈ V .

For n = 1, the L∞-condition (10) reads ℓ21 = 0 and, for n = 2, it means that ℓ1 is a
graded derivation of ℓ2, or, equivalently, that ℓ2 is a chain map from (V⊗V, ℓ1⊗id+ id⊗ ℓ1)
to (V, ℓ1).

In particular,

3.2. Definition. A 3-term Lie infinity algebra is a 3-term graded vector space V =
V0 ⊕ V1 ⊕ V2 endowed with graded antisymmetric p-linear maps ℓp of weight p− 2,

ℓ1 : Vi
// Vi−1 (1 ≤ i ≤ 2),

ℓ2 : Vi × Vj
// Vi+j (0 ≤ i+ j ≤ 2),

ℓ3 : Vi × Vj × Vk
// Vi+j+k+1 (0 ≤ i+ j + k ≤ 1),

ℓ4 : V0 × V0 × V0 × V0
// V2

(11)

(all structure maps ℓp, p > 4, necessarily vanish), which satisfy L∞-condition (10) (that
is trivial for all n > 5).

In this 3-term situation, each L∞-condition splits into a finite number of equations
determined by the various combinations of argument degrees, see below.

On the other hand, we have the
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3.3. Definition. A Lie 3-algebra is a linear 2-category L endowed with a bracket,
i.e. an antisymmetric bilinear 2-functor [−,−] : L × L // L, which verifies the Jacobi
identity up to a Jacobiator, i.e. a skew-symmetric trilinear natural 2-transformation

Jxyz : [[x, y], z] → [[x, z], y] + [x, [y, z]], (12)

x, y, z ∈ L0, which in turn satisfies the Baez-Crans Jacobiator identity up to an Identia-
tor, i.e. a skew-symmetric quadrilinear 2-modification

µxyzu : [Jx,y,z, 1u] ◦0 (J[x,z],y,u + Jx,[y,z],u) ◦0 ([Jxzu, 1y] + 1) ◦0 ([1x, Jyzu] + 1)

⇒ J[x,y],z,u ◦0 ([Jxyu, 1z] + 1) ◦0 (Jx,[y,u],z + J[x,u],y,z + Jx,y,[z,u]), (13)

x, y, z, u ∈ L0, required to verify the coherence law

α1 + α−1
4 = α3 + α−1

2 , (14)

where α1 – α4 are explicitly given in Definitions 4.21 – 4.24 and where superscript −1
denotes the inverse for composition along a 1-cell.

Just as the Jacobiator is a natural transformation between the two sides of the Ja-
cobi identity, the Identiator is a modification between the two sides of the Baez-Crans
Jacobiator identity.

In this definition “skew-symmetric 2-transformation” (resp. “skew-symmetric 2-mo-
dification”) means that, if we identify Lm with ⊕m

i=0Vi, Vi = ker si, as in Proposition 2.5,
the V1-component of Jxyz ∈ L1 (resp. the V2-component of µxyzu ∈ L2) is antisymmetric.
Moreover, the definition makes sense, as the source and target in Equation (13) are
quadrilinear natural 2-transformations between quadrilinear 2-functors from L×4 to L.
These 2-functors are simplest obtained from the RHS of Equation (13). Further, the
mentioned source and target actually are natural 2-transformations, since a 2-functor
composed (on the left or on the right) with a natural 2-transformation is again a 2-
transformation.

4. Lie 3-algebras in comparison with 3-term Lie infinity algebras

4.1. Remark. In the following, we systematically identify the vector spaces Lm, m ∈
{0, . . . , n}, of a linear n-category with the spaces L′

m = ⊕m
i=0Vi, Vi = ker si, so that the

categorical structure is given by Equations (3) – (6). In addition, we often substitute
common, index-free notations (e.g. α = (x, f , a)) for our notations (e.g. v = (v0, v1, v2) ∈
L2).

The next theorem is the main result of this paper.

4.2. Theorem. There exists a 1-to-1 correspondence between Lie 3-algebras and 3-term
Lie infinity algebras (V, ℓp), whose structure maps ℓ2 and ℓ3 vanish on V1 × V1 and on
triplets of total degree 1, respectively.
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4.3. Example. There exists a 1-to-1 correspondence between (n + 1)-term Lie infinity
algebras V = V0 ⊕ Vn (whose intermediate terms vanish), n ≥ 2, and (n + 2)-cocycles of
Lie algebras endowed with a linear representation, see [BC04], Theorem 6.7. A 3-term
Lie infinity algebra implemented by a 4-cocycle can therefore be viewed as a special case
of a Lie 3-algebra.

The proof of Theorem 4.2 consists of five lemmas.

4.4. Linear 2-category – three term chain complex of vector spaces First,
we recall the correspondence between the underlying structures of a Lie 3-algebra and a
3-term Lie infinity algebra.

4.5. Lemma. There is a bijective correspondence between linear 2-categories L and 3-term
chain complexes of vector spaces (V, ℓ1).

Proof. In the proof of Proposition 2.1, we associated to any linear 2-category L a unique
3-term chain complex of vector spaces N(L) = V , whose spaces are given by Vm =
ker sm, m ∈ {0, 1, 2}, and whose differential ℓ1 coincides on Vm with the restriction tm|Vm .
Conversely, we assigned to any such chain complex V a unique linear 2-category G(V ) =
L, with spaces Lm = ⊕m

i=0Vi, m ∈ {0, 1, 2} and target t0(x) = 0, t1(x, f) = x + ℓ1f ,
t2(x, f , a) = (x, f + ℓ1a). In view of Remark 4.1, the maps N and G are inverses of each
other.

4.6. Remark. The globular space condition is the categorical counterpart of L∞-conditi-
on n = 1.

4.7. Bracket – chain map We assume that we already built (V, ℓ1) from L or L from
(V, ℓ1).

4.8. Lemma.There is a bijective correspondence between antisymmetric bilinear 2-functors
[−,−] on L and graded antisymmetric chain maps ℓ2 : (V ⊗V, ℓ1⊗ id+ id⊗ℓ1) // (V, ℓ1)
that vanish on V1 × V1.

Proof. Consider first an antisymmetric bilinear “2-map” [−,−] : L×L //L that verifies
all functorial requirements except as concerns composition. This bracket then respects
the compositions, i.e., for each pairs (v, w), (v′, w′) ∈ Lm × Lm, m ∈ {1, 2}, that are
composable along a p-cell, 0 ≤ p < m, we have

[v ◦p v′, w ◦p w′] = [v, w] ◦p [v′, w′], (15)

if and only if the following conditions hold true, for any f ,g ∈ V1 and any a,b ∈ V2:

[f ,g] = [1tf ,g] = [f , 1tg], (16)

[a,b] = [1ta,b] = [a, 1tb] = 0, (17)

[1f ,b] = [12tf ,b] = 0. (18)
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To prove the first two conditions, it suffices to compute [f ◦0 1tf , 10 ◦0 g], for the next three
conditions, we consider [a◦1 1ta, 10 ◦1b] and [a◦0 120, 120 ◦0b], and for the last two, we focus
on [1f ◦0 12tf , 120 ◦0 b] and [1f ◦0 (12tf + 1f ′),b ◦0 b′]. Conversely, it can be straightforwardly
checked that Equations (16) – (18) entail the general requirement (15).

On the other hand, a graded antisymmetric bilinear weight 0 map ℓ2 : V × V // V
commutes with the differentials ℓ1 and ℓ1 ⊗ id+ id⊗ℓ1, i.e., for all v, w ∈ V , we have

ℓ1(ℓ2(v, w)) = ℓ2(ℓ1v, w) + (−1)vℓ2(v, ℓ1w) (19)

(we assumed that v is homogeneous and denoted its degree by v as well), if and only if,
for any y ∈ V0, f ,g ∈ V1, and a ∈ V2,

ℓ1(ℓ2(f , y)) = ℓ2(ℓ1f , y), (20)

ℓ1(ℓ2(f ,g)) = ℓ2(ℓ1f ,g)− ℓ2(f , ℓ1g), (21)

ℓ1(ℓ2(a, y)) = ℓ2(ℓ1a, y), (22)

0 = ℓ2(ℓ1f ,b)− ℓ2(f , ℓ1b). (23)

4.9. Remark. Note that, in the correspondence ℓ1 ↔ t and ℓ2 ↔ [−,−], Equations
(20) and (22) read as compatibility requirements of the bracket with the target and that
Equations (21) and (23) correspond to the second conditions of Equations (16) and (18),
respectively.

Proof of Lemma 4.8 (continuation) To prove the announced 1-to-1 correspondence,
we first define a graded antisymmetric chain map N([−,−]) = ℓ2, ℓ2 : V ⊗ V // V from
any antisymmetric bilinear 2-functor [−,−] : L× L // L.

Let x, y ∈ V0, f ,g ∈ V1, and a,b ∈ V2. Set ℓ2(x, y) = [x, y] ∈ V0 and ℓ2(x,g) =
[1x,g] ∈ V1. However, we must define ℓ2(f ,g) ∈ V2, whereas [f ,g] ∈ V1. Moreover, in this
case, the antisymmetry properties do not match. The observation

[f ,g] = [1tf ,g] = [f , 1tg] = ℓ2(ℓ1f ,g) = ℓ2(f , ℓ1g)

and Condition (21) force us to define ℓ2 on V1×V1 as a symmetric bilinear map valued in
V2 ∩ ker ℓ1. We further set ℓ2(x,b) = [12x,b] ∈ V2, and, as ℓ2 is required to have weight 0,
we must set ℓ2(f ,b) = 0 and ℓ2(a,b) = 0. It then follows from the functorial properties
of [−,−] that the conditions (20) – (22) are verified. In view of Equation (18), Property
(23) reads

0 = [12tf ,b]− ℓ2(f , ℓ1b) = −ℓ2(f , ℓ1b).

In other words, in addition to the preceding requirement, we must choose ℓ2 in a way that
it vanishes on V1×V1 if evaluated on a 1-coboundary. These conditions are satisfied if we
choose ℓ2 = 0 on V1 × V1.
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Conversely, from any graded antisymmetric chain map ℓ2 that vanishes on V1×V1, we
can construct an antisymmetric bilinear 2-functor G(ℓ2) = [−,−]. Indeed, using obvious
notations, we set

[x, y] = ℓ2(x, y) ∈ L0, [1x, 1y] = 1[x,y] ∈ L1, [1x,g] = ℓ2(x,g) ∈ V1 ⊂ L1.

Again [f ,g] ∈ L1 cannot be defined as ℓ2(f ,g) ∈ V2. Instead, if we wish to build a
2-functor, we must set

[f ,g] = [1tf ,g] = [f , 1tg] = ℓ2(ℓ1f ,g) = ℓ2(f , ℓ1g) ∈ V1 ⊂ L1,

which is possible in view of Equation (21), if ℓ2 is on V1 × V1 valued in 2-cocycles (and in
particular if it vanishes on this subspace). Further, we define

[12x, 1
2
y] = 12[x,y] ∈ L2, [1

2
x, 1g] = 1[1x,g] ∈ L2,

[12x,b] = ℓ2(x,b) ∈ V2 ⊂ L2, [1f , 1g] = 1[f ,g] ∈ L2.

Finally, we must set
[1f ,b] = [12tf ,b] = ℓ2(ℓ1f ,b) = 0,

which is possible in view of Equation (23), if ℓ2 vanishes on V1 × V1 when evaluated on a
1-coboundary (and especially if it vanishes on the whole subspace V1 × V1), and

[a,b] = [1ta,b] = [a, 1tb] = 0,

which is possible.
It follows from these definitions that the bracket of α = (x, f , a) = 12x + 1f + a ∈ L2

and β = (y,g,b) = 12y + 1g + b ∈ L2 is given by

[α, β] = (ℓ2(x, y), ℓ2(x,g) + ℓ2(f , tg), ℓ2(x,b) + ℓ2(a, y)) ∈ L2, (24)

where g = (y,g). The brackets of two elements of L1 or L0 are obtained as special cases
of the latter result.

We thus defined an antisymmetric bilinear map [−,−] that assigns an i-cell to any pair
of i-cells, i ∈ {0, 1, 2}, and that respects identities and sources. Moreover, since Equations
(16) – (18) are satisfied, the map [−,−] respects compositions provided it respects targets.
For the last of the first three defined brackets, the target condition is verified due to
Equation (20). For the fourth bracket, the target must coincide with [tf , tg] = ℓ2(ℓ1f , ℓ1g)
and it actually coincides with t[f ,g] = ℓ1ℓ2(ℓ1f ,g) = ℓ2(ℓ1f , ℓ1g), again in view of (20).
As regards the seventh bracket, the target t[12x,b] = ℓ1ℓ2(x,b) = ℓ2(x, ℓ1b), due to (22),
must coincide with [1x, tb] = ℓ2(x, ℓ1b). The targets of the two last brackets vanish and
[f , tb] = ℓ2(f , ℓ1ℓ1b) = 0 and [ta, tb] = ℓ2(ℓ1a, ℓ1ℓ1b) = 0.

It is straightforwardly checked that the maps N and G are inverses.
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Note that N actually assigns to any antisymmetric bilinear 2-functor a class of graded
antisymmetric chain maps that coincide outside V1×V1 and whose restrictions to V1×V1

are valued in 2-cocycles and vanish when evaluated on a 1-coboundary. The map N,
with values in chain maps, is well-defined thanks to a canonical choice of a representative
of this class. Conversely, the values on V1 × V1 of the considered chain map cannot be
encrypted into the associated 2-functor, only the mentioned cohomological conditions are
of importance. Without the canonical choice, the map G would not be injective.

4.10. Remark. The categorical counterpart of L∞-condition n = 2 is the functor condi-
tion on compositions.

4.11. Remark. A 2-term Lie infinity algebra (resp. a Lie 2-algebra) can be viewed as a
3-term Lie infinity algebra (resp. a Lie 3-algebra). The preceding correspondence then of
course reduces to the correspondence of [BC04].

4.12. Jacobiator – third structure map We suppose that we already constructed
(V, ℓ1, ℓ2) from (L, [−,−]) or (L, [−,−]) from (V, ℓ1, ℓ2).

4.13. Lemma. There exists a bijective correspondence between skew-symmetric trilinear
natural 2-transformations J : [[−,−], •] ⇒ [[−, •],−] + [−, [−, •]] and graded antisymmet-
ric trilinear weight 1 maps ℓ3 : V ×3 // V that verify L∞-condition n = 3 and vanish in
total degree 1.

Proof.A skew-symmetric trilinear natural 2-transformation J : [[−,−], •] ⇒ [[−, •],−]+
[−, [−, •]] is a map that assigns to any (x, y, z) ∈ L×3

0 a unique Jxyz : [[x, y], z] //[[x, z], y]+
[x, [y, z]] in L1, such that for any α = (z, f , a) ∈ L2, we have

[[12x, 1
2
y], α] ◦0 1Jx,y, t2α = 1Jx,y, s2α ◦0

(
[[12x, α], 1

2
y] + [12x, [1

2
y, α]]

)
(as well as similar equations pertaining to naturality with respect to the other two vari-
ables). A short computation shows that the last condition decomposes into the following
two requirements on the V1- and the V2-component:

Jx,y, tf + [1[x,y], f ] = [[1x, f ], 1y] + [1x, [1y, f ]], (25)

[12[x,y], a] = [[12x, a], 1
2
y] + [12x, [1

2
y, a]]. (26)

A graded antisymmetric trilinear weight 1 map ℓ3 : V ×3 // V verifies L∞-condition
n = 3 if

ℓ1(ℓ3(u, v, w)) + ℓ2(ℓ2(u, v), w)− (−1)vwℓ2(ℓ2(u,w), v) + (−1)u(v+w)ℓ2(ℓ2(v, w), u)

+ℓ3(ℓ1(u), v, w)− (−1)uvℓ3(ℓ1(v), u, w) + (−1)w(u+v)ℓ3(ℓ1(w), u, v) = 0, (27)

for any homogeneous u, v, w ∈ V . This condition is trivial for any arguments of total
degree d = u + v + w > 2. For d = 0, we write (u, v, w) = (x, y, z) ∈ V ×3

0 , for d = 1, we
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consider (u, v) = (x, y) ∈ V ×2
0 and w = f ∈ V1, for d = 2, either (u, v) = (x, y) ∈ V ×2

0 and
w = a ∈ V2, or u = x ∈ V0 and (v, w) = (f ,g) ∈ V ×2

1 , so that Equation (27) reads

ℓ1(ℓ3(x, y, z)) + ℓ2(ℓ2(x, y), z)− ℓ2(ℓ2(x, z), y) + ℓ2(ℓ2(y, z), x) = 0, (28)

ℓ1(ℓ3(x, y, f)) + ℓ2(ℓ2(x, y), f)− ℓ2(ℓ2(x, f), y) + ℓ2(ℓ2(y, f), x) + ℓ3(ℓ1(f), x, y) = 0, (29)

ℓ2(ℓ2(x, y), a)− ℓ2(ℓ2(x, a), y) + ℓ2(ℓ2(y, a), x) + ℓ3(ℓ1(a), x, y) = 0, (30)

ℓ2(ℓ2(x, f),g) + ℓ2(ℓ2(x,g), f) + ℓ2(ℓ2(f ,g), x)− ℓ3(ℓ1(f), x,g)− ℓ3(ℓ1(g), x, f) = 0. (31)

It is easy to associate to any such map ℓ3 a unique Jacobiator G(ℓ3) = J : it suffices
to set Jxyz := ([[x, y], z], ℓ3(x, y, z)) ∈ L1, for any x, y, z ∈ L0. Equation (28) means that
Jxyz has the correct target. Equations (25) and (26) exactly correspond to Equations (29)
and (30), respectively, if we assume that in total degree d = 1, ℓ3 is valued in 2-cocycles
and vanishes when evaluated on a 1-coboundary. These conditions are verified if we start
from a structure map ℓ3 that vanishes on any arguments of total degree 1.

4.14. Remark. Remark that the values ℓ3(x, y, f) ∈ V2 cannot be encoded in a natural 2-
transformation J : L×3

0 ∋ (x, y, z) //Jxyz ∈ L1 (and that the same holds true for Equation
(31), whose first three terms are zero, since we started from a map ℓ2 that vanishes on
V1 × V1).

Proof of Lemma 4.13 (continuation). Conversely, to any Jacobiator J corresponds
a unique map N(J) = ℓ3. Just set ℓ3(x, y, z) := Jxyz ∈ V1 and ℓ3(x, y, f) = 0, for all
x, y, z ∈ V0 and f ∈ V1 (as ℓ3 is required to have weight 1, it must vanish if evaluated on
elements of degree d ≥ 2).

Obviously the composites NG and GN are identity maps.

4.15. Remark. The naturality condition is, roughly speaking, the categorical analogue of
the L∞-condition n = 3.

4.16. Identiator – fourth structure map For x, y, z, u ∈ L0, we set

ηxyzu := [Jx,y,z, 1u] ◦0 (J[x,z],y,u + Jx,[y,z],u) ◦0 ([Jxzu, 1y] + 1) ◦0 ([1x, Jyzu] + 1) ∈ L1 (32)

and
εxyzu := J[x,y],z,u ◦0 ([Jxyu, 1z] + 1) ◦0 (Jx,[y,u],z + J[x,u],y,z + Jx,y,[z,u]) ∈ L1, (33)

see Definition 3.3. The identities 1 are uniquely determined by the sources of the involved
factors. The quadrilinear natural 2-transformations η and ε are actually the left and
right hand composites of the Baez-Crans octagon that pictures the coherence law of a
Lie 2-algebra, see [BC04], Definition 4.1.3. They connect the quadrilinear 2-functors
F,G : L × L × L × L // L, whose values at (x, y, z, u) are given by the source and the
target of the 1-cells ηxyzu and εxyzu, as well as by the top and bottom sums of triple
brackets of the mentioned octagon.



HIGHER CATEGORIFIED ALGEBRAS VERSUS BOUNDED HOMOTOPY ALGEBRAS 265

4.17. Lemma. The skew-symmetric quadrilinear 2-modifications µ : η V ε are in 1-to-1
correspondence with the graded antisymmetric quadrilinear weight 2 maps ℓ4 : V

×4 // V
that verify the L∞-condition n = 4.

Proof. A skew-symmetric quadrilinear 2-modification µ : η V ε maps every tuple
(x, y, z, u) ∈ L×4

0 to a unique µxyzu : ηxyzu ⇒ εxyzu in L2, such that, for any α = (u, f , a) ∈
L2, we have

F (12x, 1
2
y, 1

2
z, α) ◦0 µx,y,z,u+tf = µxyzu ◦0 G(12x, 1

2
y, 1

2
z, α) (34)

(as well as similar results concerning naturality with respect to the three other variables).
If we decompose µxyzu ∈ L2 = V0 ⊕ V1 ⊕ V2,

µxyzu = (F (x, y, z, u),hxyzu,mxyzu) = 1ηxyzu +mxyzu,

Condition (34) reads

F (1x, 1y, 1z, f) + hx,y,z,u+tf = hxyzu +G(1x, 1y, 1z, f), (35)

F (12x, 1
2
y, 1

2
z, a) +mx,y,z,u+tf = mxyzu +G(12x, 1

2
y, 1

2
z, a). (36)

On the other hand, a graded antisymmetric quadrilinear weight 2 map ℓ4 : V
×4 //V ,

and more precisely ℓ4 : V
×4
0

// V2, verifies L∞-condition n = 4, if

ℓ1(ℓ4(a, b, c, d))− ℓ2(ℓ3(a, b, c), d) + (−1)cdℓ2(ℓ3(a, b, d), c)

− (−1)b(c+d)ℓ2(ℓ3(a, c, d), b) + (−1)a(b+c+d)ℓ2(ℓ3(b, c, d), a)

+ ℓ3(ℓ2(a, b), c, d)− (−1)bcℓ3(ℓ2(a, c), b, d) + (−1)d(b+c)ℓ3(ℓ2(a, d), b, c)

+ (−1)a(b+c)ℓ3(ℓ2(b, c), a, d)− (−1)ab+ad+cdℓ3(ℓ2(b, d), a, c)

+ (−1)(a+b)(c+d)ℓ3(ℓ2(c, d), a, b)− ℓ4(ℓ1(a), b, c, d) + (−1)abℓ4(ℓ1(b), a, c, d)

− (−1)c(a+b)ℓ4(ℓ1(c), a, b, d) + (−1)d(a+b+c)ℓ4(ℓ1(d), a, b, c) = 0, (37)

for all homogeneous a, b, c, d ∈ V . The condition is trivial for d ≥ 2. For d = 0, we write
(a, b, c, d) = (x, y, z, u) ∈ V ×4

0 , and, for d = 1, we take (a, b, c, d) = (x, y, z, f) ∈ V ×3
0 × V1,

so that — since ℓ2 and ℓ3 vanish on V1 × V1 and for d = 1, respectively — Condition (37)
reads

ℓ1(ℓ4(x, y, z, u))− hxyzu + exyzu = 0, (38)

ℓ4(ℓ1(f), x, y, z) = 0, (39)

where hxyzu and exyzu are the V1-components of ηxyzu and εxyzu, see Equations (32) and
(33).

We can associate to any such map ℓ4 a unique 2-modification G(ℓ4) = µ, µ : η V ε.
It suffices to set, for x, y, z, u ∈ L0,

µxyzu = (F (x, y, z, u),hxyzu,−ℓ4(x, y, z, u)) ∈ L2.
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In view of Equation (38), the target of this 2-cell is

tµxyzu = (F (x, y, z, u),hxyzu − ℓ1(ℓ4(x, y, z, u))) = εxyzu ∈ L1.

Note now that the 2-naturality equations (25) and (26) show that 2-naturality of η : F ⇒
G means that

F (1x, 1y, 1z, f) + hx,y,z,u+tf = hxyzu +G(1x, 1y, 1z, f),

F (12x, 1
2
y, 1

2
z, a) = G(12x, 1

2
y, 1

2
z, a).

When comparing with Equations (35) and (36), we conclude that µ is a 2-modification if
and only if ℓ4(ℓ1(f), x, y, z) = 0, which is exactly Equation (39).

Conversely, if we are given a skew-symmetric quadrilinear 2-modification µ : η V ε, we
define a map N(µ) = ℓ4 by setting ℓ4(x, y, z, u) = −mxyzu, with self-explaining notations.
L∞-condition n = 4 is equivalent with Equations (38) and (39). The first means that µxyzu

must have the target εxyzu and the second requires that mtf ,x,y,z vanish — a consequence
of the 2-naturality of η and of Equation (36).

The maps N and G are again inverses.

4.18. Coherence law – L∞-condition n = 5

4.19. Lemma. Coherence law (14) is equivalent to L∞-condition n = 5.

Proof. The sh Lie condition n = 5 reads,

ℓ2(ℓ4(x, y, z, u), v)− ℓ2(ℓ4(x, y, z, v), u) + ℓ2(ℓ4(x, y, u, v), z)− ℓ2(ℓ4(x, z, u, v), y)

+ℓ2(ℓ4(y, z, u, v), x) + ℓ4(ℓ2(x, y), z, u, v)− ℓ4(ℓ2(x, z), y, u, v) + ℓ4(ℓ2(x, u), y, z, v)

−ℓ4(ℓ2(x, v)y, z, u) + ℓ4(ℓ2(y, z), x, u, v)− ℓ4(ℓ2(y, u), x, z, v) + ℓ4(ℓ2(y, v), x, z, u)

+ℓ4(ℓ2(z, u), x, y, v)− ℓ4(ℓ2(z, v), x, y, u) + ℓ4(ℓ2(u, v), x, y, z)

= 0, (40)

for any x, y, z, u, v ∈ V0. It is trivial in degree d ≥ 1. Let us mention that it follows from
Equation (28) that (V0, ℓ2) is a Lie algebra up to homotopy, and from Equation (30) that
ℓ2 is a representation of V0 on V2. Condition (40) then requires that ℓ4 be a Lie algebra
4-cocycle of V0 represented upon V2.

The coherence law for the 2-modification µ corresponds to four different ways to re-
bracket the expression F ([x, y], z, u, v) = [[[[x, y], z], u], v] by means of µ, J , and [−,−].
More precisely, we define, for any tuple (x, y, z, u, v) ∈ L×5

0 , four 2-cells

αi : σi ⇒ τi,

i ∈ {1, 2, 3, 4}, in L2, where σi, τi : Ai
// Bi. Dependence on the considered tuple is

understood. We omit temporarily also index i. Of course, σ and τ read σ = (A, s) ∈ L1

and τ = (A, t) ∈ L1.

If α = (A, s, a) ∈ L2, we set α−1 = (A, t,−a) ∈ L2,

which is, as easily seen, the inverse of α for composition along 1-cells.
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4.20. Definition. The coherence law for the 2-modification µ of a Lie 3-algebra
(L, [−,−], J, µ) reads

α1 + α−1
4 = α3 + α−1

2 , (41)

where α1 – α4 are detailed in the next definitions.

4.21. Definition. The first 2-cell α1 is given by

α1 = 111 ◦0
(
µx,y,z,[u,v] + [µxyzv, 1

2
u]
)
◦0 112 ◦0

(
µ[x,v],y,z,u + µx,[y,v],z,u + µx,y,[z,v],u + 12

)
, (42)

where
111 = 1J[[x,y],z],u,v , 112 = 1[Jx,[z,v],y ,1u]+[J[x,v],z,y ,1u]+[Jx,z,[y,v],1u] + 12, (43)

and where the 12 are the identity 2-cells associated with the elements of L0 provided by
the composability condition.

For instance, the squared target of the second factor of α1 is

G(x, y, z, [u, v]) + [G(x, y, z, v), u],

whereas the squared source of the third factor is

[[[x, [z, v]], y], u] + [[[[x, v], z], y], u] + [[[x, z], [y, v]], u] + . . . .

As the three first terms of this sum are three of the six terms of [G(x, y, z, v), u], the
object “. . .”, at which 12 in 112 is evaluated, is the sum of the remaining terms and
G(x, y, z, [u, v]).

4.22. Definition. The fourth 2-cell α4 is equal to

α4 = [µxyzu, 1
2
v] ◦0 141 ◦0

(
µ[x,u],y,z,v + µx,[y,u],z,v + µx,y,[z,u],v

)
◦0 142, (44)

where
141 = 1[J[x,u],z,y ,1v ]+[Jx,z,[y,u],1v ]+[Jx,[z,u],y,1v ] + 12,

142 = 1[[Jxuv ,1z ],1y ]+[Jxuv ,1[y,z]]+[1x,[Jyuv ,1z ]]+[[1x,Jzuv ],1y ]+[1x,[1y ,Jzuv ]]+[1[x,z],Jyuv ] + 12. (45)

4.23. Definition. The third 2-cell α3 reads

α3 = µ[x,y],z,u,v ◦0 131 ◦0
(
[µxyuv, 1

2
z] + 12

)
◦0 132 ◦0 133, (46)

where
131 = 1[J[x,y],v,u,1z ] + 12,

132 = 1[Jxyv ,1[z,u]]+Jx,y,[[z,v],u]+Jx,y,[z,[u,v]]+J[[x,v],u],y,z+J[x,v],[y,u],z+J[x,u],[y,v],z+Jx,[[y,v],u],z+J[x,[u,v]],y,z
+Jx,[y,[u,v]],z+[Jxyu,1[z,v]]

133 = 1Jx,[y,v],[z,u]+J[x,v],y,[z,u]+Jx,[y,u],[z,v]+J[x,u],y,[z,v] + 12. (47)
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4.24. Definition. The second 2-cell α2 is defined as

α2 = 121 ◦0
(
µ[x,z],y,u,v + µx,[y,z],u,v

)
◦0 122 ◦0

(
[12x, µyzuv] + [µxzuv, 1

2
y] + 12

)
◦0 123, (48)

where
121 = 1[[Jxyz ,1u],1v ], 122 = 1[1x,J[y,z],v,u]+[J[x,z],v,u,1y ] + 12, (49)

123 = 1[Jxzv ,1[y,u]]+[Jxzu,1[y,v]]+[1[x,v],Jyzu]+[1[x,u],Jyzv ] + 12

To get the component expression

(A1 + A4, s1 + t4, a1 − a4) = (A3 + A2, s3 + t2, a3 − a2) (50)

of the coherence law (41), we now comment on the computation of the components
(Ai, si, ai) (resp. (Ai, ti,−ai)) of αi (resp. α

−1
i ).

As concerns α1, it is straightforwardly seen that all compositions make sense, that its
V0-component is

A1 = F ([x, y], z, u, v),

and that the V2-component is

a1 = −ℓ4(x, y, z, ℓ2(u, v))− ℓ2(ℓ4(x, y, z, v), u)− ℓ4(ℓ2(x, v), y, z, u)− ℓ4(x, ℓ2(y, v), z, u)

−ℓ4(x, y, ℓ2(z, v), u).

When actually examining the composability conditions, we find that 12 in the fourth
factor of α1 is 12G(x,y,z,[u,v]) and thus that the target t2α1 is made up by the 24 terms

G([x, v], y, z, u) +G(x, [y, v], z, u) +G(x, y, [z, v], u) +G(x, y, z, [u, v]).

The computation of the V1-component s1 is tedious but simple — it leads to a sum of 29
terms of the type “ℓ3ℓ2ℓ2, ℓ2ℓ3ℓ2, or ℓ2ℓ2ℓ3”. We will comment on it in the case of α−1

4 ,
which is slightly more interesting.

The V0-component of α−1
4 is

A4 = [Fxyzu, v] = F ([x, y], z, u, v)

and its V2-component is equal to

−a4 = ℓ2(ℓ4(x, y, z, u), v) + ℓ4(ℓ2(x, u), y, z, v) + ℓ4(x, ℓ2(y, u), z, v) + ℓ4(x, y, ℓ2(z, u), v).

The V1-component t4 of α−1
4 is the V1-component of the target of α4. This target is the

composition of the targets of the four factors of α4 and its V1-component is given by

t4 = [exyzu, 1v]+[J[x,u],z,y, 1v]+[Jx,z,[y,u], 1v]+[Jx,[z,u],y, 1v]+e[x,u],y,z,v+ex,[y,u],z,v+ex,y,[z,u],v

+[[Jxuv, 1z], 1y] + [Jxuv, 1[y,z]] + [1x, [Jyuv, 1z]] + [[1x,Jzuv], 1y] + [1x, [1y,Jzuv]] + [1[x,z],Jyuv].
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The definition (33) of ε immediately provides its V1-component e as a sum of 5 terms
of the type “ℓ3ℓ2 or ℓ2ℓ3”. The preceding V1-component t4 of α−1

4 can thus be explicitly
written as a sum of 29 terms of the type “ℓ3ℓ2ℓ2, ℓ2ℓ3ℓ2, or ℓ2ℓ2ℓ3”. It can moreover be
checked that the target t2α−1

4 is again a sum of 24 terms — the same as for t2α1.

The V0-component of α3 is

A3 = F ([x, y], z, u, v),

the V1-component s3 can be computed as before and is a sum of 25 terms of the usual
type “ℓ3ℓ2ℓ2, ℓ2ℓ3ℓ2, or ℓ2ℓ2ℓ3”, whereas the V2-component is equal to

a3 = −ℓ4(ℓ2(x, y), z, u, v)− ℓ2(ℓ4(x, y, u, v), z).

Again t2α3 is made up by the same 24 terms as t2α1 and t2α−1
4 .

Eventually, the V0-component of α−1
2 is

A2 = F ([x, y], z, u, v),

the V1-component t2 is straightforwardly obtained as a sum of 27 terms of the form “ℓ3ℓ2ℓ2,
ℓ2ℓ3ℓ2, or ℓ2ℓ2ℓ3”, and the V2-component reads

−a2 = ℓ4(ℓ2(x, z), y, u, v) + ℓ4(x, ℓ2(y, z), u, v) + ℓ2(x, ℓ4(y, z, u, v)) + ℓ2(ℓ4(x, z, u, v), y).

The target t2α−1
2 is the same as in the preceding cases.

Coherence condition (41) and its component expression (50) can now be understood.
The condition on the V0-components is obviously trivial. The condition on the V2-
components is nothing but L∞-condition n = 5, see Equation (40). The verification
of triviality of the condition on the V1-components is lengthy: 6 pairs (resp. 3 pairs) of
terms of the LHS s1 + t4 (resp. RHS s3 + t2) are opposite and cancel out, 25 terms of the
LHS coincide with terms of the RHS, and, finally, 7 triplets of LHS-terms combine with
triplets of RHS-terms and provide 7 sums of 6 terms, e.g.

ℓ3(ℓ2(ℓ2(x, y), z), u, v) + ℓ2(ℓ3(x, y, z), ℓ2(u, v)) + ℓ2(ℓ2(ℓ3(x, y, z), v), u)

−ℓ2(ℓ2(ℓ3(x, y, z), u), v)− ℓ3(ℓ2(ℓ2(x, z), y), u, v)− ℓ3(ℓ2(x, ℓ2(y, z)), u, v).

Since, for f = ℓ3(x, y, z) ∈ V1, we have

ℓ1(f) = tJxyz = ℓ2(ℓ2(x, z), y) + ℓ2(x, ℓ2(y, z))− ℓ2(ℓ2(x, y), z),

the preceding sum vanishes in view of Equation (29). Indeed, if we associate a Lie 3-
algebra to a 3-term Lie infinity algebra, we started from a homotopy algebra whose term
ℓ3 vanishes in total degree 1, and if we build an sh algebra from a categorified algebra,
we already constructed an ℓ3-map with that property. Finally, the condition on V1-
components is really trivial and the coherence law (41) is actually equivalent to L∞-
condition n = 5.
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5. Monoidal structure of the category Vect n-Cat

In this section we exhibit a specific aspect of the natural monoidal structure of the category
of linear n-categories.

5.1. Proposition. If L and L′ are linear n-categories, a family Fm : Lm
// L′

m of
linear maps that respects sources, targets, and identities, commutes automatically with
compositions and thus defines a linear n-functor F : L // L′.

Proof. If v = (v0, . . . , vm), w = (w0, . . . , wm) ∈ Lm are composable along a p-cell, then
Fmv = (F0v0, . . . , Fmvm) and Fmw = (F0w0, . . . , Fmwm) are composable as well, and
Fm(v ◦p w) = (Fmv) ◦p (Fmw) in view of Equation (6).

5.2. Proposition. The category Vect n-Cat admits a canonical symmetric monoidal
structure �.

Proof.We first define the product � of two linear n-categories L and L′. The n-globular
vector space that underlies the linear n-category L � L′ is defined in the obvious way,
(L � L′)m = Lm ⊗ L′

m, Sm = sm ⊗ s′m, Tm = tm ⊗ t′m. Identities are clear as well,
Im = 1m ⊗ 1′m. These data can be completed by the unique possible compositions that
then provide a linear n-categorical structure.

If F : L //M and F ′ : L′ //M ′ are two linear n-functors, we set

(F � F ′)m = Fm ⊗ F ′
m ∈ HomK(Lm ⊗ L′

m,Mm ⊗M ′
m),

where K denotes the ground field. Due to Proposition 5.1, the family (F � F ′)m defines
a linear n-functor F � F ′ : L� L′ //M �M ′.

It is immediately checked that � respects composition and is therefore a functor from
the product category (Vect n-Cat)×2 to Vect n-Cat. Further, the linear n-category K,
defined by Km = K, sm = tm = idK (m > 0), and 1m = idK (m < n), acts as identity
object for �. Its is now clear that � endows Vect n-Cat with a symmetric monoidal
structure.

5.3. Proposition. Let L, L′, and L′′ be linear n-categories. For any bilinear n-functor
F : L × L′ // L′′, there exists a unique linear n-functor F̃ : L � L′ // L′′, such that
� F̃ = F. Here � : L×L′ //L�L′ denotes the family of bilinear maps �m : Lm ×L′

m ∋
(v, v′) 7→ v⊗ v′ ∈ Lm⊗L′

m, and juxtaposition denotes the obvious composition of the first
with the second factor.

Proof. The result is a straightforward consequence of the universal property of the tensor
product of vector spaces.
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The next remark is essential.

5.4. Remark. Proposition 5.3 is not a Universal Property for the tensor product � of
Vect n-Cat, since � : L×L′ //L�L′ is not a bilinear n-functor. It follows that bilinear
n-functors on a product category L×L′ cannot be identified with linear n-functors on the
corresponding tensor product category L� L′.

The point is that the family �m of bilinear maps respects sources, targets, and identi-
ties, but not compositions (in contrast with a similar family of linear maps, see Proposition
5.1). Indeed, if (v, v′), (w,w′) ∈ Lm×L′

m are two p-composable pairs (note that this condi-
tion is equivalent with the requirement that v, w ∈ Lm and v′, w′ ∈ L′

m be p-composable),
we have

�m((v, v
′) ◦p (w,w′)) = (v ◦p w)⊗ (v′ ◦p w′) ∈ Lm ⊗ L′

m, (51)

and
�m(v, v

′) ◦p �m(w,w
′) = (v ⊗ v′) ◦p (w ⊗ w′) ∈ Lm ⊗ L′

m. (52)

As the elements (51) and (52) arise from the compositions in Lm × L′
m and Lm ⊗ L′

m,
respectively, — which are forced by linearity and thus involve the completely different
linear structures of these spaces — it can be expected that the two elements do not
coincide.

Indeed, when confining ourselves, to simplify, to the case n = 1 of linear categories,
we easily check that

(v ◦ w)⊗ (v′ ◦ w′) = (v ⊗ v′) ◦ (w ⊗ w′) + (v − 1tv)⊗w′ +w ⊗ (v′ − 1tv′). (53)

Observe also that the source spaces of the linear maps

◦L ⊗ ◦′L′ : (L1 ×L0 L1)⊗ (L′
1 ×L′

0
L′
1) ∋ (v, w)⊗ (v′, w′) 7→ (v ◦ w)⊗ (v′ ◦ w′) ∈ L1 ⊗ L′

1

and

◦L�L′ : (L1 ⊗ L′
1)×L0⊗L′

0
(L1 ⊗ L′

1) ∋ ((v ⊗ v′), (w ⊗ w′)) 7→ (v ⊗ v′) ◦ (w ⊗ w′) ∈ L1 ⊗ L′
1

are connected by

ℓ2 : (L1×L0L1)⊗(L′
1×L′

0
L′

1) ∋ (v, w)⊗(v′, w′) 7→ (v⊗v′, w⊗w′) ∈ (L1⊗L′
1)×L0⊗L′

0
(L1⊗L′

1)
(54)

— a linear map with nontrivial kernel.

6. Discussion

We continue working in the case n = 1 and investigate a more conceptual approach
to the construction of a chain map ℓ2 : N(L) ⊗ N(L) // N(L) from a bilinear functor
[−,−] : L× L // L.
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When denoting by [−,−] : L�L //L the induced linear functor, we get a chain map
N([−,−]) : N(L� L) //N(L), so that it is natural to look for a second chain map

ϕ : N(L)⊗N(L) //N(L� L).

The informed reader may skip the following subsection.

6.1. Nerve and normalization functors, Eilenberg-Zilber chain map The
objects of the simplicial category ∆ are the finite ordinals n = {0, . . . , n− 1}, n ≥ 0. Its
morphisms f : m // n are the order respecting functions between the sets m and n. Let
δi : n � n+ 1 be the injection that omits image i, i ∈ {0, . . . , n}, and let σi : n+ 1 � n
be the surjection that assigns the same image to i and i+1, i ∈ {0, . . . , n−1}. Any order
respecting function f : m // n reads uniquely as f = σj1 . . . σjhδi1 . . . δik , where the jr
are decreasing and the is increasing. The application of this epi-monic decomposition to
binary composites δiδj, σiσj, and δiσj yields three basic commutation relations.

A simplicial object in the category Vect is a functor S ∈ [∆+ op, Vect], where ∆+

denotes the full subcategory of ∆ made up by the nonzero finite ordinals. We write this
functor n+1 7→ S(n+1) =: Sn, n ≥ 0, (Sn is the vector space of n-simplices), δi 7→ S(δi) =:
di : Sn

// Sn−1, i ∈ {0, . . . , n} (di is a face operator), σi 7→ S(σi) =: si : Sn
// Sn+1,

i ∈ {0, . . . , n} (si is a degeneracy operator). The di and sj verify the duals of the
mentioned commutation rules. The simplicial data (Sn, d

n
i , s

n
i ) (we added superscript n) of

course completely determine the functor S. Simplicial objects in Vect form themselves a
category, namely the functor category s(Vect) := [∆+ op, Vect], for which the morphisms,
called simplicial morphisms, are the natural transformations between such functors. In
view of the epi-monic factorization, a simplicial map α : S // T is exactly a family of
linear maps αn : Sn

// Tn that commute with the face and degeneracy operators.

The nerve functor
N : VectCat // s(Vect)

is defined on a linear category L as the sequence L0, L1, L2 := L1 ×L0 L1, L3 := L1 ×L0

L1 ×L0 L1 . . . of vector spaces of 0, 1, 2, 3 . . . simplices, together with the face operators
“composition” and the degeneracy operators “insertion of identity”, which verify the
simplicial commutation rules. Moreover, any linear functor F : L // L′ defines linear
maps Fn : Ln ∋ (v1, . . . , vn) // (F (v1), . . . , F (vn)) ∈ L′

n that implement a simplicial map.

The normalized or Moore chain complex of a simplicial vector space S = (Sn, d
n
i , s

n
i )

is given by N(S)n = ∩n
i=1 ker d

n
i ⊂ Sn and ∂n = dn0 . Normalization actually provides a

functor
N : s(Vect) ↔ C+(Vect) : Γ

valued in the category of nonnegatively graded chain complexes of vector spaces. Indeed,
if α : S // T is a simplicial map, then αn−1d

n
i = dni αn. Thus, N(α) : N(S) // N(T ),

defined on cn ∈ N(S)n by N(α)n(cn) = αn(cn), is valued in N(T )n and is further a chain
map. Moreover, the Dold-Kan correspondence claims that the normalization functor N
admits a right adjoint Γ and that these functors combine into an equivalence of categories.
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It is straightforwardly seen that, for any linear category L, we have

N(N (L)) = N(L). (55)

The categories s(Vect) and C+(Vect) have well-known monoidal structures (we denote
the unit objects by Is and IC, respectively). The normalization functor N : s(Vect) →
C+(Vect) is lax monoidal, i.e. it respects the tensor products and unit objects up to
coherent chain maps ε : IC //N(Is) and

EZS,T : N(S)⊗N(T ) //N(S ⊗ T )

(functorial in S, T ∈ s(Vect)), where EZS,T is the Eilenberg-Zilber map. Functor N is
lax comonoidal or oplax monoidal as well, the chain morphism being here the Alexander-
Whitney map AWS,T . These chain maps are inverses of each other up to chain homotopy,
EZ AW = 1, AW EZ ∼ 1.

The Eilenberg-Zilber map is defined as follows. Let a⊗ b ∈ N(S)p ⊗N(T )q ⊂ Sp ⊗ Tq

be an element of degree p + q. The chain map EZS,T sends a ⊗ b to an element of
N(S ⊗ T )p+q ⊂ (S ⊗ T )p+q = Sp+q ⊗ Tp+q. We have

EZS,T (a⊗ b) =
∑

(p,q)−shuffles (µ,ν)

sign(µ, ν) sνq(. . . (sν1a)) ⊗ sµp(. . . (sµ1b)) ∈ Sp+q ⊗ Tp+q,

where the shuffles are permutations of (0, . . . , p+q−1) and where the si are the degeneracy
operators.

6.2. Monoidal structure and obstructionWe now come back to the construction
of a chain map ϕ : N(L)⊗N(L) //N(L� L).

For L′ = L, the linear map (54) reads

ℓ2 : (N (L)⊗N (L))2 ∋ (v, w)⊗ (v′, w′) 7→ (v ⊗ v′, w ⊗ w′) ∈ N (L� L)2.

If its obvious extensions ℓn to all other spaces (N (L) ⊗ N (L))n define a simplicial map
ℓ : N (L)⊗N (L) //N (L� L), then

N(ℓ) : N(N (L)⊗N (L)) //N(N (L� L))

is a chain map. Its composition with the Eilenberg-Zilber chain map

EZN (L),N (L) : N(N (L))⊗N(N (L)) //N(N (L)⊗N (L))

finally provides the searched chain map ϕ, see Equation (55).
However, the ℓn do not commute with all degeneracy and face operators. Indeed, we

have for instance

ℓ2((d
3
2 ⊗ d32)((u, v, w)⊗ (u′, v′, w′))) = (u⊗ u′, (v ◦ w)⊗ (v′ ◦ w′)),
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whereas
d32(ℓ3((u, v, w)⊗ (u′, v′, w′))) = (u⊗ u′, (v ⊗ v′) ◦ (w ⊗ w′)).

Equation (53), which means that � : L×L′ //L�L′ is not a functor, shows that these
results do not coincide.

A natural idea would be to change the involved monoidal structures � of VectCat or
⊗ of C+(Vect). However, even if we substitute the Loday-Pirashvili tensor product ⊗LP

of 2-term chain complexes of vector spaces, i.e. of linear maps [LP98], for the usual tensor
product ⊗, we do not get N(L)⊗LP N(L) = N(L� L).

Acknowledgements The authors thank the referee for having pointed out to them
additional relevant literature.

References

[AP10] Mourad Ammar and Norbert Poncin, Coalgebraic approach to the Loday infin-
ity category, stem differential for 2n-ary graded and homotopy algebras. Ann.
Inst. Fourier (Grenoble),60 (1): 355–387, 2010

[BC04] John C. Baez and Alissa S. Crans. Higher-dimensional algebra. VI. Lie 2-
algebras. Theory Appl. Categ., 12:492–538 (electronic), 2004

[Bae07] John C. Baez. Classification of some semistrict Lie n-algebras. Communication:
http:// golem.ph.utexas.edu/category/2007/05/zoo

¯
of
¯
lie
¯
nalgebras.html, 2007

[CF94] Louis Crane and Igor B. Frenkel. Four-dimensional topological quantum field
theory, Hopf categories, and the canonical bases. J. Math. Phys., 35(10): 5136–
5154, 1994

[Cra95] Louis Crane. Clock and category: is quantum gravity algebraic? J. Math.
Phys., 36(11): 6180–6193, 1995

[Dzh05] Askar S. Dzhumadil’daev. n-Lie structures generated by Wronskians. Sibirsk.
Mat. Zh., 46(4): 759–773, 2005

[GK94] Victor Ginzburg and Mikhail Kapranov. Koszul duality for operads. Duke Math.
J., 76(1): 203-272, 1994

[GKP11] Janusz Grabowski, David Khudaverdyan, and Norbert Poncin Loday algebroids
and their supergeometric interpretation arXiv:1103.5852v1 [math.DG], 2011
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Robert Paré, Dalhousie University: pare@mathstat.dal.ca
Jiri Rosicky, Masaryk University: rosicky@math.muni.cz
Brooke Shipley, University of Illinois at Chicago: bshipley@math.uic.edu
James Stasheff, University of North Carolina: jds@math.upenn.edu
Ross Street, Macquarie University: street@math.mq.edu.au
Walter Tholen, York University: tholen@mathstat.yorku.ca
Myles Tierney, Rutgers University: tierney@math.rutgers.edu
Robert F. C. Walters, University of Insubria: robert.walters@uninsubria.it
R. J. Wood, Dalhousie University: rjwood@mathstat.dal.ca


