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ACTION ACCESSIBILITY FOR CATEGORIES OF INTEREST

Dedicated to Dominique Bourn on the occasion of his 60th birthday

ANDREA MONTOLI

Abstract. We prove that every category of interest (in the sense of [17]) is action
accessible in the sense of [8]. This fact allows us to give an intrinsic description of centers
and centralizers in this class of categories. We give also some new examples of categories
of interest, mainly arising from Loday’s paper [11], [12] and [14].

1. Introduction

In a recent paper [8] D. Bourn and G. Janelidze introduced the notion of action acces-
sible category, which allows to construct intrinsically the centralizers of subobjects and
of equivalence relations, where the centralizer is defined in the usual sense: if X is a
normal subobject of an object A in a semi-abelian category, the centralizer Z(X,A) is
the largest subobject K of A such that [X,K] = 0, where [, ] denotes the commutator
of two subobjects, as in [6]. Another important result which is true in action accessible
categories is that two equivalence relations R and S on a same object commutes if and
only if [IR, IS] = 0, where IR and IS are the normal subobjects associated with R and S,
respectively. The main examples of action accessible categories given in [8], beyond those
of action representative ones [5], are the categories Rng of (not necessarily unitary) rings
and Ass of associative algebras.

The main goal of this paper is to show that every category of interest is action ac-
cessible. Categories of interest were introduced in [17] and [18] in order to generalize
Barr’s results on obstruction theory for commutative algebras [2]. In the context of such
categories it is possible to study the existence and the nature of extensions with a fixed
kernel. What is particularly interesting is that it is possible to apply this results to some
algebras, such as Leibniz algebras and associative dialgebras and trialgebras, introduced
by J.L. Loday in [11], [12] and in [14], respectively, as useful tools in algebraic K-theory.

The paper is organized as follows.
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In section 2 we recall the definition and the main properties of action accessible cate-
gories.

In section 3 we recall the definition and the main properties of categories of interest
and we give some examples, with particular attention to Loday’s algebras.

In section 4 we first observe that faithful split extensions, in the context of action
accessible categories, correspond to strict actions in the varietal context of categories of
interest and we use this fact to prove the main result.

The author is grateful to Dominique Bourn and Sandra Mantovani for many helpful
discussions.

2. Action accessible categories

Let C be a pointed protomodular category. Fixed an object X ∈ C, a split extension with
kernel X is a diagram

0 // X
k // A

p //
B //

s
oo 0

such that ps = 1B and k = ker p. We will denote such a split extension by (B, A, p, s, k).
Given another split extension (D, C, q, t, l) with the same kernel X, a morphism of split
extensions

(g, f) : (B,A, p, s, k) −→ (D, C, q, t, l) (1)

is a pair (g, f) of morphisms:

0 // X
k //

1X

²²

A

f
²²

p //
B //

g

²²

s
oo 0

0 // X
l // C

q //
D //

t
oo 0

(2)

such that l = fk, qf = gp and fs = tg.
Split extensions with fixed kernel X form a category, which we will denote by

SplExtC(X), or simply by SplExt(X).

Remark. Being the category C protomodular, the pair (k, s) is jointly strongly epimor-
phic, and then the morphism f in (2) is uniquely determined by g.

2.1. Definition. An object in SplExt(X) is said to be faithful if any object in
SplExt(X) admits at most one morphism into it.

We have the following description of faithful split extensions:

2.2. Proposition. ([8], Proposition 1.4) For a morphism (g, f) : (B, A, p, s, k) −→
(D,C, q, t, l) with faithful codomain, the following conditions are equivalent:

(a) (B,A, p, s, k) is faithful;
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(b) (g, f) is a monomorphism in SplExt(X);

(c) g is a monomorphism in C.

2.3. Definition. An object in SplExt(X) is said to be accessible if it admits a mor-
phism into a faithful object. If, for any X ∈ C, every object in SplExt(X) is accessible,
we say that C is action accessible.

In particular, if C is action representative in the sense of [5] (see also [3]), then it is
action accessible. In fact, in an action representative category every category SplExt(X)
has a terminal object. Examples of this situation are the categories Gp of groups and
R − Lie of R-Lie algebras, where R is a commutative ring. The converse is not true:
indeed, the category Rng of (not necessarily unitary) rings is action accessible [8] but not
action representative, as shown in [5].

We recall now the construction of the centralizer of an equivalence relation in an action
accessible category. In order to do that, we need to introduce the notions of X-groupoid
and groupoid accessible category.

Fixed X ∈ C, a reflexive graph structure on an object (B, A, p, s, k) in SplExt(X)
is a morphism u : A −→ B such that us = 1B; we will say also that (B,A, p, s, u) is
the underlying reflexive graph of ((B, A, p, s, k), u). Conversely, given a reflexive graph
(B, A, d0, s0, d1), the morphism d1 gives a reflexive graph structure on the object (B,A, d0,
s0, k) in SplExt(X), where (X, k) is a kernel of d0.

In a protomodular category C, being an internal groupoid in C is the same as be-
ing an internal reflexive graph satisfying certain property. Specifically, a reflexive graph
(B, A, d0, s0, d1) is a groupoid if and only if [R[d0], R[d1]] = 0, where R[f ] denotes, as in
[4], the equivalence relation determined by the kernel pair of any morphism f , and where,
given any pair (R,S) of equivalence relations on the same object X, we write [R, S] = 0
if the pair (R,S) has a connector (see [7]).

Accordingly, by a groupoid structure on an object (B,A, p, s, k) in SplExt(X) we
mean a morphism u : A −→ B such that us = 1B and [R[p], R[u]] = 0; the system
(B, A, p, s, k, u) is then called an X-groupoid. X-groupoids form a category Grpd(X), in
which a morphism

(g, f) : (B, A, p, s, k, u) −→ (D, C, q, t, l, v)

is a morphism (g, f) : (B, A, p, s, k) −→ (D, C, q, t, l) in SplExt(X) such that vf = gu.
Similarly to definitions 2.1 and 2.3, we introduce

2.4. Definition. An X-groupoid is said to be faithful if any X-groupoid admits at most
one morphism into it. An X-groupoid is said to be accessible if it admits a morphism into
a faithful X-groupoid. If, for any X ∈ C, every X-groupoid is accessible, we say that C
is groupoid accessible.

2.5. Proposition. ([8], Corollary 3.5) If C is homological, then it is action accessible
if and only if it is groupoid accessible.
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2.6. Theorem. ([8], Theorem 4.1) Let R be an equivalence relation on an object B in
a homological action accessible category C, X an object in C and

(g, f) : (B,A, p, s, k, u) −→ (D, C, q, t, l, v)

a morphism in Grpd(X), in which the domain is the relation R seen as a groupoid and
the codomain is faithful. Then the kernel pair R[g] of g is the centralizer of R.

3. Categories of interest

The definition of a category of interest was introduced by Orzech in [17]. Now we recall
it (in the form expressed in [10]).

3.1. Definition. A category of interest is a category C whose objects are groups with
a set of operation Ω and with a set of identities E, such that E includes the group laws
and the following conditions hold. If Ωi is the set of i-ary operations in Ω, then:

(a) Ω = Ω0 ∪ Ω1 ∪ Ω2;

(b) the group operations (written additively: 0, -, +, even if the group is not necessarily
abelian) are elements of Ω0, Ω1 and Ω2 respectively. Let Ω′

2 = Ω2\{+}, Ω′
1 =

Ω1\{−} and assume that if ∗ ∈ Ω′
2, then Ω′

2 contains ∗◦ defined by x ∗◦ y = y ∗ x.
Assume further that Ω0 = {0};

(c) for any ∗ ∈ Ω′
2, E includes the identity x ∗ (y + z) = x ∗ y + x ∗ z;

(d) for any ω ∈ Ω′
1 and ∗ ∈ Ω′

2, E includes the identities ω(x + y) = ω(x) + ω(y) and
ω(x) ∗ y = ω(x ∗ y);

(e) Axiom 1 x1 + (x2 ∗ x3) = (x2 ∗ x3) + x1 for any ∗ ∈ Ω′
2;

(f) Axiom 2 for any ordered pair (∗, ∗) ∈ Ω′
2 × Ω′

2 there is a word W such that

(x1 ∗ x2)∗x3 = W (x1(x2x3), x1(x3x2), (x2x3)x1, (x3x2)x1,

x2(x1x3), x2(x3x1), (x1x3)x2, (x3x1)x2),

where each juxtaposition represents an operation in Ω′
2. This means that (x1∗x2)∗x3

belongs to the subalgebra generated by the elements:

x1(x2x3), x1(x3x2), (x2x3)x1, (x3x2)x1, x2(x1x3), x2(x3x1), (x1x3)x2, (x3x1)x2.

We describe now some examples (and counterexamples) of categories of interest.

(1) The categories Gp of groups and R − Lie of R-Lie algebras (where R is a commu-
tative ring) are categories of interest.
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(2) The category Rng of (not necessarily unitary) rings is of interest.

(3) Let K be a field. A K-Poisson algebra is a vector space over K with two bilinear
operations (let us denote them · and {, }) satisfying the following conditions:

- the operation · gives rise to an associative K-algebra;

- the operation {, } gives rise to a K-Lie algebra;

- {x, yz} = {x, y}z + y{x, z} for all x, y, z.

The category of Poisson algebras is of interest.

(4) Let R be a commutative ring. A R-Leibniz algebra [11] is a R-module X with a
bilinear map

[, ] : X ×X −→ X

such that
[[x, y], z] = [[x, z], y] + [x, [y, z]] for all x, y, z ∈ X.

It is easy to verify that any Lie algebra is a Leibniz algebra. The category of Leibniz
algebras is of interest.

(5) Again, let R be a commutative ring. An associative dialgebra (or simply dialgebra)
[12], [13] over R is an R-module X equipped with two bilinear maps

a: X ×X −→ X, `: X ×X −→ X

satisfying, for any x, y, z ∈ X, the following axioms:

(i) (x a y) a z = x a (y ` z);

(ii) (x a y) a z = x a (y a z);

(iii) (x ` y) a z = x ` (y a z);

(iv) (x a y) ` z = x ` (y ` z);

(v) (x ` y) ` z = x ` (y ` z).

The category of associative dialgebras is a category of interest.

(6) Another example of category of interest is those of associative trialgebras. An
associative trialgebra [14] over a field K is a vector space X equipped with three
binary bilinear operations, denoted by a, ` and ⊥, which are associative and satisfy,
for any x, y, z ∈ X, the following axioms:

(i) (x a y) a z = x a (y ` z);
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(ii) (x ` y) a z = x ` (y a z);

(iii) (x a y) ` z = x ` (y ` z);

(iv) (x a y) a z = x a (y⊥z);

(v) (x⊥y) a z = x⊥(y a z);

(vi) (x a y)⊥z = x⊥(y ` z);

(vii) (x ` y)⊥z = x ` (y⊥z);

(viii) (x⊥y) ` z = x ` (y ` z).

(7) In [17] the author showed that Jordan algebras are not categories of interest, since
Axiom 2 fails. We recall that, given a field K, a K-Jordan algebra is a vector space
over K equipped with a binary bilinear operation which is commutative and satisfies
the following axiom:

(xy)(xx) = x(y(xx)) for all x, y.

Orzech provided also an example of category for which Axiom 2 is valid, but Axiom
1 fails: see [17], example 1.12.

(8) Any variety of groups (in the sense of [16]) is a category of interest. More generally,
any subvariety of a category of interest is of interest. This fact, according to The-
orem 4.7 below, should be compared with Proposition 2.3 in [8]. Beyond the well
known examples of abelian, n-nilpotent, n-solvable groups, groups with exponent m
and polynilpotent groups of class (c1, . . . , cr) (where n, m and the ci’s are positive
integers), other interesting examples of varieties of groups (see, for instance, [15]
and [9]) are (we simply write the axiom satisfied by the groups belonging to the
corresponding variety):

(i) n-abelian groups: (xy)n = xnyn;

(ii) n-central groups: [xn, y] = 1;

(iii) 2-Engel groups: [[x, y], y] = 1;

(iv) n-Levi groups: [xn, y] = [x, y]n;

(v) n-Bell groups: [xn, y] = [x, yn],

where n is a fixed positive integer.

4. Action accessibility of categories of interest

In this section we prove that any category of interest is action accessible. From now on
we will denote by C a category of interest.
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4.1. Definition. [17] Let B ∈ C. A subobject of B is called an ideal if it is the kernel
of some morphism.

4.2. Theorem. [17] Let A be a subobject of B in C. Then A is an ideal of B if and
only if the following conditions hold:

(i) A is a normal subgroup of B;

(ii) for any a ∈ A, b ∈ B and ∗ ∈ Ω′
2, we have a ∗ b ∈ A.

Given B,X ∈ C, a family of (set-theoretical) maps {f∗ : B ×X −→ X}∗∈Ω2 is called
”action of B on X”. Every split extension (B, A, p, s, k) with kernel X induces an action
of B on X, given by:

f+(b, x) = s(b) + k(x)− s(b)

and
f∗(b, x) = s(b) ∗ k(x),

where the first equality defines the map f+ relative to the group operation and the second
one defines f∗ for any ∗ ∈ Ω′

2. We will denote f+(b, x) simply by b ·x and f∗(b, x) by b ∗x.
Actions arising from split extensions are called derived actions in [17].

Given an action of B on X, the semidirect product X o B has X × B as a set of
elements and operations defined by:

(x′, b′) + (x, b) = (x′ + b′ · x, b′ + b),

(x′, b′) ∗ (x, b) = (x′ ∗ x + b ∗◦ x′ + b′ ∗ x, b′ ∗ b) for all ∗ ∈ Ω′
2.

In general, the semidirect product X oB is not an object of C; we have the following
characterization:

4.3. Theorem. [17] An action of B on X in C is derived if and only if X o B is an
object of C.

4.4. Definition. [10] An action of B on X in C is said to be strict if, for any b, b′ ∈ B
such that b ·x = b′ ·x, (ωb) ·x = (ωb′) ·x, b ∗x = b′ ∗x for any x ∈ X, ω ∈ Ω′

1 and ∗ ∈ Ω′
2,

we have b = b′.

It is immediate to observe that an action of B on X is strict if and only if, for any
b ∈ B such that b · x = x, (ωb) · x = x, b ∗ x = 0 for any x ∈ X, ω ∈ Ω′

1 and ∗ ∈ Ω′
2, we

have b = 0.

4.5. Definition. An action of B on X in C is said to be super-strict if, for any b, b′ ∈ B
such that b · x = b′ · x and b ∗ x = b′ ∗ x for any x ∈ X and ∗ ∈ Ω′

2, we have b = b′.
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4.6. Proposition. Given (D,C, q, t, l) ∈ SplExt(X), then the following conditions are
equivalent:

(a) the corresponding action of D on X is super-strict;

(b) the corresponding action of D on X is strict;

(c) (D,C, q, t, l) is faithful.

Proof. (a) =⇒ (b) Obvious.

(b) =⇒ (c) Let (g, f) and (g′, f ′) be morphisms from (B,A, p, s, k) to (D, C, q, t, l) (see
diagram 2). It suffices to show that g(b) = g′(b), for all b ∈ B. In order to do that, since
the action is strict, we will prove the following equalities for any x ∈ X:

(i) tg(b) + l(x)− tg(b) = tg′(b) + l(x)− tg′(b);

(ii) t(ωg(b)) + l(x)− t(ωg(b)) = t(ωg′(b)) + l(x)− t(ωg′(b)) for all ω ∈ Ω′
1;

(iii) tg(b) ∗ x = tg′(b) ∗ x for all ∗ ∈ Ω′
2.

The equality (i) is equivalent to:

−tg′(b) + tg(b) + l(x)− tg(b) + tg′(b) = l(x);

since tg = fs, tg′ = f ′s and l = fk = f ′k, we obtain:

−f ′s(b) + fs(b) + fk(x)− fs(b) + f ′s(b) = f ′k(x),

that is:
−f ′s(b) + f(s(b) + k(x)− s(b)) + f ′s(b) = f ′k(x).

s(b) + k(x)− s(b) ∈ k(X), so there exists y ∈ X such that s(b) + k(x)− s(b) = k(y) and
we have:

−f ′s(b) + fk(y) + f ′s(b) = f ′k(x)

⇐⇒ −f ′s(b) + f ′k(y) + f ′s(b) = f ′k(x)

⇐⇒ f ′(−s(b) + k(y) + s(b)) = f ′k(x).

But
−s(b) + k(y) + s(b) = −s(b) + s(b) + k(x)− s(b) + s(b) = k(x)

and then the equality (i) holds for any x ∈ X.

Condition (ii) is very similar to condition (i); we have:

t(ωg(b)) + l(x)− t(ωg(b)) = t(ωg′(b)) + l(x)− t(ωg′(b))

⇐⇒ −tωg′(b) + tωg(b) + l(x)− tωg(b) + tωg′(b) = l(x);
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but gω = ωg and g′ω = ωg′ and so the equality becomes:

−tg′(ωb) + tg(ωb) + l(x)− tg(ωb) + tg′(ωb) = l(x)

⇐⇒ −f ′s(ωb) + fs(ωb) + fk(x)− fs(ωb) + f ′s(ωb) = f ′k(x)

⇐⇒ −f ′s(ωb) + f(s(ωb) + k(x)− s(ωb)) + f ′s(ωb) = f ′k(x).

Again, s(ωb) + k(x) − s(ωb) ∈ k(X), so there exists z ∈ k(X) such that s(ωb) + k(x) −
s(ωb) = k(z), then:

−f ′s(ωb) + fk(z) + f ′s(ωb) = f ′k(x)

⇐⇒ −f ′s(ωb) + f ′k(z) + f ′s(ωb) = f ′k(x)

⇐⇒ f ′(−s(ωb) + k(z) + s(ωb)) = f ′k(x).

Since

−s(ωb) + k(z) + s(ωb) = −s(ωb) + s(ωb) + k(x)− s(ωb) + s(ωb) = k(x),

also the equality (ii) holds for any x ∈ X.

Concerning (iii), we have that

p(s(b) ∗ k(x)) = ps(b) ∗ pk(x) = ps(b) ∗ 0 = 0,

so there exists y ∈ X such that k(y) = s(b) ∗ k(x) and then

tg(b) ∗ l(x) = fs(b) ∗ fk(x) = f(s(b) ∗ k(x)) = fk(y)

= f ′k(y) = f ′(s(b) ∗ k(x)) = f ′s(b) ∗ f ′k(x) = tg′(b) ∗ l(x).

Now, since the action of B on X is strict, we have that g(b) = g′(b), for all b ∈ B, and
this completes the proof, since f is uniquely determined by g.

(c) =⇒ (a) Fixed d ∈ D, it is possible to construct (B, A, p, s, k) ∈ SplExt(X) and a
morphism

(g, f) : (B,A, p, s, k) −→ (D, C, q, t, l)

as follows:

- let B the free object in C on a one-element set {z} (it exists, since, as observed
in [17], all categories of interest are monadic over the category Set of sets; for an
explicit description of free objects, see for example [1]);

- g : B −→ D is the unique morphism in C such that g(z) = d (whose existence and
unicity is given by the universal property of B);
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- A = X o B, where the action of B on X is induced, via g, by the action of D on
X, that is:

b · x = g(b) · x = tg(b) + l(x)− tg(b),

b ∗ x = g(b) ∗ x = tg(b) ∗ l(x) for all b ∈ B, x ∈ X and ∗ ∈ Ω′
2,

where we are identifying l(X) and X. Hence the operations in A are defined as
follows:

(x, b) + (x′, b′) = (x + b · x′, b + b′),

(x, b) ∗ (x′, b′) = (x ∗ x′ + b′ ∗◦ x + b ∗ x′, b ∗ b′) for all ∗ ∈ Ω′
2.

We observe that A ∈ C, since the action of B on X is derived: in fact, it is induced
by the action of D on X, which is derived (see [10], where some necessary and
sufficient conditions for an action in order to be derived are given).

- the morphisms p, s, k and f are given by:

p(x, b) = b, s(b) = (0, b), k(x) = (x, 0), f(x, b) = l(x) + tg(b).

Clearly, p, s and k are morphisms in C such that (B, A, p, s, k) is a split extension
and the following diagram commutes:

0 // X
k //

1X

²²

A

f
²²

p //
B //

g

²²

s
oo 0

0 // X
l // C

q //
D //

t
oo 0.

It remains to prove that f is a morphism in C:

f [(x1, b1) + (x2, b2)] = f(x1 + b1 · x2, b1 + b2) = l(x1 + b1 · x2) + tg(b1 + b2)

= l(x1) + tg(b1) + l(x2)− tg(b1) + tg(b1) + tg(b2)

= l(x1) + tg(b1) + l(x2) + tg(b2) = f(x1, b1) + f(x2, b2)

and
f [(x1, b1) ∗ (x2, b2)] = f(x1 ∗ x2 + b2 ∗◦ x1 + b1 ∗ x2, b1 ∗ b2)

= l(x1 ∗ x2 + b2 ∗◦ x1 + b1 ∗ x2) + tg(b1 ∗ b2)

= l(x1) ∗ l(x2) + tg(b2) ∗◦ l(x1) + tg(b1) ∗ l(x2) + tg(b1) ∗ tg(b2)

= l(x1) ∗ l(x2) + l(x1) ∗ tg(b2) + tg(b1) ∗ l(x2) + tg(b1) ∗ tg(b2)

= l(x1) ∗ [l(x2) + tg(b2)] + tg(b1) ∗ [l(x2) + tg(b2)]

= [l(x1) + tg(b1)] ∗ [l(x2) + tg(b2)] = f(x1, b1) ∗ f(x2, b2).

Hence (g, f) is a morphism in SplExt(X).
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Let us now construct (B′, A′, p′, s′, k′) ∈ SplExt(X) and a morphism

(g′, f ′) : (B′, A′, p′, s′, k′) −→ (D, C, q, t, l)

in the same way as above, but choosing another element d′ ∈ D instead of d. We will
prove that, if d and d′ act in the same way on X, then (B′, A′, p′, s′, k′) = (B, A, p, s, k).
Of course B′ = B as objects in C, p′ = p, s′ = s, k′ = k and A′ = A as sets; it remains
to prove that the operations defined on A and A′ are the same. In order to do that, it
suffices to prove that:

(i) tg(b) + l(x)− tg(b) = tg′(b) + l(x)− tg′(b)

(ii) tg(b) ∗ l(x) = tg′(b) ∗ l(x) for all x ∈ X, b ∈ B and ∗ ∈ Ω′
2.

Since, by hypothesis on d and d′, (i) and (ii) hold for b = z, it suffices to show that the
set Z of those elements b ∈ B for which (i) and (ii) hold for every x ∈ X is a subobject
of B, i.e. it is closed under the operations in B.

Let b1, b2 ∈ Z; then, for all x ∈ X:

tg(b1 − b2) + l(x)− tg(b1 − b2) = tg(b1)− tg(b2) + l(x) + tg(b2)− tg(b1)

= tg(b1)− tg′(b2) + l(x) + tg′(b2)− tg(b1) = tg′(b1)− tg′(b2) + l(x) + tg′(b2)− tg′(b1)

= tg′(b1 − b2) + l(x)− tg′(b1 − b2),

where the third equality holds because −tg′(b2) + l(x) + tg′(b2) ∈ l(X), and

tg(b1 − b2) ∗ l(x) = [tg(b1)− tg(b2)] ∗ l(x)

= tg(b1) ∗ l(x)− tg(b2) ∗ l(x) = tg′(b1) ∗ l(x)− tg′(b2) ∗ l(x)

= [tg′(b1)− tg′(b2)] ∗ l(x) = tg′(b1 − b2) ∗ l(x).

Then b1 − b2 ∈ Z and Z is a subgroup of B. Moreover, if b1, b2 ∈ Z, x ∈ X and ∗ ∈ Ω′
2,

then:

tg(b1 ∗ b2) + l(x)− tg(b1 ∗ b2) = [tg(b1) ∗ tg(b2)] + l(x)− [tg(b1) ∗ tg(b2)]

= l(x) + [tg(b1) ∗ tg(b2)]− [tg(b1) ∗ tg(b2)] = l(x)

= l(x) + [tg′(b1) ∗ tg′(b2)]− [tg′(b1) ∗ tg′(b2)]

= [tg′(b1) ∗ tg′(b2)] + l(x)− [tg′(b1) ∗ tg′(b2)] = tg′(b1 ∗ b2) + l(x)− tg′(b1 ∗ b2),

where the second and the fifth equalities follow from Axiom 1, and

tg(b1 ∗ b2) ∗ l(x) = [tg(b1) ∗ tg(b2)] ∗ l(x)

= W (tg(b1)(tg(b2)l(x)), tg(b1)(l(x)tg(b2)), (tg(b2)l(x))tg(b1), (l(x)tg(b2))tg(b1),

tg(b2)(tg(b1)l(x)), tg(b2)(l(x)tg(b1)), (tg(b1)l(x))tg(b2), (l(x)tg(b1))tg(b2))
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= W (tg′(b1)(tg
′(b2)l(x)), tg′(b1)(l(x)tg′(b2)), (tg

′(b2)l(x))tg′(b1), (l(x)tg′(b2))tg
′(b1),

tg′(b2)(tg
′(b1)l(x)), tg′(b2)(l(x)tg′(b1)), (tg

′(b1)l(x))tg′(b2), (l(x)tg′(b1))tg
′(b2))

= [tg′(b1) ∗ tg′(b2)] ∗ l(x) = tg′(b1 ∗ b2) ∗ l(x),

where we are using Axiom 2 and the fact that l(X) is an ideal of C. Hence Z is a subobject
of B and then Z = B. Since (D, C, q, t, l) is faithful, from (B′, A′, p′, s′, k′) = (B, A, p, s, k)
it follows that g = g′ and so d = d′ and the action of D on X is super-strict.

4.7. Theorem. Every category of interest C is action accessible.

Proof. Let (B,A, p, s, k) be in SplExt(X); we have to construct a morphism

(g, f) : (B,A, p, s, k) −→ (D, C, q, t, l)

with a faithful codomain. Let us consider the set

I = {i ∈ B|s(i) + k(x)− s(i) = k(x), s(i) ∗ k(x) = 0 for all x ∈ X, for all ∗ ∈ Ω′
2};

we will show that I is an ideal of B. Let i1, i2 ∈ I; then

s(i1 − i2) + k(x)− s(i1 − i2) = s(i1)− s(i2) + k(x) + s(i2)− s(i1) = k(x),

since s(ij) + k(x)− s(ij) = k(x), j = 1, 2, and

s(i1 − i2) ∗ k(x) = (s(i1)− s(i2)) ∗ k(x) = s(i1) ∗ k(x)− s(i2) ∗ k(x) = 0− 0 = 0,

then I is a subgroup of B. If i ∈ I and b ∈ B, then

s(b + i− b) + k(x)− s(b + i− b) = s(b) + s(i)− s(b) + k(x) + s(b)− s(i)− s(b);

−s(b)+k(x)+s(b) ∈ k(X) (since k(X) is a normal subgroup of A), so −s(b)+k(x)+s(b) =
k(y) for some y ∈ X; then

s(b) + s(i)− s(b) + k(x) + s(b)− s(i)− s(b) = s(b) + k(y)− s(b) = k(x),

where the first equality holds because i ∈ I; moreover

s(b + i− b) ∗ k(x) = (s(b) + s(i)− s(b)) ∗ k(x) = s(b) ∗ k(x) + s(i) ∗ k(x)− s(b) ∗ k(x) = 0

since i ∈ I. Then I is a normal subgroup of B. Finally, let i ∈ I, b ∈ B and ∗ ∈ Ω′
2; then

s(i ∗ b) + k(x)− s(i ∗ b) = (s(i) ∗ s(b)) + k(x)− (s(i) ∗ s(b))

= k(x) + (s(i) ∗ s(b))− (s(i) ∗ s(b)) = k(x),

where the second equality follows from Axiom 1 of the definition of category of interest.
Furthermore, for any • ∈ Ω′

2, s(i ∗ b) • k(x) = 0 since, by Axiom 2,

s(i ∗ b) • k(x) = (s(i) ∗ s(b)) • k(x) = W (s(i)(s(b)k(x)), s(i)(k(x)s(b)), (s(b)k(x))s(i),
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(k(x)s(b))s(i), s(b)(s(i)k(x)), s(b)(k(x)s(i)), (s(i)k(x))s(b), (k(x)s(i))s(b)),

and, in any component of the word W , s(i) operates (w.r.t. the operations in Ω′
2) on

elements of k(X), then any component is 0, so that W = 0. So, by theorem 4.2, I is an
ideal of B. We define D = B/I.

Let us define now an action of B/I on X in the following way:

(b + I) · x = s(b) + k(x)− s(b);

(b + I) ∗ x = s(b) ∗ k(x) for all ∗ ∈ Ω′
2.

This action is well-defined; indeed, if b1 + I = b2 + I, i.e. b1 − b2 ∈ I, then

(s(b1) + k(x)− s(b1))− (s(b2) + k(x)− s(b2)) = s(b1) + k(x)− s(b1) + s(b2)− k(x)− s(b2)

= s(b2)− s(b2) + s(b1) + k(x)− s(b1) + s(b2)− k(x)− s(b2)

= s(b2)+ s(−b2 + b1)+ k(x)− s(−b2 + b1)− k(x)− s(b2) = s(b2)+ k(x)− k(x)− s(b2) = 0

and then
s(b1) + k(x)− s(b1) = s(b2) + k(x)− s(b2).

Analogously

s(b1) ∗ k(x)− s(b2) ∗ k(x) = (s(b1)− s(b2)) ∗ k(x) = s(b1 − b2) ∗ k(x) = 0

and then
s(b1) ∗ k(x) = s(b2) ∗ k(x) for all∗ ∈ Ω′

2.

The action of B/I on X is derived, in fact the conditions needed to be satisfied
(again, see [10]) are the same already satisfied by the action of B on X. We define then
C = XoB/I with respect to the action defined above. Since A ' XoB, we can consider
the following diagram:

A
p

%%LLLLLLLLLLLL

∼
²²

0 // X

k

::ttttttttttt ∼
k //

1X

²²

X oB

f
²²

∼
p //

B //

g

²²

∼
s

oo
s

eeLLLLLLLLLLLL
0

0 // X
l // X oB/I

q // B/I //
t

oo 0,

where q, t, and l are the usual semidirect product projection and injections, g = πB is the
canonical projection and f = (1X , g). f is a morphism in C (since it is equivariant with
respect to the action) and the diagram commutes, so (g, f) is a morphism in SplExt(X).

It remains to show that (B/I,X o B/I, q, t, l) is faithful. Thanks to Proposition 4.6,
it suffices to prove that the corresponding action is super-strict, that is, given b+I ∈ B/I
with
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(i) (b + I) · x = x;

(ii) (b + I) ∗ x = 0

for any x ∈ X and ∗ ∈ Ω′
2, then b + I = 0. Conditions (i) and (ii) can be then rewritten

in the following form:

(i’) s(b) + k(x)− s(b) = k(x) for all x ∈ X;

(ii’) s(b) ∗ k(x) = 0 for all x ∈ X, ∗ ∈ Ω′
2.

But, if b satisfies (i’) and (ii’), then b ∈ I and b + I = 0. So (B/I,X o B/I, q, t, l) is
faithful and this concludes the proof.
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