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LIMIT PRESERVING FULL EMBEDDINGS

Dedicated to Professor Walter Tholen on his 60th birthday

V. TRNKOVÁ AND J. SICHLER

Abstract. We prove that every small strongly connected category k has a full em-
bedding preserving all limits existing in k into a category of unary universal algebras.
The number of unary operations can be restricted to |mor k | in case when k has a ter-
minal object and only preservation of limits over finitely many objects is desired. And
all limits existing in such a category k are preserved by a full embedding of k into the
category of all algebraic systems with |mor k | unary operation and one unary relation.

1. Introduction

Let Set be the category of all sets and mappings and let k be a small category. The well-
known Eilenberg-MacLane representation M : k → Set of [3], and the Yoneda embedding
Y : k → Setkop

of k into the category Setkop

of all contravariant functors from k to Set and
all their natural transformations are faithful functors with somewhat opposite properties.
For any a ∈ obj k, the representing object Ma is a model of simplicity – merely a set
of moderate size, while the object Y a is a many-sorted algebra in the sense of [1] with
| obj k| many sorts and |mor k| many (heterogeneous) operations. On the other hand, the
functor Y is nicer because it is full and preserves all limits existing in k, while M has
neither of these two properties.

This paper investigates the existence of full and faithful functors Φ : k → K for
categories K whose objects have considerably simpler structure than the objects of Setkop

,
namely categories of (mono-sorted) universal algebras or algebraic systems (cf. [2, 6, 9])
that preserve at least some limits existing in k. Such functors thus occupy an ‘intermediate
ground’ between M and Y .

Since for any category K of algebraic systems the forgetful functor V : K → Set
preserves limits, the existence of a limit preserving faithful representation Φ : k → K
implies that the faithful composite functor V ◦Φ : k → Set must preserve all limits existing
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in k. But we show this to be impossible for the small category k given in Example 2.1 in
Section 2.

A category k is connected if any pair of k-objects belongs to the transitive closure of
the binary relation R on obj k given by aRb iff k(a, b) ∪ k(b, a) 6= ∅. And k is strongly
connected if every hom-set k(a, b) with a, b ∈ obj k is non-void.

For any cardinal λ, let Alg(1× λ) denote the category of all universal algebras with λ
unary operations.

Theorem 2.2 of Section 2 states that every strongly connected small category k has a
full embedding into some Alg(1×λ) that preserves all limits existing in k. The number λ
of unary operations is quite large, but in Section 3 it is reduced in case when the strongly
connected category k has a terminal object and only preservation of limits of diagrams
over finitely many objects is required. Preservation of all limits is restored and the reduced
number of unary operations retained when representing unary algebras are enriched by
one unary relation, and this is done in Section 4. The final Section 5 applies these results
to countable categories and concludes with some open problems.

2. A general representation result

2.1. Example. There exists a connected finite category k for which no faithful functor
F : k → Set can preserve all (finite) products existing in k.

Proof. The category k has the object set

obj k = {q, a, p, a1, a2, a3},

and all the non-void hom-sets of k are as follows:

(1) k(p, ai) = {πi} for i = 1, 2, 3,

(2) k(q, r) = {µr} for all r ∈ obj k \ {q},

(3) k(q, q) = {1q, ε} with ε2 = 1q and k(r, r) = {1r} for all r ∈ obj k \ {q},

(4) k(a, a1) = {φ, ψ},

With the obvious composition, it is clear that k is a category.
Since there are no other k-morphisms than those listed above, from (1) and (2) it

follows that (p, {π1, π2, π3}) =
∏
{a1, a2, a3} and (p, {π2, π3}) =

∏
{a2, a3}.

Let F : k → Set be a faithful functor. Then |Fq| ≥ 2 because of (3) and hence
|Fr| ≥ 1 for all r ∈ obj k \ {q} because of (2), so that Fs 6= ∅ for every s ∈ obj k. If F
preserves finite products, then the Cartesian product Fa1×Fa2×Fa3 of these sets must
be isomorphic to Fa2 × Fa3. Since the sets Fai are non-void, this is possible only when
Fa1 is a singleton. And since F is faithful, this contradicts (4).
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Definition For any strongly connected small category k, let a functor G : k → Set be
defined by

Ga =
∏
{k(c, a) | c ∈ obj k} for every a ∈ obj k,

and for any k-morphism p : a→ b by

Gp(x) = {p ◦ xc | c ∈ obj k} for every x = {xc ∈ k(c, a) | c ∈ obj k} ∈ Ga.

For any x = {xc | c ∈ obj k} ∈ Ga we write p ◦ x = {p ◦ xc | c ∈ obj k}, so that
(p ◦ x)c = p ◦ xc. We call xc ∈ k(c, a) the c-component of x = {xc | c ∈ obj k} ∈ Ga.

The functor G is obviously well-defined and faithful and, as a product of hom-functors,
it preserves all limits existing in k.

2.2. Theorem. For any strongly connected small category k, there is a cardinal λ and
a full embedding Ψ : k → Alg(1× λ) that preserves all limits existing in k.

Proof. The proposed full embedding

Ψ : k → Alg(1× λ)

is carried by the product G =
∏
{k(c, − ) | c ∈ obj k} of hom-functors just defined. The

actual algebra Ψa has the form

Ψa = (Ga ; {ωa
z | z ∈ Gc and c ∈ obj k}),

where each operation ωa
z : Ga→ Ga is defined for x = {xc | c ∈ obj k} ∈ Ga by

(ωa
z (x))d = xc ◦ zd for every z ∈ Gc and d ∈ obj k.

This makes sense because components zd of z ∈ Gc belong to k(d, c) and xc ∈ k(c, a), so
that ωa

z (x) ∈ Ga again.
It is clear that Ψ is a well-defined one-to-one functor that preserves all limits. We

outline only a proof that Ψ is full. So let

g : (Ga ; {ωa
z | z ∈ Gc and c ∈ obj k}) → (Gb ; {ωb

z | z ∈ Gc and c ∈ obj k})

be a homomorphism of these algebras. Choose an x ∈ Ga with xa = 1a and denote
p = (g(x))a, so that p ∈ k(a, b). We aim to show that g = Gp [ = Ψp ]. We have
(ωa

x(x))d = xa ◦ xd = 1a ◦ xd = xd for every d ∈ obj k. Thus ωa
x(x) = x, that is,

x ∈ Ga is a fixpoint of the operation ωa
x. Since g is a homomorphism, the element

g(x) ∈ Gb is a fixpoint of the operation ωb
x, that is, (ωb

x(g(x)))d = (g(x))d for every
d ∈ obj k. But (ωb

x(g(x)))d = (g(x))a ◦ xd = p ◦ xd, and hence (g(x))d = p ◦ xd for
every d ∈ obj k. Now let y ∈ Ga be arbitrary. We have (ωa

y(x))d = xa ◦ yd = yd for
every d ∈ obj k, that is, ωa

y(x) = y. But then g(y) = g(ωa
y(x)) = ωb

y(g(x)). Hence
(g(y))d = (ωb

y(g(x)))d = (g(x))a ◦ yd = p ◦ yd for every d ∈ obj k, that is, g(y) = (Gp)(y).
Therefore g = Gp as claimed.
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Although the number of needed operations is finite for any finite k, to represent a
given infinite strongly connected category k with |mor k | = κ the proof of Theorem 2.2
may need λ = κκ unary operations. As will be seen below, this number can be reduced
back to κ when some additional assumptions are made.

3. Limits of diagrams over finitely many objects

In this section we prove the following result.

3.1. Theorem. For every strongly connected small category k with a terminal object
and infinite |mor k | = κ, there is a full embedding Φ0 : k → Alg(1 × κ) preserving all
existing limits of diagrams over finitely many objects. For every a ∈ obj k, the algebra
Φ0a ∈ Alg(1× κ) is idempotent.

Theorem 3.1 appears weaker than Theorem 2.2 because it requires that k have a
terminal object and does not assert the preservation of all limits. The advantage of
Theorem 3.1, however, is that it represents any small category k with infinite κ = |mor k |
by algebras with only κ unary operations while Theorem 2.2 requires

λ =
∑ {{∏

|k(d, c)| | d ∈ obj k
}
| c ∈ obj k

}
operations; this number λ can be uncountable even when |mor k| is countable. The-
orem 3.1, on the other hand, enables us to similarly represent any strongly connected
countable category k with a terminal object in the category Alg(1× 2). The latter result
is the best possible because the number of operations cannot be further reduced. We
prove it in Section 5.

The functor Φ0 will be carried by a functor F : k → Set we now describe.

Definition Let t denote a terminal object of k and k(c, t) = {∇c} for every c ∈ obj k.
The functor F : k → Set is a subfunctor of the functor G from Section 2. Specifically, for
any a ∈ obj k we let

Fa ⊆
∏
{k(c, a) | c ∈ obj k} = Ga

consist of all sequences x ∈
∏
{k(c, a) | c ∈ obj k} for which there is a γ ∈ k(t, a) such that

xc = γ ◦∇c for all but finitely many c ∈ obj k. For any p ∈ k(a, b), the map Fp : Fa→ Fb
is given by

(Fp)(x) = p ◦ x for every x ∈ Fa.

For any x ∈ Fa, the element p◦x ∈ Gb belongs to Fb because (p◦x)c = p◦xc = p◦γ ◦∇c

for all but finitely many c ∈ obj k and p ◦ γ ∈ k(t, b). Therefore F is a well-defined
functor. Choosing any x ∈ Fa with xa = 1a, for any two distinct p, q ∈ k(a, b) we get
(Fp)(x)a = p 6= q = (Fq)(x)a and hence Fp 6= Fq. The functor F is therefore faithful.

Next we show that F has the required preservation property.
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3.2. Proposition. The functor F : k → Set preserves existing limits of diagrams over
finitely many objects.

Proof. Let D : S → k be a diagram with a finite objS for which limD exists in k.
Denote limD = (l, {λs | s ∈ objS}), with the morphisms λs ∈ k(l, Ds) forming a limit
cone.

Recall that F is a subfunctor of G such that every Fa with a ∈ obj k consists of
all those x ∈ Ga =

∏
{k(c, a) | c ∈ obj k} for which there is a γ ∈ k(t, a) and a finite

A ⊆ obj k such that xc = γ ◦ ∇c for all c ∈ obj k \ A, and that Gp(x) = p ◦ x for any
p ∈ k(a, b) and every x ∈ Ga.

The concrete form of limits in Set implies that we need to show that for every system
{x(s) ∈ FDs | s ∈ objS} satisfying FDσ(x(s)) = x(s′) for every S-morphism σ : s → s′

there is a unique x ∈ Fl such that λs ◦ x = Fλs(x) = x(s).
So let {x(s) ∈ FDs | s ∈ objS} be such a system. For every c ∈ obj k and every S-

morphism σ : s→ s′ we then have Dσ ◦ x(s)
c = (Dσ ◦ x(s))c = FDσ(x(s))c = x

(s′)
c , so that

{x(s)
c ∈ k(c,Ds) | s ∈ objS} is a cone over D in k. Since limD = (l, {λs | s ∈ objS})

in k, for each c ∈ obj k there is a unique xc ∈ k(c, l) such that x
(s)
c = λs ◦ xc. Thus

x = {xc | c ∈ obj k} ∈ Gl and Gλs(x) = λs ◦ x = x(s) for every s ∈ objS. Since
{Gλs | s ∈ objS} is a limit cone, the element x ∈ Gl is the only one for which λs◦x = x(s)

for all s ∈ objS. It thus remains to show that x ∈ Fl.
Since x(s) ∈ FDs for s ∈ objS, we have a finite set As ⊆ obj k and γs ∈ k(t,Ds) such

that x
(s)
c = γs ◦ ∇c for all c ∈ obj k \ As. Then the set A =

⋃
{As | s ∈ objS} is finite

because objS is finite, and x
(s)
c = γs ◦ ∇c for every s ∈ objS and all c ∈ obj k \ A.

Also, if c ∈ obj k \ A then from Dσ ◦ λs = λs′ for every S-morphism σ : s → s′ it
follows that γs′ ◦∇c = λs′ ◦xc = Dσ ◦λs ◦xc = Dσ ◦γs ◦∇c. Since k is strongly connected,
each terminal morphism ∇c is an epi, and we obtain γs′ = Dσ ◦ γs for every σ : s→ s′ in
S. This means that (t, {γs | s ∈ objS}) is a cone over D in k, and hence there is a unique
γ ∈ k(t, l) such that λs ◦ γ = γs for every s ∈ objS.

Altogether, for every c ∈ obj k \ A and every s ∈ objS we have λs ◦ xc = x
(s)
c =

γs ◦∇c = λs ◦ γ ◦∇c. Since {λs | s ∈ objS} is a limit cone, it follows that xc = γ ◦∇c for
every c ∈ obj k \ A. Since A is finite and γ ∈ k(t, l), this means that x ∈ Fl.

3.3. Remark. Adding a terminal object to the finite category k of Example 2.1 clearly
produces a finite category l that is not strongly connected and has a terminal object, for
which no faithful functor H : l → Set preserving (finite) products exists. This naturally
leads to a question of characterization of those small categories k with a terminal object
for which there is a faithful functor H : k → Set that preserves all limits existing in k.

The following claim proves the essential part of Theorem 3.1.

3.4. Lemma. Any small strongly connected category k with a terminal object t has a
full embedding preserving all its existing limits over finitely many objects into the category
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Alg(1× κ) of multiunary algebras, where

κ = |mor k |+
∣∣∣⋃{k(t, c) | c ∈ obj k}

∣∣∣ .
It is clear that κ = |mor k| in case when |mor k| is infinite.

We prove Lemma 3.4 in 3.5–3.11 below.

3.5. Since a full embedding Φ0 : k → Alg(1× κ) will be carried by the functor F : k →
Set, it is clear that Φ0 is going to be faithful.

In 3.6 and 3.7, on each set Fa with a ∈ obj k we define a multiunary algebra Φ0a.

3.6. First, for any ν ∈ k(c, c′), we define a unary operation oa
ν : Fa→ Fa so that for any

x = {xd ∈ k(d, a) | d ∈ obj k} ∈ Fa, the element oa
ν(x) = x′ = {x′d ∈ k(d, a) | d ∈ obj k}

has the components

x′d =

{
xc′ ◦ ν for d = c,
xd for d ∈ (obj k) \ {c}.

3.7. Second, for any c ∈ obj k and any γ ∈ k(t, c), we define a unary operation ωa
c,γ on

each Fa. For any x = {xd ∈ k(d, a) | d ∈ obj k} ∈ Fa, ωa
c,γ(x) = x′ = {x′d ∈ k(d, a) | d ∈

obj k} will have the components

x′d =

{
xc for d = c,
xc ◦ γ ◦ ∇d for d ∈ (obj k) \ {c}.

The operation ωa
c,γ thus leaves the c-component xc of x unchanged while acting as the

‘right translation’ of xc by the appropriate morphism γ ◦ ∇d for every other component
of x.

To see that Fp with p ∈ k(a, b) preserves any such operation, note that

((Fp)(ωa
c,γ(x)))d = p ◦ (ωa

c,γ(x))d =

{
p ◦ xc if d = c,
p ◦ (xc ◦ γ ◦ ∇d) if d 6= c

and

(ωb
c,γ(Fp)(x))d =

{
((Fp)(x))c if d = c,
((Fp)(x))c ◦ γ ◦ ∇d if d 6= c.

From ((Fp)(x))c = p ◦ xc it then follows that Fp ◦ ωa
c,γ = ωb

c,γ ◦ Fp. Therefore all defined
operations are preserved. Consequently, setting

Φ0a = (Fa; {oa
ν | ν ∈ mor k} ∪ {ωa

c,γ | c ∈ obj k and γ ∈ k(t, c)}) for every a ∈ obj k and
Φ0p = Fp for every p ∈ k(a, b)

produces a well-defined functor Φ0 : k → Alg(1× κ).
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3.8. The functor Φ0 : k → Alg(1×κ) preserves all limits of diagrams with finitely many
objects existing in k because F : k → Set preserves them, see Proposition 3.2.

3.9. To prove the fullness of Φ0, let g : Φ0a→ Φ0b be a homomorphism of these algebras.
We select and fix some α ∈ k(t, a), and use it to define a particular (a, α)-discrete element
z ∈ Fa whose components are given as

zc =

{
1a if c = a,
α ◦ ∇c if c ∈ (obj k) \ {a}.

We denote
p = g(z)a. (1)

Then p ∈ k(a, b), and we aim to show that g = Fp. In order to do this, we first describe
the specific element g(z) ∈ Fb. Noting that ωa

a,α(z)a = za = 1a and ωa
a,α(z)c = za◦α◦∇c =

α ◦ ∇c for any c 6= a, we conclude that ωa
a,α(z) = z and, since g preserves the operation

ωa,α we also get ωb
a,α(g(z)) = g(z). Thus, first of all, ωb

a,α(g(z))a = g(z)a = p and, for any
k-object c 6= a we have ωb

a,α(g(z))c = g(z)c = g(z)a◦α◦∇c = p◦α◦∇c with p◦α ∈ k(t, b).
Altogether, this means that g(z) = (Fp)(z) for the (a, α)-discrete element z defined in (z)
above with the use of the one specified morphism α ∈ k(t, a).

3.10. Next we show that any other α′ ∈ k(t, a) determines the same element p ∈ k(a, b)
as that given in (1), so that for any (a, α′)-discrete element z′ ∈ Fa given by its c-
components

z′c =

{
1a if c = a,
α′ ◦ ∇c if c ∈ (obj k) \ {a},

we also have g(z′) = (Fp)(z′). We simply observe that ωa
a,α′(z) = z′, from which it follows

that ωb
a,α′(g(z)) = g(ωa

a,α′(z)) = g(z′), and hence p = g(z)a = (ωb
a,α′(g(z)))a = g(z′)a. And

for c 6= a, we have g(z′)c = ωb
a,α′(g(z))c = g(z)a ◦ α′ ◦ ∇c = p ◦ α′ ◦ ∇c. Altogether, there

is a unique p ∈ k(a, b) such that g(z) = (Fp)(z) for every (a, α)-discrete element z ∈ Fa
with α ∈ k(t, a).

3.11. However, we need to show that g(y) = (Fp)(y) for every y ∈ Fa. Recall that for
any y ∈ Fa, there exists some γ ∈ k(t, a) such that all but finitely many components of
y have the form yd = γ ◦ ∇d with d ∈ obj k. An inductive argument using the operations
oµ with µ ∈ mor k will complete the proof of this fact. To this end, let S ⊆ obj k be a
finite set such that yd = γ ◦ ∇d for every d ∈ (obj k) \ S. Explicitly then,

yd =

{
some µd ∈ k(d, a) if d ∈ S,
γ ◦ ∇d if d ∈ (obj k) \ S.

If a /∈ S, then also yd = γ ◦ ∇d for every d ∈ (obj k) \ S ′ for the larger set S ′ = S ∪ {a},
so that we may just as well assume that a ∈ S.

So let a ∈ S. Order the finite set S linearly in such a way that a is its last element.
We proceed inductively along the order c1 < c2 . . . < cm < a of S = {c1, . . . , cm, a} as
follows.
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Let c1 ∈ S \ {a}, and denote µ1 = yc1 ∈ k(c1, a). Let z ∈ Fa be the (a, γ)-discrete
element, and denote z1 = oa

µ1
(z). Thus

(z1)d =

{ 1a if d = a,
µ1 if d = c1,
γ ◦ ∇d if d ∈ (obj k) \ {a, c1}.

(2)

Since g(z1) = g(oa
µ1

(z)) = ob
µ1

(g(z)) and because, for every w = {wd | d ∈ obj k}, the
operation ob

µ1
with µ1 ∈ k(c1, a) is given by

ob
µ1

(w)d =

{
wa ◦ µ1 if d = c1,
wd if d ∈ (obj k) \ {c1},

for w = g(z1) we obtain

g(z1)d = ob
µ1

(g(z))d =

{ p if d = a
p ◦ µ1 if d = c1,
p ◦ γ ◦ ∇d if d ∈ (obj k) \ {a, c1}.

Therefore (z1)d = yd and g(z1)d = (Fp)(z1)d = p ◦ yd for every d ∈ {c1} ∪ ((obj k) \ S).
This constitutes the initial induction step. Next suppose that c2 ∈ S \ {a, c1} exists.
Define z2 = oa

µ2
(z1) with µ2 = yc2 ∈ k(c2, a); thus

(z2)d =

{ 1a if d = a,
µi if d = ci for some i ∈ {1, 2},
γ ◦ ∇d if d ∈ (obj k) \ {a, c1, c2}.

(3)

Using the operation oµ2 , we now similarly obtain

g(z2)d =

{ p if d = a
p ◦ µi if d = ci for some i ∈ {1, 2},
p ◦ γ ◦ ∇d if d ∈ (obj k) \ {a, c1, c2}.

Thus (z2)d = yd and p ◦ yd = (Fp)(z2)d = g(z2)d for every d ∈ {c1, c2} ∪ ((obj k) \ S).
Continuing inductively along the order of S \ {a} = {c1, . . . , cm}, we conclude that for
the element zm = (oa

µm
◦ . . . ◦ oa

µ1
)(z) we have (zm)d = yd and g(zm)d = (Fp)(y)d for every

d ∈ {c1, c2, . . . cm} ∪ ((obj k) \ S) = (obj k) \ {a}.
In the final step, we apply the operation oµ with µ = ya ∈ k(a, a) to the element

zm = (oa
µm
◦ . . . ◦ oa

µ1
)(z) (or to the element z0 = z in the case of S = {a}) in the same

argument, to conclude that g(y) = (Fp)(y). Since this holds true for any given y ∈ Fa,
we have g = Φ0p for the k-morphism p : a→ b defined by (1) – as was to be shown.

This completes the proof of Lemma 3.4.

3.12. Observation. All operations of any algebra Φ0a with a ∈ obj k are idempotent.
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Proof. We consider the operations oa
ν : Fa→ Fa first. Recall that for a given ν ∈ k(c, c′)

and for any x = {xd ∈ k(d, a) | d ∈ obj k}, the element x′ = oa
ν(x) has the components

x′d = oa
ν(x)d =

{
xc′ ◦ ν for d = c,
xd for d 6= c.

Denote x′′ = oa
ν(x

′). We then have x′′c = oa
ν(x

′)c = x′c′ ◦ ν. If c′ 6= c then x′c′ = xc′ and
hence x′′c = xc′ ◦ ν = x′c while for c = c′ we have x′′c = x′c′ ◦ ν = x′c again. For d 6= c, we
have x′′d = x′d = xd. Altogether x′′ = x′ and hence oa

ν is idempotent.
Recall that the remaining operations ωa

c,γ : Fa → Fa of Φa with c ∈ obj k and
γ ∈ k(t, c) are given by

x′d = ωa
c,γ(x)d =

{
xc if d = c,
xc ◦ γ ◦ ∇d if d ∈ (obj k) \ {c}.

Denote x′′ = ωa
c,γ(x

′). Obviously x′′c = x′c = xc and for d 6= c we have x′′d = x′c ◦ γ ◦∇d and
x′d = xc ◦ γ ◦ ∇d and hence x′′d = x′d follows from the equality x′c = xc shown just above.
Therefore x′′ = x′, and hence ωa

c,γ is also idempotent.

The proof of Theorem 3.1 is now complete.

A weaker form of Theorem 3.1 dealing only with finite products was proved and used
already in [13].

4. Representations by algebraic systems

In this section we construct a limit preserving representation of any infinite strongly
connected small category k with a terminal object into the category S(1 × κ ; 1) of all
algebraic systems with κ = |mor k | unary operations and one unary relation. Adding
the unary relation thus improves both Theorem 2.2 and Theorem 3.1 for infinite strongly
connected small categories with a terminal object.

4.1. Lemma. Let k be a small strongly connected category with a terminal object. Then
k can be fully embedded with the preservation of all its existing limits into the category
S of algebraic systems having as many unary operations oν as k has morphisms, one
unary relation U , and one α-ary relation R for which the cardinal α is one more than the
cardinality of the set of objects of k.

Lemma 4.1 will be proved in 4.2–4.11 below.

4.2. To define a limit preserving functor Φ : k → S, we use the product G : k → Set of
hom-functors from Section 2.

4.3. On each Ga =
∏
{k(c, a) | c ∈ obj k}, we define the structure of an S-object

Φa = (Ga;Ua, Ra, {oa
ν | ν ∈ mor k})

having a unary relation Ua ⊆ Ga, α-ary relation Ra ⊆ (Ga)α and unary operations
oa

ν : Ga→ Ga for ν ∈ mor k defined in 4.4–4.6 below.
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4.4. First we define the unary relation Ua on Ga. To do this, for any c ∈ obj k we let
∇c : c→ t denote the unique k-morphism to the terminal object t of k and then set

Ua = {{γ ◦ ∇c ∈ k(c, a) | c ∈ obj k} | γ ∈ k(t, a)}.

We show that (Gp)(Ua) ⊆ Ub for any p ∈ k(a, b). Indeed, for each element e = {γ ◦ ∇c |
c ∈ obj k}, the element e′ = (Gp)(e) has every its c-component of the form e′c = p ◦ γ ◦∇c

in which p ◦ γ ∈ k(t, b), so that e′ ∈ Ub ⊆ Gb as claimed.

4.5. Secondly, for any ν ∈ k(c, c′), we define a unary operation oa
ν : Ga→ Ga by setting,

for any x = {xd ∈ k(d, a) | d ∈ obj k} ∈ Ga,

oa
ν(x)d =

{
xd for d 6= c,
xc′ ◦ ν for d = c.

It is clear that any Gp : Ga→ Gb with p ∈ k(a, b) preserves these operations.

4.6. Finally we define an α-ary relation Ra on Ga. This α-ary relation Ra is indexed
by the disjoint union G = {0} ∪ obj k. We set

Ra = {Rx,γ | x ∈ Ga and γ ∈ k(t, a)},

where the entries of each element Rx,γ ∈ Ra ⊆ (Ga)G are Rx,γ(0) = x ∈ Ga and, for any
c ∈ obj k the element Rx,γ(c) ∈ Ga is given by

Rx,γ(c)d =

{
xd if d = c,
γ ◦ ∇d if d ∈ (obj k) \ {c}. (4)

To verify that (Gp)G(Ra) ⊆ Rb for every p ∈ k(a, b), choose any Rx,γ ∈ Ra. Then
(Gp)G(Rx,γ) ∈ (Gb)G has the following entries. First, the entry at 0 ∈ G is (Gp) ◦
(Rx,γ(0)) = G(p)(x) = {p ◦ xd | d ∈ obj k}. For any c ∈ obj k, by (4) we have

[(Gp)(Rx,γ(c))]d =

{
p ◦ xc if d = c,
(p ◦ γ) ◦ ∇d if d ∈ (obj k) \ {c}.

Hence (Gp)G(Rx,γ) ∈ Rb, and (Gp)G(Ra) ⊆ Rb follows.

4.7. From 4.2–4.6 it follows that setting

Φa = (Ga;Ua, Ra, {oa
ν | ν ∈ mor k}) for a ∈ obj k and Φp = Gp for p ∈ k(a, b)

produces a well-defined one-to-one functor from k to the category S of all algebraic systems
with the unary operations oν and the relations U and R.
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4.8. To prove that Φ is full, let g : Ga → Gb be any mapping that preserves all
operations and both relations. Select and fix some arbitrary γ ∈ k(t, a). Using this γ, let
z ∈ Ga be the element defined by

zd =

{
1a for d = a,
γ ◦ ∇d for d ∈ (obj k) \ {a}.

Then g(z) ∈ Gb has the component g(z)a ∈ k(a, b), and we denote

p = g(z)a.

For γ ◦∇a ∈ k(a, a), the mapping g preserves its corresponding operation oγ◦∇a , implying
that g(oa

γ◦∇a
(z)) = ob

γ◦∇a
(g(z)). From the definition of oa

γ◦∇a
and of the element z ∈ Ga

it follows that for every c ∈ obj k, the element oa
γ◦∇a

(z) has the c-component oa
γ◦∇a

(z)c =
γ ◦ ∇c. Therefore oa

γ◦∇a
(z) ∈ Ua and hence ob

γ◦∇a
(g(z)) = g(oa

γ◦∇a
(z)) ∈ Ub. Thus there is

a δ ∈ k(t, b) such that ob
γ◦∇a

(g(z))c = δ ◦ ∇c for all c ∈ obj k. The operation ob
γ◦∇a

does
not change the d-component of its argument for d 6= a, so that g(z)d = δ◦∇d for all d 6= a,
with the same δ. For the object a ∈ obj k, the a-component ob

γ◦∇a
(g(z))a of ob

γ◦∇a
(g(z))

is g(z)a ◦ γ ◦∇a = p ◦ γ ◦∇a and from ob
γ◦∇a

(g(z)) ∈ Ub it follows that δ ◦∇c = p ◦ γ ◦∇c

for every c ∈ obj k. Therefore the element g(z) ∈ Gb has the components

g(z)d =

{
p ∈ k(a, b) if d = a,
p ◦ γ ◦ ∇d if d ∈ (obj k) \ {a}. (5)

To proceed further, we need the following

4.9. Claim. Let c ∈ obj k and µ ∈ k(c, a) be given. Let the element y = {yd | d ∈
obj k} ∈ Ga be defined by

yd =

{
µ if d = c,
γ ◦ ∇d if d ∈ (obj k) \ {c}.

Then g(y) = {p ◦ yd | d ∈ obj k}, that is, g(y) = (Gp)(y) for any such element y ∈ Ga.

Proof. First, let us suppose that a 6= c, and let z ∈ Ga be the element defined in
4.8. Thus the components of g(z) are as in (5) above. Write z′ = oa

γ◦∇a
(oa

µ(z)). The
definition of operations oµ and oγ◦∇a implies that z′ = y. Hence g(y) = ob

γ◦∇a
(ob

µ(g(z))).
Since ob

µ only replaces the c-component of g(z) by (g(z))a ◦ µ = p ◦ µ and ob
γ◦∇a

only
replaces the a-component of g(z) by (g(z))a ◦ γ ◦∇a = p ◦ γ ◦∇a, from (5) it follows that
g(y) = {p ◦ yd | d ∈ obj k}.

Second, if a = c, then y = oa
µ(z) and the calculation is similar but easier. This

concludes the proof of Claim 4.9.
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4.10. To complete the proof of fullness of Φ, let x = {xd ∈ k(d, a) | d ∈ obj k} ∈ Ga
be arbitrary. Let Rx,γ ∈ Ra ⊆ (Ga)G be the element of Ra with the previously specified
γ ∈ k(t, a). Recall that the G-tuple Rx,γ from Ra has the entry Rx,γ(0) = x and, for every
c ∈ obj k, the entry Rx,γ(c) ∈ Ga is given by its components

Rx,γ(c)d =

{
xd for d = c,
γ ◦ ∇d for d ∈ (obj k) \ {c},

so that each Rx,γ(c) ∈ Ga has the form to which Claim 4.9 above applies. Therefore, by
Claim 4.9, g(Rx,γ(c)) = (Gp)(Rx,γ(c)), meaning that g(Rx,γ(c))d = p ◦ (Rx,γ(c))d for every
d ∈ obj k. But (Gg)G sends Ra into Rb, and this implies that g(Rx,γ) = Rv,δ ∈ Rb for
some v ∈ Gb and some δ ∈ k(t, b). For any c ∈ obj k, the element Rv,δ(c) ∈ Gb has the
components

Rv,δ(c)d =

{
vc for d = c,
δ ◦ ∇d for d ∈ (obj k) \ {c},

and Rv,δ(0) = v ∈ Gb. But Rv,δ(c)d = p ◦ (Rx,γ(c))d for all d ∈ obj k, so that vd = p ◦ xd

for d = c, and δ ◦ ∇d = p ◦ γ ◦ ∇d for all d ∈ (obj k) \ {c}. What is then the element
v ∈ Gb? The element v = Rv,δ(0) has the d-component vd = Rv,δ(d)d = p ◦ xd ∈ k(d, b).
This determines v ∈ Gb uniquely as the element v = {p ◦ xd ∈ k(d, b) | d ∈ obj k}, and
hence implies that v = (Gp)(x). Since x ∈ Ga was arbitrary, we conclude that g = Gp.
Altogether, this shows that the functor Φ is full.

Remark. Having concluded the proof of fullness of Φ, we comment that the final part
of the argument removes the proof’s dependence on the initially selected morphism γ ∈
k(t, a); any other γ′ ∈ k(t, a) would serve the purpose equally well. Indeed, if we choose
another γ′ ∈ k(t, a), if z′ ∈ Ga is the element with z′a = 1a and z′d = γ′ ◦∇d for d 6= a, and
if p′ = (g(z′))a, then the proof’s procedure shows that g(x) = (Gp′)(x) for every x ∈ Ga.
Choosing an x ∈ Ga with xa = 1a then gives p′ = ((Gp′)(x))a = (g(x))a = ((Gp)(x))a = p.

4.11. To show that Φ preserves all limits existing in k, let D : S → k be a diagram
with a limit limD = (l, {λs ∈ k(l, Ds) | s ∈ objS}) in k. We claim that lim(Φ ◦
D) = (Φl, {Φλs ∈ S(Φl,ΦDs) | s ∈ objS}) in S. The category S is complete, so that
lim(Φ ◦D) = (L, {Λs ∈ S(L,ΦDs) | s ∈ objS}) exists in S. Let h : Φl → L denote the
unique S-morphism satisfying Λs ◦ h = Φλs for every s ∈ objS.

We know that lim(G ◦ D) = (Gl, {Gλs : Gl → GDs | s ∈ objS}) in Set because G
preserves all limits. Let V : S → Set denote the standard forgetful functor. There is a
unique mapping f : V L → Gl such that Gλs ◦ f = V Λs for every s ∈ objS. But then
Gλs ◦ f ◦ V h = V Λs ◦ V h = Gλs for every s ∈ objS, and hence f ◦ V h = 1Gl because the
maps Gλs form a limit cone.

The functor V : S → Set preserves all limits, so that (V L, {V Λs : V L → GDs | s ∈
objS}) is a limit in Set. But then from V Λs ◦V h◦f = Gλs ◦f = V Λs for every s ∈ objS
it follows that V h ◦ f = 1V L. Therefore the mapping f is a bijection, and we only need
to show that f carries an S-morphism L→ l.
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To see that f preserves the unary relation, it suffices to note that Ul 6= ∅. A similar
observation shows that f also preserves the relation R. The unary operations are preserved
because any bijection f between two algebras whose inverse h is a homomorphism must
be an isomorphism. This completes the proof of Lemma 4.1.

The main result of this section will now easily follow.

4.12. Theorem. If k is an infinite strongly connected small category with a terminal
object and |mor k | = α, then there is a full embedding Φ1 : k → S(1 × α ; 1) preserving
all limits existing in k.

Proof. From Lemma 4.1 it follows that there is a full embedding Φ : k → S preserving
all limits such that Φa = (Ga;Ua, Ra, {oν | ν ∈ α}) ∈ S(1×α ; 1, α) is an algebraic system
in which Ua is a unary relation, Ra is an α-ary relation and the α operations oν on Ga
are unary. Indeed, this is because k is infinite, so that | obj k | + 1 ≤ |mor k | = α and
hence we can uniformly enlarge the arity | obj k | + 1 of all Ra with a ∈ obj k to α when
necessary. Henceforth we assume that Ra ⊆ (Ga)α for every a ∈ obj k.

Noting that the relations Ua and Ra are always non-void, in the first step we replace
them by the non-void relation Va = Ua×Ra which is α-ary, thereby defining an algebraic
system Θa = (Ga;Va, {oν | ν ∈ α}) ∈ S(1×α;α) with one α-ary relation Va and α unary
operations oν : Ga→ Ga.

In the second step, we define the algebraic system Φ1a as the extension of the system
(Θa)α by α operations that are the composites ∆ ◦ pi of the projections pi : (Θa)α → Θa
with i ∈ α and the diagonal map ∆ : Ga → (Ga)α. Since α is infinite, the algebraic
system thus obtained, that is, the system

Φ1a = ((Ga)α;V α
a , {oα

ν | ν ∈ α} ∪ {∆ ◦ pi | i ∈ α})

belongs to S(1 × α ; 1). Setting Φ1p = (Gp)α for every p ∈ k(a, b) then gives rise to a
limit preserving one-to-one functor Φ1 : k → S(1×α ; 1). A standard argument using the
‘projection’ unary operations ∆ ◦ pi with i ∈ α then ensures that Φ1 is full, cf. [10].

5. Representations of countable categories

A category U is called alg-universal if for every category Alg(Σ) of algebras of mono-
sorted similarity type Σ there is a full and faithful functor Alg(Σ) → U . There are
numerous categories U of algebras or algebraic systems that are alg-universal, see [10].
One consequence of alg-universality of U is that for every small category k there is a full
embedding Ψk : k → U , see [10]. If U is an alg-universal category of algebras or algebraic
systems, then these full embeddings are small in the sense that for an infinite k the size
of representing objects Ψka ∈ objU satisfies |Ψka| ≤ |mor k| for every a ∈ obj k and some
are such that every Ψka is finite whenever |mor k| is finite (we then say that Ψk preserves
finiteness). Small full embeddings do exist, for instance, into the alg-universal category
of all commutative rings with unit [4] and into numerous varieties of non-commutative
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semigroups [8], but no such full embedding can preserve finiteness. Small full embeddings
Ψk : k → U that also preserve finiteness exist into the category of directed or undirected
graphs, into Alg(1 × 2), see [10], and even into certain finitely generated varieties of
(0, 1)-lattices [5] and of distributive double p-algebras [7].

But if U is any alg-universal category of algebras or algebraic systems whatsoever, then
none of the full embeddings k → U can preserve finite products for the finite category k
of Example 2.1. As we shall see below, any countable strongly connected category with
a terminal object can be fully embedded into Alg(1 × 2) by a functor preserving limits
over finitely many objects, but full embeddings into any alg-universal variety of (0, 1)-
lattices or distributive double p-algebras preserving finite products do not exist because
of congruence distributivity, see [12]. This is why the present paper is restricted to limit
preserving full embeddings into alg-universal categories of unary algebras or algebraic
systems.

To reduce the similarity type of algebras (or algebraic systems) representing countable
strongly connected categories, we need the following result of [11].

5.1. Proposition. [11] There are limit preserving full embeddings
(1) Ψω : Alg(1× ω) → Alg(1× 2),
(2) for any n ∈ ω, a finiteness preserving Ψn : Alg(1× n) → Alg(1× 2),

such that for each λ ∈ ω ∪ {ω}, the functor Ψλ is carried by the hom-functor Set(γλ, − )
with some suitable cardinal γλ which is finite whenever λ is.

We now apply the above results to countable categories.

5.2. Corollary. Let k be a strongly connected category with a terminal object and
countable |mor k |. Then there is a full embedding Φ′

0 : k → Alg(1 × 2) preserving all
limits of diagrams with finitely many objects existing in k.

Proof. We set Φ′
0 = Ψω◦Φ0, where Φ0 : k → Alg(1×ω) is the functor from Theorem 3.12

and Ψω : Alg(1× ω) → Alg(1× 2) is the functor from Proposition 5.1(1).

5.3. Corollary. Let k be a strongly connected category with a terminal object and
countable |mor k |. Then there is a full embedding Φ′

1 : k → S(1 × 2 ; 1) preserving all
limits existing in k.

Proof. Let Ψω be the functor from Proposition 5.1(1). The functor Φ1 : k → S(1×ω ; 1)
from Theorem 4.12 has the unary relation W = V ω on the objects in its range. Define
Φ′

1 : k → S(1× 2 ; 1) on k-objects by Φ′
1a = (Ψωa ;Z), with Z = W ω, and by Φ′

1p = Φ1p
on k-morphisms.

5.4. Corollary. For any finite strongly connected category k, there is a limit preserv-
ing full embedding Λ : k → Alg(1× 2) such that Λa is a finite algebra for every a ∈ obj k.

Proof. If k is finite, then the limit preserving full embedding Ψ : k → Alg(1 × λ) of
Theorem 2.2 has λ finite and the objects Ψa are finite for all a ∈ obj k. Set Λ = Ψλ ◦Ψ,
where Ψλ; Alg(1× λ) → Alg(1× 2) is as in Proposition 5.1(2).n
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In conclusion, we ask some naturally arising questions.

Problem 1. Is there a full embedding of Alg(1× 2) into some Alg(n× 1) that preserves
limits over finitely many algebras (or at least products of finitely many algebras)?

Problem 2. For which cardinals κ > ω, if any, is there a full embedding of Alg(1 × κ)
into Alg(1 × 2) that preserves limits over finitely many algebras (or products of finitely
many algebras)?

Problem 3. Fully characterize the small categories k for which there is a faithful functor
H : k → Set preserving all limits (or products) existing in k.
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36 V. TRNKOVÁ AND J. SICHLER
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