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ABELIAN GROUPOIDS AND
NON-POINTED ADDITIVE CATEGORIES

DOMINIQUE BOURN

Abstract. We show that, in any Mal’tsev (and a fortiori protomodular) category E,
not only the fibre GrdXE of internal groupoids above the object X is a naturally Mal’tsev
category, but moreover it shares with the category Ab of abelian groups the property
following which the domain of any split epimorphism is isomorphic with the direct sum
of its codomain with its kernel. This allows us to point at a new class of “non-pointed
additive” categories which is necessarily protomodular. Actually this even gives rise
to a larger classification table of non-pointed additive categories which gradually take
place between the class of naturally Mal’tsev categories [16] and the one of essentially
affine categories [5]. As an application, when furthermore the ground category E is
efficiently regular, we get a new way to produce Bear sums in the fibres GrdXE and,
more generally, in the fibres n-GrdXE.

Introduction

The main project of this work was to gather some properties (related to cohomological
algebra, see the two last sections) of the category GrdC of internal groupoids inside
a protomodular [4] category C. In a way, the existence of the semi-direct product in
the category Gp of groups and the associated possible reduction of internal groupoids to
crossed modules made that the systematic investigation of the category GrdGp of internal
groupoids in Gp was not done, and no guiding example of such a protomodular context
was existing. Actually it appears that our main results concerning GrdC do hold when
C is only a Mal’tsev category in the sense of [12] (see also [13] and [14]).

We show that, in the Mal’tsev context, any groupoid is abelian in the sense of [7],
which implies that any fibre GrdXC of internal groupoids having X as “object of objects”
is a naturally Mal’tsev category in the sense of [16]. Moreover we show that, given any
split internal functor (f

1
, s1) in the fibre GrdXC, the downward pullback:

K1[f•] //k1 //

��

W 1

f
1

��
∆X //

α1Z1

//

OO

Z1

s1

OO
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produces an upward pushout. In other word, when C is a Mal’tsev category, the fibre
GrdXC shares with the category Ab of abelian groups (and more generally the fibre
Grd1C = AbC) the property following which the domain of any split epimorphism is
isomorphic with the direct sum of its codomain with its kernel (∆X being the initial
object of the fibre GrdXC). It is all the more interesting since this is absolutely not the
case in the fibres AbGrdXSet, X 6= 1, of abelian groupoids in Set.

This kind of results gives rise to new classes of “non-pointed additive” categories which
take place between the class of naturally Mal’tsev categories [16] and the one of essen-
tially affine categories [5]. Subtle distinctions between different kinds of cohesion, which
compensate the disorganisation determined by the absence of 0 (and consequently by the
ordered set of subobjects of 1), uncomfortably demand to introduce a bit of terminology.
We give a synthetic classification table in Section 2.9. The most interesting interme-
diate class is the one of penessentially affine categories (see Section 2.1 for the precise
definition): it is a class of non-pointed additive categories which are necessarily proto-
modular and such that any monomorphism is normal, and which, precisely, contains any
fibre GrdXC in the Mal’tsev context. This new structural approach of internal groupoids
allows us to get a new way to produce Baer sums in these fibres, and more generally a
new way to produce the cohomology groups Hn

C(A), see Section 3. All this leads also to
a more technical last section which is devoted to the fibre GrdXE when E is only finitely
complete.

1. Internal groupoids

Let E be a finitely complete category, and GrdE denote the category of internal groupoids
in E. An internal groupoid Z1 in E will be presented (see [2]) as a reflexive graph Z1 ⇒ Z0

endowed with an operation ζ2:

R2[z0]

R(ζ2)

��
z2 //

z0
//

z1 // R[z0]

ζ2

��

z0
//

z1 // Z1

z1 //

z0
//
Z0

s0oo

making the previous diagram satisfy all the simplicial identities (including the ones in-
volving the degeneracies), where R[z0] is the kernel equivalence relation of the map z0.
In the set theoretical context, this operation ζ2 associates the composite g.f−1 with any
pair (f, g) of arrows with same domain. We denote by ()0 : GrdE → E the forgetful
functor which is a fibration. Any fibre GrdXE above an object X has an initial object
∆X, namely the discrete equivalence relation on X, and a final object ∇X, namely the
indiscrete equivalence relation on X. This fibre is quasi-pointed in the sense that the
unique map

$ : 0 → 1 = ∆X → ∇X
is a monomorphism; this implies that any initial map is a monomorphism, and we can
define the kernel of any map as its pullback along the initial map to the codomain. The
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fibre Grd1E is nothing but the category GpE of internal groups in E which is necessarily
pointed protomodular. It was shown in [4] that any fibre GrdXE is still protomodular
although non-pointed. This involves an intrinsic notion of normal subobject and abelian
object. They both have been characterized in [7].

1.1. Abelian groupoids. Let us begin by the abelian groupoids. Consider the follow-
ing pullback in GrdE which only retains the “endomorphisms” of Z1:

En1Z1
//ε1Z1 //

e1Z1
��

Z1

ω1Z1
��

∆Z0
// // ∇Z0

Let us recall [7] that:

1.2. Proposition. The groupoid Z1 is abelian if and only if the group e1 : En1Z1 → Z0

in the slice category E/Z0 is abelian.

In the set theoretical context, this means that any group of endomaps in Z1 is abelian.
We shall denote by AbGrdXE the full subcategory of GrdXE whose objects are the abelian
groupoids.

Now consider any internal functor f
1

: W 1 → Z1 in AbGrdXE. Suppose it is split by
a functor s1, and consider the following pullback determining the kernel of f

1
:

K1[f 1
] //k1 //

��

W 1

f
1

��
∆X //

α1Z1

//

OO

Z1

s1

OO

In the case X = 1, the upward square is actually a pushout in AbGrd1E = AbE the
category of abelian groups in E. Does it still hold in any case? Suppose given a pair
h1 : K1[f 1

] → V 1, t1 : Z1 → V 1 of internal functors in AbGrdXE.

1.3. Lemma. When E = Set, there is a factorization g
1

: W 1 → V 1 such that g
1
.k1 = h1

and g
1
.s1 = t1 if and only if, for all pair x

γ→ x
φ→ y of maps in K[f

1
] × Z1 with same

domain, we have:
h1(s1φ.γ.s1φ

−1) = t1φ.h1γ.t1φ
−1

Proof. For any δ : y → y in K1[f 1
], we must have g1δ = h1δ, and for any φ : x → y

in Z1, we must have g1.s1φ = t1φ. Accordingly, for any ψ : x → y in W 1, we must have
g1ψ = g1(ψ.s1f1ψ

−1).g1(s1f1ψ) = h1(ψ.s1f1ψ
−1).t1(f1ψ). It remains to show that this

definition is functorial, which is easily stated to be equivalent to our condition.
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Accordingly, the category AbGrdXE of abelian groupoids in the fibre aboveX 6= 1 does
not share the classical property of AbE = AbGrd1E concerning the split epimorphisms.

1.4. Groupoids in Mal’tsev and naturally Mal’tsev categories. However
we are going to show that this is the case as soon as the ground category E is a Mal’tsev
category. Recall that E is a Mal’tsev category ([12], [13]) when it is finitely complete and
such that any reflexive relation is actually an equivalence relation. When E is a Mal’tsev
category, we can truncate at level 2 (i.e. at the level of R[z0]) the diagram defining a
groupoid, see [13]. A category E is a naturally Mal’tsev category [16] when it is finitely
complete and such that any object X is equipped with a natural Mal’tsev operation. Any
naturally Mal’tsev category is a Mal’tsev category.

1.5. Theorem. Suppose E is a Mal’tsev category. Then any internal groupoid is abelian.
Accordingly any fibre GrdXE is a naturally Mal’tsev category. Moreover, for any split
epimorphism in GrdXE, the previous upward square is necessarily a pushout.

Proof. When E is a Mal’tsev category, this is still the case for the slice category E/Z0. On
the other hand, any group in a Mal’tsev category is abelian, see [13]. So, by Proposition
1.2, any groupoid is abelian. Any fibre GrdXE, being necessarily protomodular [4] and
thus a Mal’tsev category, is a naturally Mal’tsev category, since any object in GrdXE is
abelian and produces a natural Mal’tsev operation.

We are now going to show the next point by a classical method in Mal’tsev categories.
Consider the relation R � K1[f 1

]× Z1 defined by γRφ if

domγ = domφ ∧ h1(s1φ.γ.s1φ
−1) = t1φ.h1γ.t1φ

−1

Suppose domγ = domφ = x, then obviously we have 1xRφ, γR1x and 1xR1x. Accordingly
we can conclude that γRφ for all (γ, φ) with same domain, whence, according to Lemma
1.3, the desired unique factorization g

1
: W 1 → V 1.

This result holds a fortiori in any protomodular category E. We have now an impor-
tant structural property:

1.6. Corollary. Suppose E is a Mal’tsev category. Then for any groupoid Z1 the
following upward left hand side square is a pushout in GrdE.

Proof. Let us consider the following diagram:

En1Z1

// ε1Z1 //

ε̄1Z1

//

e1Z1

��

Z1 ×0 Z1

p1 //

p0

��

Z1

ω1Z1

��
∆Z0

// //

α1En1Z1

OO

Z1 ω1Z1

//

s0

OO

∇Z0

The whole rectangle and the right hand side squares being pullbacks, there is a unique
dotted arrow which makes the downward square a pullback, and consequently the upward
left hand side square a pushout in GrdZ0E according to the previous theorem. But, the
functor ()0 : GrdE → E being a fibration, it is still a pushout in GrdE.
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It was shown in [5] that a finitely complete category E is a Mal’tsev category if and
only if any reflexive graph Z ′

1 which is a subobject of a groupoid Z1 is itself a groupoid.
This property allows to strengthen the Theorem 1.5:

1.7. Theorem. Suppose E is a Mal’tsev category. Given any split epimorphism (f
1
, s1) :

W 1 � Z1 in GrdXE, there is a bijection between the pointed subobjects of the kernel K1[f 1
]

and the pointed subobjects of (f
1
, s1).

Proof. Any pointed subobject j
1

of (f
1
, s1) produces a pointed subobject of K1[f 1

] by
pullback along k1:

A1
// //

i1
��

W ′
1

j
1

��
K1[f 1

] //k1 //

��

W 1

f
1

��
∆X //

α1Z1

//

OO

Z1

s1

OO

Conversely suppose given a pointed subobject i1 : A1 � K1. Define W ′
1 as the subobject

of W1 whose elements are those maps τ : x → y ∈ W1 which satisfy τ.s1f1(τ
−1) ∈ A1.

This subobject is given by the following right hand side pullback in E where l = (w1, ν)
(with ν the map which internally corresponds to the mapping: τ 7→ τ.s1f1(τ

−1)) is a
natural retraction of k1 : K1[f 1

] � W1:

A1

i1
��

kA
1 // W ′

1
λ //

j1
��

A1

i1
��

K1[f 1
]
k1

// W1 l
// K1[f 1

]

This produces a natural section kA1 of λ. The object W ′
1 clearly determines a subgraph

W ′
1 of the groupoid W 1. Since E is a Mal’tsev category, W ′

1 is actually a subgroupoid
such that the following square is a pullback in GrdXE:

A1
// kA

1 //

i1
��

W ′
1

j
1

��
K1[f 1

] //
k1

// W 1

1.8. Connected equivalence relations. Let us now point out some properties
related to commutator theory. First consider R and S two equivalence relations on an
object X in any finitely complete category E. Let us recall the following definition from
[9]:



ABELIAN GROUPOIDS AND NON-POINTED ADDITIVE CATEGORIES 53

1.9. Definition. A connector on the pair (R, S) is a morphism

p : R×X S → X, (xRySz) 7→ p(x, y, z)

which satisfies the identities :

1) xSp(x, y, z) 1′) zRp(x, y, z)

2) p(x, y, y) = x 2′) p(y, y, z) = z

3) p(x, y, p(y, u, v)) = p(x, u, v) 3′) p(p(x, y, u), u, v) = p(x, y, v)

In set theoretical terms, Condition 1 means that with any triple xRySz we can associate
a square:

x S

R

p(x, y, z)
R

y
S

z.

More acutely, any connected pair produces a double equivalence relation in E:

R×X S

p0

��

(p,d1.p0)

��

(d0.p0,p)
//

p1 //
S

d0

��

d1

��

oo

R
d0

//

d1 //

OO

X

OO

oo

Example 1) An emblematical example is produced by a given discrete fibration f
1

: R→
Z1 with R an equivalence relation. For that consider the following diagram:

R[f1]

R(d0)

��
R(d1)

��

p0
//

p1 //
R

d0

��

d1

��

oo f1 // Z1

z1

��

z0

��
R[f0]

p0
//

p1 //

OO

X

OO

oo
f0

// Z0

OO

It is clear that R[f1] is isomorphic to R[f0]×X R and that the map

p : R[f1]
p0→ R

d1→ X

determines a connector.
2) Given any groupoid Z1, we have such a discrete fibration R[z0] → Z1:

R[z0]

z1
��

z0
��

ζ2 // Z1

z1
��

z0
��

Z1

OO

z1
// Z0

OO
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which implies a connector on the pair (R[z0], R[z1]) made explicit by the following diagram:

x
φ //

χ

��:
::

::
::

t x t

7−→
y

ψ
// z y

φ.χ−1.ψ

AA�������
z

The converse is true as well, see [13] and [9]; given a reflexive graph :

Z1

z1 //

z0
//
Z0

s0oo

any connector on the pair (R[z0], R[z1]) determines a groupoid structure.

Now let us observe that:

1.10. Proposition. Suppose p is a connector for the pair (R,S). Then the following
reflexive graph is underlying a groupoid we shall denote by R]S:

R×X S
d0.p0

//

d1.p1 //
Xoo

Proof. Thank to the Yoneda embedding, it is enough to prove it in Set. This is straight-
forward just setting:

(zRuSv).(xRySz) = xRp(u, z, y)Sv

The inverse of the arrow xRySz is zRp(x, y, z)Sx.

Remark 1) When R ∩ S = ∆X, the groupoid R]S is actually an equivalence relation.
2) Let Z1 be any reflexive graph. We noticed it is a groupoid if and only if [R[z0], R[z1]] =
0. It is easy to check that:

R[z0]]R[z1] ' Z2
1

where Z2
1 is the groupoid whose objects are the maps and morphisms the commutative

squares, in other words the groupoid which represents the natural transformations between
functors with codomain Z1. Next we have:

1.11. Proposition. Given a discrete fibration f
1

: R → Z1, the associated internal
functor R[f0]]R→ R→ Z1 is fully faithful.

Proof. This functor φ
1

is given by the following diagram:

R[f1]

d1.p1
��

d0.R(d0)
��

f1.pi // Z1

z1
��

z0
��

X

OO

f0
// Z0

OO
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Thank to the Yoneda embedding, it is enough to prove it is fully faithful in Set. Suppose
you have a map α : f(x) → f(x′). Since f

1
is a discrete fibration, there is an object z ∈ X

such that zRx′ and f(z, x′) = α. This implies that f(z) = f(x). Accordingly xR[f0]zRx
′

is a map in R[f0]]R above α. Suppose now that φ1(xR[f0]zRx
′) = φ1(xR[f0]z

′Rx′). This
means f(z, x′) = f(z′, x′). Since f

1
is a discrete fibration, we have necessarily z = z′.

In a Mal’tsev category, the conditions 2) imply the other ones, and moreover a con-
nector is necessarily unique when it exists, and thus the existence of a connector becomes
a property.

1.12. Example. By Proposition 3.6, Proposition 2.12 and definition 3.1 in [17], two
relations R and S in a Mal’tsev variety V are connected if and only if [R,S] = 0 in the
sense of Smith [19]. Accordingly we shall denote a connected pair of equivalence relations
by the formula [R,S] = 0.

1.13. Proposition. Suppose E is a Mal’tsev category and we have [R,S] = 0. Then
the following diagram (which is a pullback) is a pushout in GrdE:

∆X // //

��

S

iS
��

R //
iR

// R]S

Proof. Let f
1

and g
1

be two functors making the following diagram commute:

∆X // //

��

S
g
1

��
R

f
1

// Z1

We have f0 = g0(= h0) : X → Z0. Wanting h1.iR = f
1

and h1.iS = g
1

implies that
h1 : R ×X S → Z1 is given by the formula h1(xRySz) = g(y, z).f(x, y). This de-
fines a functor h1 : R]S → Z1 if and only if, for all xRySz, we have g(y, z).f(x, y) =
f(p(x, y, z), z).g(x, p(x, y, z)). This is necessarily the case when E is a Mal’tsev category.
For that, let us introduce the following relation T on R×X defined by

(xRy)Tz ⇔ ySz ∧ g(y, z).f(x, y) = f(p(x, y, z), z).g(x, p(x, y, z))

For all xRySz, we have necessarily (xRy)Ty, (yRy)Ty and (yRy)Tz. Accordingly, for all
xRySz, we have necessarily (xRy)Tz.

According to Remark 1 above, when we have R ∩ S = ∆X, the groupoid R]S being
an equivalence relation, we have also R]S = R ∨ S

1.14. The regular context. We shall end this section with a useful remark con-
cerning pullbacks of split epimorphisms and discrete fibrations in the regular context:
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1.15. Proposition. Suppose E a regular [1] Mal’tsev category. Then any (downward)
pullback of split epimorphism along a regular epimorphism produces an upward pushout:

X

x

��

f // // Z

z

��
X ′

r

OO

f ′
// // Z

t

OO

Any discrete fibration f
1

: X1 → Z1 with f0 regular epimorphic is cocartesian with respect
to the functor ()0 : GrdE → E.

Proof. Consider the following diagram:

R[f ]

R(x)

��

p0
//

p1 //
X

x

��

oo f // //

h

��
Z

z

��

φ // W

R[f ′]
p0

//

p1 //

R(r)

OO

X ′

r

OO

oo
f ′

// // Z

t

OO

g

??����������

with g.f ′ = h.r. We must find a map φ which makes the triangles commute. Since f
is a regular epimorphism, this is the case if and only if R[f ] ⊂ R[h]. Now the left hand
side squares are still pullbacks. Since E is a Mal’tsev category, the pair (R(r) : R[f ′] →
R[f ], s0 : X → R[f ]) is jointly strongly epic. So that the inclusion in question can be
checked by composition with this pair. Checking by s0 is straightforward. Checking by
R(r) is guaranteed by the existence of the map g. Let f

1
: X1 → Z1 be any discrete

fibration with f0 regular epimorphic

R[f1]

R(x0)

��
R(x1)

��

p0
//

p1 //
X1

x0

��

x1

��

oo f1 // //

h1

��
Z1

z0

��

z1

��

g1 // W1

w0

��

w1

��
R[f0]

p0
//

p1 //

OO

X

OO

oo
f0

// // Z0

OO

g0
// W0

OO

where the pair (h0 = g0.f0, h1) is underlying an internal functor X1 → W 1. By the previ-
ous part of this proof we have a map g1 such that g1.s0 = s0.g0 and g1.f1 = h1. The end of
the proof (checking the commutation with the legs of the groupoids) is straightforward.

2. Non-pointed additive categories

The result asserted by Theorem 1.7 is actually underlying a stronger property which allows
us to enrich the classification of non-pointed additive categories. The weaker notion is
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the one of naturally Mal’tsev category [16]. A naturally Mal’tsev category is a Mal’tsev
category in which any pair (R,S) of equivalence relations on an object X is connected.
The stronger one is the notion of essentially affine category [4], namely finitely complete
category with existence of pushouts of split monomorphisms along any map and such that,
given any commutative square of split epimorphisms, the downward square is a pullback
if and only if the upward square is a pushout:

X ′ g //

f ′

��

X

f
��

Y ′
h

//

s′

OO

Y

s

OO

This is equivalent to saying that any change of base functor h∗ : PtY E → PtY ′E with
respect with the fibration of points [4] is an equivalence of categories. Recall that the
category E is a naturally Mal’tsev category if and only if any fibre PtY E is additive
[5], and this last point is implied by the fact that the change of base functors h∗ are
equivalence of categories. The slice and coslice categories of a finitely complete additive
category A are essentially affine. Notice then that, thanks to the Moore normalization,
A/X is isomorphic to the fibre GrdXA. When the category E is pointed, the notions
of naturally Mal’tsev and essentially affine categories coincide with the notion of finitely
complete additive category.

There is a well known intermediate notion, namely protomodular naturally Mal’tsev
categories (recall that a category is protomodular when any change of base functor h∗ is
conservative). This is the case, for instance, for the full subcategory Ab(Gp/Y ) of the slice
category Gp/Y whose object are group homomorphisms with abelian kernel. It is easy
to check that the naturally Mal’tsev protomodular category Ab(Gp/Y ) is not essentially
affine, since this would imply, considering the following diagram in Ab(Gp/Y ), that any
split epimorphism f : X → Y with abelian kernel A is such that X = A⊕ Y :

A //

��

X
f

��
1 //

��@
@@

@@

OO

Y

1Y~~}}
}}

}

s
OO

Y

The fibres AbGrdXE of Section 1.1 are other examples of naturally Mal’tsev protomodular
categories which are not essentially affine.

2.1. Penessentially affine categories. Let us introduce now two intermediate
notions. Here is the first one:

2.2. Definition. A finitely complete category E is said to be antepenessentially affine
when, for any square of split epimorphisms as above, the upward square is a pushout as
soon as the downward square is a pullback.
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The antepenessentially affine categories are stable by slice and coslice categories. Ac-
cording to Proposition 4 in [4], the previous definition is equivalent to saying that any
change of base functor h∗ : PtY E → PtY ′E is fully faithful. So, any essentially affine
category is antepenessentially affine. On the other hand any fully faithful functor being
conservative, any antepenessentially affine category is necessarily protomodular. More-
over any antepenessentially affine category is a naturally Mal’tsev category for the same
reasons as the essentially affine categories. On the other hand, again for the same rea-
son as above, the protomodular naturally Mal’tsev category Ab(Gp/Y ) and AbGrdXE (E
finitely complete) are not antepenessentially affine.

2.3. Definition. A finitely complete category E is said to be penessentially affine when
it is antepenessentially affine and such that any (fully faithful) change of base functor h∗

is saturated on subobjects.

Recall that a left exact conservative functor U : C → D is saturated on subobjects when
any subobject j : d � U(c) is isomorphic to the image by U of some (unique up to
isomorphism) subobject i : c′ � c. So, being penessentially affine implies that, given any
downward parallelistic pullback as below and any pointed subobject j′ : U ′ � X ′ (with
the retraction φ′ of σ′ such that f ′.j′ = φ′):

X ′ g //

��




















X

f

����
��
��
��
��
��
�

U ′ γ //

j′
44

��

U

j
55

Y ′
h

//

σ′

OO

FF













Y

s

GG�������������
σ

OO

there is a (dotted) pushout of σ′ along h which makes the upper upward diagram a
pullback. The penessentially affine categories are stable by slice and coslice categories.
Here is our first major structural point:

2.4. Theorem. Suppose E is a Mal’tsev category. Then any fibre GrdXE is penessen-
tially affine.

Proof. Let us show first it is antepenesentially affine. Consider the following right hand
side downward pullback in GrdXE:

K1[f
′
1
] // k1 //

��

W ′
1

f ′
1

��

g
1 // W 1

f
1

��
∆X //

α1Z
′
1

//

OO

Z ′
1

s′1

OO

h1

// Z1

s1

OO

Complete the diagram by the left hand side downward pullback, then the whole downward
rectangle is a pullback. Now the upward left hand side square is a pushout as well as the
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whole upward rectangle. Accordingly the right hand side upward square is a pushout.
The fact that the change of base functor along h1 is saturated on subobjects is checked
in the same way, thanks to Theorem 1.7.

2.5. Normal subobjects. Any penessentially affine category is protomodular, and
consequently yields an intrinsic notion of normal subobject. The aim of this subsection is
to show that any penessentially affine category is similar to an additive category insofar
as any monomorphism is normal. Let us begin by the following more general observation:

2.6. Proposition. Let E be a naturally Mal’tsev category. Then, given any monomor-
phism s : Y � X split by f , there is a unique equivalence relation R on X such that s is
normal to R and R ∩ R[f ] = ∆X. In any protomodular naturally Mal’tsev category, and
a fortiori in any antepenessentially affine category, a split monomorphism is normal.

Proof. Consider the following diagram:

Y × Y // s×1 //

p0

��

X × Y

pX

��

f×1 // Y × Y

p0

��
Y //

s
//

s0

OO

X

(1,f)

OO

f
// Y

s0

OO

soo

The right hand side downward square is a pullback of split epimorphisms in E, and
consequently a product in the additive fibre PtY E. Accordingly the left hand side upward
square is a pushout. So the map p1 : Y ×Y → Y produces a factorization ψ : X×Y → X
such that ψ.(1, f) = 1X and ψ.(s× 1) = s.p1.

Whence a reflexive graph (pX , ψ) : X × Y ⇒ X and thus a groupoid X1 since E is
a naturally Mal’tsev category and thus satisfies the Lawvere condition following which
any reflexive graph is a groupoid, see [16]. We can check f.ψ = p1.(f × 1), thus we have
a discrete fibration f

1
: X1 → ∇Y . The codomain ∇Y being an equivalence relation,

the domain X1 is an equivalence relation we shall denote by R. The monomorphism s is
normal to R since the left hand side downward square above is also a pullback. Moreover,
by commutation of limits, the following square is a pullback in GrdE:

R ∩R[f ] //

��

∆Y

��
R = X1 f

1

// ∇Y

Since f
1

is discrete fibration, the upper horizontal map is a discrete fibration and neces-
sarily we have R ∩R[f ] = ∆X.

Now suppose we have another equivalence S on X which is normal to s and such that
S ∩ R[f ] = ∆X. By the first part of the assumption, there is a map s̃ which makes the
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following downward left hand side square a pullback:

Y × Y // s̃ //

p0

��

S

d0
��

(f×f).(d0,d1)// Y × Y

p0

��
Y //

s
//

s0

OO

X

s0

OO

f
// Y

s0

OO

soo

and produces a splitting s̃ of (f × f).(d0, d1). Accordingly we have a split epimorphism
in the fibre PtY E:

S

��2
22

22
22

22
(f×f).(d0,d1)// Y × Y

p0

����
��

��
��

��s̃
oo

Y

XX222222222

s0

BB����������

So, in this additive fibre, the domain of this split epimorphism is isomorphic to the

product of its codomain by its kernel. But its kernel is S ∩ R[f ]
d0→ X

f→ Y . We have
S ∩R[f ] = ∆X by assumption, and thus S ' X × Y .

Now, when E is penessentially affine, we have more:

2.7. Theorem. Let E be a penessentially affine category. Then any monomorphism in
E is normal.

Proof. Let m : X ′ � X be any subobject. The change of base functor m∗ : PtXE →
PtX′E is saturated on subobjects. Then consider the following diagram:

X ′ ×X // m×1 //

����
��

��
��

��
��

��
��

X ×X

p0

��		
		

		
		

		
		

		

X ′ ×X ′ m̃ //

1×m
33

p0
��

R

j 55

X ′ //
m

//

OO

@@����������������
X

s0

DD														
s0

OO

The map 1 × m determines a pointed subobject of (pX′ , (1,m)) : X ′ × X � X ′. This
produces a pointed subobject j : R � X × X, and thus an equivalence relation on X.
Moreover the following vertical square is a pullback, which means that m is normal to R:

X ′ ×X ′ // m̃ //

p0
��

R

d0
��

X ′ //
m

//

s0

OO

X

s0

OO
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According to Theorem 2.4 we have the following:

2.8. Corollary. Let E be any Mal’tsev category. Then, in a fibre GrdXE, any monomor-
phism is normal.

2.9. Classification table. We give, here, the classification table of our “non-pointed
additive” categories by decreasing order of generality:

Category C Fibration: π : Pt(C) → C Example

naturally Mal’tsev additive fibres AutMal
protomodular and additive fibres + conservative AbGrdXE when E
naturally Mal’tsev change of base functors finitely complete
antepenessent. aff. fully faithful change GrdXE when

of base functors E Gumm
penesentially affine fully faithful saturated on GrdXE when

subobj. change of base functors E Mal’tsev
essentially affine change of base functors GrdXA when A fin.

are equivalences complete + additive

All the given examples do not belong to the next class. The category AutMal is the
variety of autonomous Mal’tsev operations. A category E is a Gumm category when it is
finitely complete and satisfies the Shifting Lemma [10]. This means that, given any triple
R,S, T of equivalence relations on an object X with R∩S ≤ T the situation given by the
continuous lines

x S

RT

t
R

y
S
z

T

implies that tTz. A variety of universal algebras is a Gumm category if and only if it
is congruence modular [15]. The Gumm categories are stable under slicing. Any regular
Mal’tsev category is a Gumm category. The table will be complete with the following:

2.10. Proposition. Suppose E is a Gumm category. Then any internal groupoid is
abelian. Accordingly any fibre GrdXE is a naturally Mal’tsev category. Furthermore, any
fibre GrdXE is antepenessentially affine.

Proof. Any internal Mal’tsev operation on an object X in a Gumm category is unique
when it exists and necessarily associative and commutative, see Corollary 3.4 in [10]. This
implies immediately that any internal group is abelian. The Gumm categories being stable
under slicing, any internal groupoid is abelian by Proposition 1.2. In order to show that
any fibre GrdXE is antepenessentially affine, in the same way as in the proof of Theorem
2.4, it is sufficient to show that the square below Proposition 1.2 is a pushout, and that
consequently the conditions of Lemma 1.3 are satisfied. For that, using the notations of
this lemma, let us introduce the following mapping:

τ : K1[f 1
]×X Z1 → V1 (γ, φ) 7→ t1φ.h1γ.t1φ

−1.h1(s1φ.γ.s1φ
−1)−1
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where K1[f 1
]×X Z1 = {(γ, φ)/domγ = domφ}. The following diagram will complete the

proof:

(γ, 1x)
pK1

pZ1τ

(γ, φ)
pZ1

(1x, 1x)pK1
(1x, φ)

τ

where a kernel equivalence relation is denoted by the same symbol as the map itself.
Clearly R[pZ1 ] ∩ R[pK1 ] ≤ R[τ ]. Moreover τ(1x, 1x) = 1x = τ(γ, 1x) implies τ(1x, φ) =
1y = τ(γ, φ), and 1y = τ(γ, φ) is our condition.

The fibres GrdXE are not penessentially in general, since the proof of Theorem 1.7
cannot apply to here.

2.11. Quasi-pointed penessentially affine categories. We noticed that the fi-
bres GrdXE are quasi-pointed. This particularity leads to further interesting observations.
We recalled that a category is quasi-pointed when it has an initial object 0 such that the
unique map $ : 0 � 1 is a monomorphism. The category E/0 = Pt0E is then a full sub-
category of E stable under products and pullbacks. The inclusion Pt0E � E is a discrete
fibration. So it is stable by subobject, and by equivalence relation. Consequently, when
moreover E is regular, Pt0E is stable under regular epimorphisms, which means that,
when the domain of a regular epimorphism belongs to this subcategory, the codomain
belongs to it as well. The quasi-pointed categories are stable by slice categories.

2.12. Definition. In a finitely complete quasi-pointed category, we shall call endosome
of an object X the object EnX defined by the following pullback:

EnX
εX //

��

X

��
0 $

// 1

This construction determines a left exact functor En : E → E/0 = Pt0E which is
a right adjoint to the inclusion. When E is regular, this functor preserves the regular
epimorphisms. It is clear that when E is pointed this functor disappears, since it is
nothing but the identity functor. Thanks to the following upper pullback, where the map
ε̄X is the unique map making the lower square commute and such that p1.ε̄X = εX, the
functor En allows us to associate with any equivalence relation R on X a subobject I of
EnX which we call the endonormalization of the equivalence relation R:

I //

i
��

R

(d0,d1)
��

EnX
ε̄X //

��

X ×X
p0

��
0 //

αX

//

OO

X

s0

OO
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Remark The upper left hand side pullback, in the following diagram whose any square is
a pullback, shows i is nothing but the classical normalization of the equivalence relation
EnR (on the object EnX) in the pointed category Pt0E since we have obviously ε̄X =
εX × εX.(0, 1):

I //

i
��

EnR

En(d0,d1)
��

// R

(d0,d1)
��

EnX
(0,1)

//

��

ε̄X //
EnX × EnX

εX×εX
//

��

X ×X
p0

��
0 // // EnX //

εX
//

��

X

��
0 // 1

Next we have:

2.13. Proposition. Suppose E penessentially affine and quasi-pointed. Then the en-
donormalization construction is bijective.

Proof. This is an immediate consequence of the fact that the change of base functor α∗X
is saturated on subobjects.

3. Baer sums and Baer categories

When the naturally Mal’tsev category E is moreover efficiently regular, there is a direction
functor d : Eg → Ab(E) where Eg is the full subcategory of objects with global support
and Ab(E) = Pt1E is the category of global elements of E (which necessarily determine
an internal abelian group structure in E). This functor d is a cofibration whose fibres
are canonically endowed with a tensor product, the so-called Baer sum, see [6]. Our aim
will be to show there is, in the stronger context of penessentially affine categories, an
alternative and simpler description of this Baer sum which mimics closely the classical
Baer sum construction on exact sequences in abelian categories.

Recall the following [8]:

3.1. Definition. A category C is said to be efficiently regular when it is regular and
such that any equivalence relation T on an object X which is a subobject j : T � R of an
effective equivalence relation on X by an effective monomorphism (which means that j is
the equalizer of some pair of maps in C), is itself effective.

The efficiently regular categories are stable under slice and coslice categories. The
category GpTop (resp. AbTop) of (resp. abelian) topological groups is efficiently regular,
but not Barr exact. A finitely complete regular additive category A is efficiently regular
if and only if the kernel maps are stable under composition. In this context we can add
some interesting piece of information:
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3.2. Proposition. Suppose E is an efficiently regular naturally Mal’tsev category. Then,
given any monomorphism s : Y � X split by f , the equivalence relation R on X asserted
by Proposition 2.6, to which s is normal, is effective and produces a direct product decom-
position X ' Q× Y where Q is the quotient of R.

Proof. According to Proposition 2.6, we have a discrete fibration f
1

: R → ∇Y . Cer-
tainly ∇Y is effective, and thus R is effective, see [8]. Now consider the following diagram
where Q is the quotient of R:

R

f1
��

d0
//

d1 //
X

f
��

oo q // // Q

��
Y × Y

p0
//

p1 //
s1

OO

Y //oo

s

OO

1

Since the left hand side squares are pullbacks, then, according to the Barr-Kock theorem
in regular categories, the right hand side square is a pullback, which gives us the direct
product decomposition

In the same order of idea, recall that, in an efficiently regular naturally Mal’tsev
category E, the direction of an object X with global support is given by the following
diagram where, π : X × X × X → X, written for πX , is the value at X of the natural
Mal’tsev operation:

X ×X ×X
p0

��
(p0.p0,π)

//

p2 //
X ×X
p0

��

oo qX // // dX

��
X ×X

p0
//

p1 //
s0

OO

X // //oo

s0

OO

1

ηX

OO

The quotient qX of the upper equivalence relation does exist in the efficiently regular
category E since the vertical diagram is a discrete fibration between equivalence relations,
see [8]. Actually the downward right hand side square is necessarily a pullback (E being
regular) and the upward square a pushout (in a naturally Mal’tsev category E, the pair
(s0, s1) : X×X ⇒ X×X×X, composing the edge of a pushout, is jointly strongly epic).

3.3. Proposition. Suppose D efficiently regular. Then any fibre GrdXD is efficiently
regular.

Proof. The regular epimorphisms in GrdXD are the internal functors f
1

: X1 → Z1

such that the map f1 : X1 → Z1 is a regular epimorphisms in D. They are consequently
stable under pullbacks. On the other hand, suppose the equivalence relation R1 ⇒ X1 is
effective. Then the underlying equivalence relation in D is still effective. Let q1 : Z1 � Q1

be its quotient in D. Then clearly the induced reflexive graph Q1 ⇒ X is underlying a
groupoid Q

1
and R1 ⇒ Z1 is the kernel relation of the internal functor q

1
: Z1 � Q

1
in

GrdXD. Accordingly GrdXD is regular when D is regular. Suppose j
1

: S1 � R1 is an
effective monomorphism in GrdXD. Then the underlying monomorphism j1 : S1 � R1

is effective in D and the underlying equivalence relation S1 ⇒ Z1 is effective in D. With
the same arguments as above S1 ⇒ Z1 is an effective equivalence relation in GrdXD.
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3.4. Baer categories. Let us introduce the following:

3.5. Definition. We shall call Baer category any category E which is penessentially
affine, efficiently regular, quasi-pointed and such that the endonormalization process re-
flects the effective monomorphism.

This implies that when the endonormalization (see Proposition 2.13) of an equivalence
R is a kernel map, then R is effective, i.e. the kernel equivalence relation of some map.
As a penessentially affine category, a Baer category is necessarily protomodular. Given a
Baer category E, the pointed subcategory E/0 = Pt0E is additive and efficiently regular,
and consequently such that the kernel maps are stable under composition. The pertinence
of this further definition comes from the following theorem which is our main structural
point concerning internal groupoids:

3.6. Theorem. Let E be a Mal’tsev efficiently regular category. Then any fibre GrdXE
is a Baer category.

Proof. Let R1 be an equivalence relation on Z1 in GrdXE. Its endonormalization is
given by the following pullback:

I1
//

i1
��

R1

j
1

��
En1Z1 ε̄1Z1

//

e1Z1
��

Z1 ×0 Z1

p0
��

∆Z0
// //

OO

Z1

s0

OO

Suppose that i1 is an effective monomorphism in GrdXE. Then the morphism i1 : I1 →
En1Z1 is an effective monomorphism in E. By Theorem 1.7, we know that j1 is a pullback
of i1 in E. So that j1 : R1 � Z1 ×0 Z1 is itself an effective monomorphism in E. Since

Z1 ×0 Z1 ⇒ Z1
(z0,z1)→ X ×X provides an effective relation in E, the equivalence relation

R1 ⇒ Z1 is effective in E. Let q1 : Z1 � Q1 be its quotient in E. Then clearly the induced
reflexive graph Q1 ⇒ X is underlying a groupoid Q

1
and R1 ⇒ Z1 is the kernel relation

of the internal functor q
1

: Z1 � Q
1

in GrdXE.

We are in such a situation, for instance, with the categories E = GpTop and E =
GpHaus of topological and Hausdorff groups. On the other hand we have:

3.7. Proposition. The Baer categories are stable under slice categories.

Proof. The only point which remains to check concerns the endonormalization process.
So let f : X → Y be an object in E/Y and R an equivalence relation on this object,
which means that R ⊂ R[f ]. The endosome in E/Y of this object f is nothing but its
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kernel. Let us consider the following diagram in E:

IR //

i ""EEE
EE

R
j

$$III
III

K[f ]
(0,k) //

if %%JJJ
JJ

��

R[f ]
p1 //

jf

%%LLLLL
p0

��

X

f

��

EnX
εX

//

yysss
sss

s
X ×X

p0xxqqqqqq

0 // X
f

// Y

Our assumption is that i is an effective monomorphism. This means it is a kernel map
since the category E/0 is additive. This is also the case for if since R[f ] is an effective
equivalence relation. Since E/0 is additive and efficiently regular, then if .i is still a kernel
map. Accordingly, E being a Baer category, R is an effective equivalence relation in E.
Let q : X � Q be its quotient in E. Since we have R ⊂ R[f ], there is a factorization
g : Q→ Y which makes R effective in E/Y .

Now our starting point to the way to Baer sums will be the following observation:

3.8. Proposition. In any Baer category E the following downward whole rectangle is
a pullback and the following upward whole rectangle is a pushout:

EnX
ε̄X //

��

X ×X
qX // //

p0
��

dX

��
0 // //

OO

X // //

s0

OO

1

ηX

OO

Accordingly two objects with global support have same direction if and only if they have
same endosome.

Proof. The downward left hand side square is a pullback and, E being penessentially
affine, the associated upward square is a pushout. We just recall that the right hand part
of the diagram fulfils the same property. Consequently EnX and dX mutually determine
each other.

Our second observation will be:

3.9. Proposition. Let E be any Baer category. Then the functor En : E → Pt0E is
cofibrant on regular epimorphisms. The associated cocartesian maps are regular epimor-
phisms.

Proof. This means that any regular epimorphism g : EnX � C in Pt0E determines
a cocartesian map in E. Clearly the condition on g is equivalent to saying that g is a
regular epimorphism in E. Now take k : K � EnX the kernel of g in the additive
category Pt0E, and R the associated equivalence relation on X given by Proposition 2.13.
It is an effective relation since its endonormalization k is a kernel. Let q : X � Q be
its quotient. Since the category E is regular, the functor En preserves the quotients.
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So Enq is the quotient of the equivalence relation EnR and consequently the cokernel
of its normalisation which is k, according to the remark following Definition 2.12. Thus
the map Enq : EnX � EnQ is nothing but (up to an isomorphism γ) our initial map
g : EnX � C which consequently appears to be the quotient of the equivalence relation
EnR. Whence a map ε given by the following diagram:

EnQ

!!DD
DD

DD
D

γ
��

EnR

εR
��

Enp0
//

Enp1//
EnX

Enq
::uuuuuuuu

εX
��

oo g // // C

ε
��

// 0

��
R

p0
//

p1 //
X q

// //oo Q // 1

A Baer category being necessarily protomodular, the middle square is a pushout since it
is a pullback along a regular epimorphism. This implies the universal property of q as a
cocartesian map with respect to the functor En. By construction this map q is a regular
epimorphism.

The last observation of this proof gives the following corollary which is actually equiv-
alent to the proposition itself:

3.10. Corollary. Let E be any Baer category. Then, along the map εX : EnX � X,
there exists the pushout of any regular epimorphism in Pt0E and the involved square is
also a pullback:

EnX

εX
��

g // // C

ε
��

X q
// // Q

Another immediate consequence of the previous proposition is the following:

3.11. Corollary. Let E be any Baer category. Then the fully faithful functor $∗ :
Pt1E → Pt0E is cofibrant on regular epimorphisms.

3.12. An alternative description of Baer sums. We recalled that, when E is
an efficiently regular Mal’tsev category, the functor d is a cofibration whose fibres are
actually groupoids (i.e. any map is cocartesian). When E is moreover a Baer category,
we have, thanks to Proposition 3.8, a commutative triangle of functors:

Eg
d //

En ##GGGG Pt1E = AbE
$∗vvmmmmmm

Pt0E
The functor En takes its values in a larger category than d and is only cofibrant on the
regular epimorphisms. The fact that $∗ is fully faithful implies that a cocartesian map q
with respect to En which is associated with a map g = $(γ) (with γ : dM = A � C any
regular epimorphism in Pt1E) is also a cocartesian map associated with γ with respect to
d.
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3.12.1. Level 1. Let us recall [6] that, when E is an efficiently regular naturally
Mal’tsev category, any fibre of the direction functor d is canonically endowed with a
tensor product, namely the Baer sum. Let a : 1 → A be an element of Pt1E = AbE, M
and N two elements in the fibre above A. Then M ⊗N is defined as the codomain of the
cocartesian map θ+ : M ×N � M ⊗N above + : A× A � A.

The previous remarks about the triangle of functors above allows us, in the context
of Baer categories, the following easier construction of the Baer sum, very similar to the
classical abelian case:

3.13. Theorem. Let E be any Baer category. Then the Baer sum of two objects M
and N with global support and same direction A is given by the following pushout which
is also a pullback:

$∗A×$∗A
εM×εN //

+
��

M ×N

��
$∗A // M ⊗N

We classically denote by H1
E(A) the abelian group structure determined by this Baer

sum on the set π0d
−1(A) of the connected components of the fibre d−1(A).

3.13.1. Level 2. Starting from a Baer category E, any fibre GrdXE is a Baer category,
by Theorem 3.6. So the previous observations and constructions are the beginning of
an iterative process. A groupoid Z1 has a global support in the fibre GrdXE if and
only if it is connected, i.e. such that (z0, z1) : Z1 → Z0 × Z0 = X × X is a regular
epimorphism. The direction of a connected abelian groupoid was defined in [7] as the
pushout of s0 : Z1 � Z1 ×0 Z1 along (z0, z1):

Z1 ×0 Z1
//

p0
��

p1
��

dZ1

��
Z1

(z0,z1)
��

(z0,z1)
//

OO

Z0 × Z0

OO

Z0 × Z0

For the same reasons as above this implies that the downward square is a pullback. In the
Baer context, two connected groupoids in GrdXE have same direction if and only if they
have same endosome. The Baer sum of a pair (U1, V 1) of connected groupoids having
same endosome E1 has thus its object of morphisms given by the following pushout in E
which is also a pullback:

E1 ×0 E1

ε1U1×0ε1V 1//

+
��

U1 ×0 V1

��
E1

// (U1 ⊗ V 1)1

This is a much easier way than to go through the direction.
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When the object X has a global support, the change of base along the terminal map
τX : X → 1 produces an equivalence of categories [7]:

Γ : Pt1E = AbE → Pt1GrdXE = AbGrdXE ; A 7→ K(A, 1)×∇X

where K(A, 1) denotes the groupoid structure (with object of objects 1) associated with
the group structure A.

Recall that an internal groupoid Z1 is said to be aspherical when it is connected and,
moreover, Z0 has a global support (i.e. such that Z0 → 1 is a regular epimorphism).
The inverse of the functor Γ allows us to define the global direction functor d1 : AspE →
Pt1E = AbE, where AspE is the full subcategory of aspherical groupoids (see [7]). It is
given, this time, by the pushout of s0 along the terminal map:

Z1 ×0 Z1
//

p0
��

p1
��

d1Z1

��
Z1

(z0,z1)
��

//

OO

1

OO

Z0 × Z0

This functor d1 is a cofibration whose fibres are categories (and no longer groupoids as
at level 1) canonically equipped with a tensor product called the global Baer sum. Here
again, the Baer categorical context will allow us to give an easier description of the global
Baer sums of aspherical groupoids having same global direction.

3.14. Definition. Let E be a quasi-pointed category. The global endosome of a groupoid
Z1 is defined as the kernel of (z0, z1) : Z1 → Z0 × Z0.

For exactly the same reasons as above, in a Baer category, two aspherical groupoids
have same global direction if and only if they have same global endosome. The global Baer
sum of a pair (U1, V 1) of aspherical groupoids with same global endosome A is organized
by the following pushout in E which is also a pullback:

A× A
κU1×κV 1 //

+
��

U1 × V1

��
A // (U1 ⊗ V 1)1

Once again this is a much easier way than to go through the global direction. We denote
by H2

E(A) the abelian group structure determined by this global Baer sum on the set
π0d

−1
1 (A) of the connected components of the fibre d−1

1 (A) see [3] and [7].

3.14.1. The higher levels. The global direction of an aspherical n-groupoid Zn:

Zn : Zn

z1 //

z0
//
Zn−1

s0oo

z1 //

z0
//
Zn−2...Z1

s0oo

z1 //

z0
//
Z0

s0oo
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is defined in [18] and in [11] as a functor dn : n-AspE → Pt1E = AbE which is produced
by the following pushout in E:

Zn ×n−1 Zn //

p0
��

p1
��

dnZn

��
Zn

(z0,z1)
��

//

OO

1

OO

Zn−1 ×n−2 Zn−1

It is still a cofibration whose fibres are categories canonically endowed with a tensor
product, still called the global Baer sum of n-groupoids. In a quasi-pointed category
the global endosome of a n-groupoid Zn will be the kernel of the map (z0, z1) : Zn →
Zn−1 ×n−2 Zn−1. When E is a Baer category, still two aspherical n-groupoids have same
global direction if and only if they have same global endosome. The global Baer sum of
a pair (Un, V n) of aspherical n-groupoids with same global endosome A is organized by
the following pushout in E which is also a pullback:

A× A
κUn×κV n //

+
��

Un × Vn

��
A // (Un ⊗ V n)n

We denote by Hn
E(A) the abelian group structure determined by this global Baer sum on

the set π0d
−1
n (A) of the connected components of the fibre d−1

n (A). These abelian groups
Hn

E(−) were shown to have a Yoneda’s Ext style long cohomology sequence in [18] and
[11].

4. The endosome of a groupoid

Now we have emphasized the role of the endosome of a groupoid, we shall end this work
with some general observations about the endosome, when the ground category E is only
finitely complete. Let Z1 be a groupoid in E. Let us begin by a useful property:

4.1. Lemma. Suppose we are given an internal functor h1 : R → Z1 where R is an
equivalence relation on an object Y , then the following square is a pullback in the category
GrdE:

R[h0] ∩R //

��

En1Z1

ε1Z1
��

R
h1

// Z1
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Proof. Straightforward by commutation of limits, considering the following rectangles,
where the two squares on the left and the right hand side part on the right are pullbacks
in GrdE:

R[h0] ∩R //

��

R[h0]

��

// ∆Z0

��

R[h0] ∩R //

��

En1Z1

ε1Z1
��

e1Z1 // ∆Z0

��
R // ∇Y ∇h0

// ∇Z0 R
h1

// Z1
// ∇Z0

We are now in position to specify the internal action of the endosome En1Z1 on the
object Z1 of morphisms:

4.2. Proposition. The endosome En1Z1 has a canonical action on Z1 which is de-
scribed by the following diagram where the vertical left hand side part is a kernel equiva-
lence relation and the upper square a pullback :

Z1 ×0 Z1
z̄1 //

p0
��

p1
��

En1Z1

e1Z1
��

ε̄1Z1

oo

Z1
z1 //

(z0,z1)
��

Z0
s0

oo

Z0 × Z0

Proof. The previous lemma gives rise to the following upper left hand side pullback in
E:

R[z0] ∩R[z1]
z̄1 //

ι
��

En1Z1

ε1Z1
��

Z1 ×0 Z1
z̄1 //

p0

��

p1

��

En1Z1

e1Z1

��

R[z0]
ζ2 //

z0
��

z1
��

Z1

z0
��

z1
��

=

Z1 z1
// Z0 Z1 z1

// Z0

Furthermore the two lower left hand side squares are pullbacks since Z1 is a groupoid.
Now R[z0] ∩ R[z1] is nothing but the kernel equivalence relation of the map (z0, z1) :
Z1 → Z0 × Z0 whose underlying object is the object Z1 ×0 Z1 of “parallel morphisms”
of the groupoid Z1 which, itself, is nothing but the object of morphisms of the groupoid
Z1×0Z1. We have also z0.ε1Z1 = z1.ε1Z1 = e1Z1. All this gives rise to the right hand side
pullback with the p0. The map p1 = z1.ι represents the canonical action of the endosome.
In the set theoretical context the map z̄1 : Z1 ×0 Z1 → En1Z1 associates with the pair
(α, β) : x ⇒ y of parallel arrows in Z1 the endomap β.α−1 : y → y. Notice that the
section induced by s0 : Z0 → Z1 of this map z̄1 is (by the equations defining it) nothing
but the map ε̄1Z1 : En1Z1 → Z1×0 Z1 which associates with any endomap γ : x→ x the
pair (1x, γ) : x ⇒ x.
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We then get the following:

4.3. Corollary. Suppose E is a naturally Mal’tsev category. Then the following square
is a pushout in E :

Z1 ×0 Z1 En1Z1

ε̄1Z1oo

Z1

s0

OO

Z0s0
oo

α1En1Z1

OO

Proof. These are the splittings of a split pullback, i.e. a product in the fibre PtZ0 , and,
the category E being a naturally Mal’tsev category, this fibre is additive.
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