
Theory and Applications of Categories, Vol. 5, No. 9, 1999, pp. 202–250.

WHEN PROJECTIVE DOES NOT IMPLY FLAT,
AND OTHER HOMOLOGICAL ANOMALIES
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Transmitted by Ronald Brown

ABSTRACT. If M is both an abelian category and a symmetric monoidal closed
category, then it is natural to ask whether projective objects in M are flat, and whether
the tensor product of two projective objects is projective. In the most familiar such
categories, the answer to these questions is obviously yes. However, the category MG
of Mackey functors for a compact Lie group G is a category of this type in which
projective objects need not be so well-behaved. This category is of interest since good
equivariant cohomology theories are Mackey functor valued. The tensor product on MG
is important in this context because of the role it plays in the not yet fully understood
universal coefficient and Künneth formulae. This role makes the relationship between
projective objects and the tensor product especially critical. Unfortunately, if G is,
for example, O(n), then projectives need not be flat in MG and the tensor product of
projective objects need not be projective. This misbehavior complicates the search for
full strength equivariant universal coefficient and Künneth formulae.
The primary purpose of this article is to investigate these questions about the interaction
of the tensor product with projective objects in symmetric monoidal abelian categories.
Our focus is on functor categories whose monoidal structures arise in a fashion described
by Day. Conditions are given under which such a structure interacts appropriately with
projective objects. Further, examples are given to show that, when these conditions
aren’t met, this interaction can be quite bad. These examples were not fabricated to
illustrate the abstract possibility of misbehavior. Rather, they are drawn from the
literature. In particular, MG is badly behaved not only for the groups O(n), but also for
the groups SO(n), U(n), SU(n), Sp(n), and Spin(n). Similar misbehavior occurs in two
categories of global Mackey functors which are widely used in the study of classifying
spaces of finite groups. Given the extent of the homological misbehavior in Mackey
functor categories described here, it is reasonable to expect that similar problems occur
in other functor categories carrying symmetric monoidal closed structures provided by
Day’s machinery.
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Introduction

Let M be a symmetric monoidal closed abelian category. The tensor product of two
objects M and N in M is denoted M � N . The closed structure of M is provided by an
internal hom functor adjoint to the tensor product; the result of applying this functor to
M and N is an object of M denoted 〈M,N〉. In contrast, the abelian group of morphisms
from M to N in M is denoted M(M,N).

It is often important to know how well the symmetric monoidal closed and abelian
category structures on M interact. Two obvious questions about this interaction are
whether projective objects are flat and whether the tensor product of two projectives is
projective. In the classical examples, these questions are answered by the dicta “projective
implies flat” and “the tensor product of projectives is projective”. Unfortunately, these
familiar dicta fail wildly in some less well known examples of symmetric monoidal closed
abelian categories.

One of the primary purposes of this article is to describe some examples of this homo-
logical misbehavior which arise in the study of Mackey functors. This context yields three
families of symmetric monoidal closed abelian categories in which projectivity does not
imply flatness. In one of these families, the tensor product of two projectives need not be
projective. These examples were not contrived merely to demonstrate the theoretical pos-
sibility of this sort of misbehavior. One of these families has appeared repeatedly in the
literature in both representation theory and stable homotopy theory [1, 2, 4, 5, 7, 9, 10, 12–
14, 24–26, 28, 29]. A second family, the one in which both homological anomalies occur,
provides one of the very few reasonable definitions of a Mackey functor for a compact
Lie group [21]. It is unlikely that the other definitions are better behaved in this regard.
The misbehavior of projectivity with respect to tensor products is especially serious in
this category because of the important role these two notions play in universal coefficient
and Künneth theorems. The third family of categories arises naturally in the study of the
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equivariant Hurewicz and suspension homomorphisms in equivariant homotopy theory
[18, 19].

Our two questions about the behavior of projective objects in symmetric monoidal
closed abelian categories fit naturally into a larger group of six interrelated questions
about the interaction of the monoidal closed and abelian structures on M. The other four
questions in this group are less frequently discussed. Like our question about the relation
between projectivity and flatness, each of these four deals with a pair of functors from
the list

〈M, ?〉 : M �� M 〈?,M〉 : Mop �� M

M(M, ?) : M �� Ab M(?,M) : Mop �� Ab

M�? : M �� M,

and asks whether the exactness of one of the functors in the pair implies the exactness of
the other.

Some sense of the importance of one of the four is easily conveyed. This question
asks whether the exactness of the functor 〈M, ?〉 implies the exactness of the functor
M(M, ?). Assume that R is a commutative ring, G is a finite group, and R[G] is the
group ring of G over R. The categories of R-modules and of R[G]-modules are the classic
examples of symmetric monoidal closed abelian categories. In the category of R-modules,
the exactness of 〈M, ?〉 implies the exactness of M(M, ?) because the two functors differ
only in that M(M,N) is the abelian group underlying the R-module 〈M,N〉. However,
if M is taken to be R with trivial G-action in the category of R[G]-modules, then the
functor 〈M, ?〉 is exact for formal reasons, whereas the failure of the exactness of M(M, ?)
is the source for group cohomology. Thus, the relation between the exactness of 〈M, ?〉
and M(M, ?) is not obvious and can have far-reaching consequences. A second purpose
of this article is to call attention to these four infrequently discussed questions, and to
describe their relation to the two more familiar questions in our group of six.

All of the symmetric monoidal closed abelian categories considered here are functor
categories, and their monoidal structures are defined using a general procedure introduced
by Day [6]. Roughly speaking, Day provides a symmetric monoidal closed structure on a
functor category whose domain category O is a full subcategory of a symmetric monoidal
category S. The behavior of the projective objects in these functor categories can be
related to various properties of O. In particular, if O is closed under the product operation
on S, then the tensor product of projective objects in the associated functor category is
projective (see Proposition 3.2). Further, if S is a symmetric monoidal closed category
and O is closed under the function object construction on S, then projective objects in
the functor category are flat (see Proposition 3.3). A third purpose of this article is to
introduce these sufficient conditions for the good behavior of functor categories.

When the domain category O does not satisfy these simple closure conditions, the
interaction between the monoidal closed and abelian structures on the associated functor
category can be extremely bad. In particular, if G is a compact Lie group which contains
the orthogonal group O(2) as a subquotient, then there are non-flat projective objects
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in the category of G-Mackey functors (see Example 6.7). Moreover, in the category
of O(n)-Mackey functors, for n ≥ 2, there are pairs of projective objects whose tensor
product is not projective (see Theorem 6.9). Badly behaved examples like these appear so
ubiquitously in the context of Mackey functors that it is only prudent to assume that the
interaction is bad in any case where our closure conditions fail. One is almost tempted
to conjecture that our sufficient conditions are also necessary. The behavior of functor
categories is not, however, this predictable. One would expect badly behaved projective
objects in the category of S1-Mackey functors since the appropriate domain category fails
to satisfy our closure conditions. However, in this functor category, projective implies
flat, and the tensor product of a pair of projective objects is projective (see Theorem 3.8).

The tensor product and internal hom functors which provide Day’s symmetric mon-
oidal closed structures are, to say the least, usually not easily computed. The final purpose
of this article is to describe techniques which can be used to manipulate these functors.

In the first section, we give the precise statements of our six homological questions,
and make a few observations about relations among them. The next section contains a
review of Day’s monoidal closed structures, and an introduction to the relevant examples
of categories carrying these structures. The focus of the third section is on our positive
results guaranteeing that a functor category carrying one of Day’s monoidal structures
satisfies our various compatibility conditions. The fourth and fifth sections contain more
detailed descriptions of our families of examples. Section six is devoted to the statements
of our negative results indicating how badly behaved the tensor product can be in a
functor category to which the results of section three are inapplicable. The remaining
sections provide the proofs of various results stated in sections three and six. In particular,
our negative results about the category of Mackey functors associated to an incomplete
indexing universe are proven in section seven. Sections eight and nine contain the proofs
of our results about the homological misbehavior of the category of Mackey functors for a
compact Lie group. Section ten provides the proofs of our positive results on the category
of S1-Mackey functors. Our results about the homological misbehavior of globally defined
Mackey functors are proven in the last section.

1. Compatibility questions for symmetric monoidal closed abelian cate-
gories

Here, the compatibility questions of interest to us are phrased in terms of six axioms
which a symmetric monoidal closed abelian category M may satisfy. Certain fundamental
connections between these axioms are also explored. Four of these six axioms are clearly
satisfied by both the category R-Mod of modules over a commutative ring R and the
category R[G]-Mod of modules over the group ring R[G] of a finite group G over the
ring R. The other two axioms are obviously satisfied by R-Mod, but are typically not
satisfied by R[G]-Mod. The nature, and significance, of the misbehavior of R[G]-Mod
with respect to these two axioms is therefore discussed here.



Theory and Applications of Categories, Vol. 5, No. 9 206

1.1. Definition.

(a) Since an object M of M is said to be projective if the functor M(M, ?) : M �� Ab
is exact, an object M is said to be internally projective if the functor 〈M, ?〉 : M �� M

is exact.

(b) Since M is injective if the functor M(?,M) : Mop �� Ab is exact, M is said to be
internally injective if the functor 〈?,M〉 : Mop �� M is exact.

Our 6 axioms which may be satisfied by a symmetric monoidal closed abelian category
M are:

PiF If an object M of M is projective, then it is also flat.

PiIP If an object M of M is projective, then it is internally projective.

IiII If an object M of M is injective, then it is internally injective.

IPiP If an object M of M is internally projective, then it is projective.

IIiI If an object M of M is internally injective, then it is injective.

TPPP If the objects M and N of M are projective, then so is M � N .

In the introduction, it was noted that IPiP holds in the category R-Mod of modules
over a commutative ring R, but fails in the category R[G]-Mod of modules over the group
ring R[G] of a finite group G over R. The argument for the failure of IPiP in R[G]-Mod
made use of R considered as an R[G]-module with trivial G-action. The significance
of the R[G]-module R in this context is that it is the unit for the tensor product on
R[G]-Mod. The question of whether M satisfies the axioms IPiP and IIiI is closely tied
to the behavior of the unit for the tensor product on M, which we denote by • (or •M). In
particular, the canonical unit isomorphism 〈• ,M〉 ∼= M of M implies that • is internally
projective. Thus, IPiP can’t be satisfied unless • is projective.

1.2. Lemma.

(a) The category M satisfies IPiP if and only if the unit • for the tensor product on
M is projective.

(b) The categoryM satisfies IIiI if the unit • for the tensor product onM is projective.

Proof. We have already noted that • must be projective if M satisfies IPiP. The rest of
part (a) and part (b) both follow easily from the natural isomorphism M(• , 〈M,N〉) ∼=
M(M,N).
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The question of whether the unit • for M is projective seems to have an significance
far beyond this lemma. There is a theory of localization for well-behaved symmetric
monoidal closed abelian categories which generalizes the classical theory of localization for
a commutative ring and its modules. This theory can be developed using techniques drawn
from the theory of localization for noncommutative rings [27]. The various localizations of
a category M provided by this theory are all symmetric monoidal closed abelian categories.
In the most favorable cases, such a localization of M can can be identified as the category
of modules over the localization of the unit • of M. However, as one might expect from
the theory of localization of noncommutative rings, the typical localization of M is a more
subtle construction. The simplest indicator of whether the localized category is of this
more subtle kind is that the more subtle construction occurs precisely when the unit of
the localized category fails to be projective in that category.

The hom/tensor adjunction which provides the closed structure on M implies that the
remaining 4 axioms fall into two pairs of roughly equivalent conditions. In categories of
functors into Ab, which always have enough projectives and injectives, the conditions in
each pair are, in fact, equivalent.

1.3. Proposition.

(a) If M satisfies PiIP, then it also satisfies TPPP. Moreover, if M has enough
projectives, then TPPP implies PiIP.

(b) If M has enough projectives, then PiF implies IiII. If M has enough injectives,
then IiII implies PiF.

Proof. Let f : L �� M and g : M �� N be a monomorphism and an epimorphism in
M, respectively. Both implications in part (a) follow from the equivalence of the lifting
problems represented by the two diagrams

P � Q

h
��

H

���
�

�
�

�

M g
�� N

P

h̃
��

H̃

��� � � � � �

〈Q,M〉 g∗
�� 〈Q,N〉,

in which P and Q are projective objects in M. Both implications in part (b) follow from
the equivalence of the lifting problems represented by the two diagrams

I

P � L
1�f

��

k

��

P � M

K

��� � � � � �

P

k̃
��

K̃

���
�

�
�

�

〈M, I〉
f∗

�� 〈L, I〉,

in which P and I are projective and injective in M, respectively.
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2. Day’s symmetric monoidal closed structures

The categories of greatest interest in this article are functor categories with symmetric
monoidal closed structures of the sort described by Day in [6]. However, only a rather
simple case of Day’s general approach is needed for our examples. In this section, that
case is reviewed, and our basic examples of functor categories carrying Day’s structures
are introduced.

Let S be a symmetric monoidal Ab-category whose tensor product ∧ is bilinear, and
O be a skeletally small full subcategory of S. The relevant case of Day’s approach ap-
plies to any reasonably well-behaved subcategory O, and provides a symmetric monoidal
closed structure on the category MO of additive functors from O into Ab. In fact, Day’s
machinery applies equally well to functors into the category R-Mod of modules over a
commutative ring R. However, restricting attention to functors into Ab somewhat sim-
plifies our notation.

Our entire discussion of MO is plagued by an annoying problem with the variance of
our functors. The general observations in the next section about the relation between
Day’s structures and our axioms are most easily presented in terms of the category of
covariant functors out of O. However, some of our examples are drawn from geometric
sources, like cohomology theories, which naturally yield contravariant functors. Most
of the time, this difference in the preferred variance is nothing more than a notational
nuisance. The preference for covariant functors in the next section arises from Proposition
3.3, which necessarily applies only to covariant functors. All of the other results in that
section apply equally well to covariant and contravariant functors since they depend only
on self-dual properties of S and O. In many of our examples, the question of a preferred
variance is moot, either because O and Oop are isomorphic or because functors of both
variances are of interest. Nevertheless, in a few key cases, variance is very significant. The
preferred variance in these cases is perversely split about evenly. Since there is no clearly
preferred variance and the choice of variance is often irrelevant, MO is a deliberately
ambiguous symbol denoting either of the two categories of additive functors from O to
Ab. In the sections where functors of both variance are considered, this notation is used
only in remarks applicable to both categories. When variance really matters, the symbols
Mcov

O and Mcont
O are used to denote the categories of covariant and contravariant additive

functors from O into Ab, respectively.
The case of Day’s approach considered here is quite similar to that described in section

4 of [21]. However, two differences are worth noting. In [21], it is assumed that O contains
the unit for the tensor product on S. Here, that constraint is replaced by a weaker
condition on O which fits more naturally into our discussion of the connection between
the properties of O and our axioms. The second difference is that all the functors in
[21] are contravariant. Since the contravariant case is discussed in detail in [21], the
introductory discussion here is focused on the covariant case. Readers interested in the
contravariant case may either make the necessary notational adjustments for themselves
or look them up in [21].

The definition below provides the basic components of Day’s symmetric monoidal
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closed structure on the category Mcov
O . In this definition, and throughout the rest of the

article, objects of O are denoted by A, B, C, etc., and the objects of S that need not be
in O are denoted by Z, Y , X, etc. The unit for the tensor product of S is denoted • (or
•S).

2.1. Definition.

(a) For X in S, let Hcov
X : O �� Ab and Hcont

X : Oop �� Ab be the functors given by
Hcov

X (A) = S(X,A) and Hcont
X (A) = S(A,X). Note that Hcov

X is in Mcov
O and Hcont

X is in
Mcont

O . In remarks applicable to the functor category of either variance and in contexts
where the desired variance should be obvious, the notation HX is used for the functor of
the appropriate variance associated to X.

(b) If M and N are objects of Mcov
O , then the functor M � N in Mcov

O is given on an
object A of O by

(M � N)(A) =

∫ B,C∈O
M(B) ⊗ N(C) ⊗ S(B ∧ C,A).

The naturality of coends provides the definition of M � N on the morphisms of O.
(c) If M and N are objects of Mcov

O , then the functor 〈M,N〉 in Mcov
O is given on an

object A of O by

〈M,N〉(A) =
∫
B,C∈O

hom
(
M(B) ⊗ S(A ∧ B,C), N(C)

)
.

The naturality of ends provides the definition of 〈M,N〉 on the morphisms of O.
(d) Let A, C be in O and X, Y be in S. Then the evaluation map

S(X,C) ⊗ S(Y ∧ C,A) �� S(Y ∧ X,A)

induces a homomorphism

ρcov(X,Y ;A) :

∫ C

S(X,C) ⊗ S(Y ∧ C,A) �� S(Y ∧ X,A)

of abelian groups. Note that, by Lemma 4.3(b) of [21], this map is an isomorphism if X
is in O. There is an an analogous map

ρcont(X,Y ;A) :

∫ C

S(C,X) ⊗ S(A, Y ∧ C) �� S(A, Y ∧ X)

which must be used instead of ρcov(X,Y ;A) in the context of categories of contravariant
functors. This map is denoted θ in [21] and is discussed there in the proof of Proposition
5.2. In remarks applicable to functors of either variance, ρ(X,Y ;A) is used to denote the
appropriate one of these two maps.



Theory and Applications of Categories, Vol. 5, No. 9 210

It is easy to see that the � operation is symmetric, and a simple end calculation
gives the desired adjunction relating � and 〈 , 〉. Thus, to show that these constructions
provide MO with a symmetric monoidal closed structure, it suffices to exhibit a unit
for �, construct an associativity isomorphism, and prove that the appropriate diagrams
commute. The unit for MO should be H•S . The associativity isomorphism for MO
should be easily derived from the associativity isomorphism for S, and the commutativity
of the required diagrams for MO should follow from the commutativity of the analogous
diagrams in S. Nevertheless, these last three pieces of the monoidal structure need not fit
properly into place unless the map ρ(X,Y ;A) is an isomorphism under the appropriate
conditions.

2.2. Theorem. Let S be an Ab-category with a symmetric monoidal structure derived
from a bilinear tensor product ∧, and let O be a skeletally small full subcategory of S. If
the map ρ(X,Y ;A) is an isomorphism whenever X = •S and Y ∈ O and whenever X
and Y are both finite ∧-products of objects in O, then MO is a symmetric monoidal closed
category.

Proof. We prove this result for Mcov
O ; the proof for Mcont

O is analogous. In this and several
other proofs, we make use of a variety of folklore results about ends and coends. The
contravariant analogs of these results are discussed in section 4 of [21]. The proofs of
these results are formal, and obviously translate to the covariant context. Note, however,
that the results in section 5 of [21] typically apply only in the contravariant case since
their proofs make use of more geometric arguments. Let M , N , and P be in Mcov

O . The
unit isomorphism M � Hcov

•S
∼= M of Mcov

O is given at A ∈ O by the composite

(M � H•S )(A) =

∫ B,C∈O
M(B) ⊗ S(•S , C) ⊗ S(B ∧ C,A)

∫ B ρ
��

∫ B∈O
M(B) ⊗ S(B ∧ •S , A)

∼=
∫ B∈O

M(B) ⊗ S(B,A)
∼= M(A),

in which the last isomorphism is given by Lemma 4.3(c) of [21]. The associativity isomor-
phism for Mcov

O is obtained by using the maps ρcov to identify both ((M �N)�P )(A) and
(M � (N � P ))(A) with

∫ B,C,D∈O
M(B) ⊗ N(C) ⊗ P (D) ⊗ S(B ∧ C ∧ D,A)

for each A ∈ O. The maps ρcov(X,Y ;A) are used in much the same fashion to reduce the
question of the commutativity of each of the necessary diagrams in Mcov

O to the commu-
tativity of a corresponding diagram in S.
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2.3. Scholium. The requirement in this theorem that ρ(X,Y ;A) be an isomorphism
whenever both X and Y are finite ∧-products of objects in O was unfortunately overlooked
in [21]. However, the map θ introduced in the proof of Proposition 5.2 of [21] is our map
ρcont(X,Y ;A). In the proof of that proposition, θ is shown to be an isomorphism under
far broader conditions than those needed to ensure that the categories considered in [21]
are symmetric monoidal.

2.4. Remark.

(a) If •S is in O, then the map ρ(•S , Y ;A) is an isomorphism by Lemma 4.3(b) of [21].
Thus, the restriction imposed on •S in the theorem above is weaker than that imposed in
[21].

(b) If O contains •S and is closed under finite ∧-products, so that it is a symmetric
monoidal subcategory of S, then both conditions on the maps ρ(X,Y ;A) are satisfied,
again by Lemma 4.3(b) of [21].

We conclude this section with a list of examples of pairs (S,O) satisfying the hy-
potheses of Theorem 2.2. These examples serve a three-fold purpose. The next section is
devoted to positive results giving conditions on a pair (S,O) which ensure that the associ-
ated functor category MO satisfies one or more of our axioms. The power of those positive
results is illustrated by the fact that they apply to several of the most important special
cases of the examples below, and thus assure us that the associated functor categories are
well-behaved. The limitation of our positive results is that they give sufficient, but not
necessary, conditions for the good behavior of MO. Some special cases of the examples
below are used to provide a measure of this lack of necessity. Section 6, and most of the
sections following it, describe functor categories which fail to satisfy our compatibility
axioms. These badly behaved categories are also special cases of the examples below.

2.5. Example.

(a) Let R be a commutative ring, S be the category R-Mod of R-modules, and O be
the full subcategory of S containing R as its only object. In this case, S is a symmetric
monoidal closed category, and O is a symmetric monoidal closed subcategory. Of course,
MO is just R-Mod, and Day’s symmetric monoidal closed structure is identical to the
standard one. In some sense, this example is frivolous in that we have applied a vast
machine to R-Mod with its symmetric monoidal closed structure only to recover that cat-
egory with the same structure. However, in our discussion of the connections between the
structure of O and our compatibility axioms, this example nicely illustrates the benefits
of a very well-behaved category O.

(b) Let R be a commutative ring, G be a finite group, and S be the category R[G]-Mod
of R[G]-modules. In this context, there are two reasonable choices for O. The smallest,
which we denote O1, is the full subcategory of S containing R[G] as its only object. The
other category, O2, is the full subcategory of S containing the n-fold direct sum of copies
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of R[G] for all n ≥ 1. Note that neither of these subcategories contains the unit for the
tensor product on S, which is R with trivial G-action. The advantage of O2 over O1 is
that O2 is closed under both the tensor product and the internal hom operations on S.
Of course, MO1

and MO2
are just R[G]-Mod with its usual symmetric monoidal closed

structure, so this example is just as frivolous as the previous one. However, it too serves
to illustrate the relation between the structure of O and the compatibility axioms satisfied
by MO.

(c) Let G be a compact Lie group, U be a G-universe, and S be the equivariant stable
category h̄GSU of G-spectra indexed on U (see chapter I of [23]). The obvious choice for
the associated category O is the stable orbit category OG(U). This is the full subcategory
whose objects are suspension spectra Σ∞

U G/H+ associated to the orbits G/H derived from
the closed subgroups H of G. The category OG(U) contains the unit for S. However, if G
is nontrivial, OG(U) is closed under neither the tensor product nor the internal hom on S.
A contravariant functor out of OG(U) is called a (G,U)-Mackey functor, and the category
of such functors is denoted MG(U). If U is a completeG-universe, then OG(U) and MG(U)
are abbreviated to OG and MG, respectively. If G is finite and U is complete, then (G,U)-
Mackey functors are the classical Mackey functors introduced by representation theorists
for the study of induction theorems (see [8, 11, 16, 22] and Proposition V.9.9 of [23]). The
case in which U is incomplete plays a role in the equivariant Hurewicz and suspension
theorems [18, 19] and in the study of change of universe functors in equivariant stable
homotopy theory [20]. The category MG(U) is discussed in greater detail in sections 4,
6, 7, 8, 9, and 10.

(d) If the group G in the previous example is finite, then the Burnside category BG(U)
is another choice for O. This is the full subcategory of S containing the suspension spectra
Σ∞

U X+ of the finite G-sets X. Note that OG(U) is a subcategory of BG(U). The advantage
of BG(U) over OG(U) is that it is closed under the tensor product operation on S. If the
universe U is complete, then BG(U) is a symmetric monoidal closed subcategory of S. Its
closed structure is even nicer than that of the category of finite dimensional vector spaces
over a field in that objects in BG(U) are canonically self-dual. However, if U is incomplete,
then BG(U) is not closed under the internal hom operation on S. As with OG(U), one
is usually interested in contravariant functors out of BG(U). For either variance, the
categories of functors out of OG(U) and BG(U) are equivalent via the restriction functor
induced by the inclusion of OG(U) into BG(U). Thus, we abuse notation and employ
MG(U) to denote the category of contravariant functors from BG(U) to Ab.

(e) The objects of the global Burnside category B∗ are the finite groups. If G andH are
finite groups, then the set of morphisms from G to H in B∗ is the Grothendieck group of
isomorphism classes of finite (G×H)-sets. The composition of a (G×H)-set X, regarded
as a morphism from G to H, with an (H ×K)-set Y , regarded as a morphism from H to
a finite group K, is (X × Y )/H, where the passage to orbits is over the diagonal action
of H on X × Y . The cartesian product of groups makes B∗ into a symmetric monoidal
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Ab-category. There is an obvious duality functor D : B∗ �� Bop
∗ which is the identity on

objects and which sends the (G × H)-set X to itself regarded as an (H × G)-set. This
duality functor provides B∗ with a closed structure like that for finite dimensional vector
spaces; the internal hom object associated to groups G and H is D(G) × H. Covariant
additive functors from B∗ to Ab are the most structured kind of globally defined Mackey
functors. The category of such functors is denoted M∗.

Most globally defined Mackey functors carry a much less rich structure than that carried
by the functors in M∗. These less structured Mackey functors are additive functors from
some subcategory of B∗ into Ab. The subcategories of B∗ of interest to us here can be
described in terms of pairs (P,Q) of sets of integer primes. A (G × H)-set X is said to
be a (P,Q)-set if, for each x ∈ X, the G-isotropy subgroup Gx of x has order divisible
only by the primes in P and the H-isotropy subgroup Hx of x has order divisible only
by the primes in Q. The subcategory B∗(P,Q) of B∗ has the same objects as B∗, but
the set of morphisms from G to H in B∗(P,Q) is the Grothendieck group of isomorphism
classes of finite (G × H)-sets which are also (P,Q)-sets. Observe that B∗(P,Q)op is just
B∗(Q,P). The category B∗(P,Q) inherits a symmetric monoidal structure from B∗, but
the internal hom on B∗ does not restrict to give B∗(P,Q) a closed structure. In fact,
B∗(P,Q) is typically not a closed category. Covariant additive functors from B∗(P,Q) to
abelian groups are called global (P,Q)-Mackey functors. The category of such is denoted
M∗(P,Q).

The category B∗, and each of its subcategories B∗(P,Q), can serve as both S and O in
a pair (S,O) satisfying the hypotheses of Theorem 2.2. Note that this is our only example
in which S need not be a closed category. The categories B∗(P,Q) appear, under various
names and in various guises, in [1, 2, 4, 5, 7, 9, 10, 12–14, 24–26, 28, 29], and are discussed
in greater detail in sections 5, 6 and 11.

2.6. Remark. The pairs (S,O) from Examples 2.5(a), 2.5(d), and 2.5(e) satisfy the
hypotheses of Theorem 2.2 by Remark 2.4 since, in each of these cases, O is a symmetric
monoidal subcategory of S. Simple direct computations indicate that the pairs (S,O)
from Example 2.5(b) satisfy the hypotheses of Theorem 2.2. If the group G is finite in
Example 2.5(c), then the pairs introduced in that example must satisfy the hypotheses
of Theorem 2.2 since the resulting functor categories MG(U) can be identified with the
functor categories introduced in Example 2.5(d). If G is a nonfinite compact Lie group,
then the argument needed to show that the pairs (S,O) of Example 2.5(c) satisfy the
hypotheses of Theorem 2.2 is described in Scholium 2.3.

3. Positive results on functor categories

Throughout this section, (S,O) is assumed to be a pair of categories satisfying the hy-
potheses of Theorem 2.2. The focus of most of this article is on functor categories which do
not satisfy our compatibility axioms. However, this section is devoted to positive results
giving conditions on a pair (S,O) which ensure that the associated functor category MO
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satisfies our various compatibility axioms. Our compatibility axioms naturally fall into
three pairs. Associated to each of these pairs of axioms there is a fairly natural closure
property on the subcategory O which ensures that the associated functor category MO
satisfies that pair of axioms. Unfortunately, as various pairs drawn from Example 2.5
illustrate, these sufficient conditions are far from necessary.

3.1. Proposition. Let S be an Ab-category with a symmetric monoidal structure de-
rived from a bilinear tensor product ∧, and let O be a skeletally small full subcategory of
S such that the pair (S,O) satisfies the hypotheses of Theorem 2.2. If the unit •S of S is
in O, then the unit of MO is projective, and MO satisfies the axioms IPiP and IIiI.

Proof. The unit for MO is the functor H•S . Since •S is in O, this functor is representable
and therefore projective. The rest of the proposition follows immediately from Lemma
1.2.

In all the pairs (S,O) from Example 2.5 except those from Example 2.5(b), O contains
the unit of S so that the proposition above applies. However, in the two pairs introduced
in Example 2.5(b), the unit of S is definitely not in O. In this case, both S and MO are
the category R[G]-Mod of modules over the group ring R[G] of a finite group G. The unit
for this category is the ring R with trivial G-action, which is typically neither projective
nor injective in R[G]-Mod. However, being the unit, R is necessarily internally projective
in R[G]-Mod. Moreover, if R is a field, then, regarded as a trivial R[G]-module, it is
internally injective in R[G]-Mod. Thus, R[G]-Mod illustrates how badly behaved the
category MO can be when the hypotheses of the proposition don’t hold. On the other
hand, if R is a field of characteristic prime to the order of the group G, then R with
trivial G-action is projective in R[G]-Mod so that R[G]-Mod satisfies the axioms IPiP
and IIiI. Thus, the sufficient condition in the proposition is far from necessary.

3.2. Proposition. Let S be an Ab-category with a symmetric monoidal structure de-
rived from a bilinear tensor product ∧, and let O be a skeletally small full subcategory of
S such that the pair (S,O) satisfies the hypotheses of Theorem 2.2. If O is closed under
the tensor product operation on S, then the category MO satisfies the axioms TPPP and
PiIP.

Proof. The representable functors form a set of projective generators for MO. Thus, to
show that MO satisfies TPPP, it suffices to show that, if A and B are in O, then HA�HB

is projective. Lemma 4.4(b) of [21] gives that HA � HB
∼= HA∧B. Since A ∧ B is in O,

HA∧B is a representable functor in MO and so projective. The rest of the proposition
follows from Proposition 1.3(a).

The sufficient condition given by this proposition is not strictly necessary since the
categories R[G]-Mod and MG(U) associated to a finite group G in Examples 2.5(b) and
2.5(c) both satisfy TPPP and PiIP, but are of the form MO for a category O that is not
closed under the tensor product operation on S. However, these examples are misleading
in the sense that, in both cases, O is a proper subcategory of a larger subcategory O′ of
S which is closed under the tensor product and whose associated functor category MO′
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is equivalent to MO under the obvious restriction functor. Theorem 3.8 below provides a
more convincing example of non-necessity.

3.3. Proposition. Let S be a symmetric monoidal closed Ab-category, and let O be a
skeletally small full subcategory of S such that the pair (S,O) satisfies the hypotheses of
Theorem 2.2. If O is closed under the internal hom operation on S, then the category
Mcov

O satisfies the axioms PiF and IiII.

As with the previous proposition, the sufficient condition given by this proposition is
not strictly necessary since the category R[G]-Mod of Examples 2.5(b) satisfies PiF and
IiII, but is a category of the form Mcov

O for a category O that is not closed under the
internal hom operation on S. Another such example is provided by the category OG(U)
of Example 2.5(c) in the special case where G is finite and U is complete. Again, however,
these examples are misleading in the sense that, in each of them, O is a proper subcategory
of a larger subcategory O′ of S which is closed under the internal hom operation and
whose associated functor category MO′ is equivalent to MO under the obvious restriction
functor. Theorem 3.8 gives a more convincing example of non-necessity.

3.4. Remark. In all of our examples derived from the equivariant stable category h̄GSU
of G-spectra indexed on a G-universe U , the category S, which was assumed to be h̄GSU ,
can be replaced with its full subcategory S ′ consisting of the G-spectra with the G-
homotopy type of finite G-CW spectra. Equivariant Spanier-Whitehead duality provides
a functor D : S ′ �� (S ′)op which is an equivalence of symmetric monoidal closed categories
between S ′ and its opposite category. The internal hom in S ′ associated to objects X and
Y is just D(X) ∧ Y . The category B∗ of Example 2.5(e) has a similar closed structure.
Categories with this sort of symmetric monoidal closed structure are sometimes called
*-autonomous categories (see, for example, [3]). Whenever S, or some full subcategory S ′

of S containing O, has a closed structure of this sort, the category O is closed under the
internal hom operation on S if and only if Oop is analogously closed. Thus, the restriction
of Proposition 3.3 to covariant functors is unnecessary in this special case.

To prove the proposition above, we need to introduce an important endofunctor on
Mcov

O .

3.5. Definition. Let S be a symmetric monoidal closed Ab-category, and let O be a
skeletally small full subcategory of S such that the pair (S,O) satisfies the hypotheses of
Theorem 2.2. Assume also that O is closed under the internal hom operation on S. If X
and Y are in S, then denote the internal hom of this pair in S by 〈〈X,Y 〉〉. For N in Mcov

O
and D in O, let ND be the functor in Mcov

O given by ND(A) = N(〈〈D,A〉〉).
3.6. Lemma. Let D be in O.

(a) The assignment of ND to N ∈ Mcov
O is an exact additive functor on Mcov

O .

(b) There is an isomorphism

Hcov

D � N ∼= ND

which is natural in both N ∈ Mcov
O and D ∈ O.
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Proof. Clearly the assignment of ND to N and D is functorial and is additive in each of
N and D separately. It is exact in N because the exactness of sequences in the functor
category Mcov

O is determined pointwise. On an object A of O, the isomorphism between
HD � N and ND is given by the composite

(HD � N)(A) =

∫ B,C∈O
HD(B) ⊗ N(C) ⊗ S(B ∧ C,A)

=

∫ B,C∈O
S(D,B) ⊗ N(C) ⊗ S(B ∧ C,A)

∼=
∫ C∈O

N(C) ⊗ S(D ∧ C,A)

∼=
∫ C∈O

N(C) ⊗ S(C, 〈〈D,A〉〉)
∼= N(〈〈D,A〉〉) = ND(A).

Here, the first and third isomorphisms are given by Lemmas 4.3(b) and 4.3(c) of [21],
respectively. The second isomorphism comes from the adjunction isomorphism making S
a closed category. Clearly the composite above is natural in A, D, and N .

3.7. Remark. The construction ND is very closely related to the construction ND in-
troduced in the context of Example 2.5(d) by Dress [8]. In fact, if the G-universe U of
that example is complete and O is taken to be BG(U), then the very simple nature of the
symmetric monoidal closed structure carried by BG(U) implies that the two constructions
are isomorphic.

Proof of Proposition 3.3. Note first that the adjunction making S a closed category
forces the tensor product on S to be bilinear. Since the representable functors form a
set of projective generators for Mcov

O , showing that Mcov
O satisfies PiF is easily reduced to

showing that the functor Hcov
D �? is exact for any D ∈ O. This is established in Lemma

3.6. Since Mcov
O has enough projectives, it must also satisfy IiII by Proposition 1.3(b).

The following positive result about the category of Mackey functors for the circle
group S1 stands in sharp contrast to the host of negative results contained in section 6.
It also provides clear evidence that the rather formal sufficient conditions contained in
Propositions 3.2 and 3.3 above are very far from necessary. This result is proven in section
10.

3.8. Theorem.

(a) The category MS1 of S1-Mackey functors satisfies the six axioms PiF, PiIP, IiII,
IPiP, IIiI, and TPPP.

(b) Let O′ be a full subcategory of the complete S1-stable category which contains the
stable orbit category OS1. If O′ is closed under either ∧-products or function objects, then
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the restriction functor

Mcont

O′ �� Mcont

OS1
= MS1

is not an equivalence of categories.

4. An introduction to (G,U)-Mackey functors

Let G be a compact Lie group, and U be a possibly incomplete G-universe. This section
is intended to provide a basic introduction to the categories OG(U) and MG(U). The
results presented here provide both some sense of why these categories have something
to do with the classical notion of a Mackey functor, and some intuition about why, for
various choices of G and U , the category MG(U) fails to satisfy our various axioms. These
results also form the foundation for the proofs, given in later sections, of Theorems 3.8,
6.1, 6.5, and 6.9.

The structure of the morphism sets of the stable orbit category OG(U) of Example
2.5(c) is described in Corollary 5.3(b) of [15] and Corollary 3.2 of [21]. An object of
OG(U) is the suspension spectrum Σ∞

U G/H+ of an orbit G/H of G; however, to avoid
unnecessary notational complexity, we hereafter denote this object by G/H. The set of
morphisms in OG(U) from G/H to G/K is a free abelian group whose generators are
certain allowed equivalence classes of diagrams of the form

G/H �� α
G/J

β
�� G/K,

in which α : G/J �� G/H and β : G/J �� G/K are space-level G-maps. Two such
diagrams are equivalent if there is a G-homeomorphism γ : G/J �� G/J ′ making the
space-level diagram

G/J
α

		������

γ

��

β



������

G/H G/K

G/J ′α′

��������
β′

��������

commute up to G-homotopy.
The morphism in OG(U) represented by the diagram

G/H �� α G/J
β

�� G/K

is the composite of the map, denoted τ(α), which is represented by the diagram

G/H �� α G/J
1G/J

�� G/J
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and the map, denoted ρ(β), which is represented by the diagram

G/J ��
1G/J

G/J
β

�� G/K.

If J is a subgroup of H, hereafter denoted J ≤ H, then there is a canonical G-map
πJ
H : G/J �� G/H which takes the identity coset eJ of G/J to the identity coset eH of

G/H. The associated maps τ(πJ
H) : G/H

�� G/J and ρ(πJ
H) : G/J

�� G/H in OG(U)
are denoted τJ

H and ρJH , respectively.
The connection between the category OG(U) and the classical notion of a Mackey

functor introduced by representation theorists can be seen from this sketch of the structure
of the morphism sets of OG(U). A contravariant functor M from OG(U) to Ab assigns
an abelian group M(G/H) to each orbit G/H of G. This abelian group is the value of
the Mackey functor M at the subgroup H of G and is often denoted M(H) rather than
M(G/H). The map τ(α) associated to a G-map α : G/J �� G/H induces an induction
(or transfer) map from M(G/J) to M(G/H), and the map ρ(α) induces a restriction map
from M(G/H) to M(G/J).

Not every equivalence class of diagrams represents a generator of a morphism group
in OG(U). Each equivalence class of diagrams contains at least one diagram of the form

G/H ��
πJ

H G/J
β

�� G/K.

The allowed equivalence classes are those having a representative of the above special
type in which the subgroup J of H satisfies both the condition that H/J embeds in the
universe U as an H-space and the condition that the index of J in its H-normalizer NHJ
is finite. For our purposes, the essential property of a complete G-universe U is that, for
such a universe, the embedding condition on H/J is always satisfied.

If the universe U is contained in a larger universe U ′, then OG(U) can be identified
with a subcategory of OG(U

′). In particular, since any G-universe is isomorphic to a
subuniverse of a complete G-universe, OG(U) is always a subcategory of OG. Viewing
OG(U) as a subcategory of OG reveals a difference between the two restrictions imposed
on the equivalence classes which index the generators of the morphism sets of OG(U). If
H/J does not embed in U , but the finiteness condition holds, then the diagram

G/H ��
πJ

H G/J
β

�� G/K,

represents a morphism of OG which has been omitted from OG(U) by our choice of U .
However, if the index of J in NHJ is not finite, then this diagram does not represent a
generator in OG(U) for any U .

If the index of J in NHJ is not finite, then for certain geometric reasons it is best to
think of the diagram

G/H ��
πJ

H G/J
β

�� G/K,
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as representing a morphism in OG(U) which, in some vague sense, should have been a
generator, but has instead been identified with the zero map. This distinction between a
morphism that has been omitted from OG(U) and one that has been identified with zero
is important for understanding composition of morphisms in OG(U). It is also important
for understanding the homological anomalies described in this paper. If the group G is
finite and the G-universe U is incomplete, then the morphisms missing from OG(U) may
cause the axioms PiF and IiII to fail in the functor category MG(U). If the group G is
a nonfinite compact Lie group, then the “unexpected” zero morphisms in OG may cause
the axioms TPPP, PiIP, TPPP, and IiII to fail in the functor category MG. The
arguments establishing these two types of failures are rather different since the failures
happen for quite different reasons.

5. An introduction to globally defined Mackey functors

Here, we examine the structure of the category B∗(P,Q) associated to the category of
global (P,Q)-Mackey functors. Thus, throughout this section, all groups are assumed to
be finite, and P, Q, and R are assumed to be sets of primes. The observations presented
here should provide both a sense of why the functors out of B∗(P,Q) should be regarded
as globally defined Mackey functors and an understanding of the way in which the choice
of the sets P and Q controls the level of structure carried by those functors. These
remarks also lay the foundation for the proof of Theorem 6.10 in section 11.

Recall from Example 2.5(e) that the set of morphisms from G to H in B∗(P,Q) is the
Grothendieck group of isomorphism classes of (G × H)-sets which are also (P,Q)-sets.
This is a free abelian group whose generators are the isomorphism classes of (G × H)-
orbits which are (P,Q)-sets. For any (G × H)-orbit (G × H)/J , the inclusion of J into
G × H can be composed with the projections from G × H to G and H to produce group
homomorphisms α : J �� G and β : J �� H. IfM is a covariant functor out of B∗(P,Q),
then the appropriate intuitive understanding of the map from M(G) to M(H) induced by
the (G×H)-orbit (G×H)/J is that this map is the composite of a restriction map from
M(G) to M(J) associated to the homomorphism α and an induction map from M(J) to
M(H) associated to the homomorphism β. The imposed constraint that the (G×H)-set
(G × H)/J must be a (P,Q)-set translates easily into the restriction that the kernel of
α must be a Q-group (that is, have order divisible only by the primes in Q) and the
kernel of β must be a P-group. Hereafter, we refer to a homomorphism whose kernel is a
P-group as a homomorphism with P-kernel.

The most common choices for P and Q are the empty set ∅ of primes and the set of all
primes, which we denote by ∞. If P = ∅, then the trivial group is the only P-group. On
the other hand, if P = ∞, then all finite groups are P-groups. Thus, a homomorphism
with ∅-kernel is a monomorphism, and every group homomorphism has ∞-kernel. At
the level of global Mackey functors, this means, for example, that a global (∅,∞)-Mackey
functor has induction maps only for injective group homomorphisms, but restriction maps
for all homomorphisms. Note that B∗(∞,∞) = B∗.



Theory and Applications of Categories, Vol. 5, No. 9 220

In order to justify the intuitive description of the maps in B∗(P,Q) presented above,
we must first identify the morphisms in B∗(P,Q) which are derived directly from ordinary
group homomorphisms.

5.1. Definition. Let α : H �� G be a group homomorphism. Then τ(α) is the set G
considered as a (H × G)-set with action given by

(h, g)x = α(h)xg−1,

for (h, g) ∈ H ×G and x ∈ G. Also, ρ(α) is the set G considered as an (G×H)-set with
action given by

(g, h)x = gxα(h−1),

for (g, h) ∈ G × H and x ∈ G. Note that, if α has R-kernel, then τ(α) is an (R, ∅)-set,
and ρ(α) is an (∅,R)-set. If R ⊂ P, then τ(α) is a generator of the free abelian group of
morphisms from H to G in B∗(P,Q). It should be thought of as the induction, or transfer,
map associated to α. Similarly, if R ⊂ Q, then ρ(α) is a generator of the free abelian
group of morphisms from G to H in B∗(P,Q). It should be thought of as the restriction
map associated to α. If α is the inclusion of a subgroup H into the group G, then τ(α)
and ρ(α) are denoted τH

G and ρHG , respectively. If G = H and α is the identity map, then
τ(α) and ρ(α) are equal and serve as the identity map 1G of G in B∗(P,Q).

If α : J �� G and β : J �� H are the group homomorphisms associated in our
introductory remarks to the (G × H)-orbit (G × H)/J , then it is fairly easy to see that,
in B∗, (G×H)/J is the composite τ(β) ◦ ρ(α). Further, the orbit (G×H)/J is a (P,Q)-
set precisely when α has Q-kernel and β has P-kernel. These observations allows us to
think of the generators of the free abelian group B∗(P,Q)(G,H) as equivalence classes of
diagrams of the form

G �� α J
β

�� H,

in which α is a group homomorphism with Q-kernel, β is a group homomorphism with
P-kernel, and the induced homomorphism (α, β) : J �� G × H is a monomorphism.

This description of the morphism sets of B∗(P,Q) plays a central role in the proof
of Theorem 6.10. Three notes of caution are, however, necessary. First, since M∗(P,Q)
is the category of covariant functors out of B∗(P,Q), the Mackey functor interpretation
of this diagram is the reverse of the interpretation associated to the analogous diagrams
for OG(U). Here, α is plays the role of the restriction map, and β plays the role of
the induction map. Second, the equivalence relation which must be imposed on these
diagrams cannot be described as neatly as the corresponding relation for OG(U). For our
purposes, it suffices to say that the diagram

G �� α′
J ′ β′

�� H,

is equivalent to the unprimed diagram above if and only if the two (G×H)-sets τ(β)◦ρ(α)
and τ(β′) ◦ ρ(α′) are isomorphic. The third note is that composition in B∗(P,Q) cannot
be computed using pullback diagrams like those used to compute composition in OG.
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5.2. Remark. There is an alternative approach to globally defined Mackey functors in
which the category B∗(P,Q) is replaced by a somewhat larger category B′

∗(P,Q) whose
objects are finite groupoids rather than finite groups. In many ways, the relation between
B∗(P,Q) and B′

∗(P,Q) is similar to that between OG(U) and BG(U). In particular, the
categories B∗(P,Q) and B′

∗(P,Q) are similar enough that the associated categories of
covariant functors into Ab are equivalent under the restriction functor derived from the
inclusion of B∗(P,Q) into B′

∗(P,Q). The larger category B′
∗(P,Q) is somewhat more

difficult to define because one has to deal with functors from finite groupoids into finite
sets rather than sets carrying actions by finite groups. However, it has the advantages of
an easily described equivalence relation on the generators of its morphism sets and a simple
pullback formula for its composition. Further advantages of B′

∗(P,Q) over B∗(P,Q) are
noted at the end of this section and in Remark 6.11(b).

One technical result describing the behavior of composition in B∗(P,Q) in the context
of cartesian products of groups is needed for the proof of Theorem 6.10. The information
this result provides about B∗(P,Q) is similar to that provided about OG(U) by Lemma
3.3 of [21].

5.3. Lemma. Let ψ : J �� P , ξ : J �� Q and ζ : Q′ �� Q be homomorphisms between
finite groups such that ξ has Q-kernel and ζ has P-kernel. Assume that the integers
{ni}1≤i≤m and the diagrams

Q′ ��
αi Ki

βi �� J,

for 1 ≤ i ≤ m, are chosen so that the composite ρ(ξ) ◦ τ(ζ) in B∗(P,Q) is the sum
over i of ni times the generator of B∗(P,Q)(Q′, J) represented by the ith diagram. Then
the composite ρ((ψ, ξ)) ◦ τ(1 × ζ) of the restriction map associated to the homomorphism
(ψ, ξ) : J �� P × Q and the transfer map associated to 1 × ζ : P × Q′ �� P × Q is the
sum over i of ni times the generator of B∗(P,Q)(P × Q′, J) represented by the diagram

P × Q′ ��
(ψ◦βi,αi)

Ki
βi �� J.

This result can be proven by brute force computations with the obvious finite sets
carrying the appropriate group actions. A further advantage of the category B′

∗(P,Q)
described in Remark 5.2 is that the simple pullback formula for composition in B′

∗(P,Q)
trivializes the proof of this lemma.

6. A bestiary of symmetric monoidal closed abelian categories

This section contains a catalog of functor categories which fail to satisfy the hypotheses
of Propositions 3.2 and 3.3 and also fail to satisfy various of our compatibility axioms.
These badly behaved categories come from the families of categories MG(U) of Example
2.5(c) and M∗(P,Q) of Example 2.5(e). The results stated in this section about the
misbehavior of our functor categories are proven in the subsequent sections.
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Let G be a compact Lie group, and U be a possibly incomplete G-universe. The
hypotheses of our theorems about the homological misbehavior of the category MG(U)
of (G,U)-Mackey functors are certainly not as weak as they could be. Nevertheless, they
are weak enough to produce an almost overwhelming supply of badly behaved categories.

6.1. Theorem. Let G be a finite group, U be a G-universe, and C ≤ D ≤ H be subgroups
of G such that

(i) C is normal in D and D/C ∼= Z/p for some prime p

(ii) H/C embeds as an H-space in U

(iii) H/D does not embed as an H-space in U .

Then HG/D is not flat in MG(U), and MG(U) satisfies neither PiF nor IiII.

6.2. Remark. One way of understanding the misbehavior of MG(U) implied by Theo-
rem 6.1 is that, if the subgroups C ≤ D ≤ H satisfy the hypotheses of the theorem, then
the induction maps τC

D and τC
H are contained in the subcategory OG(U) of OG, but the

induction map τD
H is not. Thus, even though the map τC

H can be factored as the composite
τC
D ◦ τD

H in OG, it cannot be so factored in OG(U). This failure of τC
H to factor properly

in OG(U) seems to be the source of the homological misbehavior of the category MG(U).

6.3. Example. Let p be a prime, G = H = Z/p2, D = Z/p ⊂ Z/p2, and C be the trivial
subgroup of G. Let U be a G-universe whose only irreducible summands are the trivial
irreducible G-representation and a free irreducible G-representation. Then G/C embeds
in U as a G-space, but G/D does not. By the theorem, the projective Mackey functor
HG/D is not flat in MG(U). Beyond the context of this paper, the special significance of
this universe is that it has natural connections to the study of semi-free actions of G.

6.4. Corollary. Let p be a prime, G be a finite p-group, and U be a G-universe. Then
the category MG(U) cannot satisfy either PiF or IiII unless, for each subgroup H of G,
the set

{K : K ≤ H and H/K does not embed as an H-space in U}

is closed under passage to subgroups. In particular, if the free orbit G/e embeds in U as a
G-space, then MG(U) cannot satisfy either PiF or IiII unless every G-orbit G/K embeds
in U .

The statement of our second main theorem requires a bit of additional notation. The
Weyl group NGH/H of a subgroupH of G is denotedWGH, and the set of G-conjugates of
H ≤ G is denoted (H)G. If H and K are subgroups of G, then the notation (K)G ≤ (H)G
indicates that K is subconjugate to H in G.
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6.5. Theorem. Let G be a compact Lie group, and U be a complete G-universe. Also,
let C ≤ D ≤ H be subgroups of G such that

(i) C is normal in D and D/C is a finite p-group for some prime p

(ii) WHD is finite

(iii) for every K < D such that (C)G ≤ (K)G, WHK is not finite.

Then HG/D is not flat in MG, and MG satisfies neither PiF nor IiII.

6.6. Remark. One way of understanding the misbehavior of MG implied by Theorem
6.5 is that, if the subgroups C ≤ D ≤ H satisfy the hypotheses of the theorem, then the
induction maps τC

D and τD
H are generators of the morphism sets of OG. Their composite

is the induction map τC
H associated to the containment C ≤ H. This map τC

H should also
be a generator of the appropriate morphism set. However, since WHC is not finite, τC

H is
actually the zero map. This vanishing of the composite of two generators of the morphism
sets of OG seems to be the source of the homological misbehavior of the category MG(U).

6.7. Example.

(a) Let G and H both be the orthogonal group O(2), D be the dihedral group of order
2n (for n ≥ 3) regarded as a subgroup of G, and C be the cyclic group of order n regarded
as a subgroup of D. Then C is normal in G, and D/C ∼= Z/2. Moreover, NGD is the
dihedral group of order 4n, so WGD is finite. If K is a proper subgroup of D such that
(C)G ≤ (K)G, then K = C, and WGK is G/C, which is not finite. Thus, the projective
Mackey functor HG/D is not flat in MG, and MG satisfies neither PiF nor IiII.

(b) If C ≤ D ≤ H are subgroups of G which satisfy the hypotheses of the theorem
and ε : G′ �� G is a surjective group homomorphism, then the subgroups C ′ = ε−1(C),
D′ = ε−1(D), and H ′ = ε−1(H) are subgroups of G′ which also satisfy the hypotheses of
the theorem. Therefore, MG′ does not satisfy the axioms PiF and IiII.

(c) We would like to argue that, if C ≤ D ≤ H are subgroups of G which satisfy the
hypotheses of the theorem and G ≤ G′′, then C, D, and H, regarded as subgroups of
G′′, satisfy the hypotheses of the theorem. However, condition (iii) in the hypotheses of
the theorem might fail since there might be a subgroup K of D such that C was G′′-
subconjugate to K, but not G-subconjugate to K. Nevertheless, if D/C ∼= Z/p and C
is the unique subgroup of D of index p, as in part (a) of this example, then the triple
C ≤ D ≤ H, regarded as subgroups ofG′′, must still satisfy the hypotheses of the theorem.
In fact, it suffices to assume that D/C ∼= Z/p and that every subgroup C ′ of index p in
D is H-conjugate to C. Combining this observation with part (a) of this example, we see
that, if a compact Lie group G contains the orthogonal group O(2), then MG satisfies
neither PiF nor IiII.

Combining the various parts of the example above yields the following corollary of
Theorem 6.5.
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6.8. Corollary. If G is any one of

O(m), SU(m), U(m), for m ≥ 2;

SO(n), Spin(n), for n ≥ 3;

Sp(q), for q ≥ 1;

then MG satisfies neither PiF nor IiII.

The family of categories MG, for G a compact Lie group, also provides us with some
examples of symmetric monoidal closed categories which fail to satisfy TPPP and PiIP.

6.9. Theorem. Let G be the orthogonal group O(m), for m ≥ 2, or the special orthog-
onal group SO(n), for n ≥ 3. Then MG satisfies neither TPPP nor PiIP.

Now we turn to the context of global Mackey functors. Recall that, in Example 2.5(e),
we associated a category M∗(P,Q) of global (P,Q)-Mackey functors to each pair (P,Q)
of sets of integer primes.

6.10. Theorem. Let P and Q be sets of integer primes. If the prime p is not in P,
then the representable functor in M∗(P,Q) associated to the cyclic group Z/p is not flat
in M∗(P,Q). Thus, M∗(P,Q) satisfies neither PiF nor IiII.

6.11. Remark.

(a) Recall that the empty set of primes and the set of all primes are denoted ∅ and
∞, respectively. The three types of global Mackey functors that appear most often in
the literature seem to be (∅, ∅)-, (∅,∞)- and (∞, ∅)-Mackey functors (see, for example,
[1, 2, 4, 5, 7, 9, 10, 12–14, 24–26, 28, 29]). Theorem 6.10 indicates that the first two of these
categories of global Mackey functors are badly behaved.

(b) As noted in Remark 5.2, the category B∗(P,Q) used to define global (P,Q)-
Mackey functors can be replaced by a somewhat larger category B′

∗(P,Q) whose objects
are finite groupoids. One advantage of this replacement is that, for any set of primes
Q, the category B′

∗(∞,Q) is a symmetric monoidal closed category. Proposition 3.3
therefore implies that M∗(∞,Q) satisfies PiF and IiII. Thus, the theorem above gives
sharp conditions under which M∗(P,Q) fails to satisfy PiF and IiII.

7. Mackey functors for incomplete universes and the proof of Theorem 6.1

Each of Theorems 6.1, 6.5, and 6.10 asserts that a projective object P in a certain functor
category MO is not flat. The proofs of these results follow the same pattern. It suffices to
show that, for some object A in O, the functor sending M in MO to (P �M)(A) does not
preserve monomorphisms. To show this, we restrict the domain of this functor to a nice
full subcategory M′ of MO. We then identify a natural direct summand Z : M′ �� Ab
of the restricted functor, and show that the summand fails to preserve monomorphisms.
In this section, we prove Theorem 6.1 by carrying out the appropriate special case of this
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general program. Thus, throughout the section, G is a finite group, U is a G-universe,
and C ≤ D ≤ H are subgroups of G. The appropriate projective object P in this context
is the representable functor HG/D in the category MG(U), and the appropriate object A

of O = OG(U) is the orbit G/H.
We begin the proof of Theorem 6.1 by introducing the appropriate subcategory M′ of

MG(U), and the appropriate direct summand functor Z.

7.1. Definition.

(a) A Mackey functor M is concentrated over C if, for K ≤ G, M(G/K) = 0 unless
(C)G ≤ (K)G. The subcategory M′ appropriate for the proof of Theorem 6.1 is the full
subcategory of MG(U) consisting of Mackey functors which are concentrated over C; this
subcategory is denoted MC

G (U).

(b) The Weyl group WGC is contained in the morphism set OG(U)(G/C,G/C) as the
set of maps ρ(β) associated to the endomorphisms β of the G-set G/C. Thus, the group
WGC acts on the value M(G/C) of a Mackey functorM at G/C. Let ZC : MG(U) �� Ab
be the functor sending M in MG(U) to the quotient group M(G/C)/WDC of M(G/C).

The technical foundation of the proof of Theorem 6.1 is the following result:

7.2. Proposition. Let G be a finite group, U be a G-universe, and C ≤ D ≤ H be
subgroups of G such that

(i) C is normal in D, and D/C ∼= Z/p for some prime p

(ii) H/C embeds as an H-space in U

(iii) H/D does not embed as an H-space in U .

Then, for M in MC
G (U), ZC(M) splits off from (HG/D � M)(G/H) as a natural direct

summand.

Before proving this result, we show how it can be used to complete the proof of our
theorem.

Proof of Theorem 6.1. Assume that C is normal in D, and that D/C ∼= Z/p for
some prime p. Also assume that H/C embeds as an H-space in U , but that H/D does
not so embed. We must construct a monomorphism ι : A �� B which is not preserved
by the functor ZC . Define the object B of MG(U) by the exact sequence

⊕
K<C

HG/K ⊗ Z/p
⊕ ρ̃K

C ⊗1
�� HG/C ⊗ Z/p �� B �� 0.

Here, the map ρ̃KC : HG/K
�� HG/C is derived from the restriction map ρKC in OG(U). By

construction, B is concentrated over C. Let A in MG(U) be the image of the composite
map

HG/D ⊗ Z/p
τ̃C
D⊗1

�� HG/C ⊗ Z/p �� B,
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in which τ̃C
D is the map derived from the induction map τC

D in OG(U). Clearly, this gives a
monomorphism ι : A �� B and an epimorphism µ : HG/D ⊗ Z/p �� A. Since A embeds
in B, it must also be concentrated over C.

The composition of morphisms in OG(U) is discussed in section 3 of [21]. Using the
results presented there, it is easy to see that B(G/C) is just the group ring Z/p[WGC].
Let t ∈ Z/p[WGC] be the sum

∑
d∈WDC d. A straightforward double coset computation

indicates that A(G/C) is the image of the endomorphism of Z/p[WGC] given by multi-
plication on the right by t. Thus, A(G/C) can be identified with the Z/p vector space
Z/p[WGC/WDC] whose basis set is the orbit WGC/WDC. Under these identifications,
the actions of WGC on A(G/C) and B(G/C) are the obvious ones coming from the left
action of WGC on itself. Moreover, the map

ι(G/C) : A(G/C) �� B(G/C)

is just the trace map

Z/p[WGC/WDC] �� Z/p[WGC]

which sends a coset in WGC/WDC, regarded as a basis element of Z/p[WGC/WDC], to
the sum of its elements in Z/p[WGC]. These identifications allow us to analyse the map

ZC(ι) : ZC(A) �� ZC(B).

The objects ZC(A) and ZC(B) are the Z/p vector spaces Z/p[WDC\WGC/WDC] and
Z/p[WDC\WGC] whose bases are the sets WDC\WGC/WDC and WDC\WGC, respec-
tively. The map ZC(ι) is the obvious one derived from the trace map ι(G/C). It follows
that the double coset WDCeWDC is a basis element in ZC(A), but maps to zero in ZC(B).
Thus, the map ZC(ι) is not a monomorphism.

Note that Corollary 6.4 follows directly from Theorem 6.1 and the fact that p-groups
are solvable. The remainder of this section is devoted to the postponed proof of our
splitting result.

Proof of Proposition 7.2. By Lemma 4.4(a) of [21],

(HG/D � M)(G/H) =

∫ G/Q

M(G/Q) ⊗ [G/H,G/D × G/Q].

Here, [?, ?] is used to denote the morphism set in S = h̄GSU , and G/D × G/Q is used
to denote the spectrum Σ∞

U G/D+ ∧ Σ∞
U G/Q+ = Σ∞

U (G/D × G/Q)+. By definition, this
coend is a quotient of the abelian group

⊕
G/QM(G/Q)⊗ [G/H,G/D×G/Q]. We prove

the proposition by constructing a natural map

λ : (HG/D � M)(G/H) �� ZC(M),
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and then showing that λ is a naturally split epimorphism. This map λ is derived from a
map

λ̃ :
⊕
G/Q

M(G/Q) ⊗ [G/H,G/D × G/Q] �� ZC(M)

by factoring λ̃ through the quotient group (HG/D � M)(G/H).

The map λ̃ may be defined by specifying its restriction λ̃Q to each of the summands
M(G/Q) ⊗ [G/H,G/D × G/Q] of its domain. Proposition 3.1 of [21] indicates that
[G/H,G/D × G/Q] is a free abelian group. Thus, M(G/Q) ⊗ [G/H,G/D × G/Q] is
a direct sum of one copy of M(G/Q) for each generator of [G/H,G/D × G/Q]. The
generators of [G/H,G/D × G/Q] are certain equivalence classes of diagrams of the form

G/H �� δ
G/J

(α,β)
�� G/D × G/Q,

in which α : G/J �� G/D, β : G/J �� G/Q, and δ : G/J �� G/H are maps of G-
spaces. Denote the equivalence class of this diagram by (δ;α, β). The map λ̃Q may be
defined by specifying its restriction λ̃(δ;α,β) to the copy of M(G/Q) associated to each
equivalence class (δ;α, β).

If the equivalence class (δ;α, β) does not contain a diagram of the form

G/H ��
πC

H G/C
(πC

D,β)
�� G/D × G/Q,

then λ̃(δ;α,β) is defined to be the zero map. On the other hand, the map λ̃(πC
H ;πC

D,β) is
defined to be the composite

M(G/Q)
M(ρ(β))

�� M(G/C) �� M(G/C)/WDC = ZC(M).

There is, in fact, more than one choice for the map β in the diagram chosen to represent
the equivalence class (πC

H ;π
C
D, β). However, the passage to orbits in the codomain of

λ̃(πC
H ;πC

D,β) kills off the uncertainity that might have arisen in the definition of λ̃(πC
H ;πC

D,β)

from the possible choices for β.
To show that the map λ̃ induces the desired map λ, it suffices to show that, for each

morphism f : G/Q �� G/Q′ in OG(U), the diagram

M(G/Q′) ⊗ [G/H,G/D × G/Q]
M(f)⊗1

��

1⊗(1×f)∗
��

M(G/Q) ⊗ [G/H,G/D × G/Q]

λ̃Q

��

M(G/Q′) ⊗ [G/H,G/D × G/Q′]
λ̃Q′

�� ZC(M)

commutes. In fact, the commutativity of this diagram needs to verified only for the mor-
phisms f which are generators of the free abelian group OG(U)(G/Q,G/Q′). Moreover,
since each morphism in OG(U) is the composite of a restriction map and an induction
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map, it suffices to check the commutativity of the diagram for the cases in which f is
either the restriction map ρ(β) associated to a G-map β : G/J �� G/K or the induction

map τQ′
Q associated to a containment Q′ ≤ Q.

Lemma 3.3 of [21] is the key to verifying the commutativity of the required diagram for
both of these types of maps. Verifying the commutativity of the diagram for a restriction
map ρ(β) is entirely elementary, and uses none of the conditions imposed on C, D, and H
other than the containments C ≤ D ≤ H. Thus, we can assume that f is the induction
map τQ′

Q associated to the containment Q′ ≤ Q.
Note that M(G/Q′)⊗ [G/H,G/D×G/Q] is a direct sum of one copy of M(G/Q′) for

each generator of [G/H,G/D × G/Q]. The commutativity of the diagram can therefore
be verified by checking it on each of the copies of M(G/Q′). If the diagram

G/H �� δ G/J
(α,β)

�� G/D × G/Q,

represents a generator of [G/H,G/D × G/Q], then (J)G ≤ (D)G. Using the equivalence
relation, we may adjust the diagram so that J ≤ D and α = πJ

D. It is easy to verify that,
if (C)G � (J)G, then, on the copy of M(G/Q′) indexed on the equivalence class (δ;πJ

D, β),
both of the composites in the diagram are zero. Thus, we may assume that (C)G ≤ (J)G.
Since D/C is Z/p, our assumptions now give that either J = D or (J)G = (C)G.

First, assume that J = D so that the generator of interest in [G/H,G/D × G/Q] is
that associated to the equivalence class (δ; 1G/D, β). We wish to show that both of the
composites in the diagram are zero on the copy ofM(G/Q′) indexed on this class. Clearly,
the composite along the top and right of the diagram must be zero on this copy by the
definition of λ̃Q. Assume that δ takes the identity coset eD of G/D to the coset gH of
G/H. Then g �∈ H since H/D doesn’t embed in U and the equivalence class (δ; 1G/D, β)
is assumed to give a generator of [G/H,G/D × G/Q]. The image of this generator of
[G/H,G/D × G/Q] under the map

(1 × f)∗ : [G/H,G/D × G/Q] �� [G/H,G/D × G/Q′]

is given by the double coset formula, and is a sum of generators represented by diagrams
of the form

G/H ��
δ◦πJ

H
G/J

(πJ
H ,β)

�� G/D × G/Q′,

in which J is a subgroup of D. The composite δ ◦πJ
H appearing in this diagram cannot be

πJ
H since it must take eJ to gH. But then λ̃Q′ kills the copies of M(G/Q′) in its domain

indexed on these generators of [G/H,G/D × G/Q′]. It follows that, on the (δ; 1G/D, β)-
indexed copy of M(G/Q′), the composite along the left and bottom of the diagram also
vanishes.

Now let us assume that (J)G = (C)G. Since J ≤ D and C is normal in D, either
J = C or (J)D �= (C)D. If (J)D �= (C)D, then the definitions of λ̃Q and λ̃Q′ easily
imply that both of the composites in the diagram vanish on the (δ;πJ

D, β)-indexed copy
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of M(G/Q′). Thus, we may assume that J = C. If δ �= πC
D, then the definitions of λ̃Q

and λ̃Q′ again imply that both of the composites in the diagram vanish on the copy of
M(G/Q′) in question. Thus, we need only consider the copy of M(G/Q′) indexed on the
generator (πC

H ;π
C
D, β). On this copy, simple double coset arguments indicate that the two

composites in the diagram are equal. In these arguments, the fact that M is concentrated
over C is used to ensure the vanishing of certain contributions to the composite along the
top and right which might otherwise not vanish.

We have now constructed the map λ : (HG/D � M)(G/H) �� ZC(M) for an arbitrary

M in MC
G (U). It is easy to see that λ must be natural in M . We must still show that λ is

naturally split. There is an obvious map σ̃ of M(G/C) into (HG/D � M)(G/H) coming
from the inclusion

M(G/C) ⊂
⊕
G/Q

M(G/Q) ⊗ [G/H,G/D × G/Q]

associated to the copy of M(G/C) in M(G/C) ⊗ [G/H,G/D × G/C] indexed on the
generator represented by the diagram

G/H ��
πC

H G/C
(πC

D,1G/C)
�� G/D × G/C.

It follows directly from the definition of λ that the composite λ ◦ σ̃ is just the projec-
tion M(G/C) �� M(G/C)/WDC = ZC(M). Moreover, the map σ̃ is obviously nat-
ural in M . Thus, it suffices to show that the map σ̃ factors through the projection
M(G/C) �� M(G/C)/WDC = ZC(M) to give a map

σ : ZC(M) �� (HG/D � M)(G/H).

For each Q ≤ G, let

νQ : M(G/Q) ⊗ [G/H,G/D × G/Q] �� (HG/D � M)(G/H)

be the map obtained from our description of (HG/D � M)(G/H) as a quotient group of⊕
G/QM(G/Q) ⊗ [G/H,G/D × G/Q]. Then, for any morphism f : G/Q �� G/Q′ in

OG(U), the diagram

M(G/Q′) ⊗ [G/H,G/D × G/Q]
M(f)⊗1

��

1⊗(1×f)∗
��

M(G/Q) ⊗ [G/H,G/D × G/Q]

νQ

��

M(G/Q′) ⊗ [G/H,G/D × G/Q′]
νQ′

�� (HG/D � M)(G/H)

commutes. Take Q = Q′ = C in this diagram, and consider the generators f in
OG(U)(G/C,G/C) which give the action of WDC on M(G/C). It follows immediately
that σ̃ does factor through the indicated projection to give the desired splitting map σ
for λ.
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8. Mackey functors for compact Lie groups and the proof of Theorem 6.5

In this section, G is a compact Lie group, U is a complete G-universe, and C ≤ D ≤ H are
subgroups of G satisfying the conditions of Theorem 6.5. Following the general program
outlined in section 7, we show that HG/D is not flat in MG by showing that the functor

sending M in MG to (HG/D �M)(G/H) does not preserve monomorphisms. In the proof,

the domain of this functor is restricted to the full subcategory MC
G of MG consisting of

the objects which are concentrated over C. This restricted functor has a natural direct
summand which is easily computed and can be shown not to preserve monomorphisms.

Recall from Definition 2.1(b) of [21] that the Brauer quotient brDM of an object M
in MG at D is defined by the exact sequence

⊕
K

M(G/K)
⊕M(τK

D )
�� M(G/D) �� brDM �� 0.

Here, the direct sum is indexed on the proper subgroups K of D for which WDK is finite.
This Brauer quotient is the natural direct summand that is to be split off from our functor.

8.1. Proposition. Let G be a compact Lie group, U be a complete G-universe, and
C ≤ D ≤ H be subgroups of G such that

(i) WDC and WHD are finite

(ii) for every K < D such that (C)G ≤ (K)G, WHK is not finite.

Then, forM inMC
G , brDM splits off from (HG/D�M)(G/H) as a natural direct summand.

Before proving this result, we show how it can be used to complete the proof of our
theorem.

Proof of Theorem 6.5. Assume that WHD is finite, C is normal in D, and D/C
is a finite p-group for some prime p. Also assume that, for every K < D such that
(C)G ≤ (K)G, WHK is not finite. We must construct a monomorphism ι : A �� B which
is not preserved by the functor brD. Define the object B of MG by the exact sequence

⊕
K<C

HG/K

⊕ρ̃K
C �� HG/C

φ
�� B �� 0.

Here, the map ρ̃KC : HG/K
�� HG/C is derived from the restriction map ρKC in OG. By

construction, B is concentrated over C. Let A in MG be the image of the composite map

HG/D

τ̃C
D �� HG/C

�� B,

in which τ̃C
D is the map derived from the induction map τC

D in OG. Note that there are an
obvious monomorphism ι : A �� B and an obvious epimorphism µ : HG/D

�� A. Since
it is a subobject of B, A must be concentrated over C.
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Using the results in section 3 of [21] about the composition in OG, it is easy to see that
B(G/D) is a free abelian group whose generators are the images under φ : HG/C

�� B

of the induction maps τ(α) in HG/C(G/D) associated to G-maps α : G/C �� G/D.
It follows that brDB is zero. Thus, to show that the functor brD does not preserve
monomorphisms, it suffices to show that brDA is nonzero.

Let x ∈ A(G/D) be the image under µ : HG/D
�� A of the identity map 1G/D in

HG/D(G/D) = OG(G/D,G/D), and let y ∈ B(G/D) be ι(G/D)(x). It is easy to see that

y is the generator of B(G/D) derived from the transfer map τC
D in HG/C(G/D). To show

that the image of x in brDA is nonzero, it suffices to show that x is not in the image of
the map

⊕
K

A(G/K)
⊕A(τK

D )
�� A(G/D)

whose cokernel is brDA. In fact, px is the smallest nonzero multiple of x which can appear
in this image. This can be proven by showing that py is the smallest nonzero multiple of
y which can appear in the image of the composite

⊕
K

A(G/K)
⊕A(τK

D )
�� A(G/D)

ι(G/D)
�� B(G/D).

This claim about y can be proven using the commuting diagram

HG/D(G/K)
H

G/D
(τK

D )
��

µ(G/K)
����

HG/D(G/D)
τ̃C
D ��

µ(G/D)
����

HG/C(G/D)

φ(G/D)
����

A(G/K)
A(τK

D )
�� A(G/D) � � ι(G/D)

�� B(G/D).

Let w be a generator of HG/D(G/K) = OG(G/K,G/D), and z be its image in B(G/D)
under either composite in the diagram above. It suffices to show that, if z is written
in terms of our standard basis for B(G/D), then the coefficient of y is a multiple of
p. We analyze z by first computing the element τ̃C

D (HG/D(τ
K
D )(w)) = τC

D ◦ w ◦ τK
D of

HG/C(G/D) = OG(G/D,G/C). The generator w is represented by a diagram of the form

G/K �� α
G/J

β
�� G/D,

and we can select this diagram so that J ≤ D and β = πJ
D. The composite w ◦ τK

D is then
represented by the diagram

G/D ��
πK

D ◦α
G/J

πJ
D �� G/D.
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Since G is a nonfinite compact Lie group, computing the composite of this map with
τC
D would normally be rather difficult since it requires an analysis of the pullback diagram

P ��

��

G/C

πC
D

��

G/J
πJ

D �� G/D

in the category of G-spaces. However, it is easy to see that, if the composite πK
D ◦α is not

πJ
D, then the coefficient of y in the expression for z in terms of our basis is zero. Further, if

J does not contain C, then the coefficient of y also has to be zero. Thus, we may assume
that πK

D ◦ α = πJ
D and C ≤ J . Now we can use the fact that D/C is a finite group to

complete the computation. The D-orbits D/C, D/J , and D/D may be regarded as orbits
of the finite group D/C. The diagram

D/J × D/C
π2 ��

π1

��

D/C

π̃C
D

��

D/J
π̃J

D �� D/D

is obviously a pullback in the category of D/C-sets. The functor G×D? preserves pull-
backs, and so takes this pullback diagram into the pullback diagram we must analyze in
the category of G-spaces. Since D/J × D/C decomposes into a disjoint union of finitely
many D/C-orbits, the pullback P in our diagram of G-spaces is just a disjoint union of
the analogous G-orbits. The free D/C-orbit D/C appears |D/J | times in D/J × D/C,
and |D/J | = pn for some n ≥ 1. From this, it follows that, if τ̃C

D (HG/D(τ
K
D )(w)) is written

in terms of the standard generators of HG/C(G/D), then the coefficient of the generator

τC
D is |D/J | = pn. The coefficient of y in the expression for z in terms of the standard
basis must then also be |D/J | = pn.

Corollary 6.8 follows from Theorem 6.5 and the remarks in Example 6.7 by observing
that the listed groups either contain O(2) or map onto a group containing O(2). In
particular, the groups O(m), U(m), and Sp(m) contain O(2) for m ≥ 2. For n ≥ 3, the
groups SO(n) and SU(n) also contain O(2). The groups Spin(n) map onto the groups
SO(n). The special cases SU(2) and Sp(1) are handled by their surjections onto SO(3).

The remainder of this section is occupied by the postponed proof of our splitting result.

Proof of Proposition 8.1. Let M be in MC
G . As in the proof of Proposition 7.2, we

first construct a natural map

λ : (HG/D � M)(G/H) �� brDM,

and then show that it is a split epimorphism. The map λ is, as in the previous section,
derived from an appropriately behaved map

λ̃ :
⊕
G/Q

M(G/Q) ⊗ [G/H,G/D × G/Q] �� brDM.
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As before, λ̃ is defined by specifying its restriction λ̃Q to the summand associated to each
orbit G/Q. Moreover, λ̃Q can be defined by giving its restriction to the copy of M(G/Q)
in M(G/Q) ⊗ [G/H,G/D × G/Q] associated to each generator of [G/H,G/D × G/Q].
These generators correspond to equivalence classes of diagrams of the form

G/H �� δ G/J
(α,β)

�� G/D × G/Q.

If the equivalence class (δ;α, β) of such a diagram does not contain a diagram of the form

G/H ��
πD

H G/D
(1G/D,β)

�� G/D × G/Q,

then the restriction λ̃(δ;α,β) to the associated copy of M(G/Q) is the zero map. On the

other hand, the map λ̃(πD
H ;1G/D,β) is defined to be the composite

M(G/Q)
M(ρ(β))

�� M(G/D) �� brDM.

To show that λ can be derived from λ̃, it suffices to show that, for each morphism
f : G/Q �� G/Q′ in OG(U), the diagram

M(G/Q′) ⊗ [G/H,G/D × G/Q]
M(f)⊗1

��

1⊗(1×f)∗
��

M(G/Q) ⊗ [G/H,G/D × G/Q]

λ̃Q

��

M(G/Q′) ⊗ [G/H,G/D × G/Q′]
λ̃Q′

�� brDM

commutes. Again, we need only check the cases in which f is either a restriction map
ρ(β) or an induction map τQ′

Q .
As in the previous proof, the commutativity of the diagram is purely formal if f is a

restriction map ρ(β). If f is an induction map τQ′
Q , then the required commutativity can

be verified by checking it on each summand M(G/Q′) of M(G/Q′)⊗ [G/H,G/D×G/Q].
On the summand associated to an equivalence class that does not contain a diagram of
the form

G/H ��
πD

H G/D
(1G/D,β)

�� G/D × G/Q,

it is easy to see that both composites in the diagram are zero. Thus, we restrict our
attention to the summands indexed on equivalence classes of the form (πD

H ; 1G/D, β).
To compute the composite along the top and right side of the rectangle on such

a summand, it is necessary to commute the composite in OG of f and the restriction
map ρ(β) : G/D �� G/Q. This composite is a sum of generators of OG(G/D,G/Q′)
represented by diagrams of the form

G/D ��
π

Ki
D G/Ki

ζi �� G/Q′,
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in which Ki ≤ D. Because the target of the composite along the top and right side is
brDM , the generators for whichKi �= D can be ignored. The implications of the remaining
terms for the composite along the top and right are easily understood.

To understand the composite along the left side and bottom of the rectangle, it is
necessary to compute the image of the generator associcated to the equivalence class
(πD

H ; 1G/D, β) under the map

(1 × f)∗ : [G/H,G/D × G/Q] �� [G/H,G/D × G/Q′].

By Lemma 3.3 of [21], this image is the sum of generators represented by diagrams of the
form

G/H ��
π

Ki
H G/Ki

(π
Ki
D ,ζi)

�� G/D × G/Q′,

in which exactly the same subgroups Ki and the same morphisms ζi appear as those
encountered in our examination of the other composite. By the definition of the map λ̃Q′ ,
the generators for which Ki �= D can be ignored. The implications of the remaining terms
for the composite along the right and bottom are easily understood, and it follows that
two composites in the diagram are equal. Thus, the desired map λ can be obtained from
the defined map λ̃. Clearly, λ is natural in M ∈ MC

G .

It is still necessary to show that λ is naturally split. There is an obvious map

σ̃ : M(G/D) �� (HG/D � M)(G/H)

derived from the inclusion

M(G/D) ⊂
⊕
G/Q

M(G/Q) ⊗ [G/H,G/D × G/Q]

associated to the copy of M(G/D) in M(G/D) ⊗ [G/H,G/D × G/D] indexed on the
equivalence class (πD

H ; 1G/D, 1G/D). Clearly, the composite λ ◦ σ̃ is just the canonical
projection M(G/D) �� brDM . Thus, to show that λ is a split epimorphism, it suffices
to show that the map σ̃ factors through the projection M(G/D) �� brDM . This is
equivalent to showing that, for each K < D such that WDK is finite, the composite

M(G/K)
M(τK

D )
�� M(G/D) σ̃ �� (HG/D � M)(G/H)

is zero. Unless (C)G ≤ (K)G, M(G/K) is zero, and the composite is trivially zero. Thus,
we assume that (C)G ≤ (K)G.

For each Q ≤ G, let

νQ : M(G/Q) ⊗ [G/H,G/D × G/Q] �� (HG/D � M)(G/H)
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be the map obtained from our description of (HG/D � M)(G/H) as a quotient group of⊕
G/QM(G/Q) ⊗ [G/H,G/D × G/Q]. The diagram

M(G/K) ⊗ [G/H,G/D × G/D]
M(τK

D )⊗1
��

1⊗(1×τK
D )∗

��

M(G/D) ⊗ [G/H,G/D × G/D]

νD

��

M(G/K) ⊗ [G/H,G/D × G/K]
νK �� (HG/D � M)(G/H)

commutes by the definition of (HG/D � M)(G/H). The composite σ̃ ◦ M(τK
D ) can be

obtained by restricting the composite along the top and right hand side of the rectangle
to the copy of M(G/K) indexed on the generator of [G/H,G/D × G/D] associated to
the equivalence class (πD

H ; 1G/D, 1G/D). The image of this generator under the map

(1 × f)∗ : [G/H,G/D × G/D] �� [G/H,G/D × G/K].

is the element of [G/H,G/D × G/K] that should be represented by the diagram

G/H ��
πK

H G/K
(πK

D ,1G/K)
�� G/D × G/K.

However, by assumption, (C)G ≤ (K)G and so WHK is not finite. Thus, this diagram
represents not a generator of [G/H,G/D × G/K], but the zero element. The composite
along the left and bottom of the rectangle must then restrict to zero on the appropriate
copy of M(G/K). Thus, the composite σ̃ ◦ M(τK

D ) is zero. It follows that the map
σ̃ : M(G/D) �� (HG/D � M)(G/H) induces a map

σ : brDM �� (HG/D � M)(G/H)

which splits λ.

9. Mackey functors for compact Lie groups and the proof of Theorem 6.9

Throughout this section, G is a compact Lie group, and U is a G-universe. Here we
convert the question of whether MG(U) satisfies TPPP and PiIP into a question in
equivariant stable homotopy theory. This conversion is used here to prove Theorem 6.9
by showing that MG fails to satisfy TPPP and PiIP if G is either the orthogonal group
O(m), for m ≥ 2, or the special orthogonal group SO(n), for n ≥ 3. It is used in the next
section to show that, if G = S1, then MG does satisfy TPPP and PiIP.

The category MG(U) satisfies TPPP and PiIP if and only if, for every subgroup H
of G, the functor 〈HG/H , ?〉 : MG(U) �� MG(U) preserve epimorphisms. Associated to
any short exact sequence

0 �� M ′ ι �� M ε �� M ′′ �� 0
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in MG(U), there is a fibre sequence

K(M ′, 0) ι̃ �� K(M, 0) ε̃ �� K(M ′′, 0)

of zero-dimensional equivariant Eilenberg-MacLane spectra in the stable category of G-
spectra indexed on U . Proposition 5.2 of [21] allows us to use the long exact homo-
topy sequence derived from this fibre sequence to investigate the exactness of the functor
〈HG/H , ?〉.

That proposition gives an isomorphism

〈HG/H ,M〉(G/J) ∼= [G/J+ ∧ G/H+, K(M, 0)]G

which is natural in M ∈ MG(U) and G/H, G/J ∈ OG(U). Here, [ , ]G is used to denote
the morphism sets in the G-stable homotopy category. This isomorphism identifies the
map

〈HG/H ,M〉(G/J) ε∗(G/J)
�� 〈HG/H ,M

′′〉(G/J),
which must be an epimorphism if MG is to satisfy TPPP and PiIP, with the map

[G/J+ ∧ G/H+, K(M, 0)]G
ε̃∗ �� [G/J+ ∧ G/H+, K(M ′′, 0)]G.

From the long exact homotopy sequence, it follows that ε̃∗ is an epimorphism if and only
if the map

[G/J+ ∧ G/H+,ΣK(M ′, 0)]G
ι̃G �� [G/J+ ∧ G/H+,ΣK(M, 0)]G

is a monomorphism. The change of group isomorphisms given in section II.4 of [23]
identify this map with the map

[G/H+,ΣK(M ′, 0)]J
ι̃J �� [G/H+,ΣK(M, 0)]J .

We have now reformulated the question of whether MG(U) satisfies TPPP and PiIP
into the form needed for our discussion of S1 in section 10.

9.1. Proposition. Let G be a compact Lie group, and U be a G-universe. Then the
category MG(U) satisfies TPPP and PiIP if and only if, for every monomorphism
ι : M ′ �� M in MG(U) and every pair H, J of subgroups of G, the map

[G/H+,ΣK(M ′, 0)]J
ι̃J �� [G/H+,ΣK(M, 0)]J .

induced by ι is a monomorphism.

For the proof of Theorem 6.9, it suffices to exhibit a monomorphism ι : M ′ �� M in
MG and two subgroups H and J of G for which the map ι̃J is not a monomorphism. It is
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possible to select these subgroups H and J so that H ≥ J . For such a pair of subgroups,
the identity coset eH of G/H is J-invariant and so provides a basepoint for G/H regarded
as a J-space. The existence of this basepoint implies that G/H+ is equivalent to G/H∨S0

in the J-stable category. Thus,

[G/H+,ΣK(M ′, 0)]J ∼= [G/H ∨ S0,ΣK(M ′, 0)]J
∼= [G/H,ΣK(M ′, 0)]J ⊕ [S0,ΣK(M ′, 0)]J .

Similar observations apply to [G/H+,ΣK(M, 0)]J . The dimension axiom implies that
[S0,ΣK(M ′, 0)]J and [S0,ΣK(M, 0)]J are both zero. The map which we wish to show is
not a monomorphism can therefore be identified with the map

[G/H,ΣK(M ′, 0)]J
ι̂J �� [G/H,ΣK(M, 0)]J .

The task of showing that MG fails to satisfy TPPP and PiIP is now reduced to
the two problems of analyzing the G-orbit G/H as a J-space so that the map ι̂J can be
understood and of selecting a short exact sequence in MG for which this map is not a
monomorphism. We address these two problems only for the case in which G is either
O(n) or SO(n), and the universe U is complete.

If G is either O(n) or SO(n), then the subgroup J in the analysis above can be taken
to be H. For either choice of G, our argument employs an appropriately chosen proper
subgroupK ofH. If G = O(n), thenH = O(n−1) andK = O(n−2). If G = SO(n), then
H = SO(n−1) and K = SO(n−2). Here, O(1) = Z/2, and O(0) = SO(1) = e. For both
O(n) and SO(n), standard geometry gives nonequivariant homeomorphisms G/H ∼= Sn−1

and H/K ∼= Sn−2. Moreover, for either choice of G, the G-orbit G/H, considered as an
H-space, may be identified with the unreduced suspension S(H/K) of the H-orbit H/K.
Under this identification, the map ι̂J becomes the map

[S(H/K),ΣK(M ′, 0)]H
ι̂ �� [S(H/K),ΣK(M, 0)]H .

The unreduced suspension S(H/K) fits into a cofibre sequence

S0 �� S(H/K) �� ΣH/K+
�� S1

of H-spaces. From this cofibre sequence, we obtain the diagram

[S1,ΣK(M ′, 0)]H
ι′′ ��

��

[S1,ΣK(M, 0)]H

θ
��

[ΣH/K+,ΣK(M ′, 0)]H
ι′ ��

��

[ΣH/K+,ΣK(M, 0)]H

��

[S(H/K),ΣK(M ′, 0)]H
ι̂ ��

��

[S(H/K),ΣK(M, 0)]H

��

[S0,ΣK(M ′, 0)]H
‖

[S0,ΣK(M, 0)]H
‖

0 0
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in which the columns are exact sequences derived from our cofibre sequence. Consider
the pullback diagram

P ��

��

[S1,ΣK(M, 0)]H

θ
��

[ΣH/K+,ΣK(M ′, 0)]H
ι′ �� [ΣH/K+,ΣK(M, 0)]H

associated with the top rectangle of the larger diagram. The commutativity of the top
rectangle in the larger diagram implies the existence of a map

φ : [S1,ΣK(M ′, 0)]H �� P.

Assume that the map θ in these two diagrams is a monomorphism. A simple diagram
chase then gives that the map ι̂ of interest to us fails to be a monomorphism if and only
if the map φ fails to be an epimorphism.

The change of group isomorphisms from section II.4 of [23] allow us to identify the
top rectangle of our larger diagram with the diagram

M ′(G/H)
ι(G/H)

��

M ′(ρK
H )

��

M(G/H)

M(ρK
H )

��

M ′(G/K)
ι(G/K)

�� M(G/K).

We can think of P as the pullback associated with this rectangle and of φ as a map from
M ′(G/H) into P . Our geometric argument has therefore reduced the question of whether
the functor 〈HG/H , ?〉 preserves epimorphisms to the question of whether there exists a

monomorphism M ′ �� M in MG for which the map M(ρKH) : M(G/H) �� M(G/K) is
a monomorphism and the map φ : M ′(G/H) �� P is not an epimorphism.

Let M be the Mackey functor Z given by Proposition V.9.10 of [23]. For any subgroup
J of G,M(G/J) = Z. Also, for L ≤ J , the restriction mapM(ρLJ ) : M(G/J) �� M(G/L)
is the identity map, and the induction map M(τL

J ) : M(G/L) �� M(G/J) is multiplica-
tion by the Euler characteristic χ(J/L). Let M ′ be the image of the canonical map
HG/K � M �� M . By Proposition 5.5 of [21], the map (HG/K � M)(G/K) �� M(G/K)

is a split epimorphism. Therefore, M ′(G/K) = M(G/K), and the map ι(G/K) is the
identity map. The image of the map (HG/K � M)(G/H) �� M(G/H) is contained in

the image of the transfer map M(τK
H ) : M(G/K) �� M(G/H) by Proposition 5.7 of

[21]. This transfer map is multiplication by the Euler characteristic of H/K ∼= Sn−2,
which is either 2 or 0. Thus, M ′(G/H) is either Z or 0. If M ′(G/H) = Z, then the
map ι(G/H) : M ′(G/H) �� M(G/H) is multiplication by 2. In either case, the map
φ : M ′(G/H) �� P is not an epimorphism. Thus, the functor 〈HG/H , ?〉 : M �� M does
not preserve epimorphisms, and the category MG satisfies neither TPPP nor PiIP.
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10. S1-Mackey functors and the proof of Theorem 3.8

To prove Theorem 3.8, we must show that MS1 satisfies all six of the axioms PiF, PiIP,
IiII, IPiP, IIiI, and TPPP. It follows immediately from Proposition 3.1 that it satisfies
IPiP and IIiI. Tools from equivariant stable homotopy theory are used to show that
it satisfies the other four axioms. Proposition 9.1 provides the means of applying these
tools to the question of whether MS1 satisfies TPPP and PiIP. This section begins with
an analogous proposition providing a method for applying these tools to the question of
whether the category MG(U) associated to a compact Lie group G and a G-universe U
satisfies PiF and IiII. After proving this proposition, we specialize to the case in which
G = S1 and U is a complete G-universe, and prove Theorem 3.8.

As in section 9, we assume here that ι : M ′ �� M is a monomorphism in MG(U), and
ι̃ : K(M ′, 0) �� K(M, 0) is the induced map between the equivariant Eilenberg-MacLane
spectra associated to M ′ and M .

10.1. Proposition. Let G be a compact Lie group, and U be a G-universe. Then
the category MG(U) satisfies PiF and IiII if and only if, for every monomorphism
ι : M ′ �� M in MG(U) and every pair H, J of subgroups of G, the map

[S0, G/H+ ∧ K(M ′, 0)]J
ῐJ �� [S0, G/H+ ∧ K(M, 0)]J

induced by ι is a monomorphism.

Proof. To prove that MG(U) satisfies PiF and IiII, it suffices to show that, for every
monomorphism ι : M ′ �� M in MG(U) and every pair H and J of subgroups of G, the
map

(1 � ι)(G/J) : (HG/H � M ′)(G/J) �� (HG/H � M)(G/J)

is a monomorphism. Proposition 5.2 of [21] provides an isomorphism

(HG/H � M)(G/J) ∼= [G/J+, G/H+ ∧ K(M, 0)]G

which is natural in M ∈ MG(U) and G/H, G/J ∈ OG(U). Under this isomorphism, the
map (1 � ι)(G/J) is identified with the map

[G/J+, G/H+ ∧ K(M ′, 0)]G
ῐG �� [G/J+, G/H+ ∧ K(M, 0)]G

induced by the map ι̃ : K(M ′, 0) �� K(M, 0). The change of group isomorphisms given
in section II.4 of [23] allow us to identify the map ῐG with the map ῐJ of the proposition.

Henceforth, we assume that G = S1 and that the universe U is complete. The remain-
der of this section is devoted to the proofs of the two parts of Theorem 3.8.
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Proof of Theorem 3.8(a). Propositions 3.1, 9.1 and 10.1 reduce the proof of this
part of the theorem to showing that, for every monomorphism ι : M ′ �� M in MG and
every pair H and J of subgroups of G = S1, the two maps

[G/H+,ΣK(M ′, 0)]J
ι̃J �� [G/H+,ΣK(M, 0)]J .

and

[S0, G/H+ ∧ K(M ′, 0)]J
ῐJ �� [S0, G/H+ ∧ K(M, 0)]J

are monomorphisms. For H = G, the dimension axiom indicates that the morphism set
[G/G+,ΣK(M ′, 0)]J , and the analogous set for M , are both zero. Thus, ι̃J is trivially a
monomorphism. Further, the isomorphism

[S0, G/G+ ∧ K(M ′, 0)]J ∼= M ′(G/J),

and the analogous isomorphism for M , identify the map ῐJ with the map

ι(G/J) : M ′(G/J) �� M(G/J),

which is assumed to be a monomorphism. Thus, we may assume that H �= G.
If J = G and H �= G, then both ι̃J and ῐJ have vanishing range and domain, and so

are monomorphisms. For ι̃J , this follows directly from the dimension axiom. To see this
for ῐJ , note that in the equivariant stable category G/H+ ∧K(M, 0) can be identified with
a G-CW spectrum whose zero skeleton is a wedge ∨iG/K

i
+ of orbits G/Ki associated to

certain subgroups Ki of H. A simple connectivity argument gives that the map⊕
i

[S0, G/Ki
+]G

∼= [S0,∨iG/K
i
+]G �� [S0, G/H+ ∧ K(M, 0)]G

induced by the inclusion of this zero skeleton is an epimorphism. Thus, to show that
[S0, G/H+ ∧K(M, 0)]G is zero, it suffices to argue that [S0, G/Ki

+]G is zero. Corollary 3.2
of [21] gives that [S0, G/Ki

+]G = OG(G/G,G/K
i) is a free abelian group whose generators

are equivalence classes of diagrams of the form

G/G �� α G/L
β

�� G/Ki

in which WGL is finite. However, in any such diagram, L ≤ Ki ≤ H. Since H �= G, L
must be a finite cyclic group, and so WGL cannot be finite. Thus, there are no generators,
and OG(G/G,G/K

i) = 0. Analogously, the domain of the map ῐJ is zero.
We can now assume that neither H nor J is equal to G. If J ≤ H, then the identity

coset eH of G/H is J-invariant, and so provides G/H, considered as a J-space, with a
basepoint. Thus, in the J-stable category, G/H+

∼= G/H ∨ S0 = S1 ∨ S0, where S1 is
assumed to have trivial J-action. This decomposition of G/H+ and the dimension axiom
provide isomorphisms

[G/H+,ΣK(M, 0)]J ∼= [S1,ΣK(M, 0)]J = M(G/J)
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and

[S0, G/H+ ∧ K(M, 0)]J ∼= [S0, S0 ∧ K(M, 0)]J = M(G/J).

These isomorphisms, and the analogous ones for M ′, identify the maps ι̃J and ῐJ with the
map ι(G/J) : M ′(G/J) �� M(G/J), which is assumed to be a monomorphism.

We can now assume that H, J �= G and J �≤ H. Thus, J ∩ H is a proper subgroup of
J . In this case, G/H, considered as a J-space, can be identified with the unit sphere Sξ
of an irreducible complex representation ξ of J whose kernel is J ∩ H. The inclusion of
any J-orbit into G/H = Sξ yields a cofibre sequence

J/(J ∩ H)+ �� G/H+
�� ΣJ/(J ∩ H)+.

The next map ΣJ/(J ∩ H)+ �� ΣJ/(J ∩ H)+ in this sequence is the difference of the
identity map of ΣJ/(J ∩ H)+ and the map j̄ : ΣJ/(J ∩ H)+ �� ΣJ/(J ∩ H)+ given by
multiplication by an appropriate generator j of J (see, for example, the proof of Lemma
A.1 in the appendix of [17]). To understand the map ι̃J in this context, consider the exact
sequence

[ΣJ/(J ∩ H)+,ΣK(M, 0)]J
(1−j̄)∗

�� [ΣJ/(J ∩ H)+,ΣK(M, 0)]J
�� [G/H+,ΣK(M, 0)]J
�� [J/(J ∩ H)+,ΣK(M, 0)]J = 0

derived from our cofibre sequence. The last group in this sequence is zero by the dimension
axiom. The first map in this sequence can be identified with the map

M(G/(J ∩ H))
1−j̃

�� M(G/(J ∩ H)),

in which the map j̃ is given by the action of j, considered as an element of the Weyl group
WG(J ∩ H), on M(G/(J ∩ H)). Since WG(J ∩ H) = S1 is connected, it acts trivially on
M(G/(J ∩ H)). Thus, the map (1 − j̄)∗ in the exact sequence above is trivial, and there
is an isomorphism

[G/H+,ΣK(M, 0)]J ∼= [ΣJ/(J ∩ H)+,ΣK(M, 0)]J = M(G/(J ∩ H)).

This isomorphism, and the analogous isomorphism for M ′, identify the map ι̃J with
the map ι(G/(J ∩ H)) : M ′(G/(J ∩ H)) �� M(G/(J ∩ H)), which is assumed to be a
monomorphism.

The cofibre sequence of the inclusion J/(J ∩ H)+ �� G/H+ can also be used to an-
alyze the map ῐJ whenever H, J �= G and J �≤ H. For this analysis, consider the exact
sequence

[S0, J/(J ∩ H)+ ∧ K(M, 0)]J
((1−j̄)∧1)∗

�� [S0, J/(J ∩ H)+ ∧ K(M, 0)]J
�� [S0, G/H+ ∧ K(M, 0)]J
�� [S0,ΣJ/(J ∩ H)+ ∧ K(M, 0)]J = 0,



Theory and Applications of Categories, Vol. 5, No. 9 242

in which the last term is zero by the dimension axiom. Since J is finite, equivariant
Spanier-Whitehead duality provides an identification of [S0, J/(J ∩H)+ ∧K(M, 0)]J with
[J/(J ∩H)+, K(M, 0)]J . Using this identification, the first map in our exact sequence can
be identified, as in the previous exact sequence, with the map

M(G/(J ∩ H))
1−j̃

�� M(G/(J ∩ H)),

which is known to be zero. Thus, there is an isomorphism

[S0, G/H+ ∧ K(M, 0)]J ∼= [J/(J ∩ H)+, K(M, 0)]J = M(G/(J ∩ H)).

This isomorphism, and the analogous isomorphism for M ′, identify the map ῐJ with
the map ι(G/(J ∩ H)) : M ′(G/(J ∩ H)) �� M(G/(J ∩ H)), which is assumed to be a
monomorphism.

Proof of Theorem 3.8(b). Recall that G = S1. In this proof, we make use of the
ideas presented in Remark 3.4. The stable orbit category OG is a full subcategory of the
category S ′ of G-spectra which have the G-homotopy type of finite G-CW complexes. The
category S ′ is a symmetric monoidal closed category whose internal hom functor 〈〈?, ?〉〉 is
derived from a duality functor. Thus, for objects X and Y in S ′,

X ∧ Y ∼= D(D(X)) ∧ Y = 〈〈D(X), Y 〉〉 ∼= 〈〈〈〈X, •S′〉〉, Y 〉〉.
It follows that, if O is a subcategory of S ′ which is closed under the internal hom operation
on S ′, then it must also be closed under the ∧-product operation on S ′.

To prove Theorem 3.8(b), it therefore suffices to show that, if O′ is a full subcategory
of the G-stable category which contains OG and which is closed under smash products,
then the restriction functor

Mcont

O′ �� Mcont

OG
= MG

is not an equivalence of categories. We can regard the functors HG/e and HG/e×G/e as

contravariant functors out of O′. The diagonal map ∆ : G/e �� G/e × G/e induces a
map ∆̃ : HG/e

�� HG/e×G/e. Since G/e and G/e × G/e are path connected, Proposition

3.1 of [21] implies that the map

∆̃(G/H) : HG/e(G/H) �� HG/e×G/e(G/H)

is an isomorphism for H ≤ G. However, by the change of group isomorphisms in section
II.4 of [23],

HG/e(G/e × G/e) = [G/e+ ∧ G/e+, G/e+]G
∼= [G/e+, G/e+]e
∼= [S1 ∨ S0, S1 ∨ S0]e
∼= Z ⊕ Z ⊕ Z/2
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and

HG/e×G/e(G/e × G/e) = [G/e+ ∧ G/e+, G/e+ ∧ G/e+]G
∼= [G/e+, G/e+ ∧ G/e+]e
∼= [S1 ∨ S0, (S1 ∨ S0) ∧ (S1 ∨ S0)]e
∼= Z ⊕ Z ⊕ Z ⊕ Z/2.

Thus, ∆̃ is not an isomorphism in Mcont

O′ , but its restriction to Mcont
OG

= MG is an isomor-
phism.

11. Globally defined Mackey functors and the proof of Theorem 6.10

In this section, all groups are assumed to be finite, and P and Q are sets of primes. In
proving Theorem 6.10, we follow the general pattern described in section 7. First, we
identify a natural direct summand Zp(M) of the functor sending a (P,Q)-Mackey functor
M to the abelian group (H

Z/p � M)(Z/p). Then we show that the functor Zp does not
preserve monomorphisms. The argument here is somewhat simpler than the previous ones
in that no restriction on M is needed to split off Zp(M).

11.1. Definition. Assume that the prime p is not in the set P of primes, and that M
is in M∗(P,Q). Denote the trivial group by e, and the direct sum of p copies of an abelian
group A by Ap. Then Zp(M) is the pushout in the diagram

M(e)p
M(τe

Z/p
)p

��

∇
��

M(Z/p)p

κM

��

M(e)
ηe

�� Zp(M).

Here, ∇ is the folding map. Regard M(Z/p)p as being the direct sum of a collection of
copies of M(Z/p) indexed on the set of group endomorphisms of Z/p. Given such an
endomorphism γ : Z/p �� Z/p, let ηγ : M(Z/p) �� Zp(M) be the composite

M(Z/p) ⊂ M(Z/p)p
κM �� Zp(M),

in which the first map is the inclusion of M(Z/p) into the direct sum as the copy indexed
on γ. Analogously, the map ηe in the pushout diagram above should be thought of as the
map from M(e) into Zp(M) associated to the unique group homomorphism e �� Z/p.

11.2. Proposition. Let p be a prime and P and Q be sets of primes such that p �∈ P.
Then, for all M in M∗(P,Q), Zp(M) splits off from (H

Z/p �M)(Z/p) as a natural direct
summand.

As in the previous sections, we postpone the proof of this result until after we have
shown how it can be used to complete the proof of our theorem
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Proof of Theorem 6.10. Let p be a prime, and let P and Q be sets of primes such
that p �∈ P. We must construct a monomorphism ι : A �� B which is not preserved by
the functor Zp. Let B be the representable Mackey functor He, and let A be the image
of the map

τ̃ e
Z/p : H

Z/p
�� He = B.

induced by the map τ e
Z/p in B∗(P,Q). Note that there are an obvious monomorphism

ι : A �� B and an obvious epimorphism µ : H
Z/p

�� A.
Consider the diagram

A(e)

θ


�

�
� ι(e)

���������������������

A(τe
Z/p

)

��
��

��
��

��
��

��
��

P
ι′

��

τ ′

��

B(e)

B(τe
Z/p

)

��

A(Z/p)
ι(Z/p)

�� B(Z/p),

in which the rectangle is a pullback, and θ is the induced map into the pullback. We
show first that the map θ is not surjective, and then use this to show that the map
Zp(ι) : Zp(A) �� Zp(B) is not a monomorphism.

To show that θ is not surjective, it is necessary to compute several values of the
representable functors used to define A and B. It is easy to see that the morphism sets
[Z/p, e] = H

Z/p(e) and [e, e] = He(e) of B∗(P,Q) are infinite cyclic groups generated by

the morphisms ρe
Z/p and 1e, respectively. The map τ̃ e

Z/p(e) takes ρ
e
Z/p to p · 1e.

The morphism set [e,Z/p] = He(Z/p) has either one or two generators, depending on
whether or not p is an element of Q. The morphism τ e

Z/p is always a generator. If p ∈ Q,
then there is a second generator represented by the diagram

e �� Z/p
1Z/p

�� Z/p.

The morphism set [Z/p,Z/p] = H
Z/p(Z/p) is generated by the composite τ e

Z/p ◦ ρe
Z/p and

by the morphisms in B∗(P,Q) of the form ρ(α), where α is an endomorphism of Z/p. If
p �∈ Q, then α must be a nonzero endomorphism; otherwise, it can be any endomorphism.
The map τ̃ e

Z/p(Z/p) takes τ
e
Z/p ◦ ρe

Z/p to p · τ e
Z/p and ρ(α) to τ e

Z/p.
From these computations, it follows immediately that the diagram above has the form

Z

p
��	

	
	 p

��





















p

��
��

��
��

��
��

��

Z
1Z

��

1Z

��

Z

i1
��

Z
i1 �� Z ⊕ C.
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Here, C is Z if p ∈ Q; otherwise, C = 0. Also, the map i1 is the inclusion of the first
summand of a direct sum, and p denotes the map given by multiplication by p. Clearly,
θ is not surjective.

Pick x ∈ A(Z/p) and y ∈ B(e) illustrating the fact that θ isn’t onto; that is, such
that ι(Z/p)(x) = B(τ e

Z/p)(y) = z ∈ B(Z/p) but there is no element of A(e) hitting both

x and y under the obvious maps. The choices x = µ(1Z/p) and y = 1e are, for example,
acceptable. Consider the elements

(x,−x, 0, . . . , 0) ∈ A(Z/p)p

(y,−y, 0, . . . , 0) ∈ B(e)p (z,−z, 0, . . . , 0) ∈ B(Z/p)p

in the context of the pushout diagrams defining Zp(A) and Zp(B). From the equations

∇(y,−y, 0, . . . , 0) = 0

and

B(τ e
Z/p)

p(y,−y, 0, . . . , 0) = (z,−z, 0, . . . , 0),

it follows that

κB(z,−z, 0, . . . , 0) = 0 ∈ Zp(B).

However, κA(x,−x, 0, . . . , 0) must be a nonzero element of Zp(A) since x and y illustrate
the fact that θ isn’t surjective. Since

Zp(ι)(κA(x,−x, 0, . . . , 0)) = κB(z,−z, 0, . . . , 0) = 0,

it follows that Zp does not preserve monomorphisms.

The rest of this section is devoted to the postponed proof of our splitting result.

Proof of Proposition 11.2. Let M be in M∗(P,Q). As in the proof of Proposition
7.2, we first construct a natural map

λ : (H
Z/p � M)(Z/p) �� Zp(M),

and then show that it is a split epimorphism. The map λ is, as before, derived from an
appropriately behaved map

λ̃ :
⊕
Q

M(Q) ⊗ [Z/p × Q,Z/p] �� Zp(M).

Again it suffices to specify the restriction λ̃Q of λ̃ to the summand indexed on each group
Q. That summand is itself a direct sum of copies of M(Q) indexed on the generators of
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[Z/p × Q,Z/p]. These generators correspond to equivalence classes (α, β; δ) of diagrams
of the form

Z/p × Q ��
(α,β)

J δ �� Z/p,

in which the induced map (α, β, δ) : J �� Z/p × Q × Z/p is a monomorphism. Denote
the restriction of λ̃Q to the copy of M(Q) indexed on the generator associated to this
diagram by λ̃(α,β;δ).

Some manipulation of the diagram above must be done to define λ̃(α,β;δ). Let L = δ(J)
so that L is either e or Z/p, and regard δ as a map into L. Since the order of the kernel
of δ is not divisible by p, there is a unique map γ : L �� Z/p making the diagram

J

α
����

��
��

��
δ

��















Z/p Lγ
��

commute. This map is perhaps best understood by looking at a p-Sylow subgroup P of
J . The map δ must restrict to an isomorphism from P to L. The map γ is the composite
of the inverse of this isomorphism and the restriction of α to P .

If the kernel of β is not a Q-group, then define λ̃(α,β;δ) to be zero. Otherwise, define it
to be the composite

M(Q)
M(ρ(β))

�� M(J)
M(τ(δ))

�� M(L)
ηγ

�� Zp(M),

where ηγ is the map from Definition 11.1 associated to a homomorphism γ from either e
or Z/p into Z/p.

To show that λ can be derived from λ̃, it suffices to show that, for each morphism
f : Q′ �� Q in B∗(P,Q), the diagram

M(Q′) ⊗ [Z/p × Q,Z/p]
M(f)⊗1

��

1⊗(1×f)∗
��

M(Q) ⊗ [Z/p × Q,Z/p]

λ̃Q

��

M(Q′) ⊗ [Z/p × Q′,Z/p]
λ̃Q′

�� Zp(M)

commutes. Further, we need only check the cases in which f is a generator of the form
ρ(ξ) associated to a homomorphism ξ : Q �� Q′ with Q-kernel, or of the form τ(ζ)
associated to a homomorphism ζ : Q′ �� Q with P-kernel. As in the previous proof, the
commutativity of the diagram is purely formal if f = ρ(ξ) for some homomorphism ξ.
Thus, we assume that f = τ(ζ) for some homomorphism ζ : Q′ �� Q with P-kernel.

We can verify the commutativity of the diagram by checking it on each summand
M(Q′) of M(Q′) ⊗ [Z/p × Q,Z/p]. On the summand indexed by a diagram

Z/p × Q ��
(α,β)

J δ �� Z/p,
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in which the map β : J �� Q does not have Q-kernel, it is easy to see that the two
composites in the diagram are both zero. Thus, we restrict our attention to the summands
indexed on diagrams in which β does have Q-kernel.

For this case, we must use Lemma 5.3 in much the same way that Lemma 3.3 of [21] is
used in the proofs of Propositions 7.2 and 8.1. We also need to know that, for any group
endomorphism γ : Z/p �� Z/p, the diagram

M(e)
M(τE

Z/p
)

��

ηe
������������
M(Z/p)

ηγ

��

Zp(M)

commutes. Ensuring the commutativity of this diagram is, however, the whole point
of the pushout diagram used to define Zp(M). The commutativity of our naturality
diagram on the appropriate summand M(Q′) of M(Q′) ⊗ [Z/p × Q,Z/p] follows from
these observations by an easy diagram chase. Thus, the desired map λ can be obtained
from the map λ̃. Clearly, λ is natural in M .

We still must show that λ splits naturally. Let D be the summand of [Z/p×Z/p,Z/p]
whose generators are represented by the diagrams

Z/p × Z/p ��
(γ,1Z/p)

Z/p
1Z/p

�� Z/p,

in which γ is an endomorphism of Z/p. Then D ∼= Zp, and M(Z/p)⊗D ∼= M(Z/p)p. Let
σ̃ : M(Z/p)p �� (H

Z/p � M)(Z/p) be the composite

M(Z/p)p ∼= M(Z/p) ⊗ D ⊂ M(Z/p) ⊗ [Z/p × Z/p,Z/p]

⊂
⊕
Q

M(Q) ⊗ [Z/p × Q,Z/p]

�� (H
Z/p � M)(Z/p),

in which the last map is the standard projection. It is easy to see that the composite
λ ◦ σ̃ : M(Z/p)p �� Zp(M) is just the projection κM : M(Z/p)p �� Zp(M) of Definition
11.1. Thus, to show that λ is a split epimorphism, it suffices to show that the map σ̃
factors through the projection κM .

For each Q, let νQ : M(Q) ⊗ [Z/p × Q,Z/p] �� (H
Z/p � M)(Z/p) be the map ob-

tained from our description of (H
Z/p�M)(Z/p) as a quotient of

⊕
QM(Q)⊗[Z/p×Q,Z/p].

The diagram

M(e) ⊗ [Z/p × Z/p,Z/p]
M(τe

Z/p
)⊗1

��

1⊗(1×τe
Z/p

)∗

��

M(Z/p) ⊗ [Z/p × Z/p,Z/p]

νZ/p

��

M(e) ⊗ [Z/p × e,Z/p]
νe �� (H

Z/p � M)(Z/p)
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commutes by the definition of (H
Z/p � M)(Z/p). For any endomorphism γ of Z/p, the

image under (1 × τ e
Z/p)

∗ of the generator of [Z/p × Z/p,Z/p] represented by the diagram

Z/p × Z/p ��
(γ,1Z/p)

Z/p
1Z/p

�� Z/p

is just the morphism represented by the diagram

Z/p × e �� e �� Z/p

in which all the maps are the obvious ones. This observation, together with the commu-
tativity of the above naturality diagram for the maps νe and νZ/p, easily implies that σ̃
factors through the projection κM . It follows that σ̃ induces a map σ which splits λ. The
map σ is obviously natural.
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