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CHU-SPACES, A GROUP ALGEBRA AND INDUCED
REPRESENTATIONS

EVA SCHLÄPFER
Transmitted by Michael Barr

ABSTRACT. Using the Chu-construction, we define a group algebra for topological
Hausdorff groups. Furthermore, for isometric, weakly continuous representations of a
subgroup H of a Hausdorff group G induced representations are constructed.

1. Introduction

The group algebra kG of a finite group G is usually defined to be a vector space over the
field k whose basis is the group elements. The group multiplication gives a multiplication
on this basis which can be extended by linearity to kG. There is a canonical bijection
between representations of the group and modules over the group algebra, more precisely
an isomorphism of categories. The group algebra is used to define induced representations
as the tensor product over the subgroup algebra of a right and a left module (see for
example [13]).

In this paper we will define a group algebra LG for a Hausdorff topological group G.
Furthermore, we will introduce a notion of weakly continuous representations and for a
given isometric weakly continuous subgroup representation define an induced isometric
weakly continuous representation of the group using the group algebra.

The algebra LG will be defined in the category of separated extensional Chu-spaces
over the autonomous category of Banach spaces and contracting linear maps. The Chu-
algebra LG is a group algebra in the sense that there is a bijection between weakly
continuous isometric representations and LG-Chu-modules, more precisely a canonical
equivalence of categories. This is done in the third section. Let H be a subgroup of G,
there is a natural map from LH to LG that restricts an LG-Chu-module to an LH-Chu-
module. In the fourth and last section, we will define an induced LG-Chu-module for any
given left LH-Chu-module.

Note that the construction of the group algebra LG is done on general Hausdorff
topological groups. In particular we do not suppose the existence of a Haar measure as
in the classic case and there are no measure-theoretic arguments.
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In the next section we will briefly explain the Chu-construction for the readers un-
familiar with this notion. For the proofs, which are rather technical we will refer to
[5].

2. Preliminaries

2.1. The Chu-construction. The construction that is now named after him was first
described by P.- H. Chu in his M. Sc. thesis [5], another more recent reference is [1]. It
associates to an autonomous (symmetric monoidal closed) category V with pullbacks and
a fixed object K in V a ∗-autonomous category called Chu(V , K). This construction gives
us many examples of ∗-autonomous categories, which are difficult to obtain directly (see
[2]). For a more detailed discussion of the advantages of using the Chu construction to
define and study the ∗-autonomous categories of [2] see [3].

2.2. The category Chu(V , K). Let V be an autonomous category that has pullbacks
and letK be an object in V . Then define a category Chu(V , K) as follows. The objects are
of the form (V, V ′, 〈−,−〉) where V and V ′ are objects of V and 〈−,−〉 : V ⊗V ′ −→ K is a
morphism of V called a pairing. Normally, we will not cite the pairing explicitly and often
use the notation V = (V1, V2) or V = (V, V ′) for an object in Chu(V , K). A morphism
(f, f ′) : (V, V ′) −→ (W,W ′) in Chu(V , K) is a pair f : V −→ W and f ′ : W ′ −→ V ′ of
arrows of V , such that the following diagram commutes.

V ⊗W ′ id⊗ f ′
✲ V ⊗ V ′

W ⊗W ′

f ⊗ id

❄ 〈−,−〉 ✲ K
❄

〈−,−〉

This can be symbolized by the equation 〈fv, w′〉 = 〈v, f ′w′〉. Let V –◦ W be the internal
hom on V between V and W , define an internal hom in Chu(V , K) as follows. The
canonical morphism 〈−,−〉 : V ⊗ V ′ −→ K determines two morphisms, the transposes of
this map, in V

V −→ (V ′ –◦ K) and V ′ −→ (V –◦ K).

Using these maps and the isomorphisms

V –◦ (W ′ –◦ K) ∼= (V ⊗W ′) –◦ K ∼= W ′ –◦ (V –◦ K)
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we define V((V, V ′), (W,W ′)) to be the object occurring in the following pullback diagram

V((V, V ′), (W,W ′)) ✲ V –◦ W

W ′ –◦ V ′
❄

✲ W ′ –◦ (V –◦ K) ∼= (V ⊗W ′) –◦ K ∼= V –◦ (W ′ –◦ K)
❄

This diagram defines not only an object but also an arrow V((V, V ′), (W,W ′)) → (V ⊗
W ′) –◦ K, hence define (V, V ′) –◦ (W,W ′) to be (V((V, V ′), (W,W ′)), V ⊗W ′).

Let � be the unit for the tensor product in V and �⊗K → K the canonical isomor-
phism. The duality on Chu(V , K) is defined by the map that takes (V, V ′) to (V ′, V ) and
in the same way on morphisms. It is not difficult to prove that (K,�) is the dualizing
object, that is (V ′, V ) ∼= (V, V ′) –◦ (K,�). This definition renders Chu(V , K) self-dual.

Once the internal hom and the reflexive duality are known, the tensor product on
Chu(V , K) is explicitly given by

(V, V ′)⊗ (W,W ′) = ((V, V ′) –◦ (W,W ′)∗)∗ = (V ⊗W,V((V, V ′), (W ′,W ))).

and Chu(V , K) is closed. The unit for the tensor product is (�, K).
The category Chu(V , K) with the duality, internal hom and tensor product as ex-

plained above is a ∗-autonomous category. See [5] for details.
An object in the category Chu(V , K) will be called a Chu-space. This is motivated by

the following example, due to Vaughan Pratt. An object of Chu(Set, 2) is a set S together
with a set S ′ equipped with a map S ′ −→ 2S. If this map is injective (see discussion below),
then S ′ can be identified with a set of subsets of S, that is the beginnings of a topology.

2.3. The category of separated-extensional Chu-spaces. Suppose a factorisa-
tion system E/M on V is given. A Chu space (V, V ′) is called M-extensional – or just
extensional if it clear which factorisation system we use – if the transpose V ′ −→ V –◦ K
of the pairing belongs to M. If the transpose V −→ V ′ –◦ K of the pairing is in M then
the Chu-space (V, V ′) is called M-separated or just separated. The elements of E will
often be noted by arrows ✲✲ and the elements of M by✲ ✲ .

We shall write Chus(V , K), Chue(V , K) and Chuse(V , K) = chu(V , K) for the full
subcategories ofM-separated,M-extensional, and bothM-separated andM-extensional
objects respectively. The set E does not necessarily consist of all epis, nor doesM consist
of all monos. We will often omit the explicit mention of the inclusion of either Chus or
Chue or chu in Chu. We shall see in the next section an example of such a Chu-construction
and also why the extensional and separated Chu spaces are particularly interesting. But
first we cite a lemma and then some results by Barr from [4], that we shall need later.

2.4. Proposition. [4, Proposition 3.2] The inclusion Chus −→ Chu has a left adjoint
s (and the inclusion Chue −→ Chu has a right adjoint e).
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Proof. Let A be a Chu-space. The morphism A1 −→ A2 –◦ K splits into

A1
✲✲ Ã1

✲ ✲ A2 –◦ K

by the properties of a factorisation system. Define sA to be (Ã1, A2). The construction
of eA is similar.

In what follows, we need the following two conditions for a given factorisation system
E/M on a category V with internal hom

(∗) Every arrow in E is an epimorphism.

(∗∗) If f : A −→ A′ is in M, then for any object B, the arrow B –◦ f : B –◦ A −→ B –◦
A′ is in M.

2.5. Proposition. [4, Proposition 3.3] The condition (∗) implies that when the object
(A,A′) of Chu(A,⊥) is separated, so is e(A,A′) and similarly if (A,A′) is extensional, so
is s(A,A′).

2.6. Proposition. [4, Proposition 3.4] The condition (∗∗) implies that when (A,A′)
and (B,B′) are extensional, so is (A,A′)⊗ (B,B′). (Dually, when (A,A′) is extensional
and (B,B′) is separated, then (A,A′) –◦ (B,B′) is separated).

In general, the tensor product of two separated spaces is not separated and the internal
hom of an extensional and a separated space is not extensional. In particular, define a
monoidal closed structure on chu(A, K) by slightly modifying the tensor product and
internal hom in the following way. For (A,A′) and (B,B′) in chu(A, K), we define the
tensor product (A,A′)� (B,B′) to be s((A,A′)⊗ (B,B′)) and the internal hom (A,A′) –�
(B,B′) to be e((A,A′) –◦ (B,B′)).

2.7. Theorem. [4, Theorem 3.1] Let A be an autonomous category with pullbacks and
E/M a factorisation system satisfying the conditions (∗) and (∗∗). Then for any object
⊥ of A the category chu(A,⊥) is a ∗-autonomous category.

Observe also that we do not assume se = es, this is not true in general. For example,
take V = Ban∞ and K = C, with the factorisation system of maps with dense image and
isometric embeddings. Consider (l1(2), l2(2)). Then es(l1(2), l2(2)) = s(l1(2), l2(2)) =
(l2(2), l2(2)), but se(l1(2), l2(2)) = (l1(2), l∞(2)).

2.8. Example: Chu(Ban1,C). Let Ban1 be the category of Banach spaces with linear
maps of norm at most 1. These maps shall be called linear contracting.

The tensor product on Ban1 of two Banach spaces, denoted by ⊗̂, is the usual one,
the projective tensor product. The internal hom of two Banach spaces is the vector space
of bounded linear maps between the two spaces, equipped with the operator norm and is
noted [A,B].

In this and the following sections, we shall often use simply Chu or chu to denote
Chu(Ban1,C) and chu(Ban1,C) respectively.
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It can be shown that the pullback appearing in the definition of the internal hom is
the following subset of [A1, B1]× [B2, A2] with product topology

Ban1((A1, A2), (B1, B2)) ={(f, g); f : A1 −→ B1, g : B2 −→ A2, f, g bounded

linear maps , 〈a1, g(b2)〉A = 〈f(a1), b2〉B}

with the induced topology. We also use the notation [A1, B1]×̃[B2, A2] for the pullback.
The tilde should remind us that this is not the cartesian product since only pairs of maps
preserving the pairing are admitted. So, the internal hom in Chu of A and B is given by
([A1, B1]×̃[B2, A2], A1⊗̂B2) with the pairing

〈−,−〉 : ([A1, B1]×̃[B2, A2])⊗̂(A1⊗̂B2) −→ C

(f, g)⊗ (a1 ⊗ b2) �−→ 〈a1, g(b2)〉A = 〈f(a1), b2〉B.

The tensor product in Chu between A and B is given by

A⊗ B = (A –◦ B∗)∗ = (A1⊗̂B1, [A1, B2]×̃[B1, A2]).

By definition, the category Chu(Ban1,C) with the duality, the internal hom and the
tensor product mentioned above is ∗-autonomous.

The example of Chu-spaces defined on the category of Banach-spaces can give a mo-
tivation for the definition of extensional and separated Chu-spaces. The factorisation
system E/M we shall use on Ban1 is the following

M := {linear isometric embeddings}
E := {linear contracting maps with dense image}

Observe that the maps in M are closed.

2.9. Lemma. A morphism f : A −→ B in Ban1 is epi if and only if its image is dense.

Proof. We have only to show that the image of an epi is dense as the other implication
is evident. Suppose f to be an epi. Let p : B −→ B/f(A) be the canonical projection
and 0 : B −→ B/f(A) the trivial map. But then p ◦ f = 0 = 0 ◦ f which implies p = 0
and f(A) = B.

Lemma 2.9 shows that every arrow in E is an epimorphism, in particular the condition
(∗) is fulfilled. It is evident that for the mentioned factorisation system also (∗∗) is
fulfilled. Then Theorem 2.7 shows that chu(Ban1,C) is a ∗-autonomous category.

In the classic theory of topological vector spaces, a duality is defined as a bilinear form
〈−,−〉 on the product F × G of two topological vector spaces. It is called separated if
the following two conditions are satisfied

(S1) if 〈x0, y〉 = 0 for all y ∈ G, then x0 = 0

(S2) if 〈x, y0〉 = 0 for all x ∈ F, then y0 = 0.
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If the duality is separated we can identify G with a subspace of the algebraic dual of F
(and vice versa). A topology τ on F is called consistent with the duality if the topological
dual (F, τ)′ is isomorphic to G as a set. If the duality is separated in G (condition (S2))
then the weak topology on F is defined to be the weakest topology consistent with duality
and is given by the family of semi-norms x �−→ |〈x, y〉| for y in G. It is usually written
σ(F,G). The space (F, σ(F,G)) is locally convex and is Hausdorff if and only if the duality
is separated in F (condition (S1)). Any topology consistent with the duality is stronger
than the weak topology and weaker than the Mackey topology. More details and all the
results can be found in [12].

They motivate why the notion of separated and/or extensional Chu-spaces on Ban1 is
interesting.

3. A group algebra

Now we have all the ingredients to define an algebra in chu associated to a Hausdorff
group, such that there exists a bijection between modules over this algebra and isometric
(resp. unitary) weakly continuous representation of the group in a Banach (resp. Hilbert
space). Note that we speak of “algebra” even though there is no additive structure on
Chu-spaces. But we are principally interested in the first component of a Chu-space which
is a vector space and will be seen to have a weakly continuous multiplication.

All the groups will be topological groups and Hausdorff or separated (for which T0 is
sufficient).

3.1. Preliminaries.

3.2. Lemma. Let A,B be in Chue. The first component of a given Chu-morphism f :
A −→ B determines the second one. Dually, for A,B in Chus, the second component of
a Chu-morphism f : A −→ B determines the first one.

Proof. The functor s is left adjoint to the inclusion and the functor e is right adjoint to
the inclusion.

Note that the lemma does not say that for a given f1 there is always an f2 such that
(f1, f2) is a Chu-morphism but on separated extensional Chu-spaces, it is equivalent for
a linear contracting map f1 : A1 −→ B1 to be weakly continuous with respect to the
pairings and to be the first component of a Chu-morphism.

Let H be the category of Hausdorff spaces and continuous maps and let CR be the
full subcategory consisting of the completely regular or Tychonoff spaces. For an object
X in H, define the following Banach spaces

l1(X) = {formal sums ∑
i�0

ai · xi; ai ∈ C, xi ∈ X, and ∑
i�0

|ai| <∞}

C(X) = {f : X −→ C; f continuous, ||f || = sup
x∈X

|f(x)| <∞}.
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The space l1(X) is a Banach space with l1-norm and C(X) is a Banach space with the
sup-norm. Observe that l1(X) can also be defined as the completion of the free vector
space over X with the l1-norm or as the space of measures f : X −→ C satisfying
||f || = ∑

x∈X |f(x)| <∞. The pairing is defined by

T : C(X) −→ (l1(X))∗ ϕ �−→ (
∑

i�0 a
ixi �→ ∑

i�0 a
iϕ(xi))

which comes from the evaluation. This map is well-defined and contracting.
Define a functor L : H −→ Chu on the objects by LX = (l1(X), C(X)) and on the

arrows in a canonical way. Restrict this functor to the full subcategory CR of Tychonoff
spaces.

3.3. Proposition. The Chu-space LX is in chu if X is a Tychonoff space.

Proof. The Chu-space LX is extensional since the map

F1 : C(X) −→ l1(X)∗ ψ �−→ (
∑
i�0

aixi �→ ∑
i�0

aiψ(xi))

is an isometric embedding.
The Chu-space LX is separated if the map

F2 : l
1(X) −→ (C(X))∗

∑
i�0

aixi �−→ (ψ �→ ∑
i�0

aiψ(xi))

is isometric. In other words, we have to prove that

sup{∑
i�0

aiψ(xi); ||ψ|| � 1} = ∑
i�0

|ai| for all
∑
i�0

aixi ∈ l1(X).

Fix
∑

i�0 a
ixi in l1(X), without restriction ai �= 0 and the xi distinct. For all ε > 0 there

exists nε in N such that
∑

i�n0
|ai| < ε

2
for all n0 � nε. Since a Tychonoff space is in

particular regular we can construct disjoint open neighbourhoods (Ui)0�i�nε of the first
nε elements of the sequence (xi)i∈N. For each neighbourhood Ui there exists a function
ψi : X −→ [−1, 1] which has the property: ψi(xi) = 1 and ψi(x) = 0 for all x ∈ X \ Ui.
In particular ψi(xj) = 0 for all j �= i, 0 � j � nε. Then define ψ to be

∑
1�i�nε

āi

|ai|ψi.
Then ψ is continuous with image in OC by construction and

|∑
i�0

|ai| − |∑
i�0

aiψ(xi)|| � |∑
i�0

|ai| − ∑
i�0

aiψ(xi)|

= |∑
i�0

|ai| − ∑
0�i�nε

|ai| −
∑
i>nε

aiψ(xi)|

�
∑
i>nε

|ai|+ | ∑
i>nε

aiψ(xi)|

�
∑
i>nε

|ai|+ ∑
i>nε

|ai| � ε

2
+
ε

2
= ε.
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From now on, we consider L as a functor from CR to chu.

We now define a functor V : chu −→ CR. For each Chu-space (A1, A2) define
V (A1, A2) to be O(A1, σ(A1, A2)), that is furnish A1 with the weak topology and take
the unit ball as a topological space. Then V (A1, A2) is locally convex and a completely
regular space, since the family of semi-norms on a locally convex vector space defines a
uniformity which induces the topology, and the topology on a space X can be induced by
a uniformity on the set X if and only if X is completely regular, see [7, Theorem 8.1.20].

3.4. Proposition. The functor L is left adjoint to the functor V .

Proof. Let X be a Tychonoff space. Remember that by definition LX = (l1(X), C(X))
and then V LX = O(l1(X), σ(l1(X), C(X))). Define the map η : X −→ V LX by x �−→
1 · x.

We will first show that η is continuous. Let p be any continuous semi-norm on
(l1(X), σ), then by definition p(

∑
i�0 a

ixi) = |∑i�0 a
iϕ(xi)| for a ϕ in C(X). Then, for x

in X, we have p◦η(x) = |ϕ(η(x))| = |ϕ(x)| so p◦η is continuous on X for every semi-norm
p.

The map η is a natural transformation and the unit of the adjunction as will be
seen below. For each separated extensional Chu-space (B1, B2) and each continuous map
Φ : X −→ V (B1, B2) there exists a Chu-morphism f : LX −→ (B1, B2) satisfying
Φ = V f ◦ η. Define f to be (f1, f2) where f1 and f2 are given as follows

f1 : l
1(X) −→ B1

∑
i�0 a

ixi �−→ ∑
i�0 a

iΦ(xi),
f2 : B2 −→ C(X) b2 �−→ (x �→ 〈Φ(x), b2〉).

The map f1 is well defined because by assumption the image of Φ is in the unit ball of B1.
This shows also that f1 is contracting. The map f2 is well defined since the pairing 〈−,−〉
is in Ban1 and the image of Φ is in the unit ball of B1, so f2(b2) is bounded. The map
f2(b2) is continuous on X since the map Φ : X −→ O(B1, σ(B1, B2)) is continuous in the
weak topology. The map f2 is also contracting. Then the pair (f1, f2) is a Chu-morphism
since 〈f1(

∑
i�0 a

ixi), b2〉 = 〈∑i�0 a
ixi, f2(b2)〉.

We have also

V f(η(x)) = V f(1 · x) = f1(1 · x) = Φ(x).

For a given Φ, the map f is unique. Suppose that f = (f1, f2) and g = (g1, g2) are
two chu-morphisms that satisfy

V f(η(x)) = f1(x) = Φ(x) = g1(x) = V g(η(x)).

Then f1 and g1 coincide on every formal linear combination of elements in X by linearity
and by boundedness coincide on every element of l1(X). Then also f2 and g2 are equal
using lemma 3.2.
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3.5. Definition of a group algebra. First, we shall define a natural map i′ : LX⊗
LY −→ L(X × Y ) in the following way. Recall that

LX ⊗ LY = (l1(X)⊗̂l1(Y ), [l1(X), C(Y )]×̃[l1(Y ), C(X)])

L(X × Y ) = (l1(X × Y ), C(X × Y )).

The first component of i′ is defined by the bilinear map b given by

b : l1(X)× l1(Y ) −→ l1(X × Y ) (
∑
i�0

aixi,
∑
j�0

bjyj) �−→ (
∑

i,j�0

aibj(xi, yj)).

This map b is well defined and bilinearity is evident. Furthermore, the norm of b is at
most 1, then b defines a unique linear continuous map i′1 on the projective tensor product
with the same norm (see [8]). The second component of i′ is defined by

i′2 : C(X × Y ) −→ [l1(X), C(Y )]×̃[l1(Y ), C(X)] ψ �−→ (α1, α2).

where

α1(
∑
i�0

aixi) =
∑
i�0

aiψ(xi,−) α2(
∑
j�0

bjyj) =
∑
j�0

bjψ(−, yj)

The pair (α1, α2) preserves the canonical map. Each aiψ(xi,−) is continuous on Y and
the series of the functions aiψ(xi,−) converges uniformly. Take ε > 0, if ψ is not equal
to zero, then there exists an nε such that

∑
i>n0

|ai| < ε
||ψ|| for all n0 � nε. Then we have

|| ∑
i>n0

aiψ(xi,−)|| = sup
y∈Y

| ∑
i>n0

aiψ(xi, y)|

� sup
y∈Y

∑
i>n0

|aiψ(xi, y)| � ||ψ|| ∑
i>n0

|ai| < ε.

Both maps α1 and α2 are continuous and bounded by ||ψ||. This implies that i′2 is well
defined and is also contracting.

Notice that linear combinations of tensors in the image of the universal map, called
basic tensors, are dense in the projective tensor product. To check that the pair (i′1, i

′
2)

preserves the pairing, consider linear combinations of basic tensors, use linearity and
continuity of the involved functions and conclude by density.

To see that the map i′X,Y is natural in both components, calculate explicitly the com-
mutativity of the diagram. Then apply 2.4 to get a map iX,Y on LX � LY that is also
natural.

Furthermore, for each fixed e in the Tychonoff space X there exists a chu-morphism
f e : L{∗} −→ LX, where {∗} is the topological space with one point. The chu-morphism
f e is defined by its components

f e
1 : C −→ l1(X) z �−→ z · e
f e

2 : C(X) −→ C ψ �−→ ψ(e).

Then (f1, f2) is a chu-morphism.
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3.6. Theorem. The functor L is monoidal.

We will first prove some lemmas used in the proof of the theorem.

3.7. Lemma. Let X,Y and Z be Tychonoff spaces. The diagram

LX ⊗ (LY ⊗ LZ) (LX ⊗ LY )⊗ LZ✲

�
�
�
��✴

LX ⊗ L(Y × Z)

❙
❙
❙
❙❙✇

L(X × Y )⊗ LZ

id⊗ i′Y,Z i′X,Y ⊗ id

i′X,Y ×Z i′X×Y,Z

L(X × (Y × Z)) L((X × Y )× Z)✲

❙
❙
❙
❙❙✇

�
�
�
��✴

commutes.

Proof. First recall that for A and B extensional the Chu-space A⊗B is also extensional.
Thus all the spaces in the above diagram are extensional since LX is extensional and
separated for every Tychonoff space. Then lemma 3.2 implies that it is sufficient consider
the first component of the Chu-morphisms. By associativity of the product of topological
spaces the diagram commutes in the first component.

3.8. Lemma. Let A,B,C,D be separated extensional Chu-spaces. For a given Chu-
morphism (f1, f2) : A ⊗ (B ⊗ C) −→ D there exists a unique Chu-morphism (g1, f2) :
A⊗ s(B⊗ C) −→ D such that the following diagram commutes.

A⊗ (B⊗ C) ✲ A⊗ s(B⊗ C)

❅
❅
❅
❅
❅

(f1, f2)
❘

D

(g1, f2)

❄

Proof. Since A –◦ D is separated

Hom(A⊗ s(B⊗ C),D) ∼= Hom(s(B⊗ C),A –◦ D)
∼= Hom(B⊗ C,A –◦ D)
∼= Hom(A⊗ (B⊗ C),D).
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A consequence of the lemma is that s(A⊗ s(B⊗C)) ∼= s(A⊗ (B⊗C)) this implies of
course that (A⊗ s(B⊗ C))2 ∼= (A⊗ (B⊗ C))2.

In the following propositions, we need the notion of the tensor product of two maps.
We shall now describe this construction explicitly.

Let A,A′,B,B′ be Chu-spaces and f : A −→ A′, g : B −→ B′ be two Chu-morphisms.
Then f ⊗ g : A⊗ B −→ A′ ⊗ B′ may be given as

(f ⊗ g)1 : A1⊗̂B1 −→ A′
1⊗̂B′

1 (f ⊗ g)1 = f1 ⊗ g1

(f ⊗ g)2 : [A′
1, B

′
2]×̃[B′

1, A
′
2] −→ [A1, B2]×̃[B1, A2]

(α1, α2) �−→ (g2 ◦ α1 ◦ f1, f2 ◦ α2 ◦ g1).

It is easy to see that the pair f ⊗ g preserves the canonical map (show it on linear
combinations of basic tensors and use continuity and a density argument). The map f�g
is then by definition s(f ⊗ g).

Proof. of 3.6.
Let i′ denote the map defined above on Chu. To prove that L is monoidal, we have

to prove the commutativity of the following three diagrams for all Tychonoff spaces X,
Y and Z and {∗} the one point topological space, e a point in X.

LX � (LY � LZ)
i� id✲ (LX � LY ) � LZ

LX � L(Y × Z)

id � i

❄
L(X × Y ) � LZ

i� id

❄

L(X × (Y × Z))

i

❄
✲ L((X × Y )× Z)

i

❄

L{∗}� LX
i✲ L({∗} ×X) LX � L{∗} i✲ L(X × {∗})

(C,C) � LX

f e � id

❄
✲ LX

❄
LX � (C,C)

id � f e

❄
✲ LX

❄

To prove the commutativity of the first diagram, remember that we have proved
for separated extensional Chu-spaces that the second components of A ⊗ s(B ⊗ C) and
A ⊗ (B ⊗ C) are isometrically isomorphic (see 3.8). Note also that we have to show the
commutativity of a diagram involving only separated (and extensional) spaces, but then
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by lemma 3.2 it is sufficient to test commutativity in the second component. Consider
the following diagram

(LX � s(LY ⊗ LZ))2 (s(LX ⊗ LY )� LZ)2

(LX � L(Y × Z))2 (L(X × Y )� LZ)2

(id� iY,Z)2 (iX,Y � id)2

�
�
�
��✼

❙
❙
❙
❙❙


(LX ⊗ (LY ⊗ LZ))2

(LX ⊗ L(Y × Z))2

✁
✁
✁
✁
✁
✁
✁
✁
✁
✁✕ F

=

((LX ⊗ LY )⊗ LZ))2

(L(X × Y )⊗ LZ)2

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆❑

(i′X,Y ⊗ id)2
F̃

=

◗
◗◗❦

�

✑
✑✑✸

✘✘✿

(id⊗ i′Y,Z)2 ✛

✛

(L(X × (Y × Z))2 (L(X × Y )× Z)2

(iX,Y ×Z)2 (iX×Y,Z)2

✛
❙
❙
❙
❙❙


�
�
�
��✼





�

✘✘✘
✘✘✘

✘✘✘
✘✘✘✿

We shall show that it is commutative. The two lower triangles right and left commute
because when we “separate” a space using the functor s, the second component does not
change. Then by definition i2 = i′2. The other parts of the diagram all commute by the
definition of the maps. Let us show it for the square on the left.

From lemma 3.2 we get that F is the Ban1-isomorphism (!)

F : (LX � (LY � LZ))2 −→ (LX ⊗ (LY ⊗ LZ))2 (α1, α2) �−→ (α1, α2 ◦ k)

where k is the first component of LY ⊗ LZ −→ s(LY ⊗ LZ).

Then we have by definition of id� i, id⊗ i′ and i that for (β1, β2) in (LX⊗L(Y ×Z))2

F ◦ (id � i)2(β1, β2) = F (i2 ◦ β1, β2 ◦ i1) = (i2 ◦ β1, β2 ◦ i1 ◦ k)
= (i2 ◦ β1, β2 ◦ i′1) = (id⊗ i′)2(β1, β2).

This shows the commutativity of the left quadrilateral.

To show the associativity of the upper quadrilateral, we have just to write explicitly
the associativity maps involved.

These considerations show that the inner hexagon commutes because the outer hexagon
does. Then the corresponding diagram of the first components commutes also since the
maps can be identified with the dual maps of the maps of this diagram.

We will only show the commutativity one of the other two diagrams. The following



Theory and Applications of Categories, Vol. 5, No. 8 188

diagram in Chu commutes

L{∗} ⊗ LX
i✲ L({∗} ×X)

(C,C)⊗ LX

f e ⊗ id

❄ u ✲ LX
❄

where u is the map that identifies LX ⊗ (C,C) with LX and f e is the map given above.
Since all spaces in this diagram are extensional, it is sufficient to test commutativity in
the first component. Applying s to the above diagram shows that the required diagram
commutes.

Let G now be a Hausdorff topological group. Since the group multiplication on G and
the passage to the inverse are continuous, the group is completely regular as a topological
space (see [7, Example 8.1.17]). Using the fact that L is a monoidal functor, we can define
now a multiplication on LG, a chu-morphism

m : LG� LG
i−→ L(G×G)

Lm̃−→ LG

where m̃ denotes the group multiplication.
If we consider the corresponding map on Chu, that is

m′ : LG⊗ LG
i′−→ L(G×G)

Lm̃−→ LG

we can write the two components explicitly

m′
1 : l1(G)⊗̂l1(G) −→ l1(G)∑

i�0 a
igi ⊗ ∑

j�0 b
jhj �−→ ∑

i,j�0 a
ibj(gi · hj)

m′
2 : C(G) −→ [l1(G), C(G)]×̃[l1(G), C(G)]

ψ �−→ (α1, α2)

where

α1(
∑
i�0

aigi)(k) =
∑
i�0

aiψ(gi · k) and α2(
∑
j�0

bjhj)(k) =
∑
i�0

bjψ(k · hj).

An element of l1(G) can also be seen as a particular measure, that is a function
f : G −→ C where

∑
g∈G |f(g)| < ∞. Then the first map is the convolution of such

measures (see for example [9]). The first (or the second) component of the second map is
a particular version of the convolution on preduals. A description of such a convolution
can be found, for example, in [11].

3.9. Theorem. Let G be a Hausdorff topological group and e in the definition of f e the
unit of this group. Then LG equipped with the multiplication m is a monoid.

Proof. The theorem is a corollary of 3.6.



Theory and Applications of Categories, Vol. 5, No. 8 189

There is no addition defined on LG. It is nevertheless reasonable to call LG an algebra
associated to G since it is the first component of the chu-space LG — which is a vector-
space — that is interesting.

Furthermore, there exists an involution on LG, an anti-Chu-morphism in a sense
explained below. It is given by the inversion of the group G. Define a map ∗ = (∗1, ∗2) :
LG −→ LG by

∗1 : l
1(G) −→ l1(G)

∑
i�0 a

igi �−→ ∑
i�0 ā

i(gi)−1

∗2 : C(G) −→ C(G) ψ �−→ (g �→ ψ(g−1)).

The maps ∗1 and ∗2 are conjugate linear by definition, and they are anti-Chu-morphisms
in the following sense

〈∗1(
∑
i�0

aigi), ψ〉 =
∑
i�0

āi〈(gi)−1, ψ〉 = ∑
i�0

āiψ((gi)−1)

=
∑
i�0

āi〈gi, ∗2(ψ)〉 = 〈∑
i�0

āigi, ∗2(ψ)〉

= 〈∑
i�0

aigi, ∗2(ψ)〉.

This involution has the property that ∗ composed with ∗ gives the identity, this is clear
on the first component, but then also on the second by extensionality.

As appears in the propositions and theorems above, it is not easy to understand
explicitly the elements of LG ⊗ LG and even more difficult for LG � LG. So let us try
to give an interpretation to “elements” of LG⊗LG. We have proved that there is a map
from (C,C)⊗(C,C) to LG⊗LG (use 3.6), but (C,C)⊗(C,C) ∼= (C,C), so this gives us a
map from (C,C) to LG⊗LG. Then we can see an element of LG⊗LG as a pair (µ1, µ2)
with µ1 in [C⊗̂C, l1(G)⊗ l1(G)] and µ2 in [[l1(G), C(G)]×̃[l1(G), C(G)], [C,C]×̃[C,C]].

Then we can write for example the multiplication on elements using the diagram below.

LG⊗ LG ✛ (C,C)⊗ (C,C) ✛
∼=

(C,C)

✙✟✟
✟✟
✟✟
✟✟
✟✟
✟✟
✟✟

LG

m

❄

The multiplication applies then (µ1, µ2) to (ν1, ν2) with

ν1(z) = z · ( ∑
i,j�0

aibj(gihj)) where µ1(1⊗ 1) =
∑
i�0

aigi ⊗ ∑
j�0

bjhj

ν2(ψ) =
∑

i,j�0

aibjψ(gihj).
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3.10. LG and representations. Before we describe how LG and a representation of
the group G are related, we introduce some useful notions. Recall that for Banach spaces
A,B the Banach space of the bounded linear maps with the operator norm from A to B
is written as [A,B].

Let G be a topological group, B = (B1, B2) a separated extensional Chu-space and
ρ : G −→ [B1, B1] a linear isometric representation of G. Then ρ is called weakly contin-
uous if the map

G −→ C g �−→ 〈ρ(g)b1, b2〉
is continuous for each b1 in B1 and b2 in B2 and the map

(B1, σ(B1, B2)) −→ C b1 �−→ 〈ρ(g)b1, b2〉

is continuous on B1 with respect to weak topology defined by the pairing 〈−,−〉 :
B1⊗̂B2 −→ C for each g in G and for each b2 in B2. Note that the second condition
is essential for the existence of an associated LG-module structure on B (see proof of
the following theorem) but not too restrictive. If for a given Banach space B1 the space
B2 = B∗

1 , that is the pairing is the canonical one, then the second condition is satisfied.
For a linear endomorphism of a Banach space, it is equivalent to be bounded and to be
weakly-(B,B∗)-continuous with (see for example [6]).

3.11. Lemma. There exists a natural multiplication on B –� B.

Proof. The multiplication on B –� B is defined in a canonical way as the transpose of
the following map

(B –� B) � (B –� B � B)
(B –� B) � ev✲ (B –� B) � B

ev ✲ B

where ev : (B –� B)�B −→ B is the transpose of the identity on B –� B (see for example
[10]). The multiplication is associative by construction.

3.12. Lemma. Let A be an extensional and B a separated Chu-space, (f1, f2) : A −→ B
a given Chu-morphism. Then es(f1, f2) = se(f1, f2).

Proof. The map εA : A −→ sA is in E and ηB : eB −→ B is in M. Consider then the
following diagrams

A
εA✲ sA = seA A

εA✲ sA = seA

❅
❅
❅
❅
❅

ef
❘ ✠�

�
�
�
�

sf

B

f

❄
✛

ηB

seB = eB

sef

❄
B

f

❄
✛

ηB

seB = eB

esf

❄
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where ef (resp. sf) is the unique morphism that makes commute the lower triangle of the
first (resp. second) diagram and s(ef) = sef (resp. esf) is the unique map that makes
commute the upper triangle. Then we have

ηB ◦ sef ◦ εA = ηB ◦ ef = f

ηB ◦ esf ◦ εA = sf ◦ εA = f

Since εA is epic and ηB is monic, we have esf = sef .

Using the previous lemma, an explicit description of this multiplication is possible.
Let

M ′ : (B –◦ B)⊗ (B –◦ B) −→ B –◦ B

be define by
M ′

1 : ([B1, B1]×̃[B2, B2])⊗̂([B1, B1]×̃[B2, B2]) −→ [B1, B1]×̃[B2, B2]
(f1, f2)⊗ (g1, g2) �−→ (f1 ◦ g1, g2 ◦ f2)

M ′
2 : B1⊗̂B2 −→

[
[B1, B1]×̃[B2, B2], B1⊗̂B2

]
×̃

[
[B1, B1]×̃[B2, B2], B1⊗̂B2

]
b1⊗̂b2 �−→ (α1, α2)

with α1(f1, f2) = b1 ⊗ f2(b2) and α2(g1, g2) = g1(b1)⊗ b2
Then a Chu-morphism

M ′′ : (B –� B)⊗ (B –� B) −→ B –◦ B

exists. Explicitly, M ′′
1 is M ′

1 (since (e(B –◦ B))1 = (B –◦ B)1) and M ′
2 is defined by

M ′′
2 : B1⊗̂B2 −→

[
[B1, B1]×̃[B2, B2], B̃1⊗̂B2

]
×̃

[
[B1, B1]×̃[B2, B2], B̃1⊗̂B2

]
b1 ⊗ b2 �−→ (k ◦ α1, k ◦ α2)

where k is the map

k : B1⊗̂B2 −→ B̃1⊗̂B2 ⊂ ([B1, B1]×̃[B2, B2])
∗.

Then the multiplication on B –� B is (M1,M2) = se(M ′′
1 ,M

′′
2 ) = es(M ′′

1 ,M
′′
2 ).

3.13. Lemma. Let A be a separated Chu-space and note eA = (A1, Ã2). Then V (eA) =
O(A1, σ(A1, Ã2)) = O(A1, σ(A1, A2)) = V (A).

Proof. Remember that the functor V associates to a Chu space A the unit ball of the
first component with the weak topology.

The space eA is defined by the decomposition of the following transpose of the pairing

A2

F ✲ A∗
1

❅
❅
❅
❅
❅❘❘

✒
�
�
�
�
�✒

Ã2 = imF
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We have only to show that the topology defined by the image of F is stronger than the
topology defined by the closed image of F , the other inclusion being evident.

Let ϕ be in imF , then there is a sequence (ϕi)i with ϕi in imF such that ϕ =
limi→∞ ϕi, that is limi→∞(sup||a1||�1 |ϕ(a1)− ϕi(a1)|) = 0.

We want to show that for each ε > 0 there is an ε0 > 0 and an i0 in N such that

{a1; ||a1|| � 1 and |ϕ(a1)| < ε} ⊃ {a1; ||a1|| � 1 and |ϕi0(a1)| < ε0}.
Take ε0 = ε

2
. Then there exists i0 in N such that sup||a1||�1 |ϕ(a1) − ϕi(a1)| < ε0 for all

i � i0. Then in particular |ϕ(a1) − ϕi0(a1)| < ε0 for all a1 in A1 with ||a1|| � 1. This is
equivalent to |ϕ(a1)| < |ϕi0(a1)|+ ε0 if ||a1|| � 1. Then, for such an a1,

|ϕi0(a1)| < ε0 implies |ϕ(a1)| < |ϕi0(a1)|+ ε0 < ε0 + ε0 = ε.

3.14. Proposition. Let ρ be a weakly continuous isometric representation. Then there
is a unique morphism of Chu-algebras R : LG −→ B –� B such that (R1(1 · g))1 = ρ(g).

Proof. The second part of the definition of a weakly continuous representation is that
ρ(g) : B1 −→ B1 is weakly continuous with respect to the duality 〈−,−〉 : B1⊗̂B2 −→ C.
In this case ρ(g)′ : (B1, σ(B1, B2))

′ ∼= B2 −→ B2
∼= (B1, σ)

′ exists and the previous lemma
and first part of the definition of a weakly continuous representation show that

G −→ O([B1, B1]×̃[B2, B2], B̃1⊗̂B2) g �−→ (ρ(g), ρ(g)′)

is continuous.
Then, by theorem 3.4, ρ defines

R1 : l
1(G) −→ [B1, B1]×̃[B2, B2] 1 · g �−→ (ρ(g), ρ(g)′).

and R2 : B1⊗̂B2 −→ C(G) by
R2 : b1 ⊗ b2 �−→ (g �−→ 〈(ρ(g), ρ(g)′), b1 ⊗ b2〉 = 〈ρ(g)b1, b2〉).

The morphism (R1, R2) is also an LG-morphism, that is the following diagram commutes.

LG� LG
m ✲ LG

(B –� B) � (B –� B)

R�R

❄ M✲ B –� B

R

❄

To show this, it is sufficient to prove the commutativity of the following diagram

LG⊗ LG
m ✲ LG

(B –� B)⊗ (B –� B)

R⊗R

❄ M✲ B –� B

R

❄
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which commutes since the following diagram does as direct calculation shows and all the
spaces are extensional.

l1(G)⊗̂l1(G) m1 ✲ l1(G)

([B1, B1]×̃[B2, B2])⊗̂([B1, B1]×̃[B2, B2])

R1⊗̂R1

❄ M ′
1✲ [B1, B1]×̃[B2, B2]

R1

❄

Let G be a Hausdorff topological group and B a separated-extensional Chu-space.
Write RepG the category of isometric weakly continuous representations of G with in-
tertwining (weakly continuous) operators and CBG the category of LG-module-structures
with Chu-module-morphisms.

The previous proposition defines a functor F : RepG −→ CBG on objects, on arrows
F is defined in a natural way.

A functor H : CBG −→ RepG is defined as follows. Write the Chu-module-structure
on B as f : LG�B −→ B, then the associated map f̃ : LG −→ B –� B is a Chu-algebra-
morphism and the image by the functor H is given by

ρ = H(LG
f̃✲ B –� B) : G ✲ [B1, B1] g ✲ (f̃1(1 · g))1

On arrows, H is defined in a natural way.

3.15. Theorem. The functors F and H define an equivalence of the categories RepG

and CBG.

Proof. Obviously, we have H ◦ F = 1 and the fact that the second component of a
separated extensional Chu-space is isomorphic to weak dual of the first component shows
that F ◦H ∼= 1.

4. Induced representations

In the following text, let G be a topological Hausdorff group and H a subgroup of G.
Let B be a separated extensional Chu-space and an LH-Chu-module. In an obvious way
there is a right (and also a left) multiplication with elements of H defined on the space
l1(G).

Define the following subspace S ′ of the vector space l1(G)⊗̂B1 to be

S ′ = span{(z · h)⊗ b− z ⊗ (h · b), for z ∈ l1(G), b ∈ B1, h ∈ H}.
Then let S be the closure S ′ of S ′ in the Banach space l1(G)⊗̂B1. We may consider the
quotient space (l1(G)⊗̂B1)/S and equip it with the quotient norm

||[z]|| = inf
w∈S

||z + w||l1(G)⊗̂B1
.
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Define for two l1(H)-modules C1 and C2

l1(H) Ban1(C1, C2) = {f : C1 −→ C2 ∈ Ban∞; h · f(c1) = f(h · c1), for all h ∈ H}

Then we can define the induced module LG⊗LH B to be sN where

N1 = (l1(G)⊗̂B1)/S
N2 = {λ ∈ l1(H) Ban(B1, C(G));λ(−)(g) ∈ (B1, σ)

′ ∼= B2, for all g ∈ G}.

The l1(H)-module structure of C(G) is defined as (h · λ)(g) = λ(g · h).
The space N2 is a normed space and a Banach space because

l1(H) Ban(B1, C(G)) = {f : B1 −→ C(G); f ∈ Ban∞; f(−)(g) ∈ B∗
1 ,

for all g ∈ G and f(hb1) = hf(b1)}

and B2
∼= (B1, σ(B1, B2))

′ ⊂ B∗
1 . Then B′

1 is closed in B∗
1 as a Banach space. The fact

that the representation of H is isometric finishes the proof of the fact that N2 is complete.
The duality is defined in the following way. Let λ in N2 be fixed, define the bilinear

map ψ by

ψ : l1(G)×B1 −→ C (
∑
i�0

aigi, b1) �−→
∑
i�0

aiλ(b1)(gi)

It is bounded by ||λ||.
Then there exists a linear bounded map with the same norm on the projective tensor

product. The following sequence of equalities imply that then there is also a linear map
on the quotient space with the same norm

ψ(
∑
i�0

aigih, b1) =
∑
i�0

aiλ(b1)(gih) =
∑
i�0

ai(h · λ(b1))(gi)

=
∑
i�0

aiλ(hb1)(gi) = ψ(
∑
i�0

aigi, hb1).

Varying λ gives a bilinear map on N1 ×N2 of norm at most 1 which can be extended to
the tensor product and this defines the pairing on (N1, N2).

The two previous remarks construct (N1, N2) as a Chu-space that is even extensional.
To show this, we have to prove that the map N2 −→ N∗

1 is isometric (it is contracting by
definition), that is that for f in N2

sup{|∑
i�0

aif(bi)(gi)|; ||
∑
i�0

ai[gi ⊗ bi]|| � 1} = ||f ||

There exists a b0 in B1 with ||b0|| � 1 and a g0 in G such that ||f || − |f(b0)(g0)| < ε.
We do not know if (N1, N2) is separated in general, but s(N1, N2) is a separated-

extensional Chu-space.
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There exists an LG-Chu-module structure on this space. Define first a map f ′ :
LG⊗ (N1, N2) −→ (N1, N2) in the following way

f ′
1 : l1(G)⊗ ((l1(G)⊗̂B1)/S) −→ (l1(G)⊗̂B1)/S

1 · g ⊗ [1 · g1 ⊗ b] �−→ [1 · g · g1 ⊗ b]
f ′

2 : N2 −→ [l1(G), N2]×̃[N1, C(G)]
λ �−→ (α1, α2)

where α1 and α2 are defined as follows.
Let 1 ·g be in l1(G), b1 in B1 and g1 in G. Then we have α1(1 ·g)(b1)(g1) = λ(b1)(gg1).

Note that α1(1 · g) is in N2 because we require that by definition λ(−)(g) is in (B1, σ)
′ for

all g in G. The map α2 is defined by α2([1 · g ⊗ b1])(g1) = λ(b1)(g1g). It is well defined
because multiplication in a topological group is continuous by definition and λ(b1) is in
C(G) for all b1 in B1. Then (α1, α2) preserves the duality. Both maps are linear by
definition and bounded with norm less or equal than ||λ||. Furthermore, the map (f ′

1, f
′
2)

preserves the duality and both maps are contracting.
The associated map (f̃ ′

1, f̃
′
2) : LG −→ (N1, N2) –◦ (N1, N2) is equal to

f̃ ′
1 : l

1(G) −→ [N1, N1]×̃[N2, N2]
∑
i�0

aigi �−→ (β1, β2)

where
β1([g ⊗ b]) = f ′

1(
∑

i�0 aigi ⊗ [g ⊗ b]) =
∑

i�0 ai[gig ⊗ b]
β2(λ) = (f ′

2(λ))1(
∑

i�0 aigi) =
∑

i�0 aiλ(−)(gi−) ∈ N2

and
f̃ ′

2 : N1⊗̂N2 −→ C(G) [g ⊗ b]⊗ λ �−→ (f ′
2(λ))2([g ⊗ b]) = λ(b)(−g)

The map f ′ : LG⊗ (N1, N2) −→ (N1, N2) defines a map

LG⊗ (N1, N2) −→ (N1, N2) −→ s(N1, N2)

which is a Chu-morphism by definition and this map defines a

F ′ : LG⊗ s(N1, N2) −→ s(N1, N2)

using the following chain of adjunctions.

Hom(LG⊗N, sN) ∼= Hom(N, LG –◦ sN) ∼= Hom(sN, LG –◦ sN)

∼= Hom(LG⊗ sN, sN).

Note that the space LG –◦ sN is separated since LG is extensional and sN is separated.
The first component of the space s(N1, N2) can be seen as the completion of a quotient

space. Take z in N1 and let [[z]] = 〈z,−〉 be the notation for the equivalence class with
respect to this quotient. Note that the fact that the functor s is adjoint to the inclusion
means, in this special case, that if a Chu-morphism f from A to a separated space is
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given then there is a Chu-morphism f ′ on sA with f ′
1([[z]]) = f1(z) for any element z of

the equivalence class.
The first component is explicitly given by the following formula. Let [[[g ⊗ b]]] be in

sN1, λ in N2.

[[F ′
1(

∑
i�0

aigi ⊗ [[[g ⊗ b]]]]](λ) =
∑
i�0

aiλ(b)(gig) = [[
∑
i�0

ai[gi · g ⊗ b]]](λ)

and the second component is given by

F ′
2(λ) = (β1, β2) with β1(

∑
i�0 aigi)(b)(g) =

∑
i�0 aiλ(b)(gig)

β2([[[g1 ⊗ b1]]])(g) = λ(b)(gg1)

and the associated map F̃ ′ : LG −→ sN –◦ sN by

F̃ ′
1(

∑
i�0 aigi) = (γ1, γ2) with γ1([[[g ⊗ b]]]) = [[

∑
i�0 ai[gig ⊗ b]]]

γ2(λ)(b)(g) =
∑

i�0 aiλ(b)(gig)

F̃ ′
2([[[g ⊗ b]]]⊗ λ) =

∑
i�0 aiλ(b)(gig).

To prove that (F̃ ′
1, F̃

′
2) is an algebra morphism, it is sufficient to prove the commuta-

tivity of the following diagram in the first component since all the spaces are extensional.

LG⊗ LG ✲ (sN –� sN)⊗ (sN –� sN)

LG
❄

✲ sN –� sN
❄

The diagram in the first component is

l1(G)⊗̂l1(G) F̃
′
1⊗̂F̃ ′

1✲ ([sN1, sN1]×̃[N2, N2])⊗̂([sN1, sN1]×̃[N2, N2])

l1(G)

m1

❄ F̃ ′
1 ✲ [sN1, sN1]×̃[N2, N2]

M ′
1

❄

We have

F̃ ′
1 ◦m1(

∑
i�0

aigi ⊗
∑
j�0

cjkj) = F̃ ′
1(

∑
i,j�0

aicj(gi · kj)) = (γ1, γ2)

with
γ1([[[g ⊗ b]]]) =

∑
i,j�0 aicj[[[(gikj) · g ⊗ b]]]

γ2(λ)(b)(g) =
∑

i,j�0 aicjλ(b)(gikjg)
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and
M ′

1 ◦ F̃ ′
1 ⊗ F̃ ′

1 =M ′
1((α1, α2)⊗ (β1, β2)) = (α1 ◦ β1, β2 ◦ α2)

with

α1 ◦ β1([[[g ⊗ b]]]) = α1(
∑
j�0

cj[[[kj · g ⊗ b]]]) =
∑
j�0

cjα1([[[kjg ⊗ b]]])

=
∑
j�0

cj
∑
i�0

ai[[[gikjg ⊗ b]]] =
∑
ij�0

cjai[[[gikjg ⊗ b]]]

and

(β2 ◦ α2(λ))(b)(g) = β2(
∑
i�0

aiλ(−)(gi−)
︸ ︷︷ ︸

λ′

)(b)(g)

=
∑
j�0

cjλ
′(b)(kjg) =

∑
j�0

cj(
∑
i�0

aiλ(b)(gikjg)).

4.1. Lemma. The following diagram commutes

LG⊗ (N1, N2)
1⊗ p✲ LG⊗ s(N1, N2)

(N1, N2)

n

❄ p ✲ s(N1, N2)

l

❄

where the vertical arrows are the LG-module-structures on (N1, N2) and s(N1, N2) respec-
tively.

Proof. By direct calculation prove that the diagram commutes in the first component
which is sufficient since all the spaces are extensional.

Let now the following map i : (B1, B2) −→ (N1, N2) be defined

i1 : B1 −→ N1 b1 �−→ [1 · e⊗ b1]
i2 : N2 −→ B2

∼= (B1, σ)
′ λ �−→ (b1 �→ λ(b1)(e))

where e is the unit of the group and we know that by definition λ(−)(e) is in (B1, σ)
′.

4.2. Proposition. Let B be an LH-Chu-module, D an LG-module, f : B −→ D an
LH-morphism. Then there exists a unique LG-morphism h : s(N1, N2) −→ D such that
the following diagram commutes.

B
s(i)✲ s(N1, N2)

❅
❅
❅
❅
❅

f
❘

D

h

❄
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Proof. Note that s(i) = p ◦ i where p : (N1, N2) −→ s(N1, N2). Let us show first that i
has the following universal property Let B, D and f be as in the proposition. Then there
exists a unique LG-morphism h0 : N −→ D such that the following diagram commutes.

B
s(i)✲ (N1, N2)

❅
❅
❅
❅
❅

f
❘

D

h0

❄

Define
h0

1 : N1 −→ D1 [g ⊗ b] �−→ g · f1(b)
h0

2 : D2 −→ N2 d2 �−→ (b1 �→ (k �→ 〈kf1(b1), d2〉)) .
The map h0

1 is well defined and contracting. Furthermore, we have to show that h0
2(d2)(b1)

is in C(G) for each b1 in B1 and d2 in D2. Let the first component of the LG-module
structure on D be written as n1 : l

1(G) −→ [D1, D1]×̃[D2, D2]. Then

h0
2(d2)(b1)(g) = 〈(n1(g))1(f1(b1)), d2〉 = 〈n1(g), f1(b1)⊗ d2〉

= 〈1 · g, n2(f1(b1)⊗ d2)〉 = n2(f1(b1)⊗ d2)(g)

but by definition n2(f1(b1) ⊗ d2) is in C(G). The map h0
2(d2) is bounded of norm less

or equal to ||d2|| and h0
2(d2)(.)(g) is weakly continuous on B1. It is also an H-morphism

because f1 is and h
0
2 is contracting.

The map (h0
1, h

0
2) preserves the duality and is also an LG-morphism since the following

diagram commutes in the first component

LG⊗ (N1, N2)
1⊗ (h0

1, h
0
2)✲ LG⊗D

(N1, N2)
❄ (h0

1, h
0
2) ✲ D

❄

h0
1(g · [g1 ⊗ b1]) = h0

1([gg1 ⊗ b1]) = gg1 · f1(b1)

g · h0
1([g1 ⊗ b1]) = g · (g1 · f1(b)).

This shows the existence of h0.
The uniqueness comes from the uniqueness of the first component. Two G-morphisms

h0
1 and h

1
1 that make commute the above diagram commute are equal since

h0
1([g1 ⊗ b1]) = h0

1(g1 · [e⊗ b1]) = g1 · h0
1([e⊗ b1]) = g1 · f1([e⊗ b1])

= g1 · h1
1([e⊗ b1]) = h1

1(g1 · [e⊗ b1]) = h1
1([g1 ⊗ b1]).
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Consider now the following diagram.

B
i✲ (N1, N2)

p✲ s(N1, N2)

❅
❅
❅
❅
❅

∀f
❘ ✠..

..
..
..
..
..
..

∃!h
D

∃!h0

❄

................

Using the fact that s is left adjoint to the inclusion, we know that h exists and that
h ◦ p = h0. To show that h is an LG-morphism we have to show the commutativity of
the following diagram.

LG⊗ sN
1⊗ h✲ LG⊗D

sN

l

❄ h ✲ D

k

❄

All the spaces being extensional it is sufficient to show the commutativity in the first
component

D1sN1

l1(G)⊗̂D1l1(G)⊗̂sN1

l1(G)⊗̂N1

N1

✑
✑
✑
✑
✑✑✰

◗
◗
◗
◗
◗◗� ❄

❄

❄

n1

p1

1⊗ p1

l1

✲

✲

❍❍❍❍❍❍❍❍❍❥

1⊗ h0
1

1⊗ h1

k1

h1

The left square commutes because of the previous lemma. The upper triangle commutes
by definition of h. Furthermore p1(N1) is dense in sN1. Then also 1⊗̂p1(l

1(G)⊗̂N1) is
dense in l1(G)⊗̂sN1 which shows that 1⊗̂p1 is an epi (2.9). We also have

k1 ◦ 1⊗ h0
1 = h0

1 ◦ n1 = h1 ◦ p1 ◦ n1

since h0 is an LG-morphism. Then

h1 ◦ l1 ◦ 1⊗ p1 = h1 ◦ p1 ◦ n1 = k1 ◦ 1⊗ h0
1 = k1 ◦ 1⊗ h1 ◦ 1⊗ p1

which implies
h1 ◦ l1 = k1 ◦ 1⊗ h1

since 1⊗̂p1 is an epi.
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The construction of the induced module (N1, N2) can be formulated in the following
way. The tensor product over LH of the left LH-module LG and the right LH-module
B in the category of Chu-spaces shall be defined in the same way as for the classic tensor
product of modules over an algebra. Consider the following two maps

LG⊗ LH ⊗ B ∼= (LG⊗ LH)⊗ B −→ LG⊗ B
LG⊗ LH ⊗ B ∼= LG⊗ (LH ⊗ B) −→ LG⊗ B

The first map is defined by the left LH-module structure of LG that is the restriction
of the multiplication on LG to LH. The second map is defined by the right LH-module
structure of B. It is not difficult to check that (N1, N2) is then the co-equalizer of the two
maps.
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