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THE REFLECTIVENESS OF COVERING

MORPHISMS IN ALGEBRA AND GEOMETRY

G. JANELIDZE and G. M. KELLY∗

Transmitted by Peter Johnstone

Abstract. Each full reflective subcategory X of a finitely-complete category C gives
rise to a factorization system (E,M) on C, where E consists of the morphisms of C inverted

by the reflexion I : C → X . Under a simplifying assumption which is satisfied in many
practical examples, a morphism f : A → B lies in M precisely when it is the pullback
along the unit ηB : B → IB of its reflexion If : IA → IB; whereupon f is said to be a
trivial covering of B. Finally, the morphism f : A → B is said to be a covering of B if,

for some effective descent morphism p : E → B, the pullback p∗f of f along p is a trivial
covering of E. This is the absolute notion of covering; there is also a more general relative
one, where some class Θ of morphisms of C is given, and the class Cov(B) of coverings of
B is a subclass – or rather a subcategory – of the category C ↓B ⊂ C/B whose objects are

those f : A → B with f ∈ Θ. Many questions in mathematics can be reduced to asking
whether Cov(B) is reflective in C ↓B; and we give a number of disparate conditions, each
sufficient for this to be so. In this way we recapture old results and establish new ones on

the reflexion of local homeomorphisms into coverings, on the Galois theory of commutative
rings, and on generalized central extensions of universal algebras.

1. Introduction

In our joint work [4] with Carboni and Paré, there emerged a surprising connexion
between certain notions introduced by Janelidze in his papers [11 - 16] on Galois theory
in categories, and notions arising in the study of factorization systems by Cassidy,
Hébert, and Kelly [5].

Starting from an adjunction

η, ϵ : I H : X−→ C (1.1)

where C is a category with pullbacks, Janelidze constructs a Galois theory in the category
C, while the other authors above construct on C a prefactorization system (E ,M), which
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is usually a factorization system; we recall more details a little later in this Introduction.
Each of these constructions becomes simpler under certain additional conditions on the
adjunction; and the first surprising observation is that the admissibility condition used
by Janelidze is clearly equivalent to the semi-left-exactness condition of [5] — to be
precise, when H is fully faithful, I is semi-left-exact if and only if each object of C is
admissible. The second surprising observation is that, under the admissibility condition,
the class M above coincides with the class of trivial covering morphisms in Janelidze’s
Galois theory.

In any category C we have the notion of an effective descent morphism p : E−→ B,
whose precise definition we recall in Section 5 below; informally, we may think of these
morphisms as the “good surjections”. Some property of f : A−→ B may be said to hold
locally, when there is a pullback diagram

D //
q

��

g

A

��

f

E //
p B ,

(1.2)

with p an effective descent morphism, such that the property in question holds for
g : D−→ E. In particular, f : A−→ B is said to be a covering when it is locally a trivial
covering; that is, when there is a pullback diagram (1.2) with p an effective descent
morphism and with g a trivial covering morphism. In brief, we may call the class M∗ of
coverings the localization of the class M. The purpose of Galois theory is the study of
the class M∗ of all coverings, or equivalently of the full subcategories Cov(B) = M∗/B
of C/B for each B in C.

As is shown in [4], there are classical cases, such as the (purely-inseparable, separable)
factorization in field theory, and the (monotone, light) factorization in topology, where
the class M∗ forms part of a new factorization system (E∗,M∗), and where moreover
E∗ is pullback-stable : the latter requirement forces E∗ to be the stabilization of E ,
consisting of those f : A−→ B every pullback of which lies in E . However we have
this situation only under very strong additional assumptions on the adjunction (1.1);
counter-examples in [4] show that in general M∗ is not closed under composition, so
that it is certainly not part of a factorization system (E∗,M∗); moreover, when it is
part of such a factorization system, E∗ need not be pullback–stable.

Accordingly it is natural to pose:

Question 1.1 Under what conditions on the adjunction (1.1) is the class M∗ of cover-
ings at least reflective, in the sense that every morphism f : A−→ B in C has a universal
factorization
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A //
f

  
@@

@@
@@

@ B

A′

>>

f ′

}}}}}}}

(1.3)

with f ′ ∈ M∗ ?
Since M∗ is pullback-stable and contains the identities, we can express the reflective-

ness of M∗ equivalently (see [10, Proposition 5.8]) as the assertion that M∗, seen now
as the full subcategory of the arrow category C2 with the coverings as its objects, is a
reflective subcategory of C2. The case where there is a factorization system (E∗,M∗)
is that (see [10, Theorem 5.10]) where M∗ is reflective as above and is closed under
composition.

Investigating this Question 1.1, one soon observes:
1◦. It follows from [5, Proposition 3.5] that we may assume, without loss of generality,
that H is a full embedding; in other words, that X is just a reflective full subcategory
of C. We may further assume X to be replete, meaning that C ∈ X whenever some
isomorph of C in C lies in X .
2◦. The category Cov(B) of coverings of a given object B of C is in fact the union

Cov(B) =
∪
p

Spl(E, p) , (1.4)

where Spl(E, p) is the category of those coverings of B which are “split by the given
(E, p)”, meaning those f : A−→ B whose pullback g : D−→ E along the given p, as
in (1.2), is a trivial covering; in this union, p runs through all the effective descent
morphisms p : E−→ B with codomain B. In order to investigate the reflectiveness of
Cov(B), therefore, we are led to investigate, for a fixed p : E−→ B, the reflectiveness
of Spl(E, p) in the slice category C/B. (Recall that there is often an individual effective
descent morphism p : E−→ B with Cov(B) = Spl(E, p), as for instance when there is
an effective descent morphism p : E−→ B with E projective with respect to all effective
descent morphisms; see below in this Section, and again in Section 8.)
3◦. On the other hand, it is reasonable to consider the more general question of the
reflectiveness of M∗ ∩ Θ inside some “good” class Θ of morphisms of C, rather than
that of M∗ inside the class of all morphisms, and to redefine Cov(B) accordingly.

These observations suggest that we work in the following context. We fix a Ga-
lois structure consisting of (i) a category C; (ii) a replete full reflective subcategory
X whose inclusion H : X−→ C has the left adjoint I : C−→ X with reflexion-unit
ηA : A−→ HIA = IA and with identity counit IH = 1; and (iii) a class Θ of morphisms
in C which contains the isomorphisms, is closed under composition, is pullback-stable
(in the sense that the pullback of a morphism in Θ along any morphism in C exists and
lies in Θ), and is mapped into itself by HI : C−→ C. (Note that C is no longer required
to admit all pullbacks, except when Θ is the class of all morphisms.)
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We have on C the prefactorization system (E ,M) defined, in the notation both of the
original treatment [5] and of the more recent and complete exposition [4], by

E = (H(mor X ))↑ , M = (H(mor X ))↑↓ ;

this is the smallest prefactorization system (E ,M), measuring by the size of M, for
which morX ⊂ M. Since E clearly consists precisely of those f : A−→ B in C with If
invertible, this prefactorization system has the property that g ∈ E wherever fg ∈ E
and f ∈ E . By Theorem 3.3 of [5], repeated as Proposition 3.3 of [4], (E ,M) is actually
a factorization system whenever C admits finite limits and all intersections of strong
subobjects — and thus in particular whenever C is complete and well-powered; we do
not make explicit use of this however, all we need about (E ,M) being reviewed in
Section 2 below.

For an object B of C, let us write C ↓B for the full subcategory of the slice-category
C/B given by those f : A−→ B lying in Θ; we sometimes denote such an object f :
A−→ B of C ↓B by (A, f) or just by f . A morphism f : A−→ B in C that lies in both
Θ and M will be called a trivial covering of B; these constitute a full subcategory of
C ↓B which we shall denote by M↓B. Observe now that, for any morphism p : E−→ B
in C, pulling back along p gives a functor p∗ : C ↓B−→ C↓E which, because M is
pullback-stable, maps M↓B into M↓E. Of course p∗(f) may be a trivial covering of
E when f is not a trivial covering of B; we write Spl(E, p) for the full subcategory of
C ↓B given by those f : A−→ B in Θ with p∗(f) ∈ M, and we say of such an f that
it is split by p (or by (E, p)). (We remark that this concept is of interest chiefly when
p : E−→ B is a Θ-effective-descent morphism in the sense of Janelidze and Tholen [18],
which we recall in Section 5 below.)

We call f : A−→ B a covering of B if it lies in Spl(E, p) for some Θ-effective descent
morphism p : E−→ B which itself belongs to Θ; and we write Cov(B) for the full
subcategory of C ↓B given by the coverings of B. Accordingly we have, in the ordered
set of full subcategories of C ↓B, the union (1.4) above, wherein p : E−→ B now runs
through the Θ-effective descent morphisms lying in Θ and having codomain B; and
this is a directed union, as in [4, Section 5]. As we said, there is often an individual
Θ-effective-descent morphism p : E−→ B, lying in Θ, for which Cov(B) = Spl(E, p);
we then say that B is locally simply connected and that p : E−→ B splits all coverings.
Now our reflectiveness question has three parts:
Question 1.2. Under what conditions

(a) does the inclusion Spl(E, p)−→ C↓B have a left adjoint — so that, for the given
p : E−→ B, every morphism f : A−→ B in Θ has a universal factorization (1.3)
with (A′, f ′) in Spl(E, p)?

(b) is every object in C locally simply connected?
(c) (extending the original Question 1.1) does the inclusion Cov(B) −→ C↓B have

a left adjoint for each B ∈ C?
In fact we scarcely expect to have a simple answer to each of these questions, con-

sisting of necessary and sufficient conditions; but must content ourselves instead with
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having a number of sufficient conditions covering important examples both old and new.
This is similar to the situation where one would like to prove the reflectivity, in a functor
category CK, of the full subcategory given by the functors sending certain cones to limit-
cones; as was first observed in Freyd’s book [6, Ch.5, Exercise F], there is a proof when
C = Set and another when C = Setop, and these proofs have nothing in common; later,
the proof for C = Set was extended in [9], [22], and [7] to the case of locally-presentable
(and even locally-bounded) C, while that for C = Setop was extended in [2] and [25] to
the case of C with Cop locally presentable.

The first purpose of this paper is to show that these old results give various sufficient
conditions for Question 1.2 (a). Then, briefly discussing Question 1.2 (b), we describe
various special cases in most of which every object in C is locally simply connected, so
that our sufficient conditions for Question 1.2 (a) give sufficient conditions for Question
1.2 (c).

2. Admissibility

The description of the trivial coverings of E, and hence of Spl(E, p), simplifies when E
has a property called admissibility, which is in fact needed for our positive results below
on the reflectiveness of Spl(E, p) in C ↓B. The discussion of admissibility which follows
also provides an opportunity to revise the little we need concerning the prefactorization
system (E ,M) arising from our Galois structure.

A morphism g : X−→ Y of X is said to lie in Θ if it does so when seen as a
morphism Hg : HX−→ HY of C; and we write X ↓Y for the full subcategory of the
slice-category X/Y given by those g : X−→ Y lying in Θ. Since HI maps Θ into itself,
the morphism If : IA−→ IB of X lies in Θ whenever the morphism f : A−→ B of C
does so; accordingly we have a functor IB : C ↓B−→ X ↓IB sending f to If . Clearly
this functor has the right adjoint HB : X ↓IB−→ C↓B sending g : X−→ IB to the
v : C−→ B given by the pullback

C //u

��

v

X

��

g

B //
ηB

IB .

(2.1)

Moreover, with the notation of (2.1), the g-component of the counit ϵB : IBHB−→ 1 of
this adjunction is the morphism

IC //Iu

!!
Iv DD

DD
DD

DD
X

}}
g

||
||

||
||

IB

(2.2)

of X ↓IB; so the elementary theory of adjunctions and the definition of E give:
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2.1 Proposition. For B ∈ C, the following are equivalent:

(i) HB : X ↓IB−→ C↓B is fully faithful;
(ii) ϵB is invertible;
(iii) we have u ∈ E in (2.1) for all g ∈ X ↓IB.

This proposition leads us to the following definition : An object B of C for which
these equivalent assertions hold is said to be admissible.

Consider now the unit ηB : 1−→ HBIB of the adjunction IB HB ; the f -
component of ηB is the morphism w in the following diagram, wherein the square
is a pullback:

A

''

ηA

PPPPPPPPPPPPPP

��
w@@

@@
@@

@

��

f

//
//

//
//

//
//

//

C //
u

��

v

IA

��

If

B //
ηB

IB .

(2.3)

Here, since If ∈ mor X ⊂ M and since If ∈ Θ because we are supposing f to lie in Θ,
and since moreover both M and Θ are pullback-stable, we have

v ∈ M∩Θ , (2.4)

so that v is a trivial covering of B. It suffices for our purposes to consider only the
case of an admissible B; then u ∈ E by Proposition 2.1, whence w ∈ E since (IηA being
invertible) we have ηA ∈ E . Thus f = vw is the (E ,M)-factorization of f , and we may
see w : f−→ v as both the reflexion of f ∈ C/B into the full subcategory M/B of C/B,
and the reflexion of f ∈ C ↓B into the full subcategory M↓B of C ↓B.

2.2 Proposition. For B admissible and for f : A−→ B lying in the class Θ, the
following properties of f are equivalent:

(i) the object f of C ↓B lies in the replete image of the fully-faithful

HB : X ↓IB−→ C↓B;

(ii) w is invertible in (2.3);
(iii) the commutative diagram

A //
ηA

��

f

IA

��

If

B //
ηB

IB

(2.5)

is a pullback;
(iv) f lies in M; that is, it is a trivial covering of B.
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Proof. (i) is equivalent to (ii) because w is the unit of the adjunction; (ii) implies
(iii) because the square in (2.3) is a pullback; and (iii) implies (iv) because If ∈ mor
X ⊆ M and M is pullback-stable. Finally, f ∈ M gives w ∈ M since v ∈ M; but
w ∈ E as we have seen, so that (iv) implies (ii).

2.3 Corollary. If f : A−→ B is a trivial covering of the admissible B, then A is
admissible.

Proof. In the diagram

C //u

��

v

X

��

g

A //
ηA

��

f

IA

��

If

B //
ηB

IB ,

let the top square be a pullback with g ∈ X ↓IA; then, since the bottom square is a
pullback by Proposition 2.2, the exterior too is a pullback, so that u ∈ E because B is
admissible. We conclude that A is admissible.

The following technical result plays an important role in the Galois theory that we
shall recall in Section 5 below:

2.4 Proposition. The functor I : C−→ X preserves those pullbacks

C //k

��

h

A

��

f

D //
g B

(2.6)

for which f lies in the class M↓B of trivial coverings of B (whence necessarily h lies
in M↓D) and for which B and D are admissible.

Proof. Since (2.6) is a pullback by hypothesis and (2.5) is a pullback by Proposition
2.2, the exterior of

C //k

��

h

A //
ηA

��

f

IA

��

If

D //
g B //

ηB
IB

is a pullback; but this is equally the exterior of
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C //
ηC

��

h

IC //Ik

��

Ih

IA

��

If

D //
ηD

ID //
Ig

IB .

(2.7)

Since If ∈ Θ, its pullback along Ig exists; suppose that it is

X //u

��

v

IA

��

If

ID //
Ig

IB ,

and that w : IC−→ X is the comparison morphism with vw = Ih and uw = Ik. Since
the exterior of (2.7) is a pullback, the functor η∗D : X ↓ID−→ C↓D given by pulling back
along ηD sends w to an isomorphism. This η∗D, however, is just the functor HD, which
is fully faithful because D is admissible; so w is already an isomorphism, as desired.

Our definition of Spl(E, p) for p : E−→ B may be re-expressed by saying that we
have in Cat the pullback

Spl(E, p) //
⊂

��

C ↓B

��

p∗

M↓E //
⊂ C ↓E .

(2.8)

When E is admissible, however, it follows from Proposition 2.2 that M↓E is the image
of the fully-faithful HE : X ↓IE−→ C↓E, so that we have an equivalence of categories

X ↓IE ≃ M↓E , (2.9)

allowing the following rephrasal of (2.8):

2.5 Theorem. For any p : E−→ B in C with E admissible, we have in Cat a pullback

Spl(E, p) //
⊂

��

C ↓B

��

p∗

X ↓IE //

HE
C ↓E

(2.10)

with HE fully faithful.
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2.6 Remark. It is often the case in practical examples that every B ∈ C is admissible.
When this is so and Θ consists of all morphisms, the reflexion of C onto X was said in [5]
to be semi-left-exact; and this property was shown in [5, Theorem 4.3] to be equivalent
to the preservation by I of the pullback of f and g whenever g ∈ M : compare this with
Proposition 2.4 above, and for a more recent account of this and related properties, see
[4, Section 3]. In their study [17] of central extensions, Janelidze and Kelly considered
an exact category C along with a reflective subcategory X closed under both subobjects
and quotient objects, with Θ the class of strong epimorphisms; they called X admissible
when each B ∈ C was admissible, showing every such X to be admissible when the
congruence-lattice of each object of C is modular, and thus in particular whenever C is
a Maltsev or a Goursat variety. From the point of view of Galois theory – see Section
5 below – to exhibit Spl(E, p) as equivalent to the category of “Θ-actions on X of the
Galois pregroupoid of (E, p)”, we need the admissibility not only of E but also of E×BE
and E ×B E ×B E. An important case where not every (E, p) has this property, while
Θ consists neither of all morphisms nor of the strong epimorphisms, is that considered
by Brown and Janelidze in [3].

3. Some relevant results of Wolff and Kelly

We need the notion of a well-pointed endofunctor (S, σ) on a category A, introduced
by Kelly in [20]. A pointed endofunctor (S, σ) consists of an endofunctor S : A−→ A
together with a natural transformation σ : 1−→ S whose domain is the identity endo-
functor. By an action of (S, σ) on an object A of A is meant a morphism a : SA−→ A
in A for which a.σA = 1A; and when a is such an action, we call the pair (A, a) an
(S, σ)-algebra, or an S-algebra for short. The S-algebras are the objects of a category
S-Alg, wherein a morphism f : (A, a)−→ (B, b) is an f : A−→ B in A with fa = b.Sf ;
and there is a faithful and conservative forgetful functor U : S-Alg −→ A sending (A, a)
to A.

The pointed endofunctor (S, σ) is said to be well-pointed when Sσ = σS : S−→ S2.
When this is so it follows easily that any action a : SA−→ A also satisfies σA.a = 1SA;
so A admits an S-action precisely when σA invertible, and then admits the unique action
a = (σA)−1. In this well-pointed case, therefore, U : S-Alg −→ A is fully faithful; and
we may identify S-Alg with the full replete subcategory of A given by those A with σA
invertible.

This subcategory S-Alg is clearly closed in A under any limits that A may admit,
and numerous existence theorems in mathematics reduce to showing the reflectiveness
in A of such an S-Alg — that is, to showing the existence of the free S-algebra on
each A ∈ A. Various sufficient conditions for this reflectiveness are known; many were
gathered together in [20] and expressed there as two theorems, which we now recall.

Sometimes the reflexion of A in S-Alg not only exists but takes on a very simple form.
Supposing A to admit filtered colimits, we define a functor Ŝ : ∞−→ AA, where ∞ is
the ordered set of all small ordinals and AA is the category of endofunctors of A. We
write Sβ for the value Ŝβ of Ŝ at the small ordinal β, and write Sαβ : Sβ−→ Sα for the
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connecting morphism when β ≤ α, defining these by transfinite induction as follows.

Take S0 = 1A; take Sβ+1 = SSβ with Sβ+1
β equal to σSβ : Sβ−→ SSβ ; and, for a

limit-ordinal α, take Sα= colimβ<αS
β , with the Sαβ being the generators of the colimit-

cone. One easily sees that, for A ∈ A and B ∈ S-Alg, every f : A−→ B factorizes

uniquely through each Sβ0A : A−→ SβA. It follows that, if SαA ∈ S-Alg for some α,
then Sα0 A : A−→ SαA is the reflexion of A in S-Alg. This is of course the case precisely
when σSαA : SαA−→ SSαA is invertible; then SγβA is invertible whenever α ≤ β ≤ γ;

and we say that the transfinite sequence (SβA)β<∞ converges at α.

When each (SβA) does converge — perhaps at some α depending on A — we may
say that free S-algebras exist constructively, or that S-Alg is constructively reflective
in A. (That S-Alg may be reflective in a complete and cocomplete A without being
constructively so is shown in [20, Remark 5.4].)

The simplest and best-known of the sufficient conditions for the reflectiveness of
S-Alg is:

3.1 Proposition. Let A admit filtered colimits, and suppose that, for some regular car-
dinal α, the endofunctor S preserves α-filtered colimits. Then each transfinite sequence
(SβA) converges at α, so that Sα0 A : A−→ SαA is the reflexion of A into S-Alg.

This, although a special case of [20, Theorem 6.2], is easy to prove directly : since
(Sαβ : Sβ−→ Sα)β<α is an α-filtered colimit-cone by construction, so too is (SSαβ :

Sβ+1−→ Sα+1)β<α a colimit-cone, by hypothesis; but (Sαβ+1 : Sβ+1−→ Sα)β<α is itself
a colimit-cone, since the β + 1 for β < α are cofinal in the ordered set of all β with
β < α. Moreover the composite of σSα = Sα+1

α with Sαβ+1, which is Sα+1
β+1 , is easily

shown (using the well-pointedness of S) to coincide with SSαβ – see [20, Lemma 5.5 ];
so σSα is indeed invertible.

An important particular case of this proposition is that where α is the first infinite
ordinal ω; of course ω-filtered colimits are just filtered colimits; and a functor that
preserves them is said to be finitary.

Theorem 6.2 of [20] in fact strengthens Proposition 3.1 by weakening its hypotheses
in two ways. First, let (E ,M) be a factorization system on A for which E consists of
epimorphisms, and consider a functor X : K−→ A where K is some α-filtered small
category; we write Xβ for the value of X at the object β of K. An inductive cone
(rβ : Xβ−→ N)β∈K is said to be E-tight when the induced morphism colim X−→ N lies
in E . We say that S preserves the E-tightness of α-filtered cones if, whenever a cone
as above (with K an α-filtered category) is E-tight, so is the cone (Srβ : SXβ−→ SN).
When the factorization system (E ,M) is (isomorphisms, all morphisms), this is just to
say that S preserves α-filtered colimits; so the following does generalize Proposition 3.1:

3.2 Proposition. Let A admit filtered colimits, and let (E ,M) be a factorization sys-
tem, with E consisting of epimorphisms, such that A is E-cowellpowered. Suppose that,
for some regular cardinal α, the endofunctor S preserves the E-tightness of α-filtered
cones. Then each transfinite sequence (SβA) converges (at some γ(A) depending in
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general on A), so that S-Alg is constructively reflective in A.

Once again, although this is a special case of [20, Theorem 6.2], it is easy to prove
directly : by transfinite induction on the small ordinals γ ≥ α, one sees that each
cone (SγβA : SβA−→ SγA)β<α with γ ≥ α is E-tight, so that SγαA lies in E ; by the E-
cowellpoweredness, therefore, the transfinite sequence (SγA) converges at some γ ≥ α.

Since the X : K−→ A forming the base of an E-tight α-filtered cone could be the
functor constant at some object M of A, the hypotheses of Proposition 3.2 cannot
be satisfied unless SE ⊂ E . This restriction disappears when we take the final step
to the full strength of [20, Theorem 6.2], requiring S now to preserve the E-tightness
only of some α-filtered cones. In more detail, we take on A a second factorization
system (E ′,M′), again with E ′ consisting of epimorphisms, and call (rβ : Xβ−→ N)β∈K
an M′-cone when each rβ lies in M′. We say that S preserves the E-tightness of α-
filtered M′-cones if, whenever the α-filtered M′-cone above is E-tight, so too is the cone
(Srβ : SXβ−→ SN) — which need not, however, be an M′-cone. The full version of
[20, Theorem 6.2] is:

3.3 Proposition. Let A admit filtered colimits, and let (E ,M) and (E ′,M′) be fac-
torization systems on A for which E and E ′ consist of epimorphisms, and such that
A is both E-cowellpowered and E ′-cowellpowered. Suppose that, for some regular cardi-
nal α, the endofunctor S preserves the E-tightness of α-filtered M′-cones. Then each
transfinite sequence (SβA) converges, so that S-Alg is constructively reflective in A.

The proof, which is given in [20], is now less direct; it depends on a construction, due
to Koubek and Reiterman and recalled in Section 4 of [20], that replaces certain of the
cones (Sγβ : Sβ−→ Sγ)β<α′ for γ ≥ α′ by associated M′-cones having the same colimit.

One begins by considering the (E ′,M′)-factorizations (eγ ,mγ) of the Sγ0 : A−→ SγA,
observing that eγ+1 = e′eγ for some e′ ∈ E ′; by the E ′-cowellpowerness, therefore, the
eγ become stationary at some γ, which we rename 1′; setting also 0′ = 0 for uniformity,
we henceforth write

A = S0A = S0′A −→
f0

Y0 −→
i0

S1′A

for the (E ′,M′)-factorization (e1′ ,m1′). Starting again now with S1′A instead of A =

S0′A, we this time get a stationary factorization

S1′A −→
f1

Y1 −→
i1

S2′A

at some ordinal 2′ > 1′; and we continue transfinitely thus, setting δ′ = supβ<δ β
′ for a

limit-ordinal δ, and so obtaining morphisms of transfinite sequences

Sβ
′
A −→

fβ
Yβ −→

iβ
S(β+1)′A
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such that each (Sγ(β+1)′iβ : Yβ−→ SγA)(β+1)′<γ is an M′-cone and that colimβ<δ Siβ
is invertible for each limit-ordinal δ. From this point the proof proceeds fairly straight-
forwardly to the stated conclusion.

When the factorization system (E ′,M′) is (isomorphisms, all morphisms), Proposi-
tion 3.3 reduces of course to Proposition 3.2. An important case of Proposition 3.3 in
practice, however, is that where (E ′,M′) = (E ,M), with this being a proper factoriza-
tion system (so that M consists entirely of monomorphisms). In this case, to say that

the M-cone (rβ : Xβ−→ N) is E-tight is to say that N =
∪
Xβ , where this union is the

join in the ordered set of M-subobjects. Thus to say that S preserves the E-tightness
of this M-cone is to say that SN =

∪
im (Srβ); and when SM ⊂ M it is to say that

SN =
∪
SXβ — for instance, in Proposition 3.3, that S preserves α-filtered unions of

M-subobjects.
Note that, when A is the category of topological spaces and S is the endofunctor

sending A to the discrete topological space on the set A(X,A), where X is the two-
point space with the chaotic topology, S clearly preserves filtered unions of subspaces.
Yet there is no α for which S preserves α-filtered colimits, or even those α-filtered
colimits (rβ : Xβ −→ colim X) for which the rβ are injections : see [20, Section 3.2].
Since we can move from any endofunctor to a well-pointed endofunctor on a related
category, as in [20, Section 18], such examples show that Proposition 3.3 is strictly
stronger than Proposition 3.1 — even though the latter does suffice for many important
applications.

The alternative set of sufficient conditions for the reflectiveness of S-Alg given in
[20, Theorem 7.5] has a different proof that follows up a suggestion of Barr : one first
establishes a reflexion of A onto the M′-closure B of S-Alg, and then — exhibiting
S-Alg as also being S′-Alg for a well-pointed endofunctor (S′, σ′) on B — one looks at
the reflectivity of S′-Alg in B. The essential result may be stated thus:

3.4 Proposition. If one seeks to establish only the reflectivity of S-Alg in A, and
not its constructive reflectivity, one can in the case (E ,M) = (E ′,M′) and in the case
(E ,M) = (isomorphisms, all morphisms) discard in Proposition 3.3 the hypothesis that
A is E ′-cowellpowered, replacing it by the requirement that A admit arbitrary cointer-
sections — even large ones if need be — of epimorphisms in E ′.

In practice, of course, the cowellpoweredness is so commonly present that one may
as well have the stronger result of Proposition 3.3. An example where Proposition 3.4
applies and Proposition 3.3 does not is that where A = ∞ + 1, the ordered set of all
small ordinals together with the first non-small ordinal ∞, and where S is given by
Sβ = β + 1 for β <∞ and by S∞ = ∞, with the unique σ : 1−→ S.

Note that, if Z is a full replete reflective subcategory of B, with inclusion K : Z−→ B
and reflexion R : B−→ Z, the unit being π : 1−→ P where P = KR and the counit
being the identity, then (P, π) is an idempotent monad on B, with the identity P 2 = P
for its multiplication; in particular, (P, π) is a well-pointed endofunctor of B, since
Pπ = πP = 1; and the corresponding subcategory P -Alg of B is just Z. An important



Theory and Applications of Categories, Vol. 3, No. 6 144

process giving rise to well-pointed endofunctors was described by Wolff in [29, Theorem
2.1] and repeated as [20, Proposition 9.2] : the following is a somewhat special case,
whose fairly straightforward proof we shall not repeat here.

3.5 Proposition. Let A admit pushouts, let F U : A−→ B be an adjunction
with counit ϵ : FU−→ 1, and let Z be a full replete reflective subcategory of B, whose
corresponding idempotent monad is (P, π) as above. In the category of endofunctors of
A form the pushout

FU //FπU

��

ϵ

FPU

��

θ

1 //
σ S .

(3.1)

Then the pointed endofuctor (S, σ) is well pointed, and S-Alg consists of those A ∈ A
with UA ∈ Z; in other words, we have in CAT a pullback

S-Alg //

��

A

��

U

Z //
K

B .

(3.2)

4. A direct application of the Wolff-Kelly results

The diagram (2.10) above is an instance of the diagram (3.2) of Proposition 3.5, provided
only that p∗ : C ↓B−→ C↓E has a left adjoint. It certainly does so if p ∈ Θ; for then the
left adjoint p! : C/E−→ C/B of p∗ : C/B−→ C/E, given by composition with p, restricts
to a functor p! : C ↓E−→ C↓B, which provides the desired adjoint. Thus Theorem 2.5
and Proposition 3.5 give :

4.1 Proposition. For a Galois structure (C,X ,H, I, η,Θ), let p : E−→ B be a mor-
phism of C lying in Θ with E admissible. Suppose that C ↓B admits pushouts — which
is certainly the case if C admits pushouts and Θ is closed under pushouts in C2. Then
Spl(E, p) is S-Alg for the well-pointed endofunctor (S, σ) of C ↓B defined by the follow-
ing pushout in the category of endofunctors of C ↓B, wherein ϵ : p!p

∗−→ 1 is the counit
of the adjunction p! p∗ :

p!p
∗ //

p!η
Ep∗

��

ϵ

p!H
EIEp∗

��

θ

1 //
σ S .

(4.1)
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Let us apply to this (S, σ) the simplest of the criteria for reflectiveness in Section
3 above — namely that given by Proposition 3.1. To ensure that C/B admits filtered
colimits, let us suppose that C admits filtered colimits and that C ↓B is closed in C/B
under filtered colimits; note that the latter is certainly satisfied if Θ is closed in C2

under filtered colimits. Since colimits commute with colimits, the pushout S in (4.1)
preserves whatever colimits are preserved by p!p

∗, by p!H
EIEp∗, and by 1. Because the

left adjoints p!, I
E , and 1 preserve all colimits, these are the colimits preserved by p∗

and by HE . Now p∗ : C ↓B−→ C↓E preserves α-filtered colimits if p∗ : C/B−→ C/E
does so; while HE : X ↓IB−→ C↓B preserves α-filtered colimits if H : X−→ C does so
and pulling back along ηB as in (2.1) does so. Thus we get:

4.2 Theorem. For a Galois structure (C,X ,H, I, η,Θ), let C admit pushouts and fil-
tered colimits, and for each B let C ↓B be closed in C/B under these colimits; the latter
is certainly the case if Θ is closed under these colimits in C2. Let p : E−→ B be a
morphism of C lying in Θ with E admissible. Then Spl(E, p) is reflective in C ↓B if,
for some regular cardinal α, the functor H preserves α-filtered colimits and so does the
pullback-functor f∗ : C ↓A−→ C↓C for each f : C−→ A in C. If C admits all pullbacks,
it suffices in place of the last condition to suppose that each f∗ : C/A−→ C/C preserves
α-filtered colimits; which is a fortiori the case if pullbacks commute with α-filtered col-
imits in C.

The reader will not find it hard to imagine cases where the stronger conditions of
Proposition 3.3 are needed : in the category of topological spaces, for example, pullbacks
do not preserve α-filtered colimits for any α, but they preserve filtered unions. Yet The-
orem 4.2 above does suffice in numerous practical examples. The sufficient conditions
we go on to develop now are not so much directly stronger, as different in kind.

5. Internal discrete opfibrations

It is convenient to recall here some properties of discrete opfibrations that are central
to descent theory and to Galois theory; see [15] for a fuller treatment.

Let us write Γ for the category generated by the graph

2
//

q

//m

//
r

1
//d

//
c

0oo e
(5.1)

subject to the relations

de = ce = 1 , dr = cq , dm = dq , cm = cr . (5.2)

By an internal precategory in a category C, or just a precategory in C for short, is meant
in object P of the functor category CΓ; thus a morphism ϕ : Q−→ P of precategories in
C is just a natural transformation, which we might display as
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Q2

//
Q(q)

//
Q(m)

//
Q(r)

��

ϕ2

Q1

//
Q(d)

//
Q(c)

��

ϕ1

Q0
oo

Q(e)

��

ϕ0

P2

//
P (q)

//
P (m)

//
P (r)

P1

//
P (d)

//
P (c)

P0
oo

P (e)

.

(5.3)

We say that this morphism ϕ is a discrete opfibration, or that (Q,ϕ) is a discrete
opfibration over P , if each of the diagrams

Q2
//

Q(q)

��

ϕ2

Q1

��

ϕ1

Q1
//

Q(d)

��

ϕ1

Q0

��

ϕ0

P2
//

P (q)
P1

, P1
//

P (d)
P0

(5.4)

is a pullback. These discrete opfibrations over P form a full subcategory, denoted by
CP , of the slice category CΓ/P ; and we shall be particularly concerned with the further
full subcategory C ↓P of CP given by those discrete opfibrations ϕ over P for which ϕ0
(and hence ϕ1 and ϕ2) lie in Θ. Note that, when C is the category of sets and P is
a small category, CP is equivalent to the usual functor category SetP ; more generally
(see [19]) those discrete opfibrations ϕ : Q−→ P where P and Q are internal categories
have been intensively studied. (The usual definition of discrete opfibration for internal
categories requires only the second diagram in (5.4) to be a pullback; in fact the first is
then automatically a pullback.) One easily sees that the class of all discrete opfibrations
contains all isomorphisms, is closed under composition, and is stable by pullbacks.

The diagonal functor ∆ : C−→ CΓ being fully faithful, we may identify an object B
of C with its image ∆B, which is the category

B
//1

//1

//
1

B
//1

//
1

Boo 1
.

A precategory Q is isomorphic to such a B precisely when all of its six structural
morphisms Q(q), · · · , Q(c) are invertible; whereupon we call Q a discrete category. One
easily sees that every f : A−→ B in C is a discrete opfibration, and that a general
ϕ : Q−→ B in CΓ with B in C is a discrete opfibration if and only if Q is a discrete
category. Thus we have a full inclusion
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C/B −→ CB (5.5)

which is an equivalence of categories; and it restricts to an equivalence

C ↓B ≃ C ↓B . (5.6)

An internal category P is said to be an equivalence relation when each C(A,P ) is
an equivalence relation in Set in the usual sense; for each B ∈ C the discrete category
B = ∆B ∈ CΓ is an example of an equivalence relation. Given any p : E−→ B in C, its
kernel-pair d, c : E ×B E−→ E extends in an obvious way to an equivalence relation

E ×B E ×B E
//

//

//
E ×B E

//

//
Eoo (5.7)

in C, which we denote by Eq (p); and the map p admits in CΓ an evident factorization

E −→
p′′

Eq (p) −→
p′

B . (5.8)

Since every morphism ϕ : Q−→ P of precategories induces a functor C ↓ϕ : C ↓P−→ C ↓Q

by pulling back, we have commutativity to within isomorphism in

C ↓B //C ↓p

$$C ↓p′ HH
HH

HH
HH

H C ↓E

C ↓Eq(p)

::

C ↓p′′

vvvvvvvvv
,

(5.9)

and hence by (5.6) in

C ↓B //
p∗

��

≃

C ↓E

��

≃

C ↓B //C ↓p

$$C ↓p′ IIIIIIIII C ↓E

C ↓Eq(p)

::

C ↓p′′

uuuuuuuuu
.

(5.10)

One can describe in elementary terms the objects of the category C ↓Eq(p), which is
called the category of descent data for p : E−→ B; when p ∈ Θ, so that composition
with p provides a left adjoint p! to p

∗, one easily identifies the category C ↓Eq(p) with the
Eilenberg-Moore category of algebras for the monad p∗p! on C ↓E, and identifies

C ↓B ≃ C ↓B −→
C ↓p′

C ↓Eq(p) (5.11)
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with the corresponding comparison functor. In any case, p : E−→ B is said to be a
Θ-effective-descent morphism when (5.11) is an equivalence: when p ∈ Θ, therefore, this

is so precisely when p∗ is monadic. Note that C ↓p′ in fact sends the object f : A−→ B
of C ↓B to the discrete opfibration ϕ : Q−→ Eq(p), where

Q //

��

ϕ

A

��

f

Eq(p) //

p′
B

(5.12)

is a pullback in CΓ; so that the squares of the diagram

Q2
//

q

��

ϕ2

Q1
//d

��

ϕ1

Q0
//

��

ϕ0

A

��

f

E ×B E ×B E //
q E ×B E //

d
E //

p B

(5.13)

are pullbacks in C, the right square of (5.13) being the 0-component of (5.12).
If we now have a Galois structure (C,X ,H, I, η,Θ) as before, we have a reflexion

IΓ ⊣ HΓ : XΓ−→ CΓ and hence an induced Galois structure for the functor categories;
membership of the ΘΓ for CΓ is just pointwise membership of Θ, and we shall in fact
write Θ for ΘΓ. Again, the prefactorization system (EΓ,MΓ) arising from the reflexion
of CΓ into XΓ has ϕ ∈ EΓ precisely when each of ϕ0, ϕ1, ϕ2 lies in E , and similarly for
MΓ; so here too we shall write E and M rather than EΓ and MΓ. Finally, it is clear
that an object P of CΓ is admissible if and only if each of P0, P1, P2 is so in C.

Consider now a Θ-effective-descent morphism p : E−→ B in C with Eq (p) ad-
missible in CΓ — which is to say that each of the objects E, E ×B E, and E ×B
E ×B E of (5.7) is admissible in C. Then by Proposition 2.1 the functor HEq(p) :
XΓ ↓I(Eq(p))−→ CΓ ↓Eq(p) is fully faithful. In fact it restricts to the discrete opfibra-
tions lying in Θ, as in

XΓ ↓IP //HP

∪ CΓ ↓P∪
X ↓IP //

KP C ↓P ,

(5.14)

where P is now short for Eq(p) and KP denotes the restriction of HP ; for HP is given
by pulling back along ηP as in (2.1), and pulling back preserves discrete opfibrations —
of course the discrete opfibrations in XΓ are just those that are such in CΓ.

Let us now expand diagram (5.14) as follows:
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XΓ ↓IP //≃

∪
M↓P //

⊂

∪
CΓ ↓P

∪
X ↓IP //

≃ C ↓P ∩M↓P //
⊂

C ↓P

C ↓B

OO

≃

Spl(E, p) //
⊂

OO

≃

C ↓B

OO

≃

.

(5.15)

In the top row M↓P is the image of HP by Proposition 2.2, so that the first arrow is an
equivalence as in (2.9). The inverse of this equivalence is of course given by restricting
the functor IP : CΓ ↓P−→ XΓ ↓IP , and this restriction IP : M↓P−→ XΓ ↓IP sends
discrete opfibrations to discrete opfibrations by Proposition 2.4; whence the equivalence
X ↓IP ≃ C ↓P ∩ M↓P of the second row. The equivalence C ↓B ≃ C ↓P of the
last column is that of (5.11), expressing that p is a Θ-effective-descent morphism and
sending f : A−→ B to the ϕ = (ϕ0, ϕ1, ϕ2) of (5.13); since this lies in the pullback-
stable M precisely when ϕ0 does so, which is just to say that f ∈ Spl(E, p), we have
the equivalence Spl(E, p) ≃ C ↓P ∩M↓P of the second column. This equivalence and
that of the second row combine to give the chief theorem of Galois theory:

5.1 Theorem. When p : E−→ B is a Θ-effective-descent morphism and the objects
E,E ×B E,E ×B E ×B E are admissible, we have an equivalence of categories

Spl(E, p) ≃ X ↓I(Eq(p)) . (5.16)

Note that the equivalence (5.11) when p is a Θ-effective-descent morphism may be seen
as the special case of (5.16) obtained by taking I : X−→ C to be the identity 1 : C−→ C.

For our present purposes of seeking a left adjoint to the inclusion Spl(E, p) −→ C↓B,
the point is that we now have a new description of this inclusion, alternative to that
given by Theorem 2.5 : namely, with the hypotheses of Theorem 5.1, this inclusion
agrees to within equivalence with the fully-faithful KP of (5.14). This gives us two
clearly-sufficient conditions for the reflectiveness of Spl(E, p) in C ↓B:

5.2 Proposition. When p : E−→ B satisfies the conditions of Theorem 5.1, Spl(E, p)
is reflective in C ↓B if either (a) or (b) below is the case:

(a) for any internal precategory R in X , the inclusion

X ↓R −→ XΓ ↓R

has a left adjoint;
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(b) the left adjoint IP : CΓ ↓P−→ XΓ ↓IP of HP , when restricted to C ↓P , takes its
values in X ↓IP .

We devote the next section to the pursuit of (a), and shall make use of (b) in the
following one. Since a discrete opfibration may be seen as a diagram wherein two
squares are to be pullback-squares, we must recall what is known about diagrams in
which certain cones are limit-cones.

6. Functors sending certain cones to limit-cones

Consider a small category K and a class Ψ of projective cones in K : each such cone
ψ consists of a small category Jψ, a functor Nψ : Jψ−→ K, an object Mψ of K, and
the cone ψ itself, which is a natural transformation ψ : ∆Mψ−→ Nψ, with components
(ψ(j) : Mψ−→ Nψ(j))j∈Jψ . For a category C one may consider, within the functor

category CK of all functors T : K−→ C, the full subcategory CK(Ψ) given by those T
for which each Tψ : ∆TMψ−→ TNψ is a limit-cone in C. Finding criteria for CK(Ψ) to

be reflective in CK has been called the continuous functor problem.

The earliest treatment for a C other than Set and for a possibly large Ψ was given
by Freyd and Kelly [7] and later refined in [20]. For simplicity, take C to be complete
and cocomplete. Each cone ψ as above gives rise in SetK to a morphism

colimj K(Nψ(j),−) −→
kψ

K(Mψ,−) , (6.1)

which we may abbreviate to kψ : Uψ−→ Vψ. For a set X and for C ∈ C write X ·C ∈ C
for the coproduct of X copies of C, and consider the morphisms kψ ·C : Uψ ·C−→ Vψ ·C
for C ∈ C; clearly T ∈ CK lies in CK(Ψ) precisely when it is orthogonal to each kψ · C,
in the sense that kψ · C is inverted by CK(−, T ). If the kψ · C formed a small set, one
could now by an easy application of Wolff’s process in Proposition 3.5 above construct
on CK a well-pointed endofunctor with CK(Ψ) as its algebras, and thus find a criterion
for the reflectivity of CK(Ψ) in CK by appealing to Proposition 3.3.

However the class Ψ of cones may be large (although in our application it is not), and
certainly the class {C} of objects of C is usually large. One gets a first reduction of the
size of the class {kψ ·C} by supposing C to admit a small generating set G with respect
to a suitable factorization system (F ,N ) on C, so that it suffices for T to be orthogonal
to the kψ ·G with G ∈ G. Moreover, even if the class Ψ is large, the number of different
codomains Vψ for the kψ is small, since by (6.1) these codomains are representables in

SetK; and this leads to a further reduction when we take the (F ,N )-factorizations of
the kψ ·G and observe that orthogonality to a large class of morphisms can be handled
with no trouble when these are epimorphisms.

On examining the details, with the intention of applying Proposition 3.3, one is led
to make the following definition (whose definitive form was first given in [21, Section
6.1]):
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6.1 Definition. A category C is said to be locally bounded if

(i) it is locally small, complete, and cocomplete;
(ii) with respect to some proper factorization system (F ,N ) it has a small generating

set G — that is to say, the canonical morphism∑
G∈G

C(G,C) ·G −→ C

lies in F for each C ∈ C;
(iii) every family (C−→ Di)i∈I of morphisms in F , however large, admits a cointer-

section in C;
(iv) there is some (small, infinite) regular cardinal α such that C(G,−) : C−→ Set

preserves α-filtered unions of N -subobjects for each G ∈ G.

This definition gives the criterion we want : for applying Proposition 3.3 to the con-
siderations above yields [20, Theorem 12.1], part of which reads (see also [21, Theorem
6.11]):

6.2 Proposition. Whenever the category C is locally bounded, CK(Ψ) is reflective in
CK for any small K and any class Ψ of projective cones.

6.3 Remark. Every locally-presentable category C (in the sense of Gabriel and Ulmer
[9]) is locally bounded, with the monomorphisms forN . The categoryTop of topological
spaces is not locally presentable, but is locally bounded with the subspace-inclusions
for N ; while the category of Banach spaces and norm-decreasing linear maps is locally
bounded with the inclusions of closed subspaces (with the induced norm) for N .

There is another set of criteria for the reflectivity of CK(Ψ) in CK, virtually incom-
patible with that above — for it is never the case that both C and Cop are locally
presentable, unless C is a complete lattice. For in fact we have:

6.4 Proposition. Whenever the category Cop is locally presentable, CK(Ψ) is reflective
in CK for any small K and any class Ψ of projective cones. The same is true when C =
Topop, the dual of the category of topological spaces.

6.5 Remark. For the cases C = Setop and C = Abop, the truth of Proposition 6.4 is
asserted in Freyd’s early book [6, Ch.5, Exercise F], along with the observation that there
is a proof using the special adjoint functor theorem; it was in checking that assertion
long ago that Kelly verified (unpublished) that it works equally well for Topop. The
rest of Proposition 6.4 was given in unpublished notes [26], [27], [28] of Ulmer, reported
at the Oberwolfach meetings on Category Theory in 1975 and 1977. A simple and
attractive proof was given in Bird’s thesis ([25, Theorem 4.18]), as part of his study
of limits and colimits in the 2-category of locally-presentable categories; but this too
is unpublished. There seems to be no published account of this precise result; but it
follows easily from the result [25, Cor. 6.2.5] of Makkai and Paré, when combined with
Freyd’s Special Adjoint Functor Theorem.
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We can now apply the above to the question raised in (a) of Proposition 5.2, con-
cerning the reflectivity of X ↓R in XΓ ↓R. The occurrence of Θ in the definitions of X ↓R

and of XΓ ↓R often causes no problem:

6.6 Lemma. If the class Θ has the property that ϕ ∈ Θ whenever some composite ϕg
lies in Θ, then to prove X ↓R reflective in XΓ ↓R it suffices to prove XR reflective in
XΓ/R.

Proof. Let f : Q−→ R lie in Θ and hence in XΓ ↓R ⊂ XΓ/R, and let its reflexion in
XR be the discrete opfibration ϕ : S−→ R— the unit being g : Q−→ S, so that ϕg = f .
Now, since ϕ is in Θ, it is clearly the reflexion of f ∈ XΓ ↓R into X ↓R.

6.7 Lemma. To prove XR reflective in XΓ/R, it suffices to prove reflective in the arrow
category (XΓ)2 the full subcategory D consisting of the discrete opfibrations.

Proof. Since the class D contains the identities, a simple argument (given by Im and
Kelly in [10, Proposition 5.1]) shows that the reflexion of (XΓ)2 onto D, sending say
f : Q−→ R to f ′ : Q′−→ R′ with unit (u, v) as in

Q //
f

��

u

R

��

v

Q′ //

f ′ R′ ,

has v invertible. Since, therefore, we may as well take v to be the identity 1R, our
reflexion of (XΓ)2 onto D restricts to a reflexion of XΓ/R onto XR.

Since (XΓ)2 = XΓ×2 and since D consists of those functors Γ × 2−→ X sending
certain squares to the pullback squares of (5.4), we can apply Propositions 6.2 and 6.4.
Combining the above with Proposition 5.2 gives:

6.8 Theorem. Let the Galois structure (C,X ,H, I, η,Θ) be such that ϕ ∈ Θ whenever
some ϕg ∈ Θ, and let p : E−→ B be a Θ-effective-descent morphism for which the
objects E,E ×B E, and E ×B E ×B E are admissible. Then Spl(E, p) is reflective in
C ↓B if X is locally bounded, or if X op is locally presentable, or if X op = Top.

7. Some special situations

By analogy with the classical Galois theory of field extensions, we call p : E−→ B normal
in a general Galois structure when (E, p) itself lies in Spl(E, p) — which of course makes
sense only when p ∈ Θ. In this case the diagram (5.13), connecting f ∈ C ↓B with its
image ϕ in C ↓P where P = Eq(p), has for f = p the special case
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E ×B E ×B E ×B E //

��

E ×B E ×B E //
q

��

E ×B E //d

��

c

E

��

p

E ×B E ×B E //
q E ×B E //

d
E //

p B ;

(7.1)

from which we see that the pullback d of p along p and the pullback q of d along c lie in
M∩Θ. Accordingly, for any ϕ : Q−→ P in C ↓P , it follows from Proposition 2.4 that I
preserves both the pullbacks in (5.4), provided that Q0 and Q1 are admissible. When
this is so, we have (b) of Proposition 5.2, leading to the reflectivity of Spl(E, p) in C ↓B;
however we need some hypothesis to ensure the admissibility of Q0 and Q1, such as the
final condition in the following:

7.1 Theorem. For a Galois structure as above, let p : E−→ B be a Θ-effective-descent
morphism lying in Θ, and such that (E, p) is normal. Then Spl(E, p) is reflective in
C ↓B, provided that every C ∈ C admitting some morphism C−→ E is admissible.

After all our talk of criteria for the reflectivity of Spl(E, p) in C ↓B, we remind the
reader that, as we said in the Introduction, our interest is often rather in the reflectivity
of Cov(B) in C ↓B — the latter being a consequence of the former when some p : E−→ B
splits all coverings. Suppose for the following remarks that Θ consists of all morphisms,
and consequently that C admits pullbacks. We observed in Section 1 that, since Cov(B)
is pullback-stable, and since identity morphisms are coverings, to say that such Cov(B)
is reflective in C/B is equally to say that the class M∗ of all coverings is reflective in
the arrow-category C2; see [10], or [4, Section 2.12]. The examples of the present article
show this to be so for many Galois structures — but it is considerably less common for
the class M∗ of coverings to be closed under composition; see [4, Section 10.3] for a
counter-example.

In fact M∗ is closed under composition precisely when it is part of a factorization
system (E∗,M∗) on C, as is shown in each of the references above. When this is the
case, the class E∗ need not be pullback-stable, as is shown in [4, Section 10.2]; when it
is pullback stable, it coincides with the class of those e every pullback of which lies in
E .

Thus the Galois structures for which the Cov(B) = M∗/B are not only reflective in
C/B but arise from a pullback-stable factorization system (E∗,M∗) are extremely special.
Yet there are several important examples — including that adumbrated in Example 1.3
above, where the (E∗,M∗) factorization is Eilenberg’s monotone-light factorization for
maps of compact Hausdorff spaces. The situation was studied by the present authors
along with Carboni and Paré in [4], and the central result, in one of its forms, is:

7.2 Theorem. In a Galois structure as above, let C admit pullbacks and let Θ consist of
all morphisms. Then the class M∗ of coverings is part of a pullback-stable factorization
system (E∗,M∗) if and only if, for each f : A−→ B in C, there is some effective descent
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morphism p : E−→ B such that, if p∗(f) has me for its (E ,M)-factorization, every
pullback of e lies in E. In such a case, of course, each Cov(B) = M∗/B is reflective in
C/B.

Simplifications of the criterion of the theorem adapting it to practical examples are
too special and too technical to give here : see [4] for further details.

8. Principal examples

Given a Galois structure (C,X ,H, I, η,Θ), we say that the object B of C is locally
simply connected in the geometric sense if there exists a Θ-effective-descent morphism
p : E−→ B, itself lying in Θ, such that every covering of E is trivial; such a B is
of course locally simply connected in the sense of Section 1 above, Cov(B) coincid-
ing with Spl(E, p) since covering-morphisms are pullback-stable; the point is that the
present notion agrees with the geometrical idea of a locally-simply-connected space —
see Example 8.2 below. Furthermore, we say that B is locally projective if there exists
in Θ a Θ-effective-descent morphism p : E−→ B having E projective with respect to
Θ-effective-descent morphisms. The observation that a locally projective B is locally
simply connected in the geometric sense, although obvious, will be useful in Example
8.4 below.

We turn now to a variety of examples.

8.1 Barr-Diaconescu covering theory.
As was shown in [16], the covering theory of Barr and Diaconescu [1] can be obtained
as a special case of the categorical Galois theory expounded above, by considering the
following Galois structure:

(i) C is a connected and locally-connected cocomplete elementary topos;
(ii) X = Set, and H : Set −→ C is the fully-faithful functor sending X to X ·1, the

coproduct of X copies of the terminal object 1;
(iii) I : C−→ Set, as the left adjoint of H, sends an object C of C to the set IC of

its connected components (called molecules by Barr and Diaconescu), with the
evident unit ηC : C−→ HIC;

(iv) Θ is the class of all morphisms in C.
For this Galois structure, every object of C is admissible, and every epimorphism in

C is an effective descent morphism (and so a Θ-effective-descent morphism). Moreover,
for every epimorphism p : E−→ B in C, all the conditions required in Theorem 4.2 and
in Theorem 6.8 are in fact satisfied.

Indeed, for Theorem 4.2 we have:

(a) C admits pushouts and filtered colimits because it admits all colimits;
(b) C ↓B is closed in C/B under colimits because C ↓B = C/B;
(c) E is admissible because every object in C is admissible;
(d) H preserves filtered colimits because, as in [1], it has the right adjoint Γ =

C(1,−);
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(e) f∗ : C ↓A−→ C↓C preserves filtered colimits because it coincides with f∗ :
C/A−→ C/C which (C being a topos) has a right adjoint f∗ : C/C−→ C/A.

Again, for Theorem 6.8 we have:

(f) ϕ ∈ Θ whenever ϕg ∈ Θ because Θ is the class of all morphisms;
(g) E, E ×B E, and E ×B E ×B E are admissible because all objects are so;
(h) X , being Set, is locally bounded.

Thus each of the theorems 4.2 and 6.8 tells us that the inclusion Spl (E, p)−→ C↓B
has a left adjoint. This was of course proved (for B = 1) in [1]; and our proof of Theorem
4.2 may be seen as a generalized (and improved) version of the proof in [1].

In order to conclude that Cov(B) is reflective in X ↓B = C/B, we need to add
the requirement that B is locally simply connected — or equivalently that, for each
connected component C of B, the topos C/C is locally simply connected in the sense of
[1]. In particular, if C/C is locally simply connected for every connected object C in C,
then the class of all coverings in C is reflective. This is the case when C is the category
of simplicial sets; for then every object in C is locally projective.

8.2 Reflexion of local homeomorphisms into étale maps.
This is just the special case of the previous example given by taking for C the topos
Shv(S) of sheaves on a connected and locally-connected topological space S. Here
f : A−→ B is a covering in our sense precisely when, considered as a map between the
corresponding étale spaces, it is a covering map in the classical geometrical sense. To
say that S is locally simply connected in the geometric sense is to say that there is a
surjective local homeomorphism S′−→ S with S′ simply connected (in the sense that
every covering of S′ is trivial); which is certainly the case if every point of S has a
simply-connected open neighbourhood. When this is true of S, it is also true of any
space having a local homeomorphism from itself to S; then every object in Shv(S) is
locally simply connected, so that the class of coverings in Shv(S) is reflective. The
geometric meaning of this is very simple : for locally simply connected spaces A and B,
every local homeomorphism f : A−→ B has, among its factorizations f = f ′f ′′ with f ′

a covering map, a universal one.
Note that the reflectiveness of the class of coverings could also have been deduced

from Theorem 7.1, taking p : E−→ B therein to be the universal covering of B; however
this would be circular as it stands, since we use the reflectiveness, proved by Theorems
4.2 or 6.8, to establish the existence of the universal covering — namely by taking the
reflexion of 0−→ B into the coverings of B, where 0 is the empty space.

8.3 Galois theory of commutative rings.
As was shown in [11] and [12], we can obtain Magid’s Galois theory of commutative
rings [24] as a special case of the categorical Galois theory above by taking the following
Galois structure:

(i) C is the dual of the category of commutative rings (with 1);
(ii) X is the category of Stone spaces — also called profinite spaces, or again compact

totally-disconnected spaces;
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(iii) H : X−→ C sends a space X to the ring of all locally-constant maps from X to
the ring Z of integers;

(iv) I : C−→ X has I(A) = Spec B(A), the Stone space of the boolean algebra of
idempotents in A – this is also the space CompSpecA of connected components
of the Zariski spectrum of A;

(v) Θ is the class of all morphisms.

For this Galois structure, every object of C is admissible — see [12, Theorem 2.1].
An epimorphism p : E−→ B in C may be identified with a ring extension B ⊂ E; and
it is known (Joyal and Tierney, unpublished) that the effective descent morphisms are
those epimorphisms p : E−→ B for which the inclusion B ⊂ E is a pure monomorphism
of B-modules.

For each such p, the inclusion Spl(E, p)−→ C↓B = C/B has a left adjoint by Theorem
6.8, whose conditions are satisfied for simple “general reasons” :

(a) ϕ ∈ Θ wherever ϕg ∈ Θ because Θ is the class of all morphisms;
(b) E, E ×B E, and E ×B E ×B E are admissible because all objects of C are so;
(c) X op, being the category of Boolean algebras, is locally presentable.

Moreover every object B of C is locally simply connected : if we take E to be the
separable closure B of B in the sense of Magid [24] and p : E−→ B to be the canonical
inclusion B ⊂ B, then p : E−→ B splits all coverings — indeed, since B has no non-
trivial coverings, B is locally simply connected in the geometrical sense. Again, since
it is well known that the separable closure is a faithfully flat module, p : E−→ B is an
effective descent morphism by a classical result going back to Grothendieck. Thus the
class of all coverings in C is reflective.

Note that, since B is normal, we could also have used Theorem 7.1 to conclude that
coverings are reflective.

Recall from [12] that the epimorphism f : A−→ B corresponding to the extension
B ⊂ A is a covering if and only if this ring-extension is quasi-separable — that is,
component-wise locally strongly separable. So the reflectiveness of coverings tells us
that, for every ring-extension R ⊂ S, there is a largest R-subalgebra S′ of S for which
the extension R ⊂ S′ is quasi-separable; we might call the elements of S′ the separable
elements over R. Indeed, this notion coincides with the ordinary one if R and S are
fields. Moreover, whether or not R is a field, if u ∈ R[x] is a separable polynomial over
R, then all the roots of u in S are separable elements.

8.4 Generalized central extensions of universal algebras.
Consider the following Galois structure:

(i) C is a variety of universal algebras;
(ii) X is a subvariety of C;
(iii) H : X−→ C is the inclusion, I is its left adjoint, and η the unit of the adjunction;
(iv) Θ is the class of surjective homomorphisms.

Since C is an exact category, the effective descent morphisms are the surjections —
and in fact the Θ-effective-descent morphisms are also the surjections, provided that
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the (one-sorted) variety C is non-degenerate. For any surjective p : E−→ B in C with
E admissible, Spl(E, p) is reflective in X ↓B since the conditions of Theorem 4.2 are
satisfied:

(a) C admits pushouts and filtered colimits because it admits all colimits;
(b) C ↓B is closed in C/B under colimits because the class Θ of surjections is closed

under colimits in C2;
(c) E is admissible by hypothesis;
(d) H preserves filtered colimits since these are formed both in C and in X as they

are in Set;
(e) f∗ : C ↓A−→ C↓C preserves filtered colimits because pullbacks commute with

filtered colimits in C as they do in Set.

Moreover, when not only E but also E ×B E and E ×B E ×B E are admissible, the
conditions of Theorem 6.8 are also satisfied:

(f) ϕ is surjective whenever ϕg is so;
(g) E,E ×B E,E ×B E ×B E are admissible by hypothesis;
(h) the variety X , being locally presentable, is locally bounded.

We showed in [17, Theorem 3.4] that, when C is a congruence-modular variety, every
object in C is admissible. In that case, therefore, we conclude either from Theorem 4.2
or Theorem 6.8 that Spl(E, p) is reflective in C ↓B for every surjective p : E−→ B. Since
for each B ∈ C we have a surjective p : E−→ B with E free, every B is in fact locally
projective, so that the class of coverings is reflective.

The covering morphisms in this case — or rather the covering surjections, since Θ
consists of the surjections — were called in [17] the central extensions; the justification
for this name arising in part from the fact that, when C and X are varieties of Ω-groups,
our coverings coincide with the central extensions in the sense of A. Fröhlich — see
Fröhlich [8] and Lue [23] — which include the ordinary central extensions of groups. In
this last classical case, the reflectiveness of the coverings is obvious : every surjective
group homomorphism has the universal factorization

A //
f

%%K
KKKKKKKKK B

A/[A,Ker f ]

99

f ′

ssssssssss

with f ′ central.
Note that one may take the adjunction provided by the reflectiveness of the coverings,

along with a suitable class Θ′, as itself giving a new Galois structure, and construct
thereby a theory of double central extensions — as was done in [14] for the case of
ordinary central extensions of groups; whereupon, proving next the reflectiveness of
double central extensions, one may define triple central extensions and so on. One may
further pursue this line for coverings in general, and so construct a “higher-dimensional
Galois theory”.
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