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GLUEING ANALYSIS FOR COMPLEMENTED SUBTOPOSES

ANDERS KOCK AND TILL PLEWE
Transmitted by S. Niefield

ABSTRACT. We prove how any (elementary) topos may be reconstructed from the
data of two complemented subtoposes together with a pair of left exact “glueing func-
tors”. This generalizes the classical glueing theorem for toposes, which deals with the
special case of an open subtopos and its closed complement.

Our glueing analysis applies in a particularly simple form to a locally closed subtopos and
its complement, and one of the important properties (prolongation by zero for abelian
groups) can be succinctly described in terms of it.

1. Double Glueing

Recall that a subtopos H of a topos M is given by a geometric morphism h : H → M
such that the direct image functor h∗ : H →M is full and faithful; or it may be given by
a Lawvere-Tierney topology (nucleus) on ΩM . (See e.g. [1] 4.IV.9 or [3] 4.1.) Subtoposes
of M form a complete lattice, in fact a coframe. It therefore makes sense to ask whether
H ↪→ M has a complement, meaning a subtopos k : K ↪→ M such that H ∩ K = 0,
H ∪ K = 1(= M) in this lattice; as in any distributive lattice, such a complement is
uniquely determined (up to equivalence of subtoposes) and one says then that H is a
complemented subtopos.

If h : H →M is an open subtopos, i.e. of the form Πi :M/U →M where i : U → 1M
is a subobject of the terminal object of M , then it has a complement k : K → M ,
and such subtoposes are called closed; this is classical, see [1] IV.9.2-9.3. Furthermore,
in this case M can be reconstructed from H, K, and the “glueing” or “fringe” functor
k∗ ◦ h∗ : H → K, see [1] IV.9.5 (for the case of Grothendieck toposes) and [3] Theorem
4.25 for the case of elementary toposes (“Artin-Wraith glueing”). The latter case may be
derived from the theory of left exact comonads on toposes (cf. e.g. [3] Theorem 2.32);
this will also be our main tool.

We shall consider two arbitrary complementary subtoposes H and K of an elementary
toposM , with inclusions h and k, respectively (h given by its direct image functor h∗ and
its left adjoint h∗, and similarly for K, k).

Unlike the classical (Artin-Wraith) case where H and K are an open and a closed
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subtopos, respectively, and where only one fringe functor is used, we shall use two fringe
functors to reconstruct M from H and K; pictorially, we need to “put glue on both the
items”.

1.1. Theorem. Let f : H → K and g : K → H be left exact functors between (elemen-
tary) toposes, together with natural transformations η : idH → g ◦ f and κ : idK → f ◦ g,
satisfying the compatibility conditions that for all H ∈ H and K ∈ K

ηgK = g(κK) and κfH = f(ηH), (1)

such that
ηH an isomorphism implies H = 1 (2)

and
κK an isomorphism implies K = 1.

Then there exists a topos M in which H and K appear as complementary subtoposes, via
geometric inclusion morphisms h : H → M and k : K → M , and such that f = k∗h∗,
g = h∗k∗, and such that η and κ arise out of the front adjunction for the adjoint pairs
k∗ ⊣ k∗ and h∗ ⊣ h∗ respectively, in the evident way.

Furthermore, every topos M with a pair of complementary subtoposes arises this way.

Proof. Out of the data, we shall construct a left exact comonad (G, ϵ, ψ) on the product
category H × K. The functor G takes (H,K) ∈ H × K to (H × gK,K × fH) (and is
similarly defined on maps). The transformation ϵ associates to the object (H,K) the pair
of projections H × gK → H,K × fH → K, and ψ : G → G ◦ G associates similarly to
(H,K) the map

(H × gK,K × fH) → (H × gK × g(K × fH), K × fH × f(H × gK))

described as follows. It is a pair of maps; we only describe the first of them, the second
can be deduced by symmetry. So we want to describe a map

H × gK → H × gK × gK × gfH

(utilizing for the codomain that g preserves binary products), and this map, we describe in
“elementwise” terms, as if we were dealing with sets, as follows: (h, k) 7→ (h, k, k, ηH(h))
for h ∈ H, k ∈ gK. Keeping track of the identifications (in the style of ηH×gK = ηH × ηgK
arising from the fact that the functors g and f preserve products), one sees with some
straightforward labour, using (1), that the counit- and coassociative law holds; and the left
exactness of G follows from that of f and g. From the general theory of left exact monads
on elementary toposes, cf. e.g. [3] Theorem 2.32, we get a topos of coalgebras (H ×K)G

which we callM . Seen from the viewpoint of the category of geometric morphisms, H×K
is the coproduct H +K, and the geometric surjection from this coproduct to the topos
M of coalgebras already proves that H and K together cover M , via the composites
H → H +K →M , K → H +K →M . We describe these functors explicitly below. We
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first have a more transparent way of seeing a coalgebra as “two items with two sorts of
glue”:

A G-costructure ξ : (H,K) → (H × gK,K × fH) on (H,K) is a pair of maps
ξ1 : H → H × gK and ξ2 : K → K × fH, with certain properties: By the counit law
for ξ, one immediately sees that ξ1 must be of form < idH , x >, where x : H → gK, and
similarly ξ2 =< idK , y >, where y : K → fH. We think of x and y as the two kinds
of glue. The coassociative law for the costructure ξ will hold exactly when x and y are
compatible in the sense that

f(x) ◦ y = ηH and g(y) ◦ x = κK .

If g = 1, the data x is vacuous, so the only glueing data is the y : K → fH which is
the usual data for glueing an object K of the closed subtopos to an object H of the open
subtopos, to get an object of the glued topos, by Artin-Wraith Glueing, cf. [3] p 112.

We can now make explicit the “inclusion” functor H → M (M = the topos of coal-
gebras), and similarly for K. An object H of H is sent to (H, fH) ∈ H ×K, equipped
with the costructure defined by the “glue” x : H → gfH equals ηH , and y : fH → fH
equals the identity map of fH; the left adjoint to the inclusion functor takes (H,K), ξ to
H (from which also the fact that the described H → M is in fact an inclusion follows).
Similarly for the other inclusion.

The last assumption in the Theorem is only used to ensure that the two subtoposes
H and K of M are really disjoint; expressed in terms of categories, this is to say that the
intersection of the two subcategories consists of the terminal object only (it is known that
meet of two subtoposes corresponds to category theoretic intersection, cf. e.g. [3], Exercise
3.9). So assume (H, fH), with glueing data (ηH , idfH), is isomorphic to an object of the
form (gK,K), with glueing data (idgK , κK). This means that there are isomorphisms
a : H → gK in H and b : fH → K in K, making two squares commute, one of which is

H
ηH - gfH

gK

a

?

idgK
- gK.

?

g(b)

Since the vertical maps are isomorphisms, it follows that ηH is. From (2) then follows
that H ∼= 1.

Finally let us prove that any two complementary subtoposes of a topos arise this way.
First note that for any pair of geometric morphisms with common codomain h : H →M
and k : K → M , we get, using the universal property of H × K as a topos theoretic
coproduct, a geometric morphism p : H×K →M (with inverse imageM 7→ (h∗M,k∗M)).
The adjoint pair p∗ ⊣ p∗ gives rise to a left exact comonad G on H×K, and a comparison
functor M → (H × K)G (which itself is the inverse image of a geometric morphism; in
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fact, it is the inclusion part of the surjection/inclusion factorization of p, cf. [3] Remark
4.16.). The functor part of the comonad G is given by

(H,K) 7→ (h∗(h∗H × k∗K), k∗(h∗H × k∗K)),

and this object is isomorphic to (H×h∗k∗K,K×k∗h∗H) if h and k are inclusions. So in this
case, we have a comonad of the form considered in the Theorem, with g = h∗k∗, f = k∗h∗;
η and κ are now derived as components of the comultiplication ψ for the comonad, and
the compatibility laws (1) are derived from the coassociativity for ψ. (Explicitly, ηH is
the composite

H
∼=- h∗h∗H

h∗(front)- h∗k∗k
∗h∗H

where front denotes the unit (front adjunction) for k∗ ⊣ k∗. And κ is derived similarly from
the front adjunction for the pair h∗ ⊣ h∗.) Because inverse image functors of surjective
geometric morphisms are precisely the (left exact) comonadic functors, it follows that the
comparison M → (H × K)G is an equivalence if and only if the join of H → M and
K →M is all of M .

Finally, if H and K are disjoint subtoposes, and ηH : H → h∗k∗k
∗h∗H = gfH is

an isomorphism, we want to deduce that H is the terminal object. It suffices to prove
h∗H ∼= k∗fH, since the only object in the intersection of the two subcategories is the
terminal object. Since h and k are jointly surjective, h∗ and k∗ are jointly conservative,
so it suffices to see that

h∗h∗H ∼= h∗k∗fH and k∗h∗H ∼= k∗k∗fH.

Since h is an inclusion, the first half of the statement is equivalent toH ∼= h∗k∗fH = gfH,
which follows from the assumption on ηH . Since k is an inclusion, the second half is
equivalent to k∗h∗H ∼= fH which is true by the definition of f . This proves the Theorem.

We finish this section with a lemma, to be used in the next section, but which is of
general topos theoretic character.

Let H and K be complementary subtoposes of an elementary toposM , with inclusions
h : H ↪→ M and k : K ↪→ M , respectively. We further assume that H is dense in M ,
meaning that if Z ∈M has h∗(Z) = ∅ in H, then Z = ∅.

1.2. Lemma. With the above assumptions, if there exists a Y ∈M with h∗Y = 1+1 and
k∗Y = 1, then H is an open subtopos.

Proof. It is standard that there exist subobjects U ′ and U ′′ of Y which by h∗ go to 1′

and 1′′ (these denoting the two copies of 1 in 1+ 1). Since the meet of these two copies is
∅ and h∗ commutes with meets, it follows that h∗(U ′ ∩U ′′) = ∅, and therefore, by density
of h, that U ′ ∩ U ′′ = ∅. Recall that the support supp(X) of an object X in a topos is the
image of X under the unique map X → 1. We consider the subobject U of 1 = 1M given
by U = supp(U ′)∩supp(U ′′). We have h∗(supp(U ′)) = supp(h∗(U ′)) = supp(1′) = 1H and
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similarly h∗(supp(U ′′)) = 1H , hence h
∗(supp(U ′) ∩ supp(U ′′)) = 1H so that the subtopos

H is contained in M/U . We prove the converse inclusion H ⊇ M/U by showing that
K ∩ (M/U) = ∅, i.e. k∗U = ∅. Now k∗U = k∗supp(U ′) ∩ k∗supp(U ′′). Of course in
general a construction like k∗ ◦ supp does not preserve finite meets of subobjects, but it
is easy to see that it does so for subobjects of any object Y with k∗Y = 1K . In fact,
k∗ ◦ supp = supp ◦ k∗, where the map supp on the right hand side is the support map for
subobjects of k∗Y , and this support map is an isomorphism if k∗Y = 1K .

We conclude that k∗U = ∅, so H ⊇M/U , hence K is equivalent to the open subtopos
M/U , proving the lemma.

2. Locally closed subtoposes

Among subtoposes which always have complements are the locally closed ones. This
notion was defined in SGA4, [1] IV.9.4.9: a subtopos of M is locally closed if it is the
meet of an open and a closed one. There are several equivalent formulations of the notion,
and they are patterned over the similar formulations for the case of topological spaces, or
for the case of locales. In fact, the localic case is a special case of the topos theoretic one,
by taking M to be the topos of sheaves on a locale. (If one does internal locale theory in
a topos, then the topos theoretic case is identical to the localic one; for, a subtopos of a
topos M is given by a sublocale of the terminal internal locale 1M in M .)

Common to all three cases is the fact that any subtopos (-locale, -space) contains a
maximal open one, and is contained in a minimal closed one. The ensuing operations
of taking interior and closure are relative to the ambient topos/locale/space M , but
are preserved by intersection with any subtopos (sublocale,...) M ′; any open subtopos
(sublocale ...) of M ′ comes about in this way from an open one in M , and similarly
for closed subtoposes. We write cl(H) for the closure of the subtopos (sublocale, ..) H
inside M ; this will always mean: closure with respect to the maximal topos (locale, ..)
under consideration - which is usually denoted M or M . Note that if M is a locale and
M = sh(M) the topos of sheaves on it, any subtopos of M comes from a sublocale of M ,
and the notions of open, closed, closure, etc. are preserved by this bijective correspondence
between subtoposes and sublocales.

For the topos theoretic case, which is our main concern, all these notions appear in
[1] IV 9.4.8; we shall elaborate on their description of “locally closed”. Further properties
of locally closed sublocales and subtoposes were studied by Niefield [6]. In particular,
she characterized locally closed inclusions as being the exponentiable inclusions in the
appropriate slice category.

Although the following is well known, it is included for the sake of completeness.

2.1. Proposition. Let H ⊆M be a subtopos. Then t.f.a.e.

1) H = U ∩ F , where U ⊆M is an open subtopos, and F ⊆M is a closed one;

2) H is open in its closure cl(H);

3) The inclusion H ↪→M may be factored into an open followed by a closed inclusion;
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4) The inclusion H ↪→M may be factored into a closed followed by an open inclusion.

Note. We note that if 1) holds, then we may always replace F by a closed subtopos
F ′ with the property that ¬F ′ ⊆ U in the lattice of subtoposes of M (in which any open,
or closed, subtopos is indeed complemented). For, we may simply take F ′ = F ∪ ¬U .

Proof. Assume 1). Since U is open, it is open in cl(U), hence U∩F is open in cl(U)∩F .
But since cl(U) and F are closed, then so is cl(U)∩F , and hence cl(U)∩F = cl(U ∩F ).
Therefore U ∩ F is open in cl(U ∩ F ), so 2) holds. Assume 2). Then the factorization
H ⊆ cl(H) ⊆M is a factorization into an open followed by a closed inclusion, so 3) holds.
Assume 3), so we have a factorization H ⊆ F ⊆ M with F closed in M , and H ⊆ F
open. The latter means that there is an open U in M with U ∩ F = H. So 1) follows.
Finally, if 1) holds, H = U ∩ F ⊆ U ⊆ M is a factorization by a closed followed by an
open inclusion. And conversely, if H ⊆ U ⊆ M is such a factorization, then H, being
closed in U , is of form U ∩ F for some closed F ⊆M .

It is clear that a finite meet of locally closed subtoposes is again locally closed. Since
closed, as well as open, subtoposes are complemented in the lattice Sub(M) of subtoposes
of M , it follows that each locally closed subtopos is complemented.

The complement of a locally closed subtopos need not be locally closed. Also, the
join of an open and a closed subtopos need not be locally closed. In fact, since open,
or closed, sublocales of spatial locales are spatial, then so are locally closed sublocales;
and for spaces, it is easy to construct examples in R2, say (the strictly positive x-axis is
locally closed in R2, but its complement is dense, but not open in R2).

Using the characterizations 3) and 4) of the Proposition, we also immediately conclude
that the composite of two locally closed inclusions is locally closed.

For sublocales of a locale, it is possible to get some more explicit algebraic formulations,
namely by passing to the frame viewpoint. We use the notation that O(M) is the frame
corresponding to the locale M . Recall that a nucleus j on a frame O(M) is open if it is
of the form o(z) = z → − for some z ∈ O(M), and that it is closed if it is of the form
c(x) = x ∨ − for some x ∈ O(M). The open sublocale given by z, i.e. by the nucleus
z → −, we shall denote by Z, or even by z; the closed one given by z, we denote ¬z or
¬Z, since z and ¬z are complements in the lattice Sub(M) of sublocales of M .

If x ≤ z, an elementary calculation with Heyting algebras (cf. [6] or [5]) shows that
the composite o(z) ◦ c(x), i.e. the operator

y 7→ z → (x ∨ y) (3)

is idempotent, hence a nucleus, and hence the join of the nuclei o(z) and c(x) in the lattice
of nuclei on O(M). Equivalently, they represent the meet of the open sublocale Z ⊆ M
corresponding to z and the closed sublocale ¬x given by the nucleus x ∨− (and which is
the complement of the open sublocale given by x).

Since by the note after Proposition 1, every locally closed sublocale is of the form
z ∩ ¬x with x, z open and x ⊆ z (i.e. x ≤ z), it follows that the nuclei corresponding
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to locally closed sublocales are those which are given by a nucleus of the form (3) (with
x ≤ z). - We may also denote z ∩ ¬x by z − x.

The fact that any locally closed sublocale is given by a nucleus of the form (3) (with
x ≤ z) leads to the following “interval” characterization of frame quotient maps that
come about from locally closed j; recall that if x ≤ z in a frame O(M), then the interval
[x, z] ⊆ O(M), given as {y | x ≤ y ≤ z}, is also a frame.

2.2. Proposition. Assume j is a locally closed nucleus on O(M), witnessed by x, z with
x ≤ z. Then the frame quotient O(M) → O(M)j is isomorphic to the map

h∗ : O(M) → [x, z]

given by
y 7→ z ∧ (x ∨ y)(= x ∨ (z ∧ y)).

Conversely, a map O(M) → [x, z] of form y 7→ z ∧ (x∨ y) (where x ≤ z) is quotient map
for a locally closed nucleus.

Proof. The exhibited map has a right adjoint h∗ given by u 7→ (z → u), as an elementary
calculation shows, and the composite endomap on O(M) is

y 7→ z → (z ∧ (x ∨ y)) = (z → z) ∧ (z → (x ∨ y)) = z → (x ∨ y),

thus equals the given locally closed nucleus. The other composite endomap: [x, z] → [x, z]
is seen to be the identity. The last statement is now clear: the locally closed nucleus is
z → (x ∨ −).

We note that the inclusion [x, z] ⊆ O(M) is not in general equal to h∗ (unless z = 1,
i.e. in the case of a closed nucleus j), nor is it left adjoint to h∗ in general (unless x = 0,
i.e. in the case of an open nucleus). However, the inclusion [x, z] ⊆ O(M) does preserve
all inhabited suprema, and all inhabited infima. It is also easy to see by elementary
calculation that it satisfies certain Frobenius conditions for h♯, (4), (5), and (6) below, as
stated in the following result (essentially announced in [7]).

2.3. Proposition. In order that a nucleus j = h∗ ◦ h∗ corresponds to a locally closed
sublocale H ⊆M , it is necessary and sufficient that there exists a map h♯ : O(H) → O(M)
satisfying

h∗h♯0 = 0, h∗h♯1 = 1, (4)

as well as one of the following two conditions

h♯(u ∧ h∗v) = h♯u ∧ v for v ≥ h♯0 (5)

h♯(u ∨ h∗v) = h♯u ∨ v for v ≤ h♯1. (6)

If such h♯ exists, one may always find an h♯ which furthermore preserves all inhabited
(in particular filtered) suprema and infima, and also satisfies both of the conditions (5)
and (6).
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Proof. Assume such h♯ exists. Take x = h♯0, z = h♯1, then x ≤ z since h♯ is order
preserving. Consider the sublocale corresponding to the nucleus y 7→ z → (x ∨ y), as in
(3), i.e. defining the locally closed sublocale z − x = z ∩ ¬x. To see that H ⊆ z − x, it
suffices to see that h∗z = 1 and h∗x = 0 which is what the conditions (4) say. Also, since
h♯ is order preserving, it follows that h♯ : O(H) → O(M) factors through [x, z] ⊆ O(M).
Assume now that (5) holds. Then for v ∈ [x, z], we have the second equality sign in

h♯h
∗v = h♯(0H ∨ h∗v) = h♯0H ∨ v = x ∨ v = v.

It follows that h∗ restricted to [x, z] is injective; but it is also surjective, since h : H →M
factors through the sublocale z − x. This proves that h : H → M as a sublocale is
isomorphic to z − x. If h♯ now does not already satisfy (6) and preservation of inhabited
sup and inf, we just replace it by the inclusion [x, z] ⊆ O(M). - If it is (6) rather than
(5) that is assumed to hold, the proof is similar, by taking u to be 1.

We shall include also some calculations concerning the complement of a locally closed
sublocale. If the locally closed sublocale of M is given by x ≤ z ∈ O(M) as above, the
nucleus corresponding to it is the join of the nuclei o(z) and c(x). Hence the complement
is the meet of the nuclei c(z) and o(x). But meets of nuclei are computed pointwise, so
that this nucleus is given as the operator

y 7→ (z ∨ y) ∧ (x→ y). (7)

(The fixpoints of this nucleus may, by easy calculation, be seen to be those y which satisfy
x→ y = z → y.)

We now return to considerations of subtoposes of topos H or M , but keep some of the
frame/locale theoretic notation. Thus, if w ↪→ 1H is a subobject of the terminal object of
H, we denote the open subtopos it defines, by w rather than H/w; its closed complement
is denoted ¬w ↪→ H. If h : H ↪→ M is a geometric morphism, h∗(w) ↪→ 1M , and thus
h∗w denotes a certain open suptopos of M . Now consider the composite

¬w ↪→ H
h
↪→M ;

¬w is closed in H, but not necessarily in M ; however, its closure may be described
explicitly as ¬(h∗w). This may be summarized in the following principle:
if w ↪→ 1HH and F are complements inside H, then h∗w and cl(F ) are complements
inside M .

Let H and K be complementary subtoposes of a toposM , with inclusions h : H ↪→M
and k : K ↪→M , respectively.

Then we have left exact “fringe” functors

H
h∗ - M

k∗ - K

and

K
k∗ - M

h∗ - H.
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By their left exactness, these functors extend to left exact functors on the categories
of abelian-group objects, Ab(H) → Ab(K) and Ab(K) → Ab(H).

Local closedness of H can be expressed in terms of these left exact functors:

2.4. Proposition. Let H be a subtopos of a topos M . Then the following two conditions
are equivalent
1) H is locally closed in M .
2) H has a complement K, and the “double fringe functor”

H
h∗ - M

k∗ - K
k∗ - M

h∗ - H

is constant 1.

Proof. Of course, condition 2) is equivalent to saying that h∗k∗k
∗h∗(0H) = 1H . Let us

analyze the significance of h∗k∗k
∗h∗(0H) for general complementary subtoposes H and K.

This is achieved by applying the above principle a couple of times. We have

• 0H and 1H = H are complements inside H, hence

• h∗0H and cl(H) are complements inside M , hence

• K ∩ h∗0H = k∗h∗0H and K ∩ cl(H) are complements inside K, hence

• k∗k
∗h∗0H and cl(K ∩ cl(H)) are complements inside M , hence

• H ∩ k∗k∗h∗0H = h∗k∗k
∗h∗0H and H ∩ cl(K ∩ cl(H)) are complements inside H.

So to say h∗k∗k
∗h∗0H = H is equivalent to saying H ∩ cl(K ∩ cl(H)) = 0, or, since

H and K are complements, to saying that cl(K ∩ cl(H)) ⊆ K. Writing K ∩ cl(H) as
cl(H) − H (by H and K being complements), the condition in turn is equivalent to
cl(cl(H)−H) ⊆ K, and hence to

cl(cl(H)−H) ⊆ K ∩ cl(H),

since cl(clH)−H) ⊆ cl(H) is automatic by idempotency of cl. But finally, the displayed
inclusion relation may be written cl(cl(H) −H) ⊆ cl(H) −H (by H and K being com-
plements); and this is equivalent to saying that cl(H)−H is closed in M , or equivalently
closed in cl(H), which is to say that H is open in cl(H), which is one way of expressing
that H is locally closed. This proves the Proposition.
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From the above analysis (applied to locales rather than to toposes), we also see that
h∗k∗k

∗h∗0H is the open complement of what Isbell in [2] p.355 denotes by H ′, and which
is described in loc. cit. (in a slightly different notation) as “the meet of H with the closure
of the join of all sublocales of cl(H) disjoint from H (telegraphically H ′ = H ∩ (cl(cl(H)\
H)))”, here K \H denotes the sublocale

∨{A ≤ K | A ∧H = 0} for arbitrary sublocales
K and H ofM ; the operation (−)′ is in loc. cit. iterated transfinitely to form a decreasing
sequence of closed sublocales (which eventually reaches ∅) of the complemented sublocale
H; locally closed sublocales are precisely those sublocales for which this sequence already
terminates after the first step.

A general structure theory for complemented sublocales is given in [2] and [8]. We
haven’t investigated to what extent this theory is constructively valid, respectively, to
what extent it carries over to elementary toposes. The first question which would have
to be answered is whether for any inclusion E ↪→ F , each complemented subtopos H of
E is the restriction of a complemented subtopos of F to E. For localic toposes over Set
the answer is positive [2, 1.10]. This result can also be extended to Grothendieck toposes
over Set, but we don’t know how to prove the general case. For the present paper, this
does not matter, since we only consider the case where the subtopos H is complemented
by virtue of being locally closed.

3. Prolongation by 0

Let H and K be complementary subtoposes of a topos M , with inclusions h : H ↪→ M
and k : K ↪→ M , respectively. Then to say that an abelian group object A in H admits
prolongation by zero means that there exists an abelian group Y inM with h∗Y ∼= A and
k∗Y ∼= 0; and we say that H admits prolongation by zero if every abelian group object in
H does; cf. [9] for the classical theory (for topological spaces).

It is clear that if H ⊆ H ′ ⊆ M and if an abelian group A ∈ H admits prolongation
by zero when H is viewed as a (complemented) subtopos of M , then it also admits
prolongation by zero when H is viewed as a subtopos of H ′ (of which it is automatically
a complemented subtopos). This in particular applies when we take H ′ to be the closure
of H in M ; note that H is dense in H ′.

In case the (constant) group Z2 = 1 + 1 in H ⊆ M admits prolongation by zero, it
therefore follows immediately from the Lemma in the end of the previous section that H
is locally closed in M .

So we restrict from the outset of this section our considerations to a locally closed
subtopos H of M with complement K. In terms of the functors h∗, h

∗, k∗.k
∗ this means

that h∗k∗k
∗h∗ is constant zero. We denote k∗h∗ by f : H → K and h∗k∗ by g : K → H,

and the local closedness therefore becomes expressed by the equation g ◦ f = 1.
By the glueing analysis of Section 1, we represent objects in M by objects (H,K) in

the product category H ×K equipped with coalgebra structure ξ, where the information
of ξ in turn is given by a pair x : H → gK, y : K → fH of “glueing data”.

In the following Proposition, the notation h!A for a prolongation by zero of A antici-
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pates that this is a functorial construction, but the functoriality is not assumed, but will
be deduced.

3.1. Proposition. Let h!A in M be a prolongation of the abelian group A in H. Let the
homomorphism i : h!A → h∗A correspond to the assumed isomorphism h∗h!A ∼= A under
the adjointness h∗ ⊣ h∗; then i is a monomorphism, and it has the universal property that
if b : B → h∗A is a homomorphism in Ab(M), and k∗(b) = 0, then b factors (uniquely)
through i : h!A→ h∗A.

Proof. Let p : H × K → M be the geometric morphism with inverse image M 7→
(h∗M,k∗M), and let G be the comonad on it with the property that its coalgebra topos
is M , as in the previous section. Let b : B → h∗A be given with k∗b = 0. Applying p∗ to
b gives the top map in the commutative triangle

(h∗B, k∗B)
(h∗b, 0) - (h∗h∗A, k

∗h∗A)

@
@
@
@
@

(b̂, 0)
R

(h∗h!A = A, k∗h!A = 0)

6

(i, 0)

(where b̂ : h∗B → A = h∗h!A corresponds to b : B → h∗A under the adjointness h∗ ⊣ h∗).
The top map is p∗b, thus a G-coalgebra homomorphism, and the right hand map is p∗i,
thus likewise a G-coalgebra homomorphism, and it is clearly monic in H ×K, hence in
(H ×K)G ≃ M . But by the Lemma below, (b̂, 0) is a coalgebra homomorphism, thus of
form p∗(β) for some unique β : B → h!A, which gives the desired factorization b = i ◦ β.
3.2. Lemma. If the functor part G of a comonad (G, ϵ, ψ) preserves monics, and the top
and right hand map in a commutative triangle, with s monic,

X
r - Z

@
@
@
@
@

t
R

Y

6

s

are coalgebra homomorphisms (with respect to given costructures on X, Y , and Z), then
so is the third map t.

Proof. This amounts to proving the left hand square in

GX
Gt - GY

Gs - GZ

X

6

t - Y

6

s - Z

6
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commutative (where the vertical maps are the given costructures). But since Gs is monic,
this commutativity follows from the commutativity of the total square and the right hand
square, and we do have these commutativities, since r and s are G-homomorphisms.

Assume now that every abelian group in H admits a prolongation h!A by zero. The
universal property of i : h!A → h∗A then in the usual way implies that h! carries the
structure of a functor, in fact a subfunctor of h∗ : Ab(H) → Ab(M).

3.3. Theorem. A complemented subtopos H ↪→ M admits prolongation by zero if and
only if it is locally closed. And then the prolongation functor h! : Ab(H) → Ab(M) admits
a right adjoint.

Proof. We have already seen that if H ↪→ M admits prolongation by zero, then it is
locally closed. To prove the converse is to perform a construction for any A ∈ Ab(H).
One could do it by consider separately closed inclusions and open inclusions, but we
think that the uniform construction in terms of (double) glueing that we shall give, is
more transparent, and it does not involve any choices. So given A ∈ Ab(H), we construct
h!A ∈M by constructing an abelian group in Ab((H ×K)G). This is simply the abelian
group (A, 0) ∈ Ab(H × K) with coalgebra structure given in terms of “double glueing
data” by the pair of homomorphisms x : A → g0, y : 0 → fA (where f and g, as in the
previous section denote k∗h∗ and h

∗k∗, respectively, k : K ↪→M being the complementary
subtopos to H). The compatibility condition f(x) ◦ y = κ0 is trivial, since it compares
two homomorphisms out of the zero group (and into the zero group, in fact). The other
compatibility condition compares two maps g(y) ◦ x and ηA from A to gfA, but by the
assumption of local closedness, gfA is terminal, so this one holds as well. Finally it is
clear that the constructed coalgebra has the right restrictions, A and 0, respectively, along
h∗ and k∗.

Finally, the right adjoint h! is described in coalgebra terms as follows. Consider an
abelian group object C in M ≃ (H × K)G. In terms of the latter category, C is given
by a pair of abelian groups H and K in H and K, respectively, and a pair of group
homomorphisms x : H → gK, y : K → fH. We define h!(C) to be the kernel of the
homomorphism x. The front adjunction for the adjointness is then simply the identity;
the back adjunction h!h

!C → C is the pair Ker(x) → H (inclusion) and 0 → K, which is
a morphism of coalgebras, i.e. is compatible with the glueing data, by commutativity of
the square

Ker(x) - 0

H
?

x
- gK

?

inH, and and a square inK having the 0 group in its upper left hand corner, and therefore
automatically commutative. The triangle equations for front- and back- adjunction for the
claimed adjointness in this case (where the front adjunction is an identity) just amounts to
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the requirement that h! inverts the back adjunction. But Ker(x) is clearly isomorphic to
Ker(x), where x is part of the coalgebra structure for h!H, namely the map Ker(x) → 0.
This proves the Theorem.
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Jean-Louis Loday, Université de Strasbourg: loday@math.u-strasbg.fr
Ieke Moerdijk, University of Utrecht: moerdijk@math.ruu.nl
Susan Niefield, Union College: niefiels@gar.union.edu
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