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REMARKS ON QUINTESSENTIAL AND PERSISTENT
LOCALIZATIONS

P.T. JOHNSTONE
Transmitted by G. Max Kelly

ABSTRACT. We define a localization L of a category E to be quintessential if the
left adjoint to the inclusion functor is also right adjoint to it, and persistent if L is
closed under subobjects in E . We show that quintessential localizations of an arbitrary
Cauchy-complete category correspond to idempotent natural endomorphisms of its i-
dentity functor, and that they are necessarily persistent. Our investigation of persistent
localizations is largely restricted to the case when E is a topos: we show that persistence
is equivalence to the closure of L under finite coproducts and quotients, and that it
implies that L is coreflective as well as reflective, at least provided E admits a geometric
morphism to a Boolean topos. However, we provide examples to show that the reflector
and coreflector need not coincide.

Introduction

It is well known that a local operator (also called a Lawvere–Tierney topology) j on a
topos E gives rise to two reflective subcategories of E : the category shj(E) of j-sheaves,
and the category sepj(E) of j-separated objects. We shall denote the reflector E → shj(E)
(that is, the left adjoint of the inclusion functor) by L (or Lj, if it is necessary to specify j),
and the reflector E → sepj(E) by M or Mj. It is also well known that L is a localization
of E (that is, it preserves all finite limits), but M is not in general: it preserves finite
products (since sepj(E) is an exponential ideal in E) and monomorphisms (since it is a
subfunctor of L which preserves monomorphisms), but need not preserve equalizers.

One might ask: what can be said about j if M does preserve equalizers? If so, then by
the ‘little Giraud theorem’ which says that the localizations of a topos E correspond bijec-
tively to local operators on E (cf. [1], III 9.3.9) we know that sepj(E) must coincide with
shk(E) for some local operator k. But we can say more than this: since every k-separated
object is a subobject of a k-sheaf, and since sepj(E) is closed under subobjects in E , k
must have the property that its separated objects and sheaves coincide. Also, knowledge of
sepk(E) determines the local operator k uniquely (since the k-dense monomorphisms are
precisely those mapped to epimorphisms in sepk(E) byMk), so we must in fact have j = k;
that is, j itself has the property that all its separated objects are sheaves. Conversely, if
j has this property, then Mj coincides with Lj, and so it does preserve finite limits.

Do there exist any examples of local operators with this curious property? One source
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of them is what we have chosen to call the quintessential localizations of a topos. We
recall that a localization of an arbitrary category E is defined to be a reflective (full) sub-
category L such that the reflector L : E → L preserves finite limits; it is called an essential
localization [5] if L actually has a left as well as a right adjoint. We shall further call it
quintessential if the left and right adjoints of L coincide (up to natural isomorphism): we
devote the first section of this paper to studying the quintessential localizations of an ar-
bitrary category E . We shall show that, provided idempotents split in E , its quintessential
localizations correspond bijectively to idempotent natural endomorphisms of the identity
functor on E : in particular, they form a sub-semilattice of the lattice of all localizations
of E . Moreover, any quintessentially localizing subcategory is what we have chosen to call
persistently localizing ; that is, it is closed under subobjects in E (and under quotients).

In section 2, we specialize to the case when E is a topos, and consider local operators
on E which correspond to persistently localizing subcategories. We provide a large number
of equivalent characterizations of such local operators; we also show that, provided E is
definable over a Boolean topos, every such localizing subcategory is coreflective as well
as reflective in E . However, in general the left and right adjoints of the inclusion fail to
coincide, as we show by an example. We also consider the condition, for a local operator
j, that every j-dense monomorphism should be split monic: we show that this implies
that the localization is persistent, but it neither implies nor is implied by the assertion
that it is quintessential.

1. Quintessential Localizations

Throughout this section, we assume that E is a Cauchy-complete (or Karoubian) category,
that is one in which every idempotent endomorphism splits. We recall that, in any
category, the monoid of natural endomorphisms of the identity functor is commutative:
if α and β are such endomorphisms, then the commutativity of

A
αA

> A

∨

βA

∨

βA

A
αA

> A

for each A is simply an instance of the naturality of α (or of β). It follows that the
idempotent natural endomorphisms of the identity form a submonoid of this monoid (and
indeeed a semilattice) under composition.

For future reference, we also note

1.1. Lemma. Suppose E has finite products, and let α be a natural endomorphism of
1E . Then, given any internal algebraic structure carried by an object A of E, αA is a
homomorphism for that structure. In particular, if E is a topos and α is idempotent, then
αΩ is a local operator on E.
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Proof. The naturality of α with respect to the product projections An → A tells us
that αAn is simply (αA)

n; then, if ω : An → A is an n-ary operation on A, naturality with
respect to ω tells us that αA is a homomorphism for it. The second assertion follows since
two of the three conditions in the definition of a local operator j : Ω → Ω say simply that
j is a meet-semilattice endomorphism of Ω, and the third is the idempotency of j.

We now revert to consideration of an arbitrary Cauchy-complete category E .
1.2. Lemma. Let ϵ be an idempotent natural endomorphism of the identity functor on E.
Then the full subcategory of objects A for which ϵA = 1A is both reflective and coreflective
in E, and its reflector and coreflector coincide (up to natural isomorphism).

Proof. For each A, let us choose a splitting

A
αA

� LA >
βA

> A

of ϵA: then the naturality of ϵ makes L into a functor E → E , in such a way that α
and β become natural transformations. Moreover, the naturality of ϵ also ensures the
commutativity of

A
αA

� LA >
βA

> A

∨

ϵA

∨

ϵLA

∨

ϵA

A
αA

� LA >
βA

> A
and either cell of this diagram forces ϵLA to be the identity; that is, the image of L is
contained in the subcategory (L, say) described in the statement of the Lemma. Moreover,
αA is an isomorphism iff A ∈ ob L, from which it follows easily that L is left adjoint to
the inclusion L → E (with α as the unit of the adjunction); similarly, L is right adjoint
to the inclusion, with β as the counit of this adjunction.

Thus every idempotent natural endomorphism of 1E gives rise to a quintessential lo-
calization of E . Conversely, suppose L is a quintessential localization of E , with reflec-
tor/coreflector L : E → L. Then, for any A, we have morphisms

A
αA

> LA
βA

> A

which are respectively the unit of (L ⊣ inclusion) and the counit of (inclusion ⊣ L). The
composite ϵA = βAαA is clearly the A-component of a natural endomorphism of 1E . The
composite θA = αAβA need not be the identity; but, from the commutativity of

LA
LαA

> LLA

∨

βA

∨

βLA

A
αA

> LA
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and the idempotency of both adjunctions, we see that it is the A-component of a natural
automorphism of the functor L. And the composite β′

A = βA(θA)
−1 has the same universal

property as βA; so, if we replace β by β′, we may reduce to the case where ϵ is idempotent.
We have thus established the main result of this section:

1.3. Theorem. For any Cauchy-complete category E, there is a bijection between the
quintessential localizations of E and the idempotent natural endomorphisms of the iden-
tity functor on E. Moreover, the quintessentially localizing subcategories of E form a
semilattice under the operation of intersection.

Proof. The only part which requires further comment is the last assertion. But if ϵ
and δ are two idempotent natural endomorphisms of 1E , it is clear that we have ϵAδA =
1A iff ϵA is epic and δA is monic, iff ϵA = δA = 1A. So the semilattice operation of
composition on idempotent endomorphisms of 1E becomes the operation of intersection
on the corresponding localizing subcategories of E .

The second assertion of 1.3 should be compared with the results of [5] that, although
the essentially localizaing subcategories of a suitably well-behaved category form a com-
plete lattice, meets in this lattice (even binary ones) need not be simply intersections. In
contrast, although the quintessentially localizing subcategories are always closed under
finite intersections, they need not be closed under infinite intersections or even form a
complete lattice, as the following example shows.

1.4. Example. Let E be the category of (left) M -sets, where M is a monoid. Given any
element m of the centre of M , the mapping a 7→ m · a defines an endomorphism µA of
an arbitrary M -set A, which is clearly natural with respect to arbitrary M -equivariant
maps. Conversely, if µ is any natural endomorphism of 1E , let us define m = µM(1),
where M acts on itself by left translations (and 1 denotes the identity element of M);
then naturality tells us that we have µA(a) = m · a for any element a of an arbitrary
M -set A, and the M -equivariance of this map (in the case A = M) tells us that m must
lie in the centre of M . Thus the monoid of natural endomorphisms of 1E is isomorphic to
the centre of M ; in particular, if M is commutative, it is isomorphic to M itself.

Specializing further to the case when M is a semilattice, we see that in this case every
endomorphism of 1E is idempotent, and so corresponds to a quintessential localization of
E ; moreover, the semilattice of quintessential localizations of E is isomorphic to M . So
any semilattice can occur as a semilattice of quintessential localizations (indeed, as the
semilattice of quintessential localizations of a topos).

Before leaving this section, we note two further consequences of Theorem 1.3.

1.5. Corollary. Let E be a Cauchy-complete category, and L a quintessentially local-
izing subcategory of E. Then L is closed under arbitrary subobjects and quotient objects
in E.
Proof. By 1.3, we can identify L with the full subcategory of objects A such that
ϵA = 1A, for some idempotent natural endomorphism ϵ of 1E . But if this holds for A, and
m : A′ → A is monic, then we have mϵA′ = ϵAm = m and hence ϵA′ = 1A′ , so A′ is also in
L. The argument for quotients is dual.
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1.6. Remark. If E is a topos, and ϵ is an idempotent endomorphism of 1E , then ϵΩ is
a local operator, as we saw in 1.1. It is easy to see that a monomorphism A′ � A is
dense for this local operator iff it contains the image of ϵA. Since ϵA and 1A are equalized
by the image of ϵA, it follows that an ϵΩ-separated object A must satisfy ϵA = 1A; but
conversely any object satisfying this condition is an ϵΩ-sheaf. Thus shϵΩ(E) is exactly
the quintessentially localizing subcategory corresponding to ϵ. In particular, we note
that an idempotent natural endomorphism of the identity functor on a topos is uniquely
determined by its component at the single object Ω. (It would be interesting to know
whether this statement remains true with the word ‘idempotent’ deleted.)

2. Persistent Local Operators

We now specialize to the case when E is a topos, and consider localizations of E which
have the property that the localizing subcategory is closed under subobjects: as we ob-
served in the Introduction, this is equivalent to saying that every separated object for
the corresponding local operator j is a sheaf, and to saying that the separated reflector
Mj preserves finite limits. For want of a better name, we shall call localizations (or local
operators) with this property persistent ; our next result collects together a large number
of characterizations of persistent local operators, including the three just mentioned.

2.1. Theorem. For a local operator j on a topos E, the following conditions are equiva-
lent:

(i) Every j-separated object is a j-sheaf.

(ii) shj(E) is closed under subobjects in E.

(iii) For every A, the unit map A → LA is epic.

(iv) shj(E) is closed under finite coproducts and quotients in E.

(v) sepj(E) is closed under finite coproducts and quotients in E.

(vi) Mj preserves finite limits.

(vii) Mj preserves equalizers.

(viii) sepj(E) is a topos.

(ix) sepj(E) is a pretopos.

(x) sepj(E) is balanced (that is, every morphism which is both monic and epic in sepj(E)
is an isomorphism).
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Proof. (i)⇔ (ii) since, for any j, the j-separated objects are exactly the E-subobjects
of j-sheaves ([3], 3.29).

(ii)⇔ (iii) is a standard result on reflective subcategories (cf. [1], I 3.6.2).
(ii)⇒ (iv): First, the initial object 0 of E is a j-sheaf, because it is a subobject of

1. Next, if A and B are sheaves, their coproduct in shj(E) contains two subobjects
isomorphic to A and B, whose intersection is 0, since the inclusion shj(E) → E preserves
monomorphisms and pullbacks. But this implies that it contains the coproduct A⨿B in
E ([2], 1.621), and hence that the latter is a sheaf.

Now suppose f : A � B is an epimorphism in E , where A is a j-sheaf. Let R ⇒ A be the
kernel-pair of f ; then R is a subobject of A×A, so by (ii) it is a sheaf. Since the associated
sheaf functor preserves finite limits, R ⇒ A is also the kernel-pair of A → B → LB; but
the latter is epic by (iii). Since any epimorphism in E is the coequalizer of its kernel-pair
([3], 1.53), it follows that B ∼= LB.

(iv)⇒ (ii): Let f : A � B be a monomorphism in E , where B is a j-sheaf. Form its
cokernel-pair B ⇒ C; then C is a sheaf since it is a quotient of B ⨿ B. But f is the
equalizer of B ⇒ C ([3], 1.21); and shj(E) is closed under equalizers. So A is a sheaf.

(iv)⇒ (v) is immediate, given that (iv) implies (i).
(v)⇒ (x): (v) implies that the inclusion sepj(E) → E preserves cokernel-pairs and

hence epimorphisms; but it always preserves monomorphisms. So sepj(E) inherits bal-
ancedness from E .

(i)⇒ (vi) is immediate since Lj preserves finite limits.
(vi)⇔ (vii) is immediate since Mj always preserves finite products.
(vi)⇒ (viii) is immediate from ‘Giraud’s little theorem’ (cf. the Introduction).
(viii)⇒ (ix) is immediate from [2], 1.95.
(ix)⇒ (x) is immediate from [2], 1.652.
(x)⇒ (i): By [7], 43.6 and 45.8, sepj(E) is a quasitopos, and its coarse objects are the

j-sheaves. But in a balanced quasitopos every object is coarse.

2.2. Remark. We note in particular that any localizing subcategory of a topos which is
closed under subobjects is also closed under quotients, by condition (iv) of 2.1. However,
the two halves of condition (iv) are independent. Any proper closed subtopos (cf. [3],
3.53) provides an example of a localizing subcategory which is closed under quotients but
not under coproducts; and the subtopos of the Sierpiński topos [2,Set] consisting of those
objects (f : A0 → A1) for which f is an isomorphism is closed under coproducts (indeed,
it is coreflective as well as reflective in [2,Set]) but not under quotients.

As we saw in 1.5, any quintessential localization of a topos is persistent. We shall
see eventually that not every persistent localization is quintessential (or even essential);
however, as one might guess from condition (iv) of 2.1, there is a strong tendency for the
inclusion shj(E) → E to have a right adjoint in this case. We have not been able to find
a completely ‘elementary’ proof of this fact (that is, one that works entirely within the
topos E); but we have a proof using the ideas of indexed category theory, provided E can
be indexed over another topos in such a way that the ‘indexing objects’ are all j-sheaves.
In fact this condition is necessary as well as sufficient:
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2.3. Proposition. Let j be a persistent local operator on a topos E. Then the inclusion
shj(E) → E has a right adjoint iff there exists a geometric morphism p : E → S such that
p∗I is a j-sheaf for every object I of S.

Proof. The condition is necessary, since if the inclusion has a right adjoint then it is
itself the inverse image of a geometric morphism with the required property.

Conversely, suppose the condition holds. Given an object B of E , we shall write jB for
the local operator j × 1B : Ω×B → Ω×B on E/B; it is easy to see that this operator
satisfies the conditions of 2.1 if j does. Also, if B itself is a j-sheaf (for example, if B = p∗I
for some I), then the category of jB-sheaves is simply the slice category shj(E)/B.

Given an object A of E , let I = p∗(Ω
A), and let A′ � A×p∗I be the generic I-indexed

family of subobjects of A (i.e. the pullback of the membership relation ∈A� A×ΩA along
the counit map). As an S-indexed subcategory of E , shj(E) is definable: that is, given
any object f : B → p∗I of E/p∗I, we can find a subobject I ′ � I such that a morphism
x : K → I factors through I ′ � I iff the pullback of f along p∗(x) is a jp∗K-sheaf in
E/p∗K. (To see this, note that f is a jp∗I-sheaf iff it is jp∗I-separated, iff the inclusion of
the diagonal B � B ×p∗I B in its jp∗I-closure is an isomorphism; but isomorphisms are
definable in E , since it is locally small as an S-indexed category.)

Applying this to A′, we obtain a subobject I ′ � I and a subobject A′′ � A× p∗I ′ in
E/p∗I ′, such that (A′′ → p∗I ′) is a jp∗I′-sheaf (and hence, since p∗I ′ is a j-sheaf, A′′ itself
is a j-sheaf). Let RA � A be the image of the composite A′′ � A×p∗I ′ → A; then RA is
a j-sheaf by 2.1(iv). Moreover, any subobject of A which is a j-sheaf is obtainable as the
pullback of A′′ along a suitable morphism 1 → p∗I ′, so RA contains all such subobjects;
in other words, it is the largest subobject of A which is a sheaf. Again using the fact that
epimorphic images of sheaves are sheaves, it follows that any morphism from a sheaf to
A factors (uniquely) through RA � A; so R defines a functor E → shj(E), right adjoint
to the inclusion.

2.4. Corollary. Suppose there exists a geometric morphism p : E → S where S is a
Boolean topos. Then, for every persistent local operator j on E, the inclusion shj(E) → E
has a right adjoint.

Proof. If S is Boolean, then every object of the form p∗I is decidable (i.e. has comple-
mented diagonal) and hence separated for any dense local operator (i.e. any local operator
for which 0 is a sheaf). But any persistent local operator is dense, since 0 is a subobject of
the sheaf 1; and its separated objects are all sheaves. So the condition of 2.3 is satisfied.

The assumption of Booleanness in 2.4 could be weakened to the condition (QD) studied
in [4], since quotients of j-sheaves are j-sheaves. There are known examples of toposes
which do not admit any geometric morphism to a Boolean topos or even to one satisfying
(QD) (see [6]); but we do not know any example of a persistent local operator for which
the inclusion shj(E) → E fails to have a right adjoint.

In the situation of 2.3, we write αA : A � LA for the unit of the reflection, and
βA : RA � A for the counit of the coreflection. The composite αAβA is monic, since
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we can also factor it as

RA
αRA

> LRA
LβA

> LA :
αRA is an isomorphism since RA is a sheaf, and LβA is monic since L preserves monomor-
phisms. However, it is not an isomorphism in general, so we do not obtain a quintessential
localization. Before giving a counterexample, we note a further property of local operators
satisfying the conditions of 2.1:

2.5. Lemma. In any topos E, the class of persistent local operators is closed under any
joins which exist in the lattice of local operators.

Proof. We recall that joins of local operators correspond to intersections of the cor-
responding sheaf subcategories, by [3], exercise 3.9. So the result is immediate from
condition (ii) (or from condition (iv)) of 2.1.

We saw that the quintessentially localizing subcategories of E form a semilattice under
(finitary) intersection; but this semilattice need not be complete, by 1.4 (and even if
it is, the infinite meets in it need not correspond to infinite intersections of localizing
subcategories). This is the key to providing examples of persistent localizations which are
not quintessential.

2.6. Example. Let M be any (join-)semilattice containing a non-principal ideal I, and
let E be the topos of M -sets. Let L be the full subcategory of E consisting of those
objects on which every element of I acts as the identity. Since L is the intersection of the
quintessentially localizing subcategories corresponding to the elements of I, it is persistent
by 2.5. But it cannot itself be quintessentially localizing, since I has no largest element. If
we form the quotient ofM by the semilattice congruence {(m,n) | (∃i ∈ I)(m∨i = n∨i)},
we obtain an M -set A which lies in L, but on which no element of M \ I acts by the
identity map. This object is in fact the reflection in L of M itself; its coreflection may
be identified with the sub-M -set of A consisting of those congruence classes which have
a greatest member (equivalently, contain an upper bound for I).

Another condition on local operators which is closely related to those of 2.1 is described
in the next lemma.

2.7. Lemma. For a local operator j on a topos E, the following conditions are equivalent,
and imply those of 2.1:

(i) Every object of E is injective for the class of j-dense monomorphisms.

(ii) Every j-dense monomorphism is split.

Proof. If (i) holds and m : A′ � A is j-dense, then injectivity of A′ yields a splitting for
m. Conversely if (ii) holds and we are given

A <
m

< A′ f
> B

with m dense, then any splitting r for m yields an extension fr of f along m. And it
is immediate that (i) implies condition (i) of 2.1, since a j-sheaf is exactly a j-separated
object which is injective for j-dense monomorphisms.
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However, the conditions of 2.7 are not equivalent either to those of 2.1 or to those of 1.3.

2.8. Example. As in 2.6, let M be a semilattice, I an ideal of M , E the topos of M -sets
and L the persistently localizing subcategory of those M -sets on which every element of
I acts as the identity. In 2.6 we saw that L is quintessentially localizing iff I is principal;
we now show that (the local operator corresponding to) L satisfies the conditions of 2.7
iff I is well-ordered (in the semilattice ordering on M). Since it is easy to give examples
of principal ideals which are not well-ordered, and of well-ordered ideals which are not
principal, this shows that there is no implication in either direction between these two
conditions.

First suppose that I is well-ordered. It is easy to see that an inclusion A′ ⊆ A of
M -sets is j-dense (for the local operator j corresponding to L) iff, for every a ∈ A, there
exists i ∈ I such that i · a ∈ A′. Since I is well-ordered, for every a there exists a least
ia ∈ I with this property; we define r(a) = ia · a. Then clearly r is a retraction of A
onto A′; we must show that it is M -equivariant. Let a ∈ A and m ∈ M : then clearly
im·a ≤ ia, since ia · (m · a) = m · (ia · a) ∈ A′. But we also have ia ≤ (im·a ∨ m), since
(im·a ∨m) · a = im·a · (m · a) ∈ A′. So (ia ∨m) = (im·a ∨m), from which it follows that
m · r(a) = r(m · a).

Now suppose I is not well-ordered; let I ′ be a nonempty subset of it with no least
member. Let M ′ = {m ∈ M | (∃i ∈ I ′)(i ≤ m)}; then it is clear that M ′ is a sub-M -set of
M , and that the inclusion M ′ � M is j-dense. Suppose we have a retraction r : M → M ′.
Then r(0) is not the least element of I ′, so we can find i ∈ I ′ with i ̸≥ r(0). Now we have

i ∨ r(0) ̸= i = r(i) = r(i ∨ 0) ,

so r is not M -equivariant. Thus the inclusion M ′ � M is not split monic in E .
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by e-mail.
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