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CCD LATTICES IN PRESHEAF CATEGORIES

G. S. H. CRUTTWELL, F. MARMOLEJO AND R. J. WOOD

Abstract. In this paper we give a characterization of constructively completely dis-
tributive (CCD) lattices in setC

op
, for C a small category with pullbacks.

1. Introduction

Recall that an ordered set L is a sup lattice if and only if the down-segment embedding
of L into its complete lattice of down-sets, ↓ :L → DL, has a left adjoint

∨
:DL → L.

It is well-known that a sup lattice L is a locale, meaning that binary meet distributes
over arbitrary sup, if and only if

∨
:DL → L preserves binary meets. Since [Fawcett and

Wood, 1990] a complete lattice has been said to be constructively completely distributive
(CCD) if

∨
:DL → L preserves all infima, equivalently, if

∨
:DL → L has itself a left

adjoint. Classically, (CCD) is equivalent to ordinary complete distributivity (CD). In
fact, it was shown in [Fawcett and Wood, 1990] that

(AC) ⇐⇒ ((CD) ⇐⇒ (CCD))

and thus, (CCD) is an appropriate version of complete distributivity in an elementary
topos. It is therefore natural to seek characterizations of (CCD) lattices in familiar
toposes.

We envision our present results, though not our proof techniques, in the tradition of
[Joyal and Tierney, 1984], wherein sup(setCop

), the category of sup lattices and sup-
preserving arrows with respect to the topos of presheaves setCop

, for C small with pull-
backs, is given in terms of functors L :Cop → sup. Here sup is the category of sup-lattices
and sup-preserving arrows with respect to the base topos set. We recall the statement of
their result (Proposition 1, Section 2, Chapter VI, op. cit.):

A sup-lattice L in setCop
is a functor L :Cop → sup such that for every

f :B → C in C, Lf :LC → LB has a left adjoint
∨

f :LB → LC, and these
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adjunctions satisfy the Beck-Chevalley condition with respect to pullbacks.
An arrow α :L → M in sup(setCop

) is a natural transformation between such
functors such that, for each f :B → C in C,

LB
αB //W

f

��

MBW
f

��
LC

αC
// MC,

commutes.

Observe too that because the Lf :LC → LB, for f :B → C in C, are shown to take
values in sup, it follows that for each f there is also an adjunction Lf a

∧
f (and these

adjunctions necessarily satisfy the Beck-Chevalley condition too).
Thus, we also assume throughout that C has pullbacks and we characterize CCD

lattices in setCop
in terms of functors L :Cop → ccd, where ccd is the category of con-

structively completely distributive (CCD) lattices, with respect to set, and functions that
preserve both suprema and infima. The characterization is surprising in the appearance
of a right adjoint for each

∧
f . While an ordered object L in a topos has a left adjoint,∨

, for ↓ :L → DL if and only if it has a right adjoint,
∧

, for ↑ :L → UL, where UL
is the complete lattice of up-subobjects of L ordered by reverse inclusion, this symmetry
does not extend to further adjoints. For

∧
:UL → L to have a right adjoint is for Lop to

be (CCD), a condition which in terms of L is called (opCCD). In [Rosebrugh and Wood,
1991] it was shown that

(BLN) ⇐⇒ ((CCD) ⇐⇒ (opCCD))

where (BLN) is the Boolean axiom for the topos under consideration. Of course (BLN)
does not generally hold for the toposes setCop

.
These extra adjunctions do not suffice. A generalization of Frobenius reciprocity is

needed to construct left adjoints to the components
∨

C :DL(C) → LC of the natural
transformation

∨
:DL → L and a further distributivity condition is required to show that

such left adjoints constitute the components of a natural transformation L → DL.
This characterization was begun by Cruttwell in his thesis [G. S. H. Cruttwell, 2005].

There we find a generalization of the Frobenius reciprocity law called wide Frobenius
reciprocity. As explained there, the requirement needed to express this condition is for
C to have wide pullbacks. It is noted there that this is a very strong condition: for C
small with a terminal object, the existence of wide pullbacks implies that C is a poset.
More importantly, the characterization theorem, even in this case, is incomplete, as the
example 2 → 1 in setCop

, for C = {0 → 1}, shows (see below).
We duly give a new version of this condition, that we call complete Frobenius reci-

procity, which does not require wide pullbacks, and add a further condition, along with
the afore-mentioned right adjoints to the

∧
f , which enable us to characterize CCD lattices

in setCop
.
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2. Comparison transformation for evaluation

We will write L generically for an object of ord(setCop
). The object of down-subobjects

of L is then DL :Cop → set given, for C ∈ C, by

DL(C) = {F � � // L×C(−, C)|(b, f) ∈ FB and b′ ≤ b imply (b′, f) ∈ FB}

while, for f :B → C in C, DL(f) is given by pulling back along L×C(−, f). The arrow
↓ :L → DL is given by

↓C c (B) = {(b, f)|b ≤ Lf(c)}

for c in L(C).
Any left exact functor Γ : E → S between toposes gives rise to a natural transformation

γ : ΓDE → DSΓ, where the D’s are considered to be functorial via inverse image. For L in
ord(E), γL classifies the order ideal ΓDL → ΓL obtained by applying Γ to the order ideal
↓+ :DL → L which is right adjoint to the map ↓ :L → DL considered as an order ideal.
(Note that for x in L and S in DL, one has x ↓+ S if and only if x ∈ S.) This natural
transformation was introduced in [Rosebrugh and Wood, 1992] where it was called the
‘logical comparison transformation’. In the case at hand, and taking Γ : setCop → set
to be evaluation at C, we have γ = γL : DL(C) → D(LC), where D(LC) is the set of
down-sets of the ordered set LC. It is not hard to show that, for F ∈ DL(C),

γ(F ) = {c ∈ LC|(c, 1C) ∈ FC}

2.1. Lemma. The component γ :DL(C) → D(LC) has a left adjoint γ∗ and a right adjoint
γ∗.

Proof. It is not hard to see that the left adjoint γ∗ is given by

γ∗(S)(B) = {(b, f)|there is c ∈ S with b ≤ Lf(c)}

for any S ∈ D(LC), and that the right adjoint is given by

γ∗(S)(B) = {(b, f)|for every s :C → B with fs = 1C , Ls(b) ∈ S}.

Observe that γ∗ a γ a γ∗ is a fully faithful adjoint string.

We will need the following property of γ∗:

2.2. Lemma. γ∗ ↓LC=↓C.

Proof. For c ∈ LC and B ∈ C we have

(γ∗ ↓LC (c))(B) = {(b, f)|b ≤ Lf(c′) for some c′ ∈↓LC (c)}

= {(b, f)|b ≤ Lf(c′) for some c′ ≤ c}

= {(b, f)|b ≤ Lf(c)} = ↓C (c)(B).
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For f :B → C in C, the left adjoint
∨DL

f of DL(f) is given by the image

G
� � //

����

L×C(−, B)

L×C(−,f)

��∨DL
f (G) � � // L×C(−, C)

for any G ∈ DL(B). In what follows, the elements in the image of

LB
↓B // DL(B)

W DL
f // DL(C)

will become important, so we give them a name:

2.3. Definition. For f :B → C in C and b ∈ LB, we define

↓C (b, f) =
∨DL

f (↓B b).

Therefore

↓C (b, f)(A) = {(a, h)|there is g :A → B such that h = fg and a ≤ Lg(b)}

Observe that this extends our existing notation, in the sense that ↓B b =↓B (b, 1B). The
main properties that we need of these objects are given by the following lemma and
corollary:

2.4. Lemma. For f :B → C in C and b ∈ LB, ↓C (b, f) is the smallest element F ∈
DL(C) such that (b, f) ∈ FB.

Proof. Clearly (b, f) ∈ (↓C (b, f))(B). Assume now that F ∈ DL(C) and that (b, f) ∈
FB. If (y, k) ∈ (↓C (b, f))(Y ), then we can find s :Y → B such that k = fs and
y ≤ Ls(b). Since (b, f) ∈ FB, we have (Ls(b), k) = (Ls(b), fs) ∈ FY . This together with
y ≤ Ls(b) imply that (y, k) ∈ FY .

2.5. Corollary. For any C ∈ C and F ∈ DL(C),

F =
⋃
{↓C (b, f)|B ∈ C, (b, f) ∈ FB}.

We turn now to the possibility of a left adjoint to γ∗.

2.6. Proposition. Assume that LC is complete. The map γ∗ has a left adjoint γ! if and
only if for every f :B → C in C, Lf has a left adjoint

∨
f .
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Proof. Assume that for every f :B → C we have
∨

f a Lf . Define

γ!(F ) = {c ∈ LC|c ≤
∨

f (b) for some B ∈ C and some (b, f) ∈ FB}.

Then
F ⊆ γ∗(S)

for every B, FB ⊆ γ∗(S)(B)
for every B, if (b, f) ∈ FB, then there is c ∈ S with b ≤ Lf(c)
for every B, if (b, f) ∈ FB, then there is c ∈ S with

∨
f (b) ≤ c

for every B, if (b, f) ∈ FB, then
∨

f (b) ∈ S

γ!(F ) ⊆ S,

where we use the adjunction
∨

f a Lf from the third to the fourth line, and the fact that
S is downclosed on the next one.

Assume now that γ! a γ∗ and take f :B → C in C. Define
∨

f as the composite

LB
↓B // DL(B)

W DL
f // DL(C)

γ! // D(LC)
W

LC // LC,

where
∨

LC a ↓LC :LC → D(LC). For b ∈ LB and c ∈ LC we have∨
f (b) ≤ c∨

LCγ!

∨DL
f ↓B b ≤ c∨DL

f ↓B b ≤ γ∗ ↓LC (c)

↓C (b, f) ≤↓C (c)
(b, f) ∈↓C (c)(B)

b ≤ Lf(c),

where we have applied first the definition of
∨

f , then the adjunction
∨

LCγ! a γ∗ ↓LC , the
definition of ↓C (b, f), Lemma 2.2 and Lemma 2.4.

2.7. Lemma. If LC is a sup lattice and γ! exists, then
∨

LCγ! a↓C. In particular, if L is
a sup lattice in setCop

, then
∨

C =
∨

LCγ!.

Proof. We have
∨

LC a↓LC and γ! a γ∗, thus
∨

LCγ! a γ∗ ↓LC=↓C , by Lemma 2.2.

2.8. Remark. When L ∈ sup(setCop
), the formula for

∨
f given in the proof of Proposition

2.6 becomes

LB
↓B // DL(B)

WDL
f // DL(C)

W
C // LC.

3. A new perspective on an old theorem

We use the adjoints from the previous section to give a different proof of Proposition 1,
Section 2, Chapter VI of [Joyal and Tierney, 1984]:
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3.1. Theorem. An object L ∈ sup(setCop
) is a functor L :Cop → sup(set) such that for

every f :B → C in C, Lf has a left adjoint
∨

f a Lf , and the Beck-Chevalley condition
with respect to pullbacks is satisfied for these adjoints.

We begin by assuming L ∈ sup(setCop
) and deriving the conditions. First of all we

observe that when L is a sup lattice, we have

LC DL(C) D(LC),
↓C

⊥ //

W
Coo

γ
⊥ //

γ∗oo

↓LC

55
(1)

We know from [Rosebrugh and Wood, 1992] (or directly) that γ ↓C=↓LC . Thus
∨

Cγ∗ is
a left adjoint to ↓LC , and LC turns out to be a sup lattice.

It is easy to see that for every f :B → C in C, the square on the left in the diagram

D(LC)
γ∗

//

D(Lf)

��

W
LC

))
DL(C)

DL(f)

��

W
C

// LC

Lf

��
D(LB)

γ∗ //

W
LB

55DL(B)
W

B // LB

commutes. Since the square on the right also commutes, we have that Lf preserves sups
or, equivalently, that Lf has a right adjoint Lf a

∧
f . Thus, L :Cop → sup(set) is a

functor. A dual argument with upclosed sets instead of downclosed sets, and the general
remark that every sup lattice is an inf lattice, gives us that Lf has a left adjoint

∨
f a Lf .

We are thus left with the Beck-Chevalley condition. For this we need:

3.2. Lemma. For any L ∈ ord(setCop
), the adjunctions

∨DL
f a DL(f) :DL(C) → DL(B)

with f :B → C in C, satisfy the Beck-Chevalley condition.

Proof. Take a pullback diagram

P
r //

q

��

B

f
��

Z
h

// C

(2)
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in C. Thus, the inner square in

DL(r)(F ) F

L×C(−, P ) L×C(−, B)

L×C(−, Z) L×C(−, C)

DL(h)
∨DL

f (F )
∨DL

f (F )

� v

))RRRRRRRRRRRR
//

���������
�
�
�
�
�
�
�
�
�
�
�

//

( �

55lllllllllll
V6

iiRRRRRRRRRRRRR

hH

uullllllllllllllll

L×C(−,r)//

L×C(−,q)
��

L×C(−,f)
��

L×C(−,h)
//

is a pullback. A general F ∈ DL(B) is depicted on the upper right corner of the previous
diagram. Now

∨DL
f (F ) is calculated as the image of F under L ×C(−, f), as shown on

the right of the diagram. Now, DL(h)
∨DL

f (F ) is the pullback along L×C(−, h) as shown
on the bottom of the diagram. On the other hand, we calculate DL(r)(F ) as the pullback
along L×C(−, r). Thus, to calculate

∨DL
q DL(r)(F ) we have to calculate the image of this

along L × C(−, q). But since we are dealing here with a regular category, we have that
the image is given by the dotted arrow, that is

∨DL
q DL(r)(F ) = DL(h)

∨DL
f (F ). Thus,

the diagram

DL(B)

WDL
f //

DL(r)

��

DL(C)

DL(h)

��
DL(P ) WDL

q

// DL(Z)

commutes. This is the Beck-Chevalley condition.

Assume again that L ∈ sup(setCop
). To show Beck-Chevalley in this case, take a

pullback as in (2) and consider the diagram

LB LC

DL(B) DL(C)

DL(P ) DL(Z)

LP LZ.

W
B

eeLLLLLL

W
f //

Lh

��

Lr

�� W
q

//

W
P

yyrrr
rrr

W
Z

%%LLLLL

W
C

99rrrrrrWDL
f //

DL(r)
��

DL(h)
��

WDL
q

//

Observe that the right and left faces commute by the naturality of
∨

:DL → L. The
commutativity of the top is equivalent, by taking right adjoints, to ↓B Lf = DL(f) ↓C ,
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which is just the naturality of ↓ :L → DL. The bottom commutes for the same reason.
The middle square commutes by the previous lemma. We thus deduce the commutativity
of the exterior square by recalling that

∨
B ↓B= 1LB.

A morphism α :L → M in sup(setCop
) is a natural transformation α :L → M such

that the diagram

DLW
��

Dα // DMW
��

L α
// M

(3)

commutes.

3.3. Lemma. If α :L → M is a morphism in sup(setCop
), then α :L → M is a natural

transformation in sup(set)C
op

such that the diagram

LB
αB //W

f

��

MBW
f

��
LC

αC
// MC

commutes for every f :B → C in C.

Proof. Since α is a morphism of sup lattices, it has a right adjoint α∗. Thus for every
C ∈ C, αC a α∗C, and α turns out to be a natural transformation in sup(set)C

op
.

Furthermore, the naturality of α∗ produces the commutative diagram

MC
α∗C //

Mf

��

LC

Lf
��

MB
α∗B

// LB,

for every f :B → C. By taking left adjoints we obtain the commutativity of the square
in the statement of the lemma.

Assume now that we have a functor L :Cop → sup(set) with the property that for
every f :B → C in C, Lf has a left adjoint

∨
f a Lf , and that these adjunctions satisfy

the Beck-Chevalley condition.
Lemma 2.7 gives us a left adjoint to ↓C :LC → DL(C), namely

∨
LCγ! (the existence of

γ! is guaranteed by Proposition 2.6, whereas
∨

LC exists since L takes values in sup(set)).
We are thus left with the task of showing that these left adjoints fit together to form
a natural transformation, that is, we need to show the commutativity of the exterior
rectangle in the diagram

DL(C)
γ! //

DL(f)
��

D(LC)
W

LC //

D(Lf)
��

LC

Lf

��
DL(B) γ!

// D(LB) W
LB

// LB
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for every f :B → C in C. Since Lf has a right adjoint (recall that L takes values in
sup(set)), we have that the right square in the above diagram commutes, so it suffices
to show that the left square commutes. This is taken care of in:

3.4. Lemma. Let L ∈ ord(setCop
). Assume that LC is a sup lattice for every C ∈ C,

that for every f :B → C in C, Lf has a left adjoint, and that these adjoints satisfy the
Beck-Chevalley condition. Then the diagram

DL(C)
γ! //

DL(f)
��

D(LC)

D(Lf)
��

DL(B) γ!

// D(LB)

commutes.

Proof. Observe that γ! exists by Proposition 2.6. For γ!DL(f)(F ) ⊆ D(Lf)γ!(F ) it
suffices to show that, if (w, fk) ∈ FW , then

∨
kw ∈ D(Lf)γ!(F ). But the condition

(w, fk) ∈ FW implies that Lf(
∨

fkw) ∈ D(Lf)γ!(F ), and
∨

kw ≤ Lf
∨

f

∨
kw = Lf

∨
fkw,

using the unit of
∨

f a Lf . Thus
∨

kw ∈ D(Lf)γ!(F ).
To prove the other containment is suffices to show that for any (z, h) ∈ FZ, Z ∈ C,

we have Lf(
∨

hz) ∈ γ!(D(Lf)F ). Take the pullback

P
d //

e

��

B

f

��
Z

h
// C.

Since (z, h) ∈ FZ, we have (Le(z), fd) = (Le(z), he) ∈ FP . But by the Beck-Chevalley
condition we also have Lf(

∨
hz) =

∨
dLe(z). Thus Lf(

∨
hz) ∈ γ!(DL(f)F ).

To complete the picture, we have to deal with morphisms.

3.5. Lemma. If L and M are sup lattices in setCop
, and α :L → M is a natural trans-

formation in sup(set)C
op

with the property that for every f :B → C in C the diagram

LB
αB //W

f

��

MBW
f

��
LC

αC
// MC

commutes, then α :L → M is a morphism in sup(setCop
).

Proof. Since α takes values in sup(set), for every C ∈ C, αC has a right adjoint α∗C.
The naturality of α∗ is obtained by taking right adjoints on the commutative square on
the statement of the lemma. Thus α a α∗, and α is a morphism of sup lattices.
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4. An extra right adjoint for CCD lattices

Take L ∈ sup(setCop
). According to the theorem from [Joyal and Tierney, 1984] men-

tioned in the Introduction and for which we gave an alternative proof in Theorem 3.1, this
is equivalent to the conditions: LC is a sup lattice for every C ∈ C, for every f :B → C we
have adjunctions

∨
f a Lf a

∧
f , and the adjunctions

∨
f a Lf satisfy the Beck-Chevalley

condition. If L ∈ ccd(setCop
), then for every C ∈ C we have the diagram

LC DL(C) D(LC),

↓C

⊥ //

W
C ⊥oo

⇓C //

γ
⊥ //

γ∗⊥oo

γ! //

↓

55

(4)

where ⇓C is the instance at C of ⇓a
∨

:DL → L, and, as before, γ ↓C=↓LC :LC →
D(LC). Thus we have

4.1. Lemma. If L ∈ ccd(setCop
), then for every C ∈ C, LC is a CCD lattice.

Proof. It follows immediately that supremum on downsets for LC is given by
∨

Cγ∗.
Thus the defining left adjoint for LC to be CCD is provided by γ! ⇓C .

We can obtain from (4) a right adjoint to
∧

f , for every f in C. To do that we paste

together the diagram of Lemma 3.4 with diagram (4), assuming L ∈ ccd(setCop
), to

obtain, for f :B → C in C, the commutativity of the diagram

LC
⇓LC //

Lf

��

D(LC)

D(Lf)
��

LB ⇓LB

// D(LB),

where ⇓LCa
∨

LC :D(LC) → LC. If we take right adjoints, we have the commutativity of
the diagram

LC D(LC)
W

LCoo

LB

V
f

OO

D(LB).W
LB

oo

D(
V

f )

OO

This means that
∧

f preserves sups, thus it has a right adjoint. We have shown:

4.2. Proposition. If L ∈ ccd(setCop
), then for any f :B → C in C we have an adjoint

string
∨

f a Lf a
∧

f a⇑f .
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5. Complete Frobenius Reciprocity

In this section we assume that L ∈ sup(setCop
). We modify the condition called wide

Frobenius reciprocity in [G. S. H. Cruttwell, 2005] so as not to need wide pullbacks in C,
and we show that the condition is closely related to every

∨
C :DL(C) → LC having a left

adjoint. The condition is

5.1. Definition. L satisfies complete Frobenius reciprocity at C ∈ C if for any family of
the form

〈(aij, fij)〉i∈I,j∈Ji

with fij :Aij → C and aij ∈ LAij, we have∨
{
∧

ici|〈ci〉i∈I ⊆ LC is such that for every i there is j ∈ Ji with ci ≤
∨

fij
aij}

=∨
{
∨

hz|for every i ∈ I there are j ∈ Ji and
Z

Aij

s
��

with h = fijs and z ≤ Ls(aij)}.

5.2. Remark. If we take an element
∨

hz as in the second term of the previous definition,
and we consider the constant family 〈

∨
hz〉i∈I , we have that for every i there are j ∈ Ji and

s :Z → Aij such that h = fijs and z ≤ Ls(aij). Thus
∨

hz ≤
∨

hLs(aij) =
∨

fij

∨
sLs(aij) ≤∨

fij
aij, using the counit of the adjunction

∨
s a Ls. Thus, the second term in the definition

is always less than or equal to the first.

5.3. Proposition. Assume that C ∈ C is such that LC is a CCD lattice. Then L
satisfies complete Frobenius reciprocity at C if and only if

∨
C :DL(C) → LC has a left

adjoint.

Proof. Given any family 〈Fi〉i∈I in DL(C), we have that∨
C(

⋂
iFi) =

∨
Z∈C

∨
(z,h)∈(

T
i Fi)(Z)

∨
hz.

On the other hand, define Si = {c ∈ LC|c ≤
∨

hz for some Z ∈ C and (z, h) ∈ FiZ}. We
have that Si ∈ D(LC). If we use the fact that LC is a CCD lattice, we have∧

i

∨
CFi =

∧
i

∨
Z∈C

∨
(z,h)∈FiZ

∨
hz =

∧
i

∨
LCSi

=
∨
〈ci〉i∈

Q
i Si

∧
ici.

Assume now that
∨

C :DL(C) → LC has a left adjoint, and that 〈(aij, fij)〉ij, i ∈ I,
j ∈ Ji is a family as in Definition 5.1. For every i ∈ I define Fi =

⋃
j∈Ji

↓C (aij, fij) (recall
Definition 2.3). Since

∨
C preserves infs, we have that

∨
C(

⋂
i Fi) =

∧
i

∨
CFi. Observe that,

in this case, the condition (z, h) ∈
( ⋂

i Fi

)
(Z) is exactly the one expressed on the second

term in Definition 5.1. So all we have to do prove complete Frobenius reciprocity is to take
a family 〈ci〉i∈I that satisfies the condition expressed in the first term of Definition 5.1,
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and show that 〈ci〉i∈I ∈
∏

i Si. But for every i ∈ I there is a j ∈ Ji such that ci ≤
∨

fij
aij.

So all we have to do is to take s = 1Aij
and (z, h) = (aij, fij).

Assume now that L satisfies the condition of Definition 5.1. As always, we have∨
C(

⋂
i Fi) ≤

∧
i

∨
CFi. Thus, to show that

∨
C preserves infs, it suffices to show that for

every 〈ci〉i ∈
∏

i Si we have ∧
ici ≤

∨
Z∈C

∨
(z,h)∈(

T
i Fi)(Z)

∨
hz.

According to Corollary 2.5, we can express every Fi in the form Fi =
⋃

j∈Ji
↓C (aij, fij).

We thus have that

Si = {
∨

hz|Z ∈ C, (z, h) ∈
⋃

j∈Ji
↓C (aij, fij)(Z)}↓.

If 〈ci〉i ∈
∏

i Si, then for every i we can find j ∈ Ji, s :Z → C, with h = fijs, z ∈ LZ such
that z ≤ Ls(aij) and c ≤

∨
hz. Then

ci ≤
∨

hz =
∨

hLs(aij) =
∨

fij

∨
sLs(aij) ≤

∨
fij

aij,

using the counit of the adjunction
∨

s a Ls. The family 〈ci〉i satisfies the condition on the
first term of Definition 5.1, and thus we have∧

ici ≤
∨
{
∨

hz|for every i ∈ I there are j ∈ Ji and
s :Z → Aij such that h = fijs and z ≤ Ls(aij)}

As before, the right hand side is precisely
∨

C

( ⋂
i Fi

)
. Thus

∨
C has a left adjoint

5.4. Example. Even assuming that L ∈ sup(setCop
) satisfies complete Frobenius reci-

procity at every C ∈ C, and that every LC is CCD, there is no reason why the cor-
responding left adjoints of the

∨
C :DL(C) → LC would form a natural transformation

L → DL. To see this, take C = {0 → 1}, and take as L the only function ! :2 → 1 seen
as an object of setCop

. Since ! a > and > does not have a right adjoint, Proposition 4.2
tells us that L is not a CCD lattice. However, it is not hard to see that it does satisfy
complete Frobenius reciprocity. Thus, in this case the left adjoint of

∨
0 :DL(0) → L0

and the left adjoint of
∨

1 :DL(1) → L1 cannot form a natural transformation L → DL
(because it would be a left adjoint to

∨
:DL → L, which we know to not exist).

6. Characterization of CCD’s in setCop

In this section we prove a characterization theorem for CCD lattices in setCop
by adding

a condition that guarantees that the left adjoints to the
∨

C ’s match together to form a
left adjoint to

∨
:DL → L. We consider the category ccd(set) whose objects are CCD

lattices, and whose arrows are those order functions that have both, a left adjoint and a
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right adjoint. Given L ∈ sup(setCop
) we observe that for any f :B → C in C, the map∧DL

f :DL(B) → DL(C) is given by

∧DL
f (G)(Z) = {(z, h)|(Le(z), d) ∈ GP with

P B

Z C

d //

e �� f��

h
//

a pullback}.

6.1. Theorem. A CCD lattice in setCop
is a functor L :Cop → ccd(set) such that

i) The adjunctions
∨

f a Lf , f ∈ C, satisfy Beck-Chevalley.

ii) L satisfies complete Frobenius reciprocity at every C ∈ C.

iii) For every f :B → C in C, there is an extra right adjoint
∧

f a⇑f .

iv) For every A
g // B

f // C in C, and any a ∈ LA,

∧
f

∨
g(a) ≤

∨
{
∨

h

∧
eLs(a)|

g

��

s
<<zzzzzzzz

d
//

e
��

f
��

h
//

in C with the square a pullback}.

Proof. Assume L is a CCD lattice in setCop
. Then Lemma 4.1 tells us that LC is

a CCD lattice for every C ∈ C. Since L is, in particular, a sup lattice, we have that
Lf :LC → LB has left and right adjoints

∨
f a Lf a

∧
f for every f :B → C in C, and

i) is also satisfied. Proposition 5.3 gives us ii) and Proposition 4.2 gives us iii). We are
thus left with condition iv). Take a ∈ LA and f, g as shown in iv). Let c ∈ LC be
the sup shown on the right hand side of the inequality in iv). We want to show that∧DL

f (↓B (a, g)) ≤↓C c. But (z, h) ∈
∧DL

f (↓B (a, g))(Z) when there is an s :P → A such
that Le(z) ≤ Ls(a) and d = gs, with

P
d //

e

��

B

f

��
Z

h
// C

a pullback diagram. But then z ≤
∧

eLs(a), which implies that
∨

hz ≤
∨

h

∧
eLs(a) ≤ c.

Thus z ≤ Lh(c). That is (z, h) ∈↓C c. Since L is a CCD lattice, we have that ⇓a
∨

:DL →
L. Since the square

LC
⇓C //

Lf

��

DL(C)

DL(f)
��

LB ⇓B

// DL(B)
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commutes, we obtain, by taking the right adjoints of the right adjoints of the arrows
shown, that

LC
↓C //

⇑f

��

DL(C)

⇑DL
f

��
LB ↓B

// DL(B)

commutes. We have that
∧DL

f (↓C c) =
⋃
{G|

∧DL
f (G) ≤↓C c}, and since

∧DL
f (↓B

(a, g)) ≤↓C c, we have that ↓B (a, g) ≤↓B⇑f (c). In particular a ≤ Lg ⇑f (c), which
is equivalent to

∧
f

∨
ga ≤ c, which is what we wanted.

Assume now that L :Cop → ccd(setCop
) is such that conditions i) to iv) are satisfied.

Clearly L is a sup lattice and Proposition 5.1 tells us that for every C ∈ C we have
an adjunction ΦC a

∨
C :DL(C) → LC. We need to show that these left adjoints form a

natural transformation. So take f :B → C in C. Since Lf
∨

C =
∨

BDL(f) we immediately
obtain ΦBLf ≤ DL(f)ΦC . Thus we are left with showing the other inequality DL(f)ΦC ≤
ΦBLf . Observe that by taking right adjoints twice, the inequality we need to prove is
⇑DL

f ↓C≤↓B⇑f . Now, for any c ∈ LC we have

⇑DL
f ↓C c =

⋃
{G|

∧DL
f (G) ≤↓C c} =

⋃
{↓B (a, g)|

∧DL
f (↓B (a, g)) ≤↓C c},

according to corollary 2.5. But the condition
∧DL

f (↓B (a, g)) ≤↓C c means that for any
commutative diagram of the form

A

g

��
P

d
//

e

��

s
>>}}}}}}}}
B

f
��

Z
h

// C,

with the square a pullback, if Le(z) ≤ Ls(a) then z ≤ Lh(c). Since, in particular,
Le

∧
eLs(a) ≤ Ls(a) (counit of the adjunction Le a

∧
e), we have

∧
eLs(a) ≤ Lh(c), or∨

h

∧
eLs(a) ≤ c. If we take the sup of all the possible elements on the left hand side

and apply iv), we end up with
∧

f

∨
ga ≤ c, or a ≤ Lg ⇑f (c). This is equivalent to

↓B (a, g) ≤↓B⇑f (c).

The question of the arrows in ccd(setCop
) is quickly settled (see Lemmas 3.3 and 3.5).

If L, M ∈ ccd(setCop
), a morphism α :L → M is one that has a left as well as a right

adjoint. These are characterized as
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6.2. Proposition. A morphism α :L → M in ccd(setCop
) is a natural transformation

α :L → M :Cop → ccd(set) such for every f :B → C in C, the squares

LB
αB //W

f

��

MBW
f

��
LC

αC
// MC,

LB
αB //V

f

��

MBV
f

��
LC

αC
// MC

are commutative.

References

G. S. H. Cruttwell. A study of CCD lattices in a functor category. Master’s degree thesis.
Dalhousie University 2005.

B. Fawcett and R. J. Wood. Constructive complete distributivity I. Math. Proc. Cam-
bridge Philos. Soc. 107 (1990), 81–89.

A. Joyal and M. Tierney. An extension of the Galois theory of Grothendieck. Mem. Amer.
Math. Soc. 51 (1984), no. 309,

R. Rosebrugh and R. J. Wood. Constructive complete distributivity II. Math. Proc. Cam-
bridge Philos. Soc. 110 (1991), 245–249.

R. Rosebrugh and R. J. Wood. Constructive complete distributivity III. Canad. Math.
Bull. Vol 35 (1992) no. 4 537-547.

R. Rosebrugh and R. J. Wood. Constructive complete distributivity IV. Appl. Categ.
Structures 2 (1994) no.2, 119–144.

Department of Mathematics and Statistics, Dalhousie University
Chase Building, Halifax, Nova Scotia, Canada B3H 3J5
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