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A PARIGOT-STYLE LINEAR λ-CALCULUS
FOR FULL INTUITIONISTIC LINEAR LOGIC

VALERIA DE PAIVA AND EIKE RITTER

Abstract. This paper describes a natural deduction formulation for Full Intuitionistic
Linear Logic (FILL), an intriguing variation of multiplicative linear logic, due to Hyland
and de Paiva. The system FILL resembles intuitionistic logic, in that all its connectives
are independent, but resembles classical logic in that its sequent-calculus formulation
has intrinsic multiple conclusions. From the intrinsic multiple conclusions comes the
inspiration to modify Parigot’s natural deduction systems for classical logic, to produce
a natural deduction formulation and a term assignment system for FILL.

1. Introduction

This paper describes a natural deduction formulation for Full Intuitionistic Linear Logic
(FILL), a variant of Linear Logic, first described by Hyland and de Paiva [HdP93]. The
system FILL has all the multiplicative connectives of classical linear logic [Gir95], but
it is not involutive: the double-negation A⊥⊥ is not the same as A, as is the case in
classical linear logic. The system FILL has arisen from its categorical model, the Dialectica
construction [dP89], which can be seen as a variant of the Chu construction [Bar96].

Weakly distributive categories [CS97] with a right adjoint to the tensor product but
without negation provide another sound and complete model for FILL. Furthermore, for
every weakly distributive category modelling FILL one can identify a *-autonomous sub-
category which models classical linear logic. This subcategory corresponds to all objects
for which ¬¬A and A are isomorphic. This shows that FILL can be seen as classical linear
logic without involutive negation.

A sequent-style calculus for FILL has been presented in [BdP98]. Our natural deduction
formulation of FILL is based on Pym and Ritter’s extension [RP01] of Parigot’s λµ natural
deduction system [Par92] for (propositional) classical logic. Their extension, called λµν,
was used to provide a term calculus for a multiplicative version of disjunction in classical
logic. We provide a term-calculus for FILL based on λµν, which we call FILLµ and prove
its basic proof-theoretical properties.

We first recall the system FILL, in its sequent-style formulation due to Braüner and
de Paiva [BdP98]. Then we recap the main ideas of Parigot’s system λµ, as well as
Pym and Ritter’s extension λµν. In the next section we introduce our natural deduction
term calculus for FILL, based on λµ, called FILLµ and prove its main proof theoretical
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properties. Finally we show that the relationship between FILLµ and FILL is as expected:
all derivations of the sequent calculus FILL can be seen as terms of the FILLµ calculus.
Conversely all decorations can be removed from FILLµ-terms to yield sequent-calculus
FILL derivations.

2. The system FILL

The system FILL is a variant of (multiplicative) linear logic proposed in [HdP93] whose
logical connectives are all independent, that is, they are not interderivable, as they are in
(multiplicative) classical linear logic. The relationship between FILL and classical linear
logic is somewhat analogous to the relationship between intuitionistic logic and classical
logic. In classical logic all the connectives can be expressed in terms of implication and
negation, whereas in intuitionistic logic, conjunction, disjunction and implication are all
independent connectives. Only negation is defined in terms of implication and the constant
⊥ for falsum. In FILL the linear negation A⊥ is defined as A−◦⊥ and it is not an involution,
thus A ` A⊥⊥ but not vice-versa, as is the case in classical linear logic.

Hyland and de Paiva only deal with the multiplicative fragment of FILL. We will
do the same here, but following the dependency-style formulation of Braüner and de
Paiva [BdP98]. Formulae of FILL are defined by the grammar:

S ::= S ⊗ S | I | SOS | ⊥ | S−◦S

The sequent calculus rules for FILL are as follows, where the asterisk ∗ in the implica-
tion right rule indicates the side-condition that A does not depend on any formula in ∆
(see below).

A ` A
Γ, A,B ` ∆

⊗L
Γ, A⊗B ` ∆

Γ ` A,∆ Γ′ ` B,∆′

⊗R
Γ,Γ′ ` A⊗B,∆,∆′

Γ ` ∆
IL

Γ, I ` ∆
IR

` I

Γ, A ` ∆ Γ′, B ` ∆′

OL
Γ,Γ′, AOB ` ∆,∆′

Γ ` A,B,∆
OR

Γ ` AOB,∆

⊥L
⊥ `

Γ ` ∆
⊥R

Γ ` ⊥,∆

Γ ` A,∆ Γ′, B ` ∆′

−◦L
Γ,Γ′, A−◦B ` ∆,∆′

Γ, A ` B,∆
−◦R*

Γ ` A−◦B,∆



32 VALERIA DE PAIVA AND EIKE RITTER

To explain the side-condition on the implication right rule, we need a notion of depen-
dency, relating formulae occurrences. Basically we must define, given a proof of a sequent
Γ, B ` A,∆, in classical linear logic when the succedent formula occurrence A depends
on the antecedent formula occurrence B. This notion of dependency between formulae
occurrences in the sequent, when properly defined, allows us to express the constructive
property that characterizes FILL. Intuitively we can say that “genuine” dependencies
start in axioms, constants do not introduce dependencies and dependencies “percolate”
through a proof as expected. The formal definition of the set of dependencies Depτ (A)
in a proof [BdP98] is recalled in the appendix.

Summing up: the implication right rule in classical linear logic (like the one in clas-
sical logic) allows any (linear) implications whatsoever. The implication right rule in
intuitionistic linear logic enforces the existence of a single conclusion on the sequent. The
implication right rule for FILL is more liberal than a single formula in the consequent, but
more restricted than the classical linear logic rule.

3. The system λµν

The λµ-calculus was introduced by Parigot [Par92] and extended to deal with multiplica-
tive disjunction by Pym and Ritter [RPW00a, RPW00b]. In this section, we briefly recap
both λµ and Pym and Ritter’s extension λµν.

The original λµ-calculus provides a term calculus for the implicational fragment of
classical propositional natural deduction: i.e., realizers for a calculus in which multiple
conclusioned sequents can be derived. The typing judgements in the λµ-calculus are of
the form Γ ` t:A , ∆, where Γ is a context familiar from the typed λ-calculus and ∆ is
a context containing types indexed by names, α, β, . . . , distinct from variables. These
types are written as Aα, etc.. The relationship of this typing judgement with classical
logic, the “propositions-as-types correspondence”, is simply stated as follows: there is a
term t such that the judgement

x1:A1, . . . , xm:Am ` t:A,Bβ1

1 , . . . , B
βn
n

is provable in the λµ-calculus if and only if

A1 ∧ . . . ∧ Am ∧ ¬B1 ∧ . . . ∧ ¬Bn → A

is a classical propositional tautology.

The intuition for this term calculus is that each λµ-sequent has exactly one active, or
principal, formula, A, on the right-hand side, i.e., the leftmost one, which is the formula
upon which all introduction and elimination rules operate. This formula is the type of
the term t. The basic grammar of λµ terms is as follows:

t ::= x | λx:A . t | tt | [α]t | µα . t.
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The corresponding inference rules of the λµ-calculus are given below.

Γ, x:A ` x:A,∆ Ax

Γ, x:A ` t:B,∆
Γ ` λx:A.t:A→ B,∆

→ I
Γ ` t:A→ B,∆ Γ ` s:A,∆

Γ ` ts:B,∆ → E

Γ ` t:A,∆
Γ ` [α]t:⊥, Aα,∆

freeze
Γ ` t:⊥, Aα,∆
Γ ` µα.t:A,∆ unfreeze

In the rules freeze and unfreeze the type-name pair Aα may already be contained in
∆. If it is, the rule freeze models contraction and the rule unfreeze models weakening on
the right hand side of the sequent. A context Γ is a set of pairs x:A, where x is a variable
and A is a type, and a context ∆ is a set of pairs Aα, where A is a type and α a name.
We require that no name and no variable occurs twice in any given context.

The term [α]t realizes the introduction of a name. The term µα.[β]t realizes the
exchange operation:

Γ ` t:B,Aα,∆

Γ ` µα.[β]t:A,Bβ,∆
Exchange

i.e., if Aα was part of “side-context” of the succedent before the exchange, then A is
the principal formula of the succedent after the exchange. Taken together, these terms
also provide a notation for the realizers of contractions and weakenings on the right of a
multiple-conclusioned calculus. It is easy to detect whether a formula Bβ in the right-
hand side of the sequent is, in fact, superfluous, i.e., there is a derivation of Γ ` t:A,∆′

where ∆′ does not contain B. The formula B is superfluous if β is not a free name in t.
The negation of a formula A is modelled in the λµ-calculus as A→ ⊥, and the two rules
for ⊥ express the fact that ⊥ can be added and removed to the succedent at any time.

Pym and Ritter’s variation on λµ presented below has two aspects. Firstly, in addition
to implicational types, they include both conjunctive (product) and disjunctive (disjoint
sum) types. The addition of the conjunctive types follows the standard method for adding
products to the simply-typed λ-calculus and is omitted. The addition of disjunctive types
requires a more subtle approach. The key point in the addition of disjunctive types is
naturally explained in the setting of the multiple-conclusioned sequent calculus. Their
formulation, based on that found in Gentzen’s classical sequent calculus LK [Gen34] and
also in Dummett’s multiple-conclusioned intuitionistic sequent calculus [Dum80] exploits
the presence of multiple conclusions via the introduction rule for disjunctions.

Γ ` A1, A2,∆

Γ ` A1 ∨ A2,∆
.

For the λµ-calculus, the latter formulation presents a new difficulty. Suppose the
λµ-sequent

Γ ` t:A,Bβ,∆
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is to be the premiss of the ∨I rule. In forming the disjunctive active formula A ∨ B, we
move the named formula Bβ from the context to the active position. Consequently, ∨I is
formulated as a binding operation and we introduce the following additional constructs,
to form the grammar of λµν-terms:

t ::= 〈β〉t | νβ . t.

The term νβ . t introduces a disjunction and the term 〈β〉t eliminates one. The associated
inference rules are given by

Γ ` t:A,Bβ,∆
Γ ` νβ.t:A ∨B,∆ ∨ I Γ ` t:A ∨B,∆

Γ ` 〈β〉t:A,Bβ,∆
∨ E

The definition of the reduction rules requires not only the standard substitution t[s/x],
but also a substitution for names t[s/[α]u], which intuitively indicates the term t with all
occurrences of a subterm of the form [α]u replaced by s.

Parigot gives only reduction rules for β-reduction. Pym and Ritter also provide η-
rules as expansions, meaning that each term of functional type is transformed into a
λ-abstraction, each term of product type into a pair and each term of sum type into a
term νβ.t′. These η-rules generate critical pairs which give rise to additional reduction
rules. All the reduction rules are collected in the appendix.

The system described by Pym and Ritter satisfy two key properties of reduction sys-
tems: namely confluence and strong normalization. Local confluence is the property that
any two one-step reducts of a term have a common reduct and confluence is the property
that any two reducts of a term have a common reduct. Normalization is the property that
any term has a terminating reduction sequence and strong normalization is the property
that all reduction sequences for any given term terminate. Both local confluence and
strong normalization were proved by Pym and Ritter in the paper cited.

4. A natural deduction system for FILL

We use the λµ-calculus as a blueprint to provide a natural deduction version for FILL,
which we call FILLµ. Since the λµ-calculus calculus was originally developed for classical
logic, we need a modification to be able to use it for FILL. FILL arises from classical
linear logic via a restriction, that is similar to the one turning intuitionistic logic into
a subsystem of classical logic, discussed in [RPW00a]. The main difference between
classical and intuitionistic (propositional) systems is the implication right rule, where
the intuitionistic restriction is that the right-hand side consists of a single formula and
the classical rule has no restrictions. Hence a classical derivation is intuitionistic if for
all instances of the implication right rule all side formulae on the right-hand side of the
sequent arise by weakening. In Pym and Ritter [RPW00a] a syntactic criterion for a
λµ-term to satisfy this condition is given. They define a notion of weakening occurrence
of a λµ-name, with the intention that if a name has got only weakening occurrences in a
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term, the corresponding formula in the right-hand side arises by weakening. For FILLµ we
have to capture dependencies rather than terms which arise by weakening or not. Hence
we decorate types with the list of variables which they depend on and restate the linear
implication right rule accordingly.

As a consequence FILLµ has judgements of the form

Γ `M :Aσ, α1:A
σ1
1 , . . . , αn:Aσn

n

where σ, σ1, . . . stand for decorations on types and α . . . for names. As we need to keep
track of how dependencies are propagated, the decorations are not only variables but are
given by the grammar

σ ::= x | λx.σ | σσ | σ⊗σ | Fst(σ) | Snd(σ) | σOσ | l(σ) | r(σ) | nodep

We have the following reduction relation on decorations:

(λx.τ)σ ; τ [σ/x]
Fst(σ⊗τ) ; σ
Snd(σ⊗τ) ; τ
l(σOτ) ; σ
r(σOτ) ; τ

Decorations can be seen as terms in a suitable simply-typed λ-calculus. Hence there exists
a unique normal form for decorations. ¿From now on, we assume that all decorations are
in normal form.

The typing judgements of FILLµ are the following ones:

x:A ` x:Ax

Γ, x:A `M :Bτ ,∆
Γ ` λx:A.M : (A−◦B)λx.τ ,∆

x 6∈ NF (∆)

Γ1 `M1: (A−◦B)σ Γ2 `M2:B
τ ,∆1

Γ1,Γ2 `MN :Bστ ,∆1,∆2

Γ1 `M1:A
σ,∆1 Γ2 `M2:B

τ ,∆2

Γ1,Γ2 `M⊗N : (A⊗B)σ⊗τ ,∆1,∆2

Γ1 `M1:A⊗Bσ,∆1 Γ2, x:A, y:B `M2:C
τ ,∆2

Γ1,Γ2 ` letM be x⊗y in N : (C,∆2)
[Fst(σ)/x,Snd(σ)/y],∆1

` ∗: Inodep

Γ1 `M : Iσ,∆1 Γ2 ` N :Aσ,∆2

Γ1,Γ2 ` letM be ∗ in N :Aσ,∆1,∆2
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Γ1 `M :Aσ, α:Bτ ,∆
Γ ` να.M : (AOB)σOτ ,∆

Γ `M : (AOB)σ,∆
Γ ` 〈α〉M :Al(σ), α:Br(σ),∆

α 6∈ ∆

Γ `M :Aσ,∆
Γ ` [α]M :⊥nodep, α:Aσ,∆

Γ `M :⊥σ, α:Aτ ,∆
Γ ` µα.M :Aτ ,∆:

The important restriction in the typing rules is the side condition x 6∈ NF (∆) in the linear
implication right rule, meaning that the variable x does not appear in the decorations of
∆. This condition captures the essence of FILL: the formulae in ∆ do not depend on the
formula A.

The definition of the reduction rules requires not only the standard substitution t[s/x],
but also a substitution for names t[s/[α]u], which intuitively indicates the term t with all
occurrences of a subterm of the form [α]u replaced by s. To define this notion, we need
the notion of a term with holes. Such a term C with holes of type A is a FILLµ-term which
may have also the additional term constructor with the rule Γ ` :A,∆. The term C(u)
denotes the term C with the holes textually (with possible variable capture) replaced by
u. Then we define t[C(u)/[α]u], where α is a name and u is a metavariable, by

x[C(u)/[α]u] = x
([α]t)[C(u)/[α]u] = C(t[C(u)/[α]u])

(〈α〉t)[[C(u)/[α]u]] = µγ.C(µα.[γ]〈α〉t[C(u)/[α]u])

and define t[C(u)/[α]u] on all other expressions t by pushing the replacement inside.
We need the usual substitution lemma for the FILLµ-calculus. As we have not only

substitution for variables, but also for names, we obtain several cases for the lemma, in
the same way as in the λµν-calculus.

4.1. Lemma.

(i) Assume Γ1, x:A ` M :B,∆1 and Γ2 ` N :Aσ,∆2. Then we have also Γ1,Γ2 `
M [N/x]: (B,∆1,∆2)[σ/x].

(ii) Assume Γ1 `M :A,α: (B−◦C)σ,∆1 and Γ2 ` N :Bτ ,∆2. Then we have also Γ1,Γ2 `
M [[β]RN/[α]R]:A, β:Cστ ,∆1,∆2).

(iii) Assume Γ1 ` µα.M : (A⊗B)σ,∆1 and

Γ2, x:A, y:B ` N : (C,∆2)[Fst(σ)/x, Snd(σ)/y] .

Then also Γ1,Γ2 ` µβ.M [[β]let R be x⊗y in N/[α]R]:C,∆1,∆2.

(iv) Assume Γ `M :A,α: (BOC)σ,∆1. Then we have also

Γ `M [[β]〈γ〉N/[α]N ]:A, β:Bl(σ), γ:Cr(σ),∆ .
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Proof. Induction over the structure of M .

We have the following reduction rules in addition to the standard β-reduction rules:

(µα.M)N ; M [[β]UN/[α]U ]
〈β〉µα.M ; M [[γ]〈β〉N/[α]N ]

(letM be x⊗y in N)R ; letM be x⊗y in NR
〈α〉(letM be x⊗y in N) ; letM be x⊗y in 〈α〉N

let letM1 be x1⊗y1 in N1 be x2⊗y2 in N2 ; letM1 be x1⊗y1

in let N1 be x2⊗y2 in N2

µα.letM be x⊗y in N ; letM be x⊗y in µα.N
if α 6∈ FN(M)

These rules correspond to commuting conversions in the sequent calculus which are nec-
essary to obtain cut-elimination. We will call these rules ζ-rules, and we will use the term
βζ-reduction for a β-or a ζ-reduction.

Now we can show the property usually called subject reduction.

4.2. Proposition. Assume M is a FILLµ-term, and M ; N . Then N is also a FILLµ-
term.

Proof. Consider each reduction in turn. All β-rules are done via the appropriate sub-
stitution lemma.

Now we turn to the proof that FILLµ with the βζ-reductions is strongly normalising
and confluent. The strong normalisation and confluence of λµ-calculus is instrumental in
this proof, as is the subject reduction for FILLµ.

4.3. Theorem. The calculus FILLµ with βζ-reductions is strongly normalising and con-
fluent.

Proof. We start by showing strong normalisation. Firstly, we define an embedding of
FILLµ into the λµν-calculus by replacing a tensor term M⊗N with the product term
〈M,N〉 and the term let M be x⊗y in N with the substitution N [π(M)/x, π′(M)/y].
This embedding only creates more β-redexes, and two terms which are equal modulo ζ-
redexes are mapped to equal λµν-terms. Hence any infinite sequence of βζ-reductions
contains only a finite number of β-reductions, and there is a term M such that all further
reductions are ζ-reductions. Secondly, we define a weight of a syntax tree by assigning
2 to all nodes except a let-node, which is assigned the weight 1. The weight of a tree
where the left-hand side has weight w1, the right-hand side has weight w2 and the node
has weight w, is w+ 2w1 +w2. It is now easy to see that the weight of the left-hand side
of any ζ-rule is bigger than the weight of the right-hand side. The fact that the weight
of the left-hand side is higher than the weight of the right-hand side ensures that the
left-hand side of rules which push let-constructors from the left-hand side of the syntax
tree to the right-hand side of the syntax tree has a higher weight than the right-hand side
of such a rule. The lower weight of the let-constructors ensures that also the left-hand
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side of rules which push let-constructors down the syntax tree has a higher weight than
the right-hand side. Hence there is no infinite sequence of ζ-reductions. Hence there is
also no infinite sequence of βζ-reductions.

Now we turn to confluence. Local confluence can be shown by considering all critical
pairs, and strong normalization then implies confluence.

5. Relating FILL and FILLµ

Next we show that FILLµ proves exactly the same theorems as FILL. For this, we show
how to translate FILLµ-derivations to λµ-calculus-terms. We do this by induction over
the structure of FILLµ-derivations. Note that as FILL is given by a sequent calculus, this
translation does a translation from a sequent calculus into natural deduction as well.

In the translation below the decorations are ignored. The reason is that they are not
necessary for the definition of the translation but only to ensure that the result of the
translation of a FILL-derivation is a FILLµ-term.

We shall use the following notation: if φ is a derivation whose last rule is R applied
to the derivations φ1, . . . , φn, we write (φ1, . . . , φn);R for φ.

5.1. Definition. Let φ: Γ ` A,∆ be a FILL sequent derivation and suppose that each
occurrence of a formula in Γ and ∆ has a label, i.e., the contexts Γ and ∆ satisfy Γ =
x1:A1, . . . , xn:An and ∆ = Bβ1

1 , . . . , B
βm

m . (These labels turn into variables and names in
the FILLµ-calculus, hence we also use them for the derivations.) We define a FILLµ-term
φfl satisfying Γ ` φfl:A,∆ by induction over the structure of φ as follows (note the clause
for the exchange rule):

Axiom: Suppose φ : x:A ` A,∆ is an axiom, then φfl def
= x;

Exchange: Suppose φ: Γ ` A,Bβ,∆, and

φ′ = φ; exc: Γ ` B,Aα,∆.

We define φ′fl to be µβ.[α]φfl, where α is a name which does not occur freely in φfl;

⊗L: Suppose we have the derivation

φ: Γ, x:A, y:B ` A,∆
⊗L,

φ;⊗L: Γ, z:A⊗B ` A,∆

then the corresponding λµ-term is

φ;⊗Lfl def
= let x⊗y be z in φfl;
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⊗R: Suppose we have the derivation

φ: Γ1 ` A,∆1 ψ: Γ2 ` B,∆2
⊗R,

(φ, ψ); R: Γ1,Γ2 ` A⊗B,∆1,∆2

then we define

(φ, ψ);⊗Rfl def
= φfl⊗ψfl;

I L: Suppose we have the derivation

Γ ` ∆
I L

Γ, I ` ∆

then we define

φ; I Lfl def
= let x be ∗ in φfl ;

I R: Suppose we have the derivation
I R

` I
then we define

I Rfl def
= ∗ ;

−◦L: Suppose we have the derivation

φ: Γ1 ` A,∆1 ψ: Γ2, w:B ` C,∆2
−◦L

(φ, ψ);−◦L: Γ1,Γ2, x:A−◦B ` C,∆1,∆2

then we define (φ, ψ);−◦Lfl to be ψfl[xφfl/w];

−◦R: Suppose we have the derivation

φ: Γ, x:A ` B,∆
−◦R

φ;−◦R: Γ ` A−◦B,∆

then we define [[φ;−◦R]] to be λx:A.[[φ]];

OR: Assume we have a derivation

φ: Γ ` A,Bβ,∆

φ; OR: Γ ` AOB,∆

then we define φ; ORfl = νβ.[[φ]];
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OL: Assume we have a derivation

φ1: Γ1, x:A ` ∆1 φ2: Γ2, y:B ` ∆2
OL

(φ1, φ2); OL: Γ1, z:AOB ` ∆1,∆2

Then (φ1, φ2; OL)fl is the FILLµ-term

φfl
1 [µα.[γ][µβ.[α]〈β〉z/y]/x] ;

⊥L: Suppose we have the derivation
⊥ L

⊥ `
then we define

⊥ Lfl def
= µα.x ;

⊥R: Suppose we have the derivation

Γ ` ∆
⊥ R

Γ ` ⊥,∆

then we define

φ;⊥Rfl def
= [α]φfl .

So far we have not used the decorations at all, neither for FILL nor for FILLµ. They
are important when we show that the translation of a FILL-derivation is a FILLµ-term. In
particular, the restriction of the −◦R-rule is captured by the side condition of the rule for
λ-abstraction of FILLµ.

5.2. Theorem. Assume φ: Γ ` ∆ is a FILL-derivation. Then φfl is a FILLµ-term.

Proof. Induction over the derivation.

As an example for a FILL-derivation which is not an intuitionistic derivation consider
the derivation

u:A ` Au v:B ` Bv

OL
z:AOB ` Al(z), Br(z) x:C ` Cx

⊗R
z:AOB, x:C ` (A⊗C)l(z)⊗x, Br(z)

` R
z:AOB ` (C−◦(A⊗C))λx.l(z)⊗x, Br(z)

The corresponding FILLµ-term is

z:AOB ` λx.(〈β〉z)⊗x: (C−◦(A⊗C))λx.l(z)⊗x, β:Br(z)

The crucial point is that the name β depends only on z and not on x. This ensures that
this term is a FILLµ-term. This derivation is not an intuitionistic derivation, which can
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be derived syntactically from the fact that the operator 〈β〉 is applied to a variable. This
means that there is a second formula on the RHS when the −◦R-rule is applied.

In the other direction, we define a translation from FILLµ-terms to FILL-derivation by
induction over the structure of FILLµ-terms. Again, the decorations are not used in the
definition of the translation, only in the proof that the translation transforms FILLµ-terms
to FILL-derivations.

x: Assume x:A ` x:A. Then the derivation xlf is given by

A ` A ;

µα.M : Assume M lf = φ: Γ ` ⊥, A,∆. Then µα.M lf is the derivation

φ

Γ ` ⊥, A,∆
⊥L

⊥ `
cut ;

Γ ` A,∆

[α]M : Assume M lf = φ: Γ ` A,∆. Then [α]M lf is the derivation

φ

Γ ` A,∆
⊥R ;

Γ ` ⊥, A,∆

λx:A.M : Assume M lf = φ: Γ, A ` B,∆. Then λx:A.M lf is the derivation

φ
Γ ` A−◦B,∆ −◦R;

MN : Assume M lf = φ, N lf = ψ, Γ1 ` M :A−◦B,∆1 and Γ2 ` N :A,∆2. Then MN lf is
the derivation

φ

Γ1 ` A−◦B,∆1

Γ2 ` A,∆2

A ` A B ` B
−◦L

A−◦B,A ` B

Γ2, A−◦B ` B,∆2
cut ;

Γ1,Γ2 ` B,∆1,∆2

M⊗N : Assume M lf = φ: Γ1 ` A,∆1, and N lf = ψ: Γ2 ` B,∆2. Then M⊗N lf is the
derivation

Γ1 ` A,∆1 Γ2 ` B,∆2
⊗R ;

Γ1,Γ2 ` A⊗B,∆1,∆2
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letM be x⊗y in N : Assume that M and N satisfy M lf = φ: Γ1 ` A⊗B,∆1, and N lf =
ψ: Γ2, A,B ` C,∆2. Then letM be x⊗y in N lf is the derivation

φ

Γ1 ` A⊗B,∆1

Γ2, A,B ` C,∆2
⊗L

Γ2, A⊗B ` C,∆2
cut ;

Γ1,Γ2 ` C,∆1,∆2

∗: ∗lf = I R;

letM be ∗ in N : Assume M lf = φ: Γ1 ` I,∆1, and N lf = ψ: Γ2 ` A,∆2. Then
letM be ∗ in N lf is the derivation

φ

Γ1 ` I,∆1

Γ2 ` C,∆2
I L

Γ2, I ` C,∆2
cut ;

Γ1,Γ2 ` C,∆1,∆2

να.M : Assume M lf = φ: Γ ` A,B,∆. Then να.M lf is the derivation

φ
OR ;

Γ ` AOB,∆

〈α〉M : Assume M lf = φ: Γ ` AOB,∆. Then 〈α〉M lf is the derivation

φ

Γ ` AOB,∆

A ` A B ` B
OL

AOB ` A,B
cut .

Γ ` A,B,∆

We have the expected theorem:

5.3. Theorem. Assume Γ `M :A,∆ is FILLµ-term. Then the derivation M lf is a FILL-
derivation.

Proof. Induction over the structure of M .

6. A sound semantics for FILLµ

So far we have only established that FILL and FILLµ are logically equivalent, i.e., they
prove the same theorems. In this section we show that they are not equivalent as far as
proofs are concerned. The reason is that the ν-construction in FILLµ does not provide
co-products. In fact, in [RP01] we show that if the ν-construction is a co-product, then
the calculus is trivial in the sense that in any semantic model all terms of the same type
are interpreted by the same element in the model.
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However, we can show that weakly distributive categories with a right adjoint to the
tensor product but without negation (which we call full linear categories) are a sound
model of the FILLµ-calculus. The reason is that the handling of dependencies which was
crucial for the semantics of FILL also works for FILLµ.

We now present the soundness proof, following closely [HdP93]. We repeat here the
notion of independence from [HdP93].

6.1. Definition. Suppose that we have a map of the form f :A⊗B → COD in a weakly
distributive category L. We say that the object C is independent of B (for f) if there
exists an object E of L and maps g:A→ COE and h:E⊗B → D such that the composite
(1COh)◦δ◦(g⊗1B) is equal to f , where δ is the weak distributivity with domain (COE)⊗B
and co-domain CO(E⊗B).

Now we show that this notion of independence is compatible with linear function
spaces.

6.2. Lemma. Suppose we have a map f :A⊗B → COD in a full linear category L. If C
is independent of B for f , then there exists a morphism f :A→ CO(B−◦D).

The operation f 7→ f is crucial for defining the categorical semantics of λ-abstraction.
However, we need another lemma, which states that this operation preserves other inde-
pendences.

6.3. Lemma. Suppose we have a map f :A⊗B⊗C → DOEOF in a full linear category
L. Suppose also that DOE is independent of C for f so that we have a map f :A⊗B →
DOEO(C−◦F ). Then

(i) If F is independent of B for f , then C−◦F is independent of B for f ;

(ii) If E is independent of B for f , then E is independent of B for f .

Now we can define the semantics of FILLµby induction over the structure of derivations.
The clause for λ-abstraction requires a lemma to show that this definition is well-formed.
We do this immediately afterwards.

6.4. Definition. By induction over the structure of derivations, we define the semantics
of FILLµin a weakly distributive category as follows:

Types: The type constructors of FILLµare modelled by the corresponding categorical con-
structions;

x: [[x]] = Id;

⊗: Assume [[t1]] = f : Γ1 → A1 and [[t2]] = f2: Γ1 → A2. Then define [[t1⊗t2]] to be

Γ1⊗Γ2
f1⊗f2−→ (A1O∆1)⊗(A2O∆2)

δ−→ (A1⊗(A1O∆2))O∆1
π◦(δO1)−→ (A1⊗A2)O∆1O∆2 ;
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let t be a⊗b in s: Assume [[t]]: Γ1 → A⊗B,∆1 and [[s]]: Γ2⊗A⊗B → CO∆2. Then
[[let t be a⊗b in s]] is defined as

Γ1⊗Γ2
[[t]]⊗1−→ ((A⊗B)O∆1)⊗Γ2

δ−→ ∆1O(A⊗B⊗Γ2)
1O[[s]]−→ CO∆1O∆2 ;

λ-abstraction: Assume [[t]]: Γ⊗A→ BO∆. Define [[λa:A.t]] to be [[t]];

ts: Assume [[t]]: Γ1 → (A−◦B)O∆1 and [[s]]: Γ2 → AO∆2. Then define [[ts]] to be

Γ1⊗Γ2
[[t]]⊗[[s]]−→ (A−◦BO∆1)⊗(AO∆2)

δ−→ ((A−◦BO∆1)⊗A)O∆2
δO1−→ (A−◦B⊗A)O∆1O∆2

AppOId−→ BO∆1O∆2 ;

µα.t: Assume Γ ` t:⊥, α:Bτ ,∆. Then [[µα.t]] is defined to be the morphism u◦ [[t]], where
u is the unit of O;

[α]t: Assume Γ ` t:A,∆. Then [[[α]t]] is defined to by u−1 ◦ [[M ]];

να.t: [[να.t]] = [[t]];

〈α〉t: [[〈α〉t]] = [[t]].

Well-definedness of the semantics requires the following lemma, which shows that the
category-theoretic notion of independence captures the syntactic notion of independence
in FILLµ.

6.5. Lemma. Assume Γ, x:C ` t:A,∆, and assume also that x does not appear in ∆.
Then ∆ is independent for C in [[t]].

Proof. Induction over the structure of t. Lemmata 6.2 and 6.3 are used for the λ-
abstraction.

Now the soundness proof is routine.

6.6. Theorem.

(i) Assume Γ ` t:A,∆. Then [[t]] is a morphism from [[Γ]] to [[A]]O[[∆]];

(ii) Assume t = s. Then also [[t]] = [[s]].

Proof. Induction over the derivation.
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7. Conclusions

We have shown how to produce a Natural Deduction formulation for FILL, called FILLµ,
using a modification of Pym and Ritter’s λµν-calculus, itself an extension of Parigot’s
λµ-calculus.

The process of transforming Parigot’s λµ-calculus into Pym and Ritter’s λµν-calculus
and finally into FILLµ-terms is complicated, but it works and provides a Curry-Howard
correspondence for full intuitionistic linear logic. We can prove not only the essential
properties of subject reduction and strong normalization for the FILLµ-calculus but also
that this really corresponds to the original (sequent-style) formulation of FILL. But given
the somewhat convoluted process, we wonder if something simpler might work as well.
This is part of our proposal for future work.

The interested reader may wonder how the terms of the FILLµ-calculus relate to the
terms of the classical linear λ-calculus, described by Bierman[Bie99]. The classical linear
λ-calculus also arises from considering Parigot’s ideas in the context of linear logic. But
since Bierman is dealing with classical linear logic, he can adapt Parigot’s ideas more
directly. We believe, and this must be checked, that restricting FILLµ to classical linear
logic we obtain a calculus equivalent to the classical linear λ-calculus.

Two other question also suggest themselves. Firstly, since the restriction that charac-
terizes FILL was also considered recently by Crolard [Cro04], in the context of modelling
co-routines that do not access the local environment of other co-routines, we wonder
whether our new term assignment for FILL can be used to model linear co-routines with
the same non-interfering property. Secondly, Pratt [Pra03] presents a calculus for Chu-
spaces which has two kinds of variables with equal status, one for (positive) assumptions
and for (negative) evidence against a formula. He shows that this so-called “dialectic
calculus” captures proofs of bi-implicational mulplicative linear logic but does not present
reduction rules for this calculus. It would be interesting to check how this dialectic cal-
culus relates to our FILLµ calculus.

Appendix A: Dependencies in FILL

.1. Definition. Let τ be a proof in CLL whose end-sequent is Γ ` ∆ and where A is
a formula occurrence in ∆. The immediate subproofs of τ are denoted by τi. We define
the set Depτ (A) (the formulae occurrences of Γ that A depends on, in the proof τ) by
induction on τ . The definition is by cases in accordance with the table in Figure 1.

If the derivation τ ends in the sequent Γ ` ∆, and B and A are formula occurrences
in Γ and ∆ respectively, then we say that A depends on B in τ iff B ∈ Depτ (A). If τ and
τ ′ are two derivations ending in the sequent Γ ` ∆ in CLL, we say that the end-sequent
of τ has the same dependencies as the end-sequent of τ ′ iff we for any formula occurrence
C in Γ and any formula occurrence A in ∆, we have that A depends on C in τ iff A
depends on C in τ ′. Similarly say that the end-sequent of τ has fewer dependencies than
the end-sequent of τ ′ iff we for any formula occurrence C in Γ and any formula occurrence
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Ax
A ` A

Depτ (A) = A

Γ ` B, ∆ Γ′, B ` ∆′

Cut
Γ′,Γ ` ∆′,∆

Depτ (A) =
{

Depτ1(A) if A ∈ ∆
Depτ2(A)[{B} 7→ Depτ1(B)] if A ∈ ∆′

Γ, B, C ` ∆
⊗L

Γ, B ⊗ C ` ∆
Depτ (A) = Depτ1(A)[{B,C} 7→ {B ⊗ C}]

Γ ` B, ∆ Γ′ ` C,∆′

⊗R
Γ,Γ′ ` B ⊗ C,∆,∆′

Depτ (A) =


Depτ1(A) if A ∈ ∆
Depτ2(A) if A ∈ ∆′

Depτ1(B) ∪Depτ2(C) if A = B ⊗ C

Γ ` ∆
IL

Γ, I ` ∆
Depτ (A) = Depτ1(A)

IR
` I

Depτ (I) = ∅

Γ, B ` ∆ Γ′, C ` ∆′

OL
Γ,Γ′, BOC ` ∆,∆′

Depτ (A) =
{

Depτ1(A)[{B} 7→ {BOC}] if A ∈ ∆
Depτ2(A)[{C} 7→ {BOC}] if A ∈ ∆′

Γ ` B,C, ∆
OR

Γ ` BOC,∆
Depτ (A) =

{
Depτ1(A) if A ∈ ∆
Depτ1(B) ∪Depτ1(C) if A = BOC

⊥L
⊥ `

nothing to define

Γ ` ∆
⊥R

Γ ` ⊥,∆
Depτ (A) =

{
Depτ1(A) if A ∈ ∆
∅ if A = ⊥

Γ ` B, ∆ Γ′, C ` ∆′

−◦L
Γ,Γ′, B−◦C ` ∆,∆′

Depτ (A) =


Depτ2(A)[{C} 7→ {B−◦C} ∪Depτ1(B)]

if A ∈ ∆′

Depτ1(A)
if A ∈ ∆

Γ, B ` C,∆
−◦R

Γ ` B−◦C,∆
Depτ (A) =

{
Depτ1(A)[{B} 7→ ∅] if A ∈ ∆
Depτ1(C)[{B} 7→ ∅] if A = B−◦C

Figure 1: Definition of dependencies Depτ (A)
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A in ∆ have that A depends on C in τ entails that A depends on C in τ ′.

Appendix B: Reduction rules of the λµν-calculus

β (λx:A.t)s ; t[s/x]
η→ t ; λx:A.tx
ζ⊃ (µαA→B.t)s ; µβB.t[[β]us/[α]u]

(µαA→⊥.t)s ; t[us/[α]u]
ηµ µα.[α]s ; s if α not free in s
βµ [γ](µα.s) ; s[γ/α]
β∧ π(〈t, s〉) ; t

π′(〈t, s〉) ; s
η∧ t ; 〈π(t), π′(t)〉
ζ∧ π(µαA∧B.s) ; µβA.s[[β]π(u)/[α]u]

π(µα⊥∧B.s) ; s[π(u)/[α]u]
π′(µαA∧B.s) ; µγB.s[[γ]π′(u)/[α]u]
π′(µαA∧⊥.s) ; s[π′(u)/[α]u]

β∨ 〈β〉(να.s) ; s[β/α]
η∨ t ; να.〈α〉t
ζ∨ 〈β〉µγ.t ; µα.t[[α]〈β〉s/[γ]s]

〈β〉µγ⊥∨B ; t[〈β〉s/[γ]s]

Standard variable-capture are conditions assumed. In the η-rules we assume that t is
neither a λ-abstraction nor a product nor a term να.t′ and that t does not occur as the
first argument of an application, of a projection π or π′ or of some term 〈β〉 . In the η−◦-,
η∧- and η∨-rules. In the η→-, η∧- and η∨-rule we also assume that t is of function type,
product type and sum type respectively.
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