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DESCENT FOR MONADS

PIETER HOFSTRA AND FEDERICO DE MARCHI

Abstract. Motivated by a desire to gain a better understanding of the “dimension-
by-dimension” decompositions of certain prominent monads in higher category theory,
we investigate descent theory for endofunctors and monads. After setting up a basic
framework of indexed monoidal categories, we describe a suitable subcategory of Cat
over which we can view the assignment C 7→ Mnd(C) as an indexed category; on this
base category, there is a natural topology. Then we single out a class of monads which
are well-behaved with respect to reindexing. The main result is now, that such monads
form a stack. Using this, we can shed some light on the free strict ω-category monad on
globular sets and the free operad-with-contraction monad on the category of collections.

1. Introduction

The original motivation for the investigations presented here is a talk given by Eugenia
Cheng during the PSSL 79 meeting in Utrecht, 2003. (See the paper [Che04] for a first-
hand account.) She outlined an explicit construction for the free operad-with-contraction
on a collection. There are two monads on the category of collections, namely the free op-
erad monad and the free collection-with-contraction monad, and the construction amounts
to the formation of their coproduct. Given a collection X, the problem is to freely add
both operadic and contraction structure to X. The collection X itself can be “truncated”,
by throwing away all dimensions higher than some given n. Similarly, both monads in
question can be restricted to the category of such n-dimensional collections. Now, we can
build the free algebra structure on X dimension-by-dimension: we truncate X at dimen-
sion 0, and apply in order the (restriction of) the free operad monad and the (restriction
of) the free contraction monad. Then, we move up and consider the 1-dimensional col-
lection whose 0-dimensional part consists of the result of the previous step, whereas its
1-dimensional part is that of X. To this, we apply the (restrictions of) both monads,
in the same order. Iterating the process, we give a description of the n-th dimension of
the free operad-with-contraction on X for every natural number n. Intuitively, we could
say that the category of collections admits a certain “decomposition”, which is respected
both by the free operad and the free collection-with-contraction monad.

We started wondering whether this picture could be formalised at a more abstract
level. In particular, what does it mean for a category to admit such a dimension-by-
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dimension decomposition? And what does it mean for a monad on such a category to be
defined “dimension-by-dimension”? More generally, given a category C and a family of
subcategories Di (which are thought of as giving a covering of C), when can a monad on
C be reconstructed from a family of monads on the Di’s?

The question found a natural formulation in terms of descent conditions. How can
we view monads as indexed over a suitable base category, and under which conditions
(and for which kind of topology on the base) is this indexed category a stack? Since the
examples we tried to understand were fairly specific (in that the categories involved there
are all presheaf toposes), completely general results were not to be expected. Indeed, in
order to make the assignment C 7→ Mnd(C) into an indexed category, several assumptions
on the categories involved and the functors between them are needed. Even though it
turns out that these assumptions are fairly restrictive, we think that the examples we
present make it worth considering them.

Of course, the questions we ask about monads are equally meaningful for endofunctors
and in fact, we can first study this (easier) case and later deduce the results for monads
by abstract methods.

The approach we took to the problem and its solution can be sketched in the following
way. First, we describe conditions on a sub-2-category of Cat that guarantee that the
assignment C 7→ End(C) becomes an indexed category. This indexed category will then
have several special features; namely, it will have indexed coproducts and be and monoidal,
in the sense that its fibres are monoidal categories (via the composition of endofunctors)
and reindexing functors are strong monoidal. By “taking monoids in each fibre”, we
obtain an indexed category C 7→ Mnd(C), whose descent problem, for abstract reasons,
reduces to the one for endofunctors.

At this point, we turn our attention to a specific topology, which canonically arises
on the base category, and ask whether the indexed category End(−) is a stack for this
topology. It turns out that, except for some degenerate cases, the answer to this question
is negative. However, we can single out a class of endofunctors having a certain stability
property, for which we can prove that they form not only an indexed monoidal category,
but even a stack for the topology on the base category. Moreover, the abstract machinery
developed before allows us to deduce that monads with the stability property also form a
stack. Finally, it will be seen that the introduced topology is unique with this property.

Intuitively, we can interpret these results as follows: the topology is defined in such a
way that, when a category C in the base is covered by a family R, this can be seen as a
decomposition of the category. The fact that stable endofunctors are of effective descent
for this family means that this geometrical property of the category C lifts to give an
analogous decomposition of stable endofunctors, and the same goes for monads.

The paper is structured as follows. We start off by explaining our terminology and
notations regarding 2-categories, indexed categories, and descent theory, in section 2.
In particular, we look at various presentations of categories of descent data in terms
of pseudo-limits. In section 3, we introduce the basic framework we will be working in,
namely that of indexed monoidal categories. We exhibit an elementary construction which
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takes an indexed monoidal category and produces an ordinary indexed category by taking
monoids in each fibre.

In section 4, we establish the results on descent categories for indexed monoidal cat-
egories which will be needed in the rest of the paper. This is the most technical part of
the paper, and details of the proofs can be skipped by the reader who is only interested
in the main results.

Section 5 focuses on the specific indexed monoidal category End(−). We find sufficient
conditions on the base category in order to actually make End(−) into an indexed category,
and to ensure cocompleteness. Passing to monoids will then give us the indexed category
Mnd(−). We conclude the section by introducing a topology on the base category, which
arises naturally by considerations on the trivial indexing of the base over itself.

In section 6, we study the property of stability, which enables us to view endofunctors
as a stack for the aforementioned topology. The contents of all these sections add up to
give the main results of this paper, which are collected in section 7. These say that stable
endofunctors and stable monads form a stack, and that the topology on the base category
is the only topology for which this is the case.

Finally, section 8 returns to our original motivation and shows that the free operad-
with-contraction can be understood in this manner.

In order to improve the digestibility of this technical work and to provide the reader
with a more concrete grip on the abstract concepts involved, we have also included a
running example, namely the free strict ω-category monad on the category of globular
sets.

2. Preliminaries and Notation

Throughout the paper, the following notation will be used: Cat denotes the 2-category
of small categories (but in general we shall tend to ignore all size issues). Its objects
will be denoted C, D, . . . , its arrows by x, y, . . . and the 2-cells by α, β, . . . The notation
MonCat will be used for the 2-category of (not necessarily strict) monoidal categories,
(lax) monoidal functors and monoidal transformations. At times, we shall restrict to
strong monoidal functors (i.e. monoidal functors for which the coherence maps are all
isomorphisms); then, we will use MonCats. If C is a monoidal category, we usually write
⊗ for the tensor product and I for the tensor unit. A monoid in C will be an object
X = (X, µ, ι) equipped with a multiplication µ : X ⊗ X → X and a unit ι : I → X,
subject to the usual monoid axioms.

As for indexed category-theoretical matters, we mostly follow the notation of [Joh02].
That is, we have a base category denoted S; its objects will be denoted J, K, L, . . . (but
not I, since we already reserved that for tensor units). In our applications, the base
category will actually be a 2-category, but the 2-categorical structure will not be used.
Usually, we assume our base category to have pullbacks: this is helpful in dealing with
descent categories. Pseudo-functors Sop → Cat are called S-indexed categories, and we
write C, D, . . . for them. If J is an object of the base category S, then the fibre of C over
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J will be denoted CJ . If x : J → K is a map in S, its image under an indexed category
C will be the reindexing functor x∗ : CK → CJ . If x∗ has a right (left) adjoint we will
write Πx (Σx) for it. An S-indexed category C is called complete if all fibres are finitely
complete, all reindexing functors have right adjoints and the Beck-Chevalley Condition
(BCC) is satisfied, i.e. if for each pullback square

L
v //

u

��

M

x

��

J y
// K

the canonical natural transformation x∗Πy → Πvu
∗ is an isomorphism. Similarly, C is

called cocomplete if all fibres are finitely cocomplete and reindexing functors have left
adjoints and satisfy the BCC, which this time means that, for each pullback as above, the
canonical map Σuv

∗ → y∗Σx is an isomorphism.
We write S−Cat for the 2-category of S-indexed categories, indexed functors and

indexed transformations (see [Joh02] for the relevant definitions).

When we speak of a pseudo-diagram in a 2-category M, we mean a pseudo-functor F
from a (small) category intoM. A pseudo-cone with vertex X over such a pseudo-diagram
is a pseudo-natural transformation ∆X → F , where ∆X is the constant functor with value
X. For fixed X, we have a category PsCone(X, F ) where the objects are pseudo-cones
over F with vertex X and arrows are modifications. We also recall that, in the case where
M = Cat, the pseudo-limit of such a pseudo-diagram F can be taken to be the category
PsCone(1, F ) of pseudo-cones over F with vertex 1, the terminal category.

We say that a pseudo-functor F : S → Cat is representable if it is equivalent (and not
necessarily isomorphic) to a one of the form S(A,−) for some object A. Representable
functors preserve all weighted limits (see [Str80, §1.20]). In the special case where the
weight is the terminal category, this means that representable functors preserve pseudo-
limits.

If C is an S-indexed category and R = {xγ : Jγ → K | γ ∈ Γ} is a collection of maps
in the base S with common codomain K, then we have a category Desc(R, C) of descent
data, described as follows. First, for each pair γ, δ ∈ Γ, we have a pullback in S

Lγδ
z=zγδ

//

y=yγδ

��

Jδ

xδ

��

Jγ xγ
// K.

Now, the objects of Desc(R, C) are systems ({Xγ}γ∈Γ, {fγδ}γ,δ∈Γ), or more briefly (Xγ, fγδ),
where Xγ is an object of CJγ , and fγδ : y∗(Xγ) → z∗(Xδ) is an isomorphism in the fibre
CLγδ . The fγδ are required to satisfy certain coherence conditions, usually referred to as
the unit and cocycle conditions; see [Joh02, Jan94, Jan97] for details.
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There is a canonical functor Θ = ΘR,C : CK → Desc(R, C), which sends an object X to
the family (x∗γX, fγδ), where fγδ is the isomorphism arising from the coherence of C as a
pseudo-functor. Also, for each γ ∈ Γ, there is a forgetful functor: Uγ : Desc(R, C) → CJγ .
These functors are related via the equality

x∗γ = Uγ ◦Θ : CK → CJγ . (1)

At a more abstract level, we can introduce Desc(R, C) as the pseudo-limit of the
composite

CR : Rop // (S/K)op // Sop C // Cat

where R is the full subcategory of the slice S/K on the objects M → K which factor
through a map in R, and where (S/K)op → Sop is the forgetful functor.

In other words, the category of descent data is PsCone(1, CR). This provides another
description of Desc(R, C), where objects are systems (αγ ∈ CJγ ) for any xγ : Jγ → K in
R, together with isomorphisms αf : f ∗(αγ) → αδ where f runs over all maps f : Jδ → Jγ

such that xδ = xγ ◦f . Of course, these αf are supposed to satisfy the coherence conditions
α1 = 1, αfαg = αgf .

In this perspective, the functor Θ : CK → Desc(R, C) is nothing but the mediat-
ing arrow from the pseudo-cone with vertex CK and projections the restriction functors
x∗γ : CK → CJγ to the pseudo-limit Desc(R, C) = PsCone(1, CR). On objects, this can be
described as sending X in CK to the system (x∗γX) equipped with the coherence isomor-
phisms from the indexed category C. The conditions expressed by (1) are saying precisely
that Θ is a morphism of pseudo-cones.

If the functor Θ is an equivalence of categories (respectively, full and faithful), then we
say that C is of effective (pre-)descent for R. Usually we drop the predicate “effective”.

Let J be a Grothendieck topology on S, or, more generally, a collection of families
of maps with common codomain. Families R ∈ J (K) will be called covering families for
K. If an indexed category C is of (pre-)descent for all families in J , then C is called a
J -(pre-)stack. If the topology is clear, then we simply call C a (pre-)stack.

Running Example. We end this section by briefly introducing our running example
(which, by the way, will not start running until section 5): globular sets and the free
strict ω-category monad. For more explicit and elaborate information on these matters,
see [Lei04, Str00].

Write G for the category generated by the natural numbers as objects, and two arrows
s, t : n → n + 1 for each n, subject to the equations ss = ts, st = tt. For every n, we also
consider Gn, which is the full subcategory on the objects 0, . . . , n. For each, n < m, there
is an inclusion Gn → Gm. For convenience, we will sometimes write G = G∞.

The category of presheaves on G will be denoted GSet, and those on Gn by GSetn. A
typical object A of GSet will be written

· · · //
// A2

//
// A1

//
// A0.
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The inclusion functors now induce essential geometric morphisms. The inverse image
of such a morphism can be viewed as truncation, and its left adjoint is given by left Kan
extension.

More explicitly, for n < m, where we allow m = ∞, we write

rn,m : GSetm → GSetn, (rn,mA)k = Ak

and

in,m : GSetn → GSetm, (in,mA)k =

{
Ak if k ≤ n
∅ otherwise

for the inverse image and its left adjoint.
The left adjoints are fully faithful, so that we have the isomorphism rn,min,m

∼= 1
(which may actually be taken to be the identity).

On the category GSet there is a monad T , the free strict ω-category monad. This
monad is familially represented by a family of objects, which we will describe first, fol-
lowing the presentation of [Lei04].

Let pd(0) = ∗ and pd(n + 1) be the free monoid on pd(n). Elements of pd(n) are
called n-dimensional pasting diagrams. To each π ∈ pd(n) we associate an n-dimensional
globular set π̂, which has in dimension k the set of k-cells of π. Now T , the free strict
ω-category monad, can be defined by

(TA)n =
∐

π∈pd(n)

GSet[π̂, A]. (2)

Informally, this is the set of all possible ways of labelling n-dimensional pasting diagrams
with suitably typed cells from A.

The globular pasting diagrams can now be recovered via pd(n) = (T1)n, where 1 is
the terminal globular set.

3. Indexed Monoidal Categories

We begin by setting up the basic framework of monoidal categories indexed over a base S,
and providing a number of examples. We explain that to each indexed monoidal category
C we can associate another indexed category MON(C) (in general not monoidal), which
associates to an object J the category of monoids in the fibre of C over J . Then we look at
completeness and cocompleteness of such indexed structures. Finally, descent for indexed
monoidal categories is studied. The main point here is that, whenever the reindexing
functors of C are strong monoidal, the indexed category MON(C) is a stack when C is.

3.1. Basic Definitions. At first, we found it hard to imagine that the notion of an
indexed monoidal category was a new concept. In fact, it was not. It has already been
introduced in the study of the semantics of logic programming languages (see for instance
[Asp93, Ama01]). Since we use it in a different context, we find it appropriate to present
the definitions here and develop some of the basic theory. We also recall some results
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about the 2-functor Mon : MonCat → Cat, which takes a monoidal category to the
category of monoids in it. This will be used in section 4, where we study descent for
monoidal indexed categories. Some of the results are not stated at the highest possible
level of abstraction, as that would carry us too far astray from the main focus of this
paper.

3.2. Definition. [Indexed Monoidal Categories] Let S be any category. An S-indexed
monoidal category is pseudofunctor Sop → MonCat. Explicitly, this is an S-indexed
category C such that all fibres CJ are monoidal categories, all reindexing functors are
monoidal functors and all coherence isomorphisms are monoidal transformations.

Even more explicitly, the last requirement amounts to the commutativity of the fol-

lowing diagrams (where J
s−→ K

t−→ L is a composable pair in S)

s∗t∗A⊗ s∗t∗B //

��

s∗t∗(A⊗B)

��

I //

((QQQQQQQQQQQQQQQQ s∗I // s∗t∗I

��

(ts)∗A⊗ (ts)∗B // (ts)∗(A⊗B) (ts)∗I

in the fibre CJ , for all objects A, B in CL. The various I denote the unit for the tensor
product. (We do not bother distinguishing notationally between tensor units in different
fibres, since there is only one way for the diagram to pass type-checking.)

Similarly, C is called an S-indexed strong monoidal category, when, as a pseudofunctor,
it takes values in MonCats; that is, when all reindexing functors are strong monoidal
functors.

3.3. Examples. Of course, examples of these structures abound:

1. Take any category with finite limits C and consider the canonical indexing J 7→ C/J .
Reindexing now preserves finite products, so when we define the tensor to be the
ordinary cartesian product, the canonical indexing is an indexed (strong) monoidal
category.

2. As a base category, consider the category of rings, Rng. Then Mod(−), which assigns
to a ring its category of modules, is a (strong) Rng-indexed monoidal category.

3. For each topos E , we may consider the category of Complete Sup-Lattices in E , de-
noted CSL(E). This is a monoidal category (in fact, it is *-autonomous), see [Joy84].

For each geometric morphism x : E → F , we have an induced functor x∗ : CSL(E) →
CSL(F), which has a left adjoint x∗. Both of these functors are monoidal, and the
assignment E 7→ CSL(E), x 7→ x∗ becomes a (strong) indexed monoidal category
over the base category T OP of toposes and geometric morphisms.

4. As a base category consider MonCats. To each monoidal category M, we may
associate a category of representations Mod(M), i.e. strong monoidal functors
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M → End(A), for some category A. Of course, maps in Mod(M) are monoidal
transformations, and this category is monoidal, with tensor product induced by the
maps End(A)×End(B) → End(A×B), (f, g) 7→ f⊗g, where (f⊗g)(a, b) = (fa, gb).
All this is a straightforward generalisation of M -sets, where M is a monoid. (For
more, see [Jan01].)

Anyway, a strong monoidal functor N → M will now induce, by precomposition, a
reindexing functor Mod(M) → Mod(N), making Mod(−) into a MonCats-indexed
category. Variations can be obtained by replacing “strong” by “strict” or by “lax”.

5. Let S be a sub-2-category of Cat such that every functor x : D → C in S has a
right adjoint x a y in Cat. As noted by Bénabou [Ben89], such an adjunction x a y
determines one between the associated categories of endofunctors:

End(D)
x−y
--

⊥ End(C)
y−x
mm (3)

where y−x sends an endofunctor T to the composite yTx (and analogously for x−y).
Moreover, the functor y − x is monoidal: the unit and counit of the adjunction
x a y give us natural transformations 1 → y1x = yx and yTxySy → yTSx.
Therefore, we can define an S-indexed monoidal category by mapping each category
C to End(C), and each functor x : D → C with a left adjoint y to the functor
y − x : End(C) → End(D).

This example will be crucial to our paper, and we shall expand on it in the following
sections.

We will now describe a basic construction on indexed monoidal categories. Recall that
there is a 2-functor Mon : MonCat → Cat, which sends a monoidal category C to the
category of monoids in C. We stress, probably unnecessarily, that this functor is not the
same as the obvious forgetful functor MonCat → Cat. We recall in the following lemma
all the properties of Mon which we shall be concerned with in this paper. Proofs are
admittedly sketchy; after all, these are well-known facts, and their proof is a mere exercise
in the theory of 2-categories.

3.4. Lemma. Denoting by U the inclusion functor MonCats ↪→ MonCat, the following
properties hold:

1. Mon has a left adjoint FM : Cat → MonCat;

2. Mon is represented by the one-object category 1;

3. the composite Mon ◦ U is represented by the simplicial category ∆.
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Proof.

1. To a category C we associate a monoidal category FM(C), with the same objects
as the free monoidal category on C. As arrows, it will have all arrows generated by
those of C, but also new arrows C ⊗ C → C and 1 → C making each object C of
C into a monoid. Hence, FM(C) is the free monoidal category on C in which each
object has a monoid structure.

Notice that, for the special case C = 1, the image FM(1) is the free monoidal
category generated by one object containing a monoid. This is easily seen to be the
simplicial category ∆.

2. This is presented in [Ben89], and it is just an exercise on monoidal categories and
lax monoidal functors.

3. If we restrict our attention to strong monoidal functors, 1 is no longer a representa-
tive of the functor, because a strong functor 1 → C is the same as a monoid in C for
which all the structure maps are isomorphisms. However, we can classify monoids
by means of functors from the simplicial category ∆ (see [Mac98]).

We shall henceforth not distinguish notationally between the functor Mon and its
restriction Mon ◦ U to the 2-category MonCats.

3.5. Corollary. The functor Mon preserves all weighted limits that exist in MonCat
(and MonCats). In particular, it preserves all existing pseudo-limits.

Proof. There is one clarification to make; silently, we work in the meta-setting of 2-
categories, pseudo-functors, pseudo-natural transformations and modifications. A proof
of the fact that representable functors preserve weighted limits can be found in [Kel82],
but the setting there is that of 2-categories, 2-functors, 2-natural transformations and
modifications. It is, however, not difficult to extend this to our setting; in addition,
working with pseudo-functors instead of 2-functors has the advantage that a pseudo-limit
becomes a special case (namely where the weight is trivial) of a weighted limit.

Having these facts at our disposal, we now use Mon to define a useful construction
on indexed monoidal categories.

3.6. Construction. Let C be an S-indexed monoidal category. Then, the assignment
J 7→ Mon(CJ), the category of monoids in CJ , is the object part of an S-indexed category,
which we denote by MON(C). Moreover, there exists an S-indexed forgetful functor
MON(C) → C.

In fact, the assignment C 7→ MON(C) is a 2-functor from S-indexed monoidal cate-
gories to S-indexed categories, given by postcomposition with the 2-functor Mon. More-
over, the left adjoint FM to Mon induces a left adjoint on the level of indexed categories.
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Recalling that we write S-Cat for the category of S-indexed categories and S-MonCats for
the category of S-indexed strong monoidal categories, we thus have:

S-MonCats
MON

⊥ 11 S-Cat
FM◦−

pp

In particular, this entails that MON preserves weighted limits, because it is a right
adjoint. The properties of MON will be used later to describe descent categories for
MON(C).

3.7. Completeness and Cocompleteness. Next, we consider adjoints to reindexing
functors for an indexed monoidal category. Although only cocompleteness will be relevant
to the proof of our main results, we include here a detailed analysis of both cases. This
is to notice that there is a significant difference between the case of a right adjoint and
that of a left adjoint, and the two situations are not dual to each other.

3.8. Definition. [Monoidal Cocompleteness] Let C be an S-indexed monoidal category.
Then, C is said to have monoidal S-indexed coproducts if every reindexing functor x∗

has a monoidal left adjoint Σx, such that the Beck-Chevalley Condition (BCC) holds, and
the unit and counit of the adjunction Σx a x∗ are monoidal.

If, in addition, C has finitely cocomplete fibres, then it will be called monoidally co-
complete.

Similarly, monoidal completeness is defined.
More briefly, for C to be monoidally (co)complete, we ask that each reindexing functor

has a right (left) adjoint in the category MonCat, that the fibres are finitely (co)complete
and that the Beck-Chevalley Condition (BCC) is satisfied. Notice that, in the rest of
this paper, this notion will be used alongside the one of (co)completeness for indexed
categories, as defined for example in [Joh02]. The two notions differ in that in the monoidal
case, all aspects of the relevant adjunctions are required to be monoidal.

The following lemma appears in [Jan01], and characterises right adjoints to monoidal
functors.

3.9. Lemma. Let F be a monoidal functor. Then F has a right adjoint in Cat if and only
if it has a right adjoint in MonCat.

This implies that, for an S-indexed monoidal category to be monoidally complete, we
only need to ask that it is complete as an ordinary S-indexed category. For left adjoints,
the analogous statement does not hold.

Let us briefly revisit the examples of indexed monoidal categories from the previous
section from the point of view of completeness and cocompleteness:

1. The standard indexing J 7→ C/J , even though it is a cocomplete indexed category,
it is not monoidally cocomplete, since the left adjoints do not preserve products,
and hence fail to be monoidal.
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2. The indexing E 7→ CSL(E), x 7→ x∗ becomes a complete indexed monoidal category,
which is monoidally complete.

3. The indexed category Mod(−), which assigns to a ring its category of modules, is
complete and cocomplete as a Rng-indexed monoidal category.

4. The MonCats-indexed category Mod(−) is monoidally complete, since reindexing
has a right adjoint by (a 2-categorical) Kan extension. It is cocomplete, but not
monoidally cocomplete.

5. Let S be a sub-2-category of Cat in which every functor x : C → D has a right
adjoint y. Then, adjunction (3) says that End(−) has S-indexed coproducts. If in
addition each category C in S is finitely cocomplete, then so is the category End(C).
In this case, End(−) is a cocomplete S-indexed category, but it is not monoidally
cocomplete, because the left adjoints to the reindexing functors are generally not
monoidal.

We briefly turn to completeness and cocompleteness of the indexed category MON(C).
Again, the situations for completeness and cocompleteness are not dual. In the first case
we have:

3.10. Lemma. If C is a monoidally complete S-indexed monoidal category, then MON(C)
is complete (as an ordinary S-indexed category).

Proof. Any 2-functor preserves adjunctions. This implies that the reindexing functors
of MON(C) have right adjoints. The BCC is inherited likewise. It remains to verify that
each fibre of MON(C) is finitely complete. It is, however, not hard to see that for each
monoidal category D, the forgetful functor Mon(D) → D creates finite limits.

For cocompleteness, we do get the required adjoints to reindexing functors and the
BCC, but we don’t get finitely cocomplete fibres. In order to get those, assumptions about
the interaction of the tensor products with the colimits in the fibres are needed. Also,
even if MON(C) is cocomplete, it does not follow automatically that C is monoidally
cocomplete.

4. Descent Categories

In this section, we prove some results about descent categories. First, we give a presen-
tation for the descent categories of an indexed monoidal category. As a consequence, we
obtain the result that MON(C) is a stack when C is. This will be useful later, when we
wish to deduce the descent properties of monads from those of endofunctors. After that,
we prove a technical result about descent categories for cocomplete indexed categories.
To be more precise, we show that the canonical functor Θ = ΘR : CK → Desc(R, C) has a
left adjoint, under the assumption of the existence of a certain type of colimit in the fibre
CK . This colimit should be thought of as a glueing of descent data. This result follows
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by abstract considerations as well, namely by applying the adjoint functor theorem, but
we need an explicit description of the left adjoint. Moreover, our proof is based on a fact
about pseudo-limits that seems worth recording. The usefulness of this result lies in the
fact that it provides an extra tool for proving effective descent: rather than showing that
the canonical comparison functor Θ : CK → Desc(R, C) (which takes an object X to the
family (x∗γX, fγδ), where the fγδ are the isomorphisms arising from the indexed category
structure) is an equivalence, one can now show that a certain adjunction is an adjoint
equivalence.

As mentioned in the Introduction, this section is going to be rather technical. The
results presented here will play a fundamental role in the proof of the main results in
section 7. However, it is not essential to read all the proofs in great detail, in order to
understand the results therein.

4.1. Descent for Monoidal Indexed Categories. We investigate the category of
descent data for a strong monoidal indexed category, starting off with a lemma.

4.2. Lemma. Let C be an S-indexed strong monoidal category and let R be a family of
the form R = {xγ : Jγ → K}. Then, the following hold:

1. The category Desc(R, C) is monoidal;

2. The functor Θ : CK → Desc(R, C) is strong monoidal;

3. The functors Uγ : Desc(R, C) → CJγ are strong monoidal.

Proof.

1. The category of descent data is a pseudo-limit, and MonCats has pseudo-limits. Or,
for those preferring a more direct approach, we define the monoidal structure in
Desc(R, C) by saying that the tensor product of two objects X = (Xγ, fγδ), Y =
(Yγ, gγδ) is X ⊗ Y = (Xγ ⊗ Yγ, hγδ), where hγδ is the composite

p∗γδ(Xγ ⊗ Yγ) ∼= p∗γδXγ ⊗ p∗γδYγ
fγδ⊗gγδ

// q∗γδXδ ⊗ q∗γδYδ
∼= q∗γδ(Xδ ⊗ Yδ).

Notice that for this definition to make sense, it is essential that the reindexing
functors are strong monoidal.

2. As stated earlier, the canonical functor Θ sends X to the family (x∗γX, fγδ), where
the fγδ are the isomorphisms arising from the indexed category structure. Of course,
this is the mediating arrow from the pseudo-cone (CK , x∗γ) with vertex CK to the
pseudo-limit Desc(R, C); hence, it is a strong monoidal functor.

3. The functors Uγ : Desc(R, C) → CJγ , taking (Xγ, gγδ) to Xγ, are the ones that
define the universal pseudo-cone with vertex Desc(R, C); therefore, they are strong
monoidal by definition.

Next, we have the following useful “interchange” result, which says that Desc and
MON commute.
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4.3. Lemma. Let C be an S-indexed strong monoidal category and R a family of maps
with common codomain. Then, the functor Θ induces an equivalence of categories

Desc(R,MON(C)) ' Mon(Desc(R, C)).

Proof. This can be proved directly, but it is much quicker to observe that Desc(R, C) is
a pseudo-limit in MonCats, and that taking monoids preserves pseudo-limits since Mon
is a representable functor.

The situation can be summarised by the following commutative diagram:

Mon(CK) //

ttjjjjjjjjjjjjjjj
Mon(Θ)

��

CK

Θ
��

Desc(R,MON(C)) ' //

**TTTTTTTTTTTTTTT
Mon(Desc(R, C))

Mon(Uγ)
��

// Desc(R, C)

Uγ

��

Mon(CJγ ) // CJγ .

The horizontal arrows on the right-hand side of the diagram are the forgetful functors,
and the commutativity of the two squares is just the fact that we have a forgetful functor
MON(C) → C. Also, note that the fact that Desc(R,−) is a functor applies here to the
forgetful functor MON(C) → C.

¿From the point of view of the study of effective descent, we have the following im-
portant consequence:

4.4. Proposition. Let J be a coverage on the base category S. If C is a stack for J ,
then so is MON(C).

Proof. If C is a stack, then by definition, the functor ΘR : CK → Desc(R, C) is an
equivalence of categories for each family R in the coverage. Because of the previous
lemma and the fact that Mon, being a 2-functor, preserves equivalences of categories, the
functor Mon(CK) → Desc(R,MON(C)) is an equivalence as well.

A quick word about the converse of this proposition: it is false. As an example, take
any indexed category which is not a stack, and apply the free monoidal category functor
fibrewise. Since the free monoidal category on a category contains exactly one monoid,
passing to monoids will give (up to isomorphism) the terminal indexed category, which is
a stack.

4.5. Descent and Cocompleteness. We now present a technical result on descent in
certain cocomplete indexed categories that, to our best knowledge, has not been noticed
before. Although in the stated form it follows from the adjoint functor theorem, we will
find use for an explicit construction later on.
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4.6. Proposition. Let C be a cocomplete S-indexed category, such that the fibres CJ have
small colimits (and not just the finite ones). Then, for any family R = {xγ : Jγ → K},
the canonical functor ΘR : CK → Desc(R, C) has a left adjoint.

The left adjoint should be thought of as gluing together the descent data to form an
object in CK , which is why we call it Glue. The picture is thus:

Desc(R, C)
Glue

⊥ ,,
CK .

Θ
nn

The result follows from the following more general fact about pseudo-limits.

4.7. Lemma. Let T : X → Cat be a pseudo-functor with the property that for each map
x in X, the functor Tx has a left adjoint. Let M be any category and let φ : ∆M → T be
a pseudo-cone over T with vertex M such that all components of φ (that is, all functors
φX : M → TX) have a left adjoint. If M has colimits of shape X, then the induced functor
M → PsLim(T ) has a left adjoint as well.

Proof. (Sketch.) We break up the proof in two cases: that where T is a product diagram
and that where it is a pseudo-equaliser diagram. Since all pseudo-limits can be constructed
from those, this will be sufficient. (See [Str80].)

First we deal with products (there is no difference between a genuine product and
a pseudo-product, since the diagram is discrete). So, consider a family Di of categories

(i ∈ I) and a cone φi : M → Di, such that all φi have a left adjoint φ̃i. Assuming that M has
I-indexed products, we can define a left adjoint to the induced functor 〈φi〉 : M →

∏
i Di

by the assignment

(Di)i∈I 7→
∐

i

φ̃i(Di).

It is not hard to see that this is functorial and that the resulting functor is left adjoint to
〈φi〉.

Next, we deal with pseudo-equalisers. Suppose we have a pseudo-equaliser diagram in
Cat:

E
e // A

F
))

G

55 B

in which both F and G have left adjoints, denoted by F̃ and G̃, respectively. Recall that
a canonical representative for the pseudo-equaliser is a category E whose objects are pairs
(A, θ), where A is an object of A and θ : FA → GA is an isomorphism in B, and a map
(A, θ) → (B, σ) consists of a map k : A → B such that Gk ◦ θ = σ ◦ Fk.

If M is a category, φ : M → A is a functor and γ : Fφ → Gφ is a natural isomorphism,
then there is an induced map K : M → E making eK = φ; this map K is simply given by
the assignment C 7→ (φC, γC).
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Suppose now that φ has a left adjoint φ̃ and M has coequalisers. We wish to show that
K has a left adjoint K̃. On an object (A, θ) of E, we define K̃(A, θ) by the coequaliser
diagram

φ̃F̃FA

eφF̃ θ
��

eφεF
A // φ̃A // K̃(A, θ)

φ̃F̃GA
φ̃µA

// φ̃φφ̃A

εφ

φ̃A

<<zzzzzzzz
(4)

where µA : F̃GA → φφ̃A is the transpose of GA → Fφφ̃A, which in turn is obtained as

the composite GA
Gηφ

A // Gφφ̃A
γφ̃A
// Fφφ̃A . The various ε’s and η’s are counits and units

of the various adjunctions, with superscripts indicating which adjunction is meant; so, for
example, ηφ is the unit of φ̃ a φ, etcetera. On maps, K̃ is defined using the universal
property and the naturality of the maps involved.

It is now a long diagram chase to verify the required adjointness.

Proof of Proposition 4.6. This is now easy: if the indexed category is cocomplete,
then all reindexing functors have left adjoints. This means that, in the pseudo-diagram
of which Desc(R, C) is a pseudo-limit, all maps have left adjoints. Moreover, CK is the
vertex of a pseudo-cone over this diagram, where the the reindexing functors form the
components, which by assumption have left adjoints. Now, if CK has colimits of shape
R, then we get the desired left adjoint Glue, by Lemma 4.7.

We shall make use of the following description of the functor Glue. As explained in
section 2, we may identify Desc(R, C) with PsCone(∗, CR), the category of pseudo-cones
over CR with vertex ∗, where CR is the composite of which Desc(R, C) is the pseudo-
limit. Assume that R = {xγ : Jγ → K | γ ∈ Γ} is a sieve (there is no loss of generality in
doing so).

Fix an object X of the category Desc(R, C). That is, X = (Xγ)γ∈Γ is a family of
objects Xγ in CJγ , together with coherent isomorphisms φf : Xγ → f ∗(Xδ) for each map
f with xδ ◦ f = xγ.

Now, X induces a functor R→ CK , where R is the full subcategory of the slice S/K
on the objects of R. This functor sends an object xγ of R to the object ΣxγXγ, and a
map f : xγ → xδ to the composite

ΣxγXγ

Σxγ φf
// Σxγf

∗Xδ
∼= // Σxδ

Σff
∗Xδ

Σxδ
ε
// Σxδ

Xδ

It is tedious (but otherwise straightforward) to check that this construction is functo-
rial in X, so we get a functor

PsCone(∗, CR)×R → CK
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which, by transposing and taking colimits, gives the desired left adjoint to Θ:

Desc(R, C) = PsCone(∗, CR) // (CK)R
Colim // CK .

In this situation, we will also have the following result, which will be used in the proof
of Theorem 7.1, to show that a certain indexed category is a stack: it gives a sufficient
condition for the unit of the adjunction Glue a Θ to be an isomorphism.

4.8. Lemma. With the same assumptions and notation as above, assume moreover that,
for every xγ ∈ R, the unit of Σxγ a x∗γ is an isomorphism and that the reindexing functors
preserve colimits of shape R. Then, the unit of Glue a Θ is an isomorphism as well.

Proof. We feel that there should be some abstract reason why this is the case, but a
proof by hand suffices our need, and we did not investigate this further.

Let X = (Xγ, mf ) be an object of Desc(R, C). That is, for each γ ∈ Γ we have Xγ in
CJγ , and for each f as in the diagram

Jγ
f

//

xγ
  

@@
@@

@@
@

Jδ

xδ
��~~

~~
~~

~~

K

we have an isomorphism mf : f ∗Xδ → Xγ, subject to the usual coherence conditions. We
apply the functor Glue, as described above. To the result we wish to apply Θ. In order
to see what the result is, we first investigate what happens when we apply a reindexing
functor to Glue(X). So, fix an index σ ∈ Γ. The reindexing functor x∗σ preserves colimits
of shape R, so that x∗σGlue(X) can be computed by taking the colimit in CJσ of the
R-shaped diagram which sends an object xγ : Jγ → K to the object x∗σΣxγXγ and a map
f as above to the map

x∗σΣxγXγ

x∗σΣxγ m−1
f
// x∗σΣxγf

∗Xδ
∼= // x∗σΣxδ

Σff
∗Xδ

x∗σΣxδ
ε
// x∗σΣxδ

Xδ.

We will show that the object Xσ is a colimiting cocone over this diagram.
Let’s compute first what x∗σΣxδ

Xδ is. Form the pullback in S:

M = Ju(δ,σ)
z //

y

��

Jσ

xσ

��

Jδ xδ

// K.

The BCC gives us a canonical isomorphism x∗σΣxδ
Xδ

∼= Σzy
∗Xδ. Because R is a sieve, the

pullback M is of the form Ju(δ,σ) for some index u(δ, σ) ∈ Γ. Hence, we have isomorphisms
Xu(δ,σ)

∼= z∗Xσ and Xu(δ,σ)
∼= y∗Xδ. We can then form the composite

x∗σΣxδ
Xδ → Σzy

∗Xδ → ΣzXu(δ,σ) → Xσ. (5)
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If we look at the special case where we apply x∗σ to ΣxσXσ, then we use the fact that
x∗σΣxσ

∼= 1 and get x∗σΣxσXσ
∼= Xσ.

It is readily checked that this construction is functorial: if f is a map with xγ = xδf ,
then x∗σ sends the induced map ΣxγXγ → Σxδ

Xδ to the map x∗σΣxγXγ → x∗σΣxδ
Xδ over

Xσ. Therefore, the composites in (5) form a cocone with vertex Xσ. Moreover, one of the
components of this cocone is an isomorphism. Hence, we can conclude that the colimit is
isomorphic to Xσ.

We have shown that for an object X in Desc(R, C), we have x∗σGlue(X) ∼= Uσ(X)
for any σ in Γ, where Uσ is the canonical projection functor. It is straightforward to
show, using the naturality of the maps involved in the construction, that for a map of
descent objects t : X → Y , we get an induced transformation between the diagrams
associated to Xσ and Yσ, and that the induced map between the colimits Xσ → Yσ is
exactly the component tσ of t. This shows that there is an isomorphism of functors
UσΘGlue = x∗σGlue ∼= Uσ.

We conclude the proof by remarking that we have two endofunctors on Desc(R, C),
the identity and Θ ◦Glue, which become isomorphic upon composition with Uσ for each
σ ∈ Γ. That means that we have two naturally isomorphic pseudo-cones over the diagram
of which Desc(R, C) is the pseudo-limit, so that the universal property gives that 1 and
Θ ◦Glue are isomorphic.

5. Endofunctors and Monads

In this section we start the investigation of the assignments C 7→ End(C) and C 7→ Mnd(C),
where C is a category and End(C) and Mnd(C) denote the categories of endofunctors and
monads on C, respectively. The main question we address is: under which circumstances
can this be viewed as an indexed category, and what are the (co)completeness properties
of such an indexed category?

Of course, in order to talk about an indexed category, we should first of all consider a
base category S. This will be a sub-2-category of Cat (size issues are thoroughly ignored),
on which we shall impose conditions to ensure the properties we will need.

5.1. Endofunctors as an indexed category. As we saw in Example 3.3.5, any
adjunction

D
x
((

⊥ C
y
ii

between categories induces an adjunction between the associated categories of endofunc-
tors:

End(D)
x−y
--

⊥ End(C),
y−x
mm

where the right adjoint is monoidal. So, if we assume that every functor in S has a right
adjoint in Cat, we can then consider the S-indexed monoidal indexed category End(−)
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which takes a category C to End(C) and a functor x : D → C (with a right adjoint y) to
y − x : End(C) → End(D).

Moreover, under these assumptions, we can define a trivial indexing U, by mapping a
category C to itself, and a functor x as above to its right adjoint y. Trivially, all reindexing
functors of U have left adjoints (given by the x’s). This is analogous to a dual version of
the trivial indexing on the category of toposes, and will prove very useful in translating
properties of the base S into properties of the indexed category End(−). It is also used
in the following definition.

5.2. Definition. The category S is said to admit indexed endofunctors when (i) S is
closed under pullbacks in Cat and (ii) the indexed category U is S-cocomplete.

The point of this definition is that it is a sufficient condition for the operation End(−)
to be a cocomplete S-indexed category. Note that S, as a sub-2-category of Cat, is really
a 2-category, but we do not take the 2-categorical structure into account, when speaking
of S-indexed categories.

5.3. Proposition. Let S be such that it admits indexed endofunctors. Then

1. the assignment C 7→ End(C) is the object part of an S-cocomplete S-indexed category
End(−);

2. End(−) is an indexed monoidal category.

Proof.

1. The pseudo-functoriality is immediate from the fact that right adjoints compose
uniquely up to unique isomorphism. For cocompleteness, we already mentioned that
the left adjoint to a reindexing functor y − x is given by x − y. The BCC follows
from (and is in fact equivalent to) that for the S-indexed category U. Finally, since
U is cocomplete, each category C in S is finitely cocomplete. Therefore, so are the
categories End(C), because colimits of endofunctors are computed pointwise.

2. Each End(C) is monoidal: the tensor is composition, the unit is the identity functor.
The monoidality of the reindexing functors was already indicated.

5.4. Remark. However, notice that End(−) is not monoidally cocomplete; the left adjoint
x−y to the reindexing map y−x is in general not monoidal. In spite of this, the existence
of the left adjoints will prove important in the rest of the paper.

5.5. Monads as an indexed category. As a particular consequence of Proposi-
tion 5.3, we have that End(−) is a pseudo-functor Sop → MonCat. Composing with
the functor Mon of section 3.1 and observing that monoids in End(C) are monads on C,
we get at once the following result:
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5.6. Lemma. Let S be a base category admitting indexed endofunctors. Then the assign-
ment C 7→ Mnd(C) is the object part of an S-indexed category Mnd(−).

Since the indexed category End(−) is cocomplete but not monoidally cocomplete, we
cannot expect, in general, that Mnd(−) is cocomplete. (Loosely speaking, the left adjoints
to reindexing functors will not preserve monoids; incidentally, they preserve comonoids.)
However, we can identify additional conditions on S which make Mnd(−) cocomplete.
These are collected in the following definition.

5.7. Definition. The base category S is said to admit indexed monads if it admits
indexed endofunctors, all functors in S are fully faithful and their right adjoints preserve
colimits.

These conditions may appear awkward, at first sight, but they are forced upon us by
the arguments that follow. However, they are not too restrictive, at least for the class of
examples we have in mind.

Because colimits of monads need not exist, in general, we can not expect the indexed
category Mnd(−) to be cocomplete. Under these assumptions on S, though, we get the
following partial result:

5.8. Proposition. If S admit indexed monads, then Mnd(−) has S-indexed coproducts.

Proof. For clarity we split these up into separate lemmas.
For a category C in the base S, define End∗(C) to be the category of pointed endo-

functors of C, i.e. endofunctors T equipped with a natural transformation 1 → T .

5.9. Lemma. The construction C 7→ End∗(C) is an S-indexed category and there is an
S-indexed forgetful functor End∗(−) → End(−).

Proof. The reindexing functors are the same as for End(−); given a pointed endofunctor
1 → T , its image is given by the composite 1 → yx → yTx, where the first map is the
unit of x a y.

Note that End∗(C) is the same as the coslice 1/End(C). Moreover, End∗(−) is the
coslice 1/End(−), where 1 is the trivial monoidal indexed category. End∗(−) is a monoidal
indexed category and the monoidal structure is preserved by the forgetful functor from
End∗(−) to End(−). Moreover, since representable functors preserve weighted limits (and
coslicing is one), we get at once:

5.10. Lemma. The forgetful functor End∗(−) → End(−) induces an equivalence of in-
dexed categories

MON(End∗(−)) ' MON(End(−)) = Mnd(−).

The advantage of shifting our attention from End(−) to End∗(−) is that the latter
has better cocompleteness properties.

5.11. Lemma. End∗(−) is a monoidally cocomplete S-indexed strong monoidal category.
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Proof. Given a full inclusion x : D → C with right adjoint y, we first define a functor
Σx : End∗(D) → End∗(C). Take a pointed endofunctor η : 1 → T on D. Then, form the
pushout

xy ε //

xηy

��

1

��

xTy // ΣxT

in the category End(C) (this pushout is taken pointwise). Clearly, ΣxT has a point,
namely the right-hand map in the pushout diagram. It is rather laborious, but otherwise
straightforward, to show that each Σx is also strong monoidal (notice, though, that for
this it is crucial that the right adjoint functors preserve pushouts, which follows from
Definition 5.7; in fact, this is the only form of right exactness we need for the result
to hold). This operation is made into a functor by using the universal property of the
pushout.

The same universal property is also used to verify that the functor Σx is left adjoint
to y − x. The BCC is inherited from that for S.

Finally, the fact that reindexing functors are strong monoidal is an easy exercise.

Now we have everything we need to prove Proposition 5.8. The functors Σx are the
required left adjoints to the reindexing functors, and the BCC holds.

Running Example. Let S be the following category. The objects are the categories
GSetn, for each n ≥ 0, together with the category Gset∞ = Gset. The morphisms are the
inclusions in,m : Gsetn → GSetm (where n ≤ m ∈ N ∪∞).

Then, S is closed under pullbacks in Cat (given two subcategories Gsetn, Gsetm, their
pullback is the intersection GSetk, with k = m∧ n). Since each object of S is a topos, all
the cocompleteness requirements are fulfilled. All morphisms are fully faithful and are left
Kan extensions, so have right adjoints. These right adjoints preserve all colimits, because
they have further right adjoints.

This shows that S satisfies all the requirements necessary to view monads as an indexed
category.

5.12. A topology on the base category. In the next section, we are going to
investigate descent conditions for the indexed categories End(−) and Mnd(−). It will
soon be clear that we have to restrict our attention to a specific class of endofunctors,
namely the stable ones. However, at this point we can already introduce a topology on
S, which we shall work with in the rest of this paper. In order to describe this topology,
we shall make use of the indexed category U introduced before Definition 5.2.

5.13. Definition. We call a family R = {Dγ → C} in S generating if U is of descent
for R.

While this is a concise definition, there is a more practical and intuitive description
possible, based on the fact that R induces, for each object X of C, a diagram in C, together
with a cocone with vertex X.
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In more detail, write R = {xγ : Dγ → C | γ ∈ Γ} for the sieve and yγ for the right
adjoint to xγ.

For a certain object X of C, we have the descent object Θ(X). To see what Θ(X) is,
consider a map f in the subcategory R generated by R:

Dγ
f

//

xγ
  

AA
AA

AA
A

Dδ

xδ
~~~~

~~
~~

~~

C.

All these maps have right adjoints, which we will denote by xγ a yγ, xδ a yδ, f a f∗.
Because xγ = xδf , there is a canonical isomorphism yγ

∼= f∗yδ. Now, using the character-
isation of Desc(R,−) given in the Introduction, we can describe Θ(X) as the family yγX,
with γ running over all elements of Γ, together with, for each f as in the diagram above,
the canonical isomorphism yγX → f∗yδX. (Mind: f∗ is the reindexing functor along f
here.)

After applying the functor Glue discussed in section 4.5 to this descent object, we can
take a colimit in C of the diagram defined by the following functor R → C, which sends
an object xγ : Dγ → C to the object xγyγX and a map f as in the above diagram to the
composite

xγyγX
= // xδfyγX

∼= // xδff∗yδX
xδεyδ // xδyδX.

The counits xγyγX → X form a cocone over this diagram, which we will refer to as the
canonical cocone with vertex X. Now we have:

5.14. Proposition. A family R is generating precisely when for every object X, the
canonical cocone with vertex X is colimiting.

Proof. This is immediate from the description of the functor Glue given in section 4.5:
the value of this functor on the descent object associated to X is precisely the colimit of
the above diagram.

Note that the diagram constructed above is in fact a filtered diagram.
Using this characterisation of generating families, it is not difficult to see that the gen-

erating families form a Grothendieck topology on the base category; identities are trivial,
pullback-stability follows from the fact that filtered colimits commute with pullbacks, and
transitivity follows from the fact that colimits distribute over each other.

We wish to think of a category C with a generating family R = {xγ : Dγ → C} as
a category which is approximated by the categories Dγ. In a certain sense, this can be
viewed as a geometrical property of a category.

Running Example. Let us verify what a generating family is when S is the category
consisting of the categories GSetn. There is only one non-trivial generating family, namely
the family of inclusions in,∞ : Gsetn → GSet, where n 6= ∞. Why is this a generating
family? Simply because any globular set A, written

· · · //
// A2

//
// A1

//
// A0
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is the colimit of the diagram

· · · //
// 0

��

//
// 0

��

//
// A0

��

= i0,∞r0,∞A

��

· · · //
// 0

��

//
// A1

��

//
// A0

��

= i1,∞r1,∞A

��

· · · //
// A2

��

//
// A1

��

//
// A0

��

= i2,∞r2,∞A

��

...
...

...
....

6. Stability and Descent

Now that we have described the setting in which End(−) and Mnd(−) can be viewed
as indexed categories, it is natural to wonder whether either of them is a stack for the
topology on the base category described in the previous section. In the case of endofunc-
tors, this would mean, informally, that for a covering family R = {xγ : Dγ → C} in the
base category, the category End(C) can be recovered from the categories End(Dγ). In
general, this is not the case. We shall first give a simple example to show why we cannot
expect to get a stack, and then single out a class of well-behaved endofunctors, called
stable endofunctors. This section investigates their properties and shows that they form
a sub-S-indexed monoidal category of End(−).

6.1. An Example. Let us start by giving an example to illustrate why we cannot expect
End(−) to be a stack.

For our base category S, we take the category with three objects, 1, the terminal
category, Set and Set × Set. There will be two non-trivial maps, namely the functors
i0, i1 : Set → Set× Set, given by i0A = (A, ∅) and i1A = (∅, A). These functors are fully
faithful and have right adjoints π0, π1, respectively, given by the projections.

Since every object (A, B) of Set × Set is the coproduct of π0i0(A, B) = (A, ∅) and
π1i1(A, B) = (∅, B), the pair R = {i0, i1} is now a generating family of Set × Set, in the
sense of Definition 5.13.

An object of Desc(R, End) is just a pair of endofunctors on Set. The canonical functor
ΘR : End(Set×Set) → Desc(R, End) sends an endofunctor T of Set×Set to its restrictions
(π0Ti0, π1Ti1).

Now, we can see why End(−) is not a stack for this generating family: consider, for
example, the endofunctor W ∈ End(Set× Set), given by

W (A, B) = (A, A + B).

We have ΘR(W ) = (1, 1) = ΘR(1), but clearly W and the identity are not isomorphic as
functors on Set× Set, hence ΘR can not be an equivalence.
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6.2. Stability for Endofunctors. The example we have just presented indicates
why we cannot expect arbitrary endofunctors to be recoverable. Therefore, we look for
a property that endofunctors (and monads) can have, which allows them to be recovered
from their restriction along a generating family. This property will be called stability.

Throughout this section, we shall assume that S admits indexing of monads.

6.3. Definition. [Stability of Endofunctors] Let C, D be categories in S, x : D → C a
functor with right adjoint y and T an endofunctor on C.

1. We say that T is x-stable if the map

yTε : yTxy → yT

is an isomorphism (here, ε : xy → 1 is the counit of x a y).

2. If R is a family of arrows in S with common codomain C, then T is called R-stable
if T is x-stable for all x in R and all binary and ternary pullbacks from R.

3. Moreover, if J is a topology on the base S, then T is called J -stable, or simply
stable, if T is x-stable for all possible x in all covering families on C.

In this terminology, we can now see that the endofunctor W in the example above is
not i1-stable, since π1W (A, B) = A + B, whereas π1Wi1π1(A, B) = π1W (∅, B) = B.

6.4. Lemma. Let T ∈ End(C) be stable and let x : D → C be a fully faithful map with a
right adjoint y. Then, the restriction yTx is stable.

Proof. Take a D-cover R and a map p : E → D in R with right adjoint q. We need to
show that the map

q(yTx)ε : q(yTx)pq → q(yTx)

is an isomorphism. But T is (xp)-stable, and, inserting some (unique) isomorphisms, the
result follows.

6.5. Lemma. Let S ∈ End(D) be stable (for a certain coverage) and let x : D → C be a
map with right adjoint y. Then, the lifting xSy is stable.

Proof. Consider a family R which covers C, and a map p : E → C in R with right adjoint
q. Consider the pullback

D′

p′

��

m // E

p

��

D x
// C

in S. Because p ∈ R and covers are pullback-stable, the map p′ is in a D-cover R′. By
assumption, S is p′-stable, so the map q′Sp′q′ → q′S is an isomorphism (where q′ is the
right adjoint to p′). Now the result follows using the BCC.
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These lemmas suggest the following definition:

6.6. Definition. Let StEnd(−) denote the full S-indexed subcategory of End(−) on
the stable endofunctors. Similarly, StMnd(−) denotes the full S-indexed subcategory of
Mnd(−) on the stable monads (where, of course, a stable monad is a monad which is
stable as an endofunctor).

6.7. Lemma. The indexed category StEnd(−) is S-cocomplete.

Proof. For any map x : D → C we have the picture:

StEnd(D)
x−y

⊥
--

��

StEnd(C)
y−x

mm

��

End(D)
x−y

⊥
--
End(C);

y−x
mm

the BCC is inherited from End(−). Finally, colimits in the fibres StEnd(C) are computed
as colimits in End(C). To see this, assume that T = colim Ti ∈ End(C) and that x : D → C
is a functor with right adjoint y, where y preserves colimits. Then, we have a commutative
diagram

yTxy
∼= //

=

��

yT

=

��

y(colim Ti)xy

∼=
��

∼= // y(colim Ti)

∼=
��

colim yTixy ∼=
// colim yTi,

in which the bottom map is an isomorphism because of the stability of the Ti’s. So, the
top map is an isomorphism as well, hence T is stable.

As a consequence of this fact, we can apply Proposition 4.6, which gives us at once
the following diagram:

Desc(R, StEnd)
Glue

⊥
--

��

StEnd(C)
ΘR

nn

��

Desc(R, End)
Glue

⊥
--
End(C),

ΘR

nn

which can be summarised by saying that the gluing operation on endofunctors restricts
to stable endofunctors.

6.8. Lemma. Let S admit indexed monads. Then, the indexed category StEnd(−) is
monoidal, with tensor product inherited from End(−).
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Proof. The identity functor, which is the unit for the tensor, is stable: given any map
x : D → C with right adjoint y, the map y1Cε : y1Cxy → y1C is an isomorphism when the
unit of x a y is.

For the tensor product, consider two stable endofunctors T, S ∈ End(C). We have
to show that yTSxy → yTS is an isomorphism. But in the following naturality square,
stability of T and of S forces the three remaining arrows to be isomorphisms.

yTxySxy
∼= //

∼=
��

yTxyS

∼=
��

yTSxy // yTS

Of course, the concept of stability readily extends from endofunctors to monads: a monad
is stable if the underlying endofunctor is. Therefore, we can take the indexed category
StMnd(−) to be MON(StEnd(−)).

Running Example. The free strict ω-category monad T on globular sets is stable for
the family of inclusions GSetn → GSet. To see this, recall that T is given by

(TA)m =
∐

π∈pd(m)

GSet[π̂, A].

Because π̂ has no k-cells for k > m, this means that

(Tim,∞rm,∞A)m = GSet[π̂, im,∞rm,∞A] = (TA)m.

This shows that TA and Tim,∞rm,∞A agree in dimension m, and the argument is easily
extended to lower dimensions. Therefore T is im,∞-stable. Informally, this just says that
in order to construct (TA)m, one only needs information about rm,∞A, and not about the
k-cells of A for k > m, so one might just as well assume that Ak = ∅ for k > m.

7. Main Results

We have introduced all concepts and facts necessary to state the main theorems. These
tell us that the indexed categories of stable endofunctors and stable monads over a base
category which admits indexed monads are of effective descent for a family R in the base
when this family R is a generating in the sense of Definition 5.13. Informally, this says
that when objects descend, then so do stable endofunctors and stable monads. It turns
out that the converse also holds. The first theorem states this for endofunctors.

7.1. Theorem. Let S be a sub-2-category of Cat which admits indexed monads and let
R = {xγ : Dγ → C} be a family of maps with common codomain. Then, the following are
equivalent:
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1. the indexed category StEnd is of descent for R;

2. the family R is generating (i.e. is a covering family for the topology described in
section 5.12).

Proof. Assume first that StEnd is of descent for R. To prove that R is generating, we
consider the identity functor on C, which is stable. Because StEnd is of descent for R,
the functors ΘR and Glue are both equivalences, whence Glue(ΘR(1)) ∼= 1 in StEnd(C).
Clearly ΘR(1) is (isomorphic to) the family (1γ) of identity functors on the categories Dγ.
Now, recall from the remarks preceding Lemma 4.8 that Glue is computed as a colimit of
the liftings xγ1γyγ

∼= xγyγ. To say that the colimit of this diagram is isomorphic to 1 is
the same as saying that R is a cover, by the remark after Definition 5.13.

For the other direction, we start by observing that the unit of the adjunction Glue a ΘR

is an isomorphism, as we saw in Lemma 4.8.
Next, we show that the counit is also an isomorphism. To this end, take a stable

endofunctor T on C. The functor ΘR sends this to the family (yγTxγ), equipped with the
canonical descent data. The glueing functor will form the colimit of the liftings xγyγTxγyγ.
More precisely, it will take the colimit of the diagram of shape R that sends an object
xγ : Dγ → C of R to xγyγTxγyγ, and a map f as in

Dγ
f

//

xγ
��

@@
@@

@@
@

Dδ

xδ
����

��
��

��

C

to the composite

xγyγTxγyγ = xδfyγTxδfyγ

∼=−→ xδff∗yδTxδff∗yδ → xδyδTxδyδ.

By stability, we have xγyγTxγyγ
∼= xγyγT for each γ ∈ Γ, so we get, for each f as above,

a commutative diagram

xγyγTxγyγ = xδfyγTxδfyγ
∼= //

∼=
��

xδff∗yδTxδff∗yδ
// xδyδTxδyδ

∼=
��

xγyγT // xδff∗yδT // xδyδT .

(6)

Now, when we compute Glue(ΘR(T )), we have to compute the colimit of the diagram
with the xγyγTxγyγ (a typical fragment of which is the top row of (6) above), but the
commutativity of the above diagram and the fact that the vertical arrows are isomorphisms
means that we can just as well compute the colimit over the xγyγT (i.e. the diagram of
which the bottom row of 6 is a typical fragment), and since R is generating, we know that
this colimit is isomorphic to T (see section 5.12).
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Next, we have the result for monads.

7.2. Theorem. Let S be a category admitting indexed monads and let R = {xγ : Dγ → C}
be a family of maps with common codomain. Then the following are equivalent:

1. the indexed category StMnd is of descent for R;

2. the family R is generating.

Proof. This follows from Theorem 7.1; if stable monads are of descent for R, then we
may again consider the identity monad to show that R must be a covering family. For
the other direction we use proposition 4.4, since a stable monad is by definition a monoid
in the category of stable endofunctors.

The following corollary is now immediate from the definitions.

7.3. Corollary. Let J be any coverage on S. Then, the following are equivalent:

1. the indexed category StEnd is a stack for J ;

2. the indexed category StMnd is a stack for J ;

3. the (trivial) indexed category U is a stack for J ;

4. every family in J is generating (in the sense of Definition 5.13).

7.4. Remark. A natural question is, whether the condition of stability is necessary to
obtain the results of section 7. The answer is: no, it is not necessary and it can be
weakened, probably in different ways. Let us indicate one possible direction. Let R =
{xγ : Dγ → C} be a generating family. Instead of asking that an endofunctor T on C
is stable for all xγ, one could ask that for each γ there exists a δ such that xγ factors
through xδ and that the action of T on Dγ is determined by its action on Dδ.

8. An application: Cheng’s interleaving

We can now use the results of the last section to view the results of Cheng [Che04] in
our general framework. Let us first recall that the category Coll of collections is defined
as the slice category GSet/T1, where GSet is the category of globular sets (with terminal
object 1), and T is the strict ω-category monad on it. Its objects are therefore diagrams
of the form

· · · //
// A2

��

//
// A1

��

//
// A0

��

· · · //
// T (1)2

//
// T (1)1

//
// T (1)0,

(7)

where each row is a globular set. The underlying globular set of such a collection is the
one represented by the top row in the diagram.
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We shall denote by Colln (n ∈ N) the category of n-dimensional collections, i.e. those
collections whose underlying globular set is n-dimensional; that is, Am is the empty set
for each m > n. There are obvious inclusion functors Jn : Colln → Coll, and Jn,m : Colln →
Collm, for n < m ∈ N. These are clearly full and faithful, and they have right adjoints
Trn : Coll → Colln and Trn,m : Collm → Colln, respectively, which simply truncate a
collection (or an m-dimensional one) to dimension n, replacing all the higher dimensional
sets by ∅.

For simplicity, we shall write Coll∞ for Coll, and we shall speak only of functors Jn,m

and Trn,m. These will coincide with the functors Jn and Trn when m = ∞.
Since finite colimits of collections are defined pointwise, Colln is a finitely cocomplete

category for all n ∈ N ∪ {∞}; moreover, the truncation functors preserve colimits (and,
in particular, pushouts), since they have right adjoints.

We now define a category S by taking the categories Colln as objects (for n ∈ N∪{∞})
and the inclusion functors Jn,m as maps.

8.1. Lemma. The 2-category S admits indexed monads.

Proof. It is clear by what we just said that each functor in S is full and faithful and has
a right adjoint, and that each category in S has finite colimits and these are preserved by
the right adjoints. So, all we need to show is that S is closed under pullbacks in Cat and
the BCC holds.

For pullbacks, note that, given a diagram

Colln

Jn,p

��

a

Collm

Jm,p
//

⊥ Collp,

Trn,p

OO

Trm,p

oo

its pullback is given by Collq, where q = n ∧ m, with projections given by the inclusion
functors Jq,m and Jq,n (of course, the functor Jn,n is the identity for any n ∈ N). For one
such pullback

Collq
Jq,n

//

Jq,m

��

Colln

Jn,p

��

Collm Jm,p

// Collp,

verifying the BCC amounts to showing that the following square commutes in Cat:

Colln
Trq,n

//

Jn,p

��

Collq

Jq,m

��

Collp
Trm,p

// Collm.
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To this end, notice that for A in Colln one has

Trm,pJn,p(A) =

{
Jn,m(A) n ≤ m
Trm,n(A) n > m

and in both cases the result is equal to Jq,mTrq,n(A), since q = m ∧ n.

Now, we consider on S the family of maps

R = {Jn : Colln → Coll | n ∈ N} .

Given a collection X in Coll, it is clear that the cocone

JnTrnX
εn−→ X

over the diagram JnTrnX → JmTrmX (n < m) is colimiting; for suppose we have another
cocone

JnTrnX
αn−→ Y,

then the first n objects of the underlying globular set of JnTrnX are the same as those
of X, and αn fixes the action of a map α : X → Y on them.

Therefore, R is a generating family, in the sense of Definition 5.13; hence, StMnd(−)
is of descent for R.

Now, we concentrate on the two monads in [Che04]: Opd and Contr. First, we
shall show that they are stable monads, thus deducing that they can be recovered as the
glueing of their n-dimensional restrictions Opdn and Contrn. Then, we shall show how the
computations of Cheng make it possible to form a coproduct of the two families (Opdn)
and (Contrn) in Desc(R, StMnd), whose glueing is precisely the monad OWC of operads
with contraction described in her paper.

To see that Opd and Contr are stable monads, we need to show that the maps

TrnOpd εn : TrnOpd JnTrn → TrnOpd

TrnContr εn : TrnContr JnTrn → TrnContr

are isomorphisms for all n ∈ N. For a collection A as in (7) above, we have

TrnOpd JnTrn(A) = TrnOpd

(
∅

//
//

···
��

An ···

��

A1
//
//

��

A0

��

T (1)n+1
//
// T (1)n ··· T (1)1

//
// T (1)0

)
and

TrnOpd (A) = TrnOpd

(
An+1

//
//

···
��

An ···

��

A1
//
//

��

A0

��

T (1)n+1
//
// T (1)n ··· T (1)1

//
// T (1)0

)
.

Notice that the counit εn : JnTrnA → A is the identity in the first n components.
Moreover, Cheng points out that the k-cells of the free operad on a collection A are
determined only by the j-cells of A for j ≤ k. From this, we can deduce that

TrnOpd JnTrn(A) ∼= TrnOpd(A).
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A similar argument holds for Contr, since the k-cells of the free collection with contraction
over A depend solely on the j-cells of A for j < k.

So, the monad Opd is the glueing of its restrictions Opdn = TrnOpd Jn : Colln → Colln,
and the monad Contr is the glueing of the family Contrn = TrnContr Jn : Colln → Colln.
In particular, the families (Opdn)n∈N and (Contrn)n∈N form objects of Desc(R, StMnd) '
StMnd(Coll). We do not specify the coherence maps because, by the aforementioned
properties of the monads Opd and Contr these are always the identity. We are now going
to show that Cheng’s interleaving construction of the operad-with-contraction monad
OWC is substantially calculating the glueing of the coproducts of these two families.

As we have already mentioned, in general the indexed category StMnd is not S-
cocomplete, since the fibres are not finitely cocomplete (after all, colimits of monads are
hard to find, and even when they should exist, stability does not automatically follow).
However, we can say something in the specific example at hand. First of all, recall from
[Kel80] that, given two monads S and T on a category C, one can form the product
U : P → C of the two forgetful functors UT : T-Alg → C and US : S-Alg → C in Cat/C
(here, T-Alg is the category of Eilenberg-Moore algebras of T , and likewise for S). If U
is monadic, then the monad arising from it is called the algebraic coproduct of S and T
in Mnd(C), and in particular it is a coproduct of S and T .

Now, using the notations in [Che04], it follows that our monad Opdn is the restriction
to Colln of the monad Opdn resulting from the monadic adjunction

Coll
//

⊥ Opd0oo

//
⊥ Opd1oo

//
⊥ . . .
oo

//
⊥ Opdnoo

Likewise, we have Contrn = TrnContrnJn, where Contrn is the monad arising from the
monadic adjunction

Coll = Contr0

//
⊥ Contr1oo

//
⊥ . . .
oo

//
⊥ Contrnoo

Moreover, the “interleaving construction” in that paper shows a monadic adjunction

Coll
//

⊥ OWCn,n = OWCnoo (8)

where OWCn is precisely the product of the two forgetful functors Opdn → Coll and
Contrn → Coll in Cat/Coll.

Therefore, the monad OWCn arising from (8) is the (algebraic) coproduct of Contrn

and Opdn. In particular, this coproduct is preserved by the restriction to Colln, since an
S-algebra structure on an object Jn(X) in Coll (for S=Opdn, Contrn or OWCn) is the
same as a TrnS Jn-algebra on X. We denote by OWCn the restriction TrnOWCnJn of
the monad OWCn to Colln.

Then, the identity maps make the collection (OWCn) into an object of Desc(R, StMnd),
which is the coproduct of (Opdn) and (Contrn). Finally, we see that the glueing functor
Glue : Desc(R, StMnd) → StMnd(Coll) takes this family to a monad OWC : Coll → Coll
which is the coproduct of Opd and Contr, i.e. the free operad-with-contraction monad.
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