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CLOSEDNESS PROPERTIES OF INTERNAL RELATIONS I:
A UNIFIED APPROACH TO MAL’TSEV, UNITAL AND

SUBTRACTIVE CATEGORIES

ZURAB JANELIDZE

Abstract. We study closedness properties of internal relations in finitely complete
categories, which leads to developing a unified approach to: Mal’tsev categories, in the
sense of A. Carboni, J. Lambek and M. C. Pedicchio, that generalize Mal’tsev varieties
of universal algebras; unital categories, in the sense of D. Bourn, that generalize pointed
Jónsson-Tarski varieties; and subtractive categories, introduced by the author, that
generalize pointed subtractive varieties in the sense of A. Ursini.

Introduction

The notion of a subtractive category, introduced in [12], extends the notion of a sub-
tractive variety of universal algebras, due to A. Ursini [22], to abstract pointed categories.
Subtractive categories are closely related to Mal’tsev categories in the sense of A. Carboni,
J. Lambek, and M. C. Pedicchio [7] (see also [8] and [6]), which generalize Mal’tsev varieties
[18], and to unital categories in the sense of D. Bourn [4] (see also [5]), which generalize
pointed Jónsson-Tarski varieties [16]. In the present paper, which is based on the author’s
M.Sc. Thesis [11] (see also [13]), we develop a unified approach to these three classes of
categories. In particular, we show that the procedure of forming these classes of categories
from the corresponding classes of varieties is the same in all the three cases.

The main tool that we use is a new notion of an M -closed relation, where M is an
extended matrix of terms of an algebraic theory. The main observation is that each one of
the above classes of categories can be obtained as the class of finitely complete categories
(or pointed categories) with M-closed relations, where, in each case, the matrix M is
naturally obtained from the term condition that determines the corresponding class of
varieties.

We also give several characterizations of categories with M -closed relations, and then
apply them, in particular, to the case of Mal’tsev categories. We show that several known
characterizations of Mal’tsev categories can be obtained in this way.

The paper consists of six sections. The first section is devoted to the notion of M -
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CLOSEDNESS PROPERTIES OF INTERNAL RELATIONS I 237

closed relation. It contains several technical propositions whose special instances are
often encountered in the literature on Mal’tsev categories. In the second section we define
(using the Yoneda embedding) M -closedness of internal relations in a category. We also
introduce a notion of an M -closed functor, which allows a unified treatment of M-closed
interpretations introduced in the third section, and M-closed T -enrichments introduced
in the fourth section. The fifth section contains the definition and characterizations of
a category with M -closed relations. In the sixth section we prove that Mal’tsev, unital,
strongly unital and subtractive categories are the same as categories (pointed categories)
with M -closed relations, where in each case M is obtained from the syntactical condition
defining the corresponding varieties.

In the sequel [14] of this paper, we will extend Bourn’s characterization theorem for
Mal’tsev categories, involving fibration of points [4], to categories with M -closed relations,
where M is an arbitrary matrix of terms of the algebraic theory of sets. The general
characterization theorem will also include, as its another special case, the characterization
of Mal’tsev categories obtained in [12]. Other future papers from this series will contain
the following topics:

- How to express (pointed) protomodularity in the sense of D. Bourn [3] using the
notion of an M -closed relation (this will involve matrices which can be obtained
from a characterization of “BIT speciale” varieties in the sense of A. Ursini [21],
which in the pointed case are the same as protomodular varieties, given in Ursini’s
paper [22]).

- For a general term matrix M , how are the following two conditions on a category C
related to each other: (a) C is enriched in the variety of commutative M -algebras, (b)
internal relations both in C and in Cop are M -closed. For instance, in the case when
M is the matrix which determines the class of unital categories, these two conditions
are equivalent to each other (for a category C having finite limits and binary sums),
and they define half-additive categories in the sense of P. Freyd and A. Scedrov[10].
These two conditions are equivalent also when M is the matrix which determines
the class of Mal’tsev categories; then they define naturally Mal’tsev categories in
the sense of P. T. Johnstone [15].

- How to translate an arbitrary linear Mal’tsev condition in the sense of J. W. Snow
[20] to a categorical condition (this will involve closedness properties with respect
to extended matrices of variables with distinguished entries).

Convention. Throughout the paper by a category we will always mean a category having
finite limits.
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1. M -closed relations

Let A1, ..., An be arbitrary sets. We will consider extended matrices

M =




a11 · · · a1m b1
...

...
...

an1 · · · anm bn


 ,

where ai1, ..., aim, bi ∈ Ai for each i ∈ {1, ..., n}; we then say that M is an n × (m + 1)
extended matrix with columns from A1 × ... × An. Here we assume n � 1 and m � 0. If
m = 0 then M becomes 


b1
...
bn


 ;

in this case we say that M is degenerate. The columns of a’s will be called left columns
of M , and the column of b’s will be called the right column of M . Note that M always
has the right column, and it has a left column if and only if it is nondegenerate.

1.1. Definition. A relation R ⊆ A1 × ...×An is said to be compatible with an extended
matrix

M =




a11 · · · a1m b1
...

...
...

an1 · · · anm bn




with columns from A1 × ... × An, if whenever R contains every left column of M , it also
contains the right column of M , i.e. if





a11
...

an1


 , ...,




a1m
...

anm





 ⊆ R =⇒




b1
...
bn


 ∈ R.

If M is degenerate, then R is compatible with M if and only if the right column of M
is an element of R.

Consider maps

fi : Ai → A′
i, i ∈ {1, ..., n}.

M gives rise to an extended matrix

(f1, ..., fn)!M =




f1(a11) · · · f1(a1m) f1(b1)
...

...
...

fn(an1) · · · fn(anm) fn(bn)



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with columns from A′
1 × ... × A′

n. At the same time, a relation R ⊆ A′
1 × ... × A′

n gives
rise, via the pullback

P

��

�� R

��
A1 × ... × An f1×...×fn

�� A′
1 × ... × A′

n

to a relation (f1, ..., fn)∗R = P ⊆ A1 × ... × An.

1.2. Lemma. The relation (f1, ..., fn)∗R is compatible with the extended matrix M if and
only if the relation R is compatible with the extended matrix (f1, ..., fn)!M .

Let T be an algebraic theory and let X denote the alphabet of T . We will not
distinguish between terms of T and the corresponding elements of the free T -algebra
FrT X over X . Let M be an extended matrix

M =




t11 · · · t1m u1
...

...
...

tn1 · · · tnm un




of terms tij, ui of T , and let A1, ..., An be T -algebras.

1.3. Definition. An n × (m + 1) extended matrix M ′ with columns from A1 × ... × An

is said to be a row-wise interpretation of M if there exist T -algebra homomorphisms

f1 : FrT X → A1, ..., fn : FrT X → An

such that M ′ = (f1, ..., fn)!M . Suppose A1 = ... = An = A, then M ′ is said to be a regular
interpretation of M if we could take f1 = ... = fn above, i.e. if there exists a T -algebra
homomorphism f : FrT X → A such that M ′ = (f, ..., f)!M .

Since M has only a finite number of entries, there exists a sequence x1, ..., xk of some k
number of distinct variables such that each term from M depends only on those variables
that are members of this sequence; the choice of each such sequence x1, ..., xk allows to
regard each term in M as a k-ary term, and then we can write:

• M ′ is a row-wise interpretation of M if

M ′ =




t11(c11, ..., c1k) · · · t1m(c11, ..., c1k) u1(c11, ..., c1k)
...

...
...

tn1(cn1, ..., cnk) · · · tnm(cn1, ..., cnk) un(cn1, ..., cnk)




for some c11, ..., c1k ∈ A1, ..., cn1, ..., cnk ∈ An;
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• M ′ is a regular interpretation of M if

M ′ =




t11(c1, ..., ck) · · · t1m(c1, ..., ck) u1(c1, ..., ck)
...

...
...

tn1(c1, ..., ck) · · · tnm(c1, ..., ck) un(c1, ..., ck)




for some c1, ..., ck ∈ A.

1.4. Definition. An n-ary relation R on a T -algebra A is said to be closed with respect
to M (or M-closed) if R is compatible with every extended matrix of elements of A that is
a regular interpretation of M . An n-ary relation R between T -algebras A1, ..., An is said
to be strictly closed with respect to M (or strictly M-closed) if R is compatible with every
extended matrix with columns from A1 × ... × An that is a row-wise interpretation of M .

Note that a strictly M -closed relation R ⊆ An is always M -closed.

1.5. Examples. Consider the case when T is the algebraic theory corresponding to the
variety of sets, T = Th[sets]. Then FrT X = X and so each entry of M is a variable. M ′

is a regular interpretation of M if and only if whenever two entries in M coincide, the
corresponding entries in M ′ also coincide. M ′ is a row-wise interpretation of M if and
only if whenever in each row of M two entries coincide, the corresponding entries of the
corresponding row of M ′ also coincide.

Reflexivity, symmetry and transitivity of a binary relation are examples of closedness
with respect to an extended matrix of variables — see Table 1, where we also exhibit the
strict versions of these three closedness properties.

A binary relation R ⊆ A×B between sets A,B is said to be difunctional if it is strictly
closed with respect to (

x y y x
u u v v

)
. (1)

That is, R is difunctional if it satisfies

a1Rb1 ∧ a2Rb1 ∧ a2Rb2 ⇒ a1Rb2

for all a1, a2 ∈ A and b1, b2 ∈ B. For A = B difunctionality of R can be also defined as
closedness (without “strict”) with respect to (1).

Let T be again an arbitrary algebraic theory. Suppose all entries of M are variables, i.e.
they are elements of the alphabet X of T . Then the corresponding closedness properties
of a relation R ⊆ A1 × ... × An do not depend on the T -algebra structures of A1, ..., An,
and they are the same as for M regarded as a matrix of terms in Th[sets] (and the A’s
regarded as sets). More generally, consider an interpretation ι of T in an algebraic theory
T ′. For a term w in T let us write wι for the corresponding term of T ′. An extended
matrix M of terms in T gives rise to an extended matrix

M ι = ((−)ι, ..., (−)ι)!M =




tι11 · · · tι1m uι
1

...
...

...
tιn1 · · · tιnm uι

n



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M = R ⊆ A × A is M -closed iff R ⊆ A × B is strictly M -closed iff

(
x
x

)
R is reflexive R = A × B

(
x y
y x

)
R is symmetric R = A × B or R = ∅

(
x y x
y z z

)
R is transitive R = A′ × B′ for some A′ ⊆ A and B′ ⊆ B

Table 1: Reflexivity, symmetry and transitivity matrices

of terms in T ′. Let ι∗ denote the forgetful functor ι∗ : AlgT ′ −→ AlgT corresponding
to the interpretation ι. A relation R on a T ′-algebra A is M ι-closed if and only if R is
M -closed as a relation on the T -algebra ι∗(A). Similarly, a relation R between T ′-algebras
A1, ..., An is strictly M ι-closed if and only if R is strictly M -closed as a relation between
T -algebras ι∗(A1), ..., ι

∗(A1).

1.6. Examples. Suppose T is the algebraic theory corresponding to the variety of pointed
sets, T = Th[pointed sets]. Let 0 denote the unique nullary term of this theory. Each
entry of M is now either a variable or 0. An extended matrix M ′ of elements of a pointed
set A is a regular interpretation of M if and only if whenever two entries in M coincide,
the corresponding entries in M ′ also coincide, and an entry in M is 0 implies that the
corresponding entry in M ′ is the base point of A. An extended matrix M ′ whose each
i-th row consists of elements of a pointed set Ai is a row-wise interpretation of M if and
only if whenever in each row of M two entries coincide, the corresponding entries of the
corresponding row of M ′ also coincide, and an entry of some i-th row of M is 0 implies
that the corresponding entry of the i-th row of M ′ is the base point of Ai.

A binary relation R on a pointed set A is 0-transitive in the sense of P. Agliano and
A. Ursini [1] if R is closed with respect to the matrix(

0 y 0
y z z

)
.

A binary relation R on a pointed set A is 0-symmetric in the sense of P. Agliano and
A. Ursini [1] if R and its inverse relation Rop are closed with respect to the matrix(

x 0
0 x

)
.
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For an arbitrary T and M we have:

1.7. Lemma.

(a) An n-ary relation R on a T -algebra A is M-closed if and only if for any T -algebra
homomorphism f : FrT X → A, the n-ary relation (f1, ..., fn)∗R on FrT X is compat-
ible with M .

(b) An n-ary relation R between T -algebras A1, ..., An is strictly M-closed if and only if
for any T -algebra homomorphisms f1 : FrT X → A1, ..., fn : FrT X → An, the n-ary
relation (f1, ..., fn)∗R on FrT X is compatible with M .

The following lemma can be easily derived from the lemma above, using the general
fact that in a diagram

•

��

�� •

��

�� •

��• �� • �� •
if the two small rectangles are pullbacks, then the large rectangle is also a pullback.

1.8. Lemma. For each i ∈ {1, ..., n}, let Ai, A
′
i be T -algebras and let fi : Ai −→ A′

i be a
T -algebra homomorphism. Let R be a relation between A′

1, ..., A
′
n.

(a) If R is strictly M-closed then (f1, ..., fn)∗R is strictly M-closed.

(b) Suppose A1 = ... = An, A′
1 = ... = A′

n, f1 = ... = fn = f . Then, R is M-closed
implies (f, ..., f)∗R is M-closed.

The following proposition shows how to express strict M -closedness via M -closedness:

1.9. Proposition. Let R be a relation between T -algebras A1, ..., An and let

S = (π1, ..., πn)∗R,

where πi denotes the i-th projection A1 × ... × An → Ai, i.e. S is the n-ary relation on
A1 × ... × An obtained via the pullback

S

��

�� R

��
(A1 × ... × An)n

π1×...×πn

�� A1 × ... × An

The following conditions are equivalent:

(a) R is strictly M-closed.

(b) S is strictly M-closed.

(c) S is M-closed.
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Proof. (a)⇒ (b) follows from Lemma 1.8, and (b)⇒ (c) is trivial. (c)⇒ (a) follows from
Lemma 1.7 and the observation that each pullback

Q

��

�� R

��
(FrT X )n

f1×...×fn

�� A1 × ... × An

can be decomposed into the following two pullbacks:

Q

��

�� S

��

�� R

��
(FrT X )n

(f1,...,fn)n
�� (A1 × ... × An)n

π1×...×πn

�� A1 × ... × An

The notion of reflexivity of a binary relation can be naturally extended to relations of
an arbitrary arity. An n-ary relation on a set A is said to be reflexive if it is closed with
respect to the degenerate matrix 


x
...
x




whose all entries are the same variable x.
It is easy to see that for any relation R ⊆ A1× ...×An, the n-ary relation (r1, ..., rn)∗R

on R, induced by the projections ri : R −→ Ai, is a reflexive relation.

1.10. Proposition. Suppose

(*) there exist m-ary terms p1, ..., pk in T such that

tij(p1(ti1, ..., tim), ..., pk(ti1, ..., tim)) = tij,

ui(p1(ti1, ..., tim), ..., pk(ti1, ..., tim)) = ui

for each i ∈ {1, ..., n} and j ∈ {1, ...,m}.

Then, for any n-ary homomorphic relation R between T -algebras, the following conditions
are equivalent:

(a) R is strictly M-closed.

(b) (r1, ..., rn)∗R is strictly M-closed.

(c) (r1, ..., rn)∗R is M-closed.
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Proof. (a)⇒ (b) follows from Lemma 1.8, and (b)⇒ (c) is trivial. For (c)⇒ (a) it suffices
to show that

(*′) for any row-wise interpretation M ′ of M with columns from A1 × ...×An, such that
all of the left columns of M ′ are elements of R, there exists a regular interpretation
M ′′ of M with columns from Rn such that M ′ = (r1, ..., rn)!M

′′.

The condition (*′) states that

(*′′) for any

c11, ..., c1k ∈ A1, ..., cn1, ..., cnk ∈ An

such that 


t1j(c11, ..., c1k)
...

tnj(cn1, ..., cnk)


 ∈ R

for all j ∈ {1, ...,m}, there exist d1, ..., dk ∈ R such that

ri(tij(d1, ..., dk)) = tij(ci1, ..., cik) and ri(ui(d1, ..., dk)) = ui(ci1, ..., cik)

for each i ∈ {1, ..., n} and j ∈ {1, ...,m}.

For each l ∈ {1, ..., k} we take

dl = pl(




t11(c11, ..., c1k)
...

tn1(cn1, ..., cnk)


 , ...,




t1m(c11, ..., c1k)
...

tnm(cn1, ..., cnk)


)

=




pl(t11(c11, ..., c1k), ..., t1m(c11, ..., c1k))
...

pl(tn1(cn1, ..., cnk), ..., tnm(cn1, ..., cnk))




with pl the same as in (*). Since R is a homomorphic relation, d1, ..., dk ∈ R. Moreover,

ri(tij(d1, ..., dk)) = tij( p1(ti1(ci1, ..., cik), ..., tim(ci1, ..., cik)), ...
..., pk(ti1(ci1, ..., cik), ..., tim(ci1, ..., cik)) )

= tij(ci1, ..., cik),

ri(ui(d1, ..., dk)) = ui( p1(ti1(ci1, ..., cik), ..., tim(ci1, ..., cik)), ...
..., pk(ti1(ci1, ..., cik), ..., tim(ci1, ..., cik)) )

= ui(ci1, ..., cik),

as desired.
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It is easy to show that for T = Th[sets], the condition (*) is equivalent to the following
condition:

(**) For each variable x there exists a left column




t1j
...

tnj




in M such that for each i ∈ {1, ..., n}, if the i-th row of M contains x then tij = x.

It is easy to show also that for T = Th[pointed sets] the condition (*) is satisfied if and
only if either all entries of M are 0’s, or (**) is satisfied.

Note that the condition (**) is satisfied for a difunctionality matrix, but not for
reflexivity, symmetry or transitivity matrices.

1.11. Remark. If (*) is not satisfied then the implications 1.10(c)⇒ 1.10(b), 1.10(b)⇒
1.10(a) and 1.10(c)⇒ 1.10(a) need not be satisfied either. Indeed, take T = Th[sets] and

M =

(
x
x

)
.

Then

• the condition (**) is not satisfied;

• a relation R ⊆ A×B is strictly M -closed if and only if it is codiscrete, i.e. R = A×B;

• the relation (r1, r2)
∗R on R is M -closed, for any relation R ⊆ A×B, and (r1, r2)

∗R =
R × R if and only if R is strictly closed with respect to a transitivity matrix, i.e.
R = A′ × B′ for some A′ ⊆ A and B′ ⊆ B.

Thus,

• 1.10(a) is satisfied for all codiscrete binary relations,

• 1.10(b) is satisfied for all binary relations R ⊆ A × B such that R = A′ × B′ for
some A′ ⊆ A and B′ ⊆ B,

• 1.10(c) is satisfied for all binary relations.
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2. Internal M -closedness and M -closed functors

Let C be a category and let A be an object in C, equipped with an internal T -algebra
structure. The T -algebra structure on A induces a T -algebra structure on hom(X,A),
for every object X in C. An internal n-ary relation R −→ An in C is said to be M -closed
if for every object X, the induced relation hom(X,R) on the T -algebra hom(X,A) is M -
closed in the sense of Definition 1.4. Strict M -closedness of internal relations is defined
analogously. For C = Set, internal M -closedness is the same as ordinary M -closedness
(and the same is true for strict M -closedness).

The internal versions of Lemma 1.8 and Propositions 1.9 and 1.10 remain true.
We will now show that finite limit preserving functors always preserve M -closedness

of internal relations, and those functors that in addition reflect isomorphisms also reflect
M -closedness.

To each internal n-ary relation

r = (r1, ..., rn) : R −→ An

in C, where A is an object of C, equipped with an internal T -algebra structure, we associate
an internal k-ary relation (recall that k denotes the arity of the terms in M)

rM = (rM
1 , ..., rM

k ) : RM −→ Ak

where RM is the object obtained as the limit of the diagram

Ak




t11
.
.
.

tn1




��

Ak




t12
.
.
.

tn2




��

... Ak




t1m

.

.

.
tnm




��
An An ...

...

An

R

r

��

R

r

��

...

...

R

r

��

(here tij denotes the operation tij : Ak −→ A of the T -algebra structure of A, correspond-
ing to the term tij) and rM is the limit projection RM −→ Ak.

2.1. Lemma. The following conditions are equivalent:

(a) The relation R is M-closed.

(b) The morphism (u1(r
M
1 , ..., rM

k ), ..., un(rM
1 , ..., rM

k )) : RM −→ An factors through r.
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Let F : C → D be a finite limit preserving functor from C to a category D and let

r = (r1, ..., rn) : R −→ A1 × ... × An

be an internal relation in C, where A1, ..., An are objects of C, each one equipped with an
internal T -algebra structure. R gives rise to an internal relation

(F (r1), ..., F (rn)) : F (R) −→ F (A1) × ... × F (An)

in D, while the internal T -algebra structures on A1, ..., An give rise to internal T -algebra
structures on F (A1), ..., F (An).

2.2. Proposition.

(a) If the relation R is strictly M-closed then the relation F (R) is also strictly M-closed.
If F reflects isomorphisms, then R is strictly M-closed if and only if F (R) is strictly
M-closed.

(b) Suppose A1 = ... = An = A. If R is M-closed then F (R) is M-closed. If F reflects
isomorphisms, then R is M-closed if and only if F (R) is M-closed.

Proof. (b) follows from Lemma 2.1 and the fact that there is a canonical isomorphism
F (RM) � (F (R))M . (a) follows from (b) and (the internal version of) Proposition 1.9.

Now let F be a finite limit preserving functor F : C −→ AlgT D from C to the category
AlgT D of internal T -algebras in D. Let U denote the forgetful functor U : AlgT D −→ D.

2.3. Definition. An internal relation R −→ An in C is said to be (M,F )-closed if the
corresponding internal relation UF (R) −→ UF (A)n in D is M-closed with respect to the
internal T -algebra structure of F (A).

An internal relation R −→ A1 × ... × An in C is said to be strictly (M,F )-closed if
the corresponding internal relation UF (R) −→ UF (A1) × ... × UF (An) in D is strictly
M-closed with respect to the internal T -algebra structures of F (A1), ..., F (An).

The following theorem can be easily proved using the internal versions of Propositions
1.9 and 1.10.

2.4. Theorem. The following conditions are equivalent:

(a) Every relation R −→ A1 × ... × An in C is strictly (M,F )-closed.

(b) Every relation R −→ An in C is (M,F )-closed.

If M satisfies the condition (*) from Section 1, then the conditions above are also equiv-
alent to the following condition:

(c) Every reflexive relation R −→ An in C is (M,F )-closed.
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2.5. Definition. The functor F : C −→ AlgT D is said to be M-closed if the equivalent
conditions (a),(b) in Theorem 2.4 are satisfied.

3. M -closed interpretations

The extended term matrix

M =




t11 · · · t1m u1
...

...
...

tn1 · · · tnm un




determines a system 


p(t11, ..., t1m) = u1,
...

p(tn1, ..., tnm) = un

(2)

of term equations, where p is the “unknown” term. Suppose T is the algebraic theory
of the variety of (right) modules over a ring K. Then, each m-ary term p in T is of the
form p(x1, ..., xj) = x1 · p1 + ... + xm · pm, for some uniquely determined p1, ..., pm ∈ K. If
the entries of M are unary terms, all of which depend on the same variable, then we can
regard M as an extended matrix of elements of K, and then the system of equations (2)
becomes the system of linear equations corresponding to M :


t11 · p1 + ... + t1m · pm = u1,

...
tn1 · p1 + ... + tnm · pm = un,

with p1, ..., pn the “unknowns”.
Let T be again an arbitrary algebraic theory.
We will say that the system (2) of term equations is solvable in T , if there exists an

m-ary term p in T , for which these equations would be satisfied. Such p will be called a
solution of (2) in T .

3.1. Theorem. The following conditions are equivalent:

(a) Every n-ary homomorphic relation R ⊆ An is M-closed, for any T -algebra A
(i.e. the identity functor AlgT −→ AlgT is M-closed).

(b) The system of term equations (2), corresponding to M , is solvable in T .

Proof. (a) is satisfied if and only if every n-ary homomorphic relation on FrT X is com-
patible with M (see Lemma 1.7), which is the case if and only if the smallest n-ary
homomorphic relation on FrT X that contains all of the left columns of M , also contains
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the right column of M . This is equivalent to the existence of an m-ary term p in T , for
which

p(




t11
...

tn1


 , ...,




t1m
...

tnm


) =




u1
...

un


 .

Rewriting this equality component-wise we obtain the equalities (2).

Let ι be an interpretation of T in an algebraic theory T ′. We will say that ι is
M -closed, if the system of term equations


p(tι11, ..., t

ι
1m) = uι

1,
...

p(tιn1, ..., t
ι
nm) = uι

n,

corresponding to the matrix M ι is solvable in T ′.

3.2. Theorem. The following conditions are equivalent:

(a) The interpretation ι : T −→ T ′ is M-closed.

(b) The forgetful functor ι∗ : AlgT ′ −→ AlgT is M-closed.

Proof. This follows easily from Theorem 3.1 (applied to the pair T ′,M ι) and the obser-
vation that ι∗ is M -closed if and only if the identity functor AlgT ′ −→ AlgT ′ is M ι-closed.

Let VarM denote the class of all varieties V of universal algebras for which there exists
an M -closed interpretation ι : T −→ Th[V ]. Many classes of varieties studied in universal
algebra are of this form. In particular, for T = Th[sets] and M equal to a difunctionality
matrix

M =

(
x y y x
u u v v

)
VarM is precisely the class of Mal’tsev varieties. The system of term equations corre-
sponding to this M is {

p(x, y, y) = x,

p(u, u, v) = v.

Its solution p is called a Mal’tsev term, and the equations above are called Mal’tsev
identities. More generally, the equations in the system obtained from any matrix M ′, such
that M and M ′ are each other’s row-wise interpretations, are called Mal’tsev identities
(note that such system of equations has the same set of solutions as the the system above);
we will call such matrix M ′ a Mal’tsev matrix.

Although strict closedness of a relation with respect to a Mal’tsev matrix is the same
as difunctionality, closedness with respect to a Mal’tsev matrix can be a much weaker



250 ZURAB JANELIDZE

property. For instance, any reflexive binary relation is closed with respect to the Mal’tsev
matrix (

x y y x
y y x x

)
,

however, a reflexive relation is difunctional if and only if it is an equivalence relation.
The theory of M -closed relations can be used to obtain various characterizations of

Mal’tsev varieties. In particular, we obtain from Theorems 3.2 and 2.4 the following
characterization theorem:

3.3. Corollary (J. Lambek [17]). A variety V of universal algebras is a Mal’tsev
variety (i.e. its theory contains a Mal’tsev term) if and only if the following equivalent
conditions are satisfied:

(a) Every homomorphic relation R ⊆ A × B in V is difunctional.

(b) Every homomorphic relation R ⊆ A × A in V is difunctional.

Consider the following two Mal’tsev matrices:(
x y y x
x x y y

)
,

(
x y y x
y y v v

)
.

A reflexive relation R ⊆ A2 on a set A is closed with respect to the first matrix if and
only if R is symmetric, and R is closed with respect to the second matrix if and only if R
is transitive. Both of those matrices satisfy (**). From Theorem 2.4 we get:

3.4. Corollary (G.O. Findlay [9]). A variety V of universal algebras is a Mal’tsev
variety if and only if the following equivalent conditions are satisfied:

(a) Every homomorphic binary reflexive relation in V is symmetric.

(b) Every homomorphic binary reflexive relation in V is transitive.

(c) Every homomorphic binary reflexive relation in V is an equivalence relation.

Note that the condition (c) above can be obtained either by combining the conditions (a)
and (b), or directly from Theorem 2.4, by taking M in it to be a difunctionality matrix.

Now consider the case when T = Th[pointed sets] and M is the matrix(
x y y x
u u 0 0

)
, (3)

which is obtained from the difunctionality matrix, considered above, by replacing the two
instances of v in it with 0. The corresponding system of term equations is{

p(x, y, y) = x,

p(u, u, 0) = 0.
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As it was shown in [1], this system of equations is solvable in an algebraic theory T ′ with
a nullary term 0, if and only if the system of equations{

s(x, 0) = x,

s(u, u) = 0

is solvable in T ′. This result can be also obtained from Theorem 3.2 and the following
simple observation:

3.5. Lemma. For a binary homomorphic relation R between pointed sets the following
conditions are equivalent:

(a) Both R and Rop are strictly closed with respect to the matrix (3).

(b) Both R and Rop are strictly closed with respect to the matrix(
x 0 x
u u 0

)
. (4)

For M equal to the matrix (3), or the matrix (4), VarM is the class of subtractive
varieties. The following characterization of subtractive varieties can be obtained in a
similar way as the characterization 3.4 of Mal’tsev varieties.

3.6. Corollary (P.Agliano and A.Ursini [1]). A variety V of universal algebras is
subtractive (i.e. Th[V ] contains a nullary term 0 for which the systems of equations above
are solvable) if and only if Th[V ] contains a nullary term 0 (which can be supposed to be
the same as the nullary term involved in the equations) such that the following equivalent
conditions are satisfied:

(a) Every homomorphic binary reflexive relation in V is 0-symmetric.

(b) Every homomorphic binary reflexive relation in V is 0-transitive.

4. M -closed T -enrichments

Let w and w′ be terms of T , with arities l and l′, respectively. We say that w commutes
with w′ if

w(w′(x11, ..., x1l′), ..., w
′(xl1, ..., xll′)) = w′(w(x11, ..., xl1), ..., w(x1l′ , ..., xll′)). (5)

We say that w is central if it commutes with every term of T . In particular, any variable
is a central term. A nullary term 0 is central if and only if 0 = 0′ for any other nullary
term 0′. There exists a central nullary term in T if and only if AlgT is a pointed category,
i.e. the terminal object in AlgT is at the same time initial.

An interpretation ι of T in an algebraic theory T ′ is said to be central if for every
term w of T , the corresponding term wι of T ′ is central in T ′.
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We say that T is commutative if any of its terms is central. If T is commutative
then the triple (AlgT ,⊗, FrT {x}), where ⊗ denotes the tensor product of T -algebras, is
a closed monoidal category. A category enriched in (AlgT ,⊗, FrT {x}) can be defined as
a pair (C, H), where C is a category and H is a bifunctor H : Cop ×C −→ AlgT such that
the triangle

AlgT

forgetful functor

��
Cop × C

H
��

hom
�� Set

(6)

commutes. Such a bifunctor H determines a functor G : C −→ AlgT C (where AlgT C de-
notes the category of internal T -algebras in C) for which the following triangle commutes:

AlgT C
forgetful functor

��
C

G
��

1C
�� C

(7)

For each object A in C and for each l-ary term w in T , the corresponding operation wG(A)

in the T -algebra structure of G(A), is obtained as follows

wG(A) = wH(Al,A)(π1, ..., πl) : Al −→ A.

This correspondence

{Functors H for which (6) commutes} −→ {Functors G for which (7) commutes}
is a bijection. For any two objects A and B, and an l-ary term w, the operation wH(A,B)

can be recovered from the operation wG(B) via the equality

wH(A,B)(f1, ..., fl) = wG(B) ◦ (f1, ..., fl), f1, ..., fl : A −→ B,

where (f1, ..., fl) in the right hand side of the equality denotes the induced morphism
(f1, ..., fl) : A −→ Bl.

We will call a bifunctor H : Cop×C −→ AlgT , for which (6) commutes, a T -enrichment
of C, and we will denote the corresponding functor C −→ AlgT C by H∗.

Let H be a T -enrichment of C. Note that for any object X in C, the functor H(X,−) :
C −→ AlgT preserves limits (since hom(X,−) preserves limits, and the forgetful functor
AlgT −→ Set reflects them).

4.1. Definition. A T -enrichment H of a category C is said to be M-closed if the following
equivalent conditions are satisfied:

(a) For each object X in C the functor H(X,−) : C −→ AlgT is M-closed.

(b) The functor H∗ : C −→ AlgT C is M-closed.

Below we will give two characterizations of M -closed T -enrichments (Proposition 4.2
and 4.3); the first one will be used to prove Theorem 4.4, and the second one will be used
for Theorems 6.5 and 6.7.
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4.2. Proposition. Let C be an object in a category C such that hom(C,−) : C −→ Set
reflects isomorphisms. Then, a T -enrichment H of C is M-closed if and only if H(C,−)
is M-closed.

Proof. This can be verified straightforwardly, using Proposition 2.2.

Let R −→ A1 × ... × An be an internal relation in C, and X an object in C. Consider
an extended matrix

M ′ =




f11 · · · f1m g1
...

...
...

fn1 · · · fnm gn




whose each i-th row consists of morphisms fi1, ..., fim, gi : X −→ Ai of C. We will say
that the relation R is compatible with M ′ if the induced relation hom(X,R) between
hom(X,A1), ..., hom(X,An) is compatible with M ′, that is, if whenever the morphisms
(f1j, ..., fnj) : X −→ A1 × ... × An factor through r, so does the morphism (g1, ..., gn) :
X −→ A1 × ... × An.

4.3. Proposition. Suppose all terms in M depend only on one fixed variable (i.e. k = 1).
Then, for any T -enrichment H of any category C, the following conditions are equivalent:

(a) H is M-closed.

(b) Each relation R −→ Xn in C is compatible with the extended matrix


(t11)H∗(X) · · · (t1m)H∗(X) (u1)H∗(X)
...

...
...

(tn1)H∗(X) · · · (tnm)H∗(X) (un)H∗(X)


 (8)

consisting of the unary operations (tij)H∗(X), (ui)H∗(X) of the T -algebra H∗(X).

Proof. For any unary term w and for any object X in C,

wH∗(X) = wH(X,X)(1X).

This shows that the matrix (8) is a regular interpretation of M in H(X,X), which gives
(a)⇒ (b).

(b)⇒ (a): Suppose (b) is satisfied. We should show that for any relation R −→ An,
for any object X, and for any morphism f : X −→ A, the relation R is compatible with
the matrix 


(t11)H(X,A)(f) · · · (t1m)H(X,A)(f) (u1)H(X,A)(f)

...
...

...
(tn1)H(X,A)(f) · · · (tnm)H(X,A)(f) (un)H(X,A)(f)


 .

For each unary term w,

wH(X,A)(f) = wH∗(A) ◦ f = f ◦ wH∗(X).
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Thus, the extended matrix above is the same as the matrix


f ◦ (t11)H∗(X) · · · f ◦ (t1m)H∗(X) f ◦ (u1)H∗(X)
...

...
...

f ◦ (tn1)H∗(X) · · · f ◦ (tnm)H∗(X) f ◦ (un)H∗(X)


 .

Consider the relation S −→ Xn obtained from R via the pullback

S

��

�� R

��
Xn

f×...×f
�� An

By (b), S is compatible with (8). This implies that R is compatible with the matrix
above.

Let H be a T -enrichment of a variety V . For each term w = w(x1, ..., xl) in T ,
let wι = wH∗(FrVX )(x1, ..., xl). This defines a central interpretation ι : T −→ Th[V ].
Moreover, any central interpretation ι : T −→ Th[V ] can be defined in this way, using a
unique T -enrichment H of V .

4.4. Theorem. A T -enrichment of a variety V is M-closed if and only if the correspond-
ing central interpretation T −→ Th[V ] is M-closed.

Proof. Let H be a T -enrichment of V and let ι be the corresponding central interpre-
tation ι : T −→ Th[V ]. The fact that ι is M -closed if and only if H is M -closed follows
from Theorem 3.2, Proposition 4.2 and the following observations:

• The forgetful functor ι∗ : V −→ AlgT is naturally isomorphic to the functor
H(FrV{x},−) : V −→ AlgT , which implies that ι∗ is M -closed if and only if
H(FrV{x},−) is M -closed,

• the functor hom(FrV{x},−) reflects isomorphisms.

5. Categories with M -closed relations

5.1. Definition. A category C is said to have M-closed relations (or, it is said to be a
category with M-closed relations) if any internal relation R −→ An in C is M-closed with
respect to any internal T -algebra structure on A.

If there exists a T -enrichment of C we say that C is T -enrichable. We are only in-
terested in T -enrichable categories with M -closed relations, and, further, we are only
interested in the case when T is a commutative algebraic theory satisfying the following
equivalent conditions:
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• Any two T -algebra structures on a set A, such that each operation w of the first
T -algebra structure commutes with every operation w′ of the second T -algebra
structure (i.e. the equality (5) is satisfied for all xij ∈ A), necessarily coincide.

• For any T -enrichment H on any category C, and for any object A in C, the T -algebra
structure of H∗(A) is the unique internal T -algebra structure on A.

• Any two T -enrichments of the same category coincide.

In particular, the algebraic theories of sets and of pointed sets satisfy the above conditions.

5.2. Convention. Henceforth we assume that T satisfies the above conditions.

Then, in a T -enrichable category, M -closedness and strict M -closedness of internal
relations are uniquely determined — that is, say, M -closedness of a relation R −→ An

does not depend on the choice of an internal T -algebra structure on A (as there is only
one such structure).

5.3. Theorem. For any T -enrichable category C, the following conditions are equivalent:

(a) C has M-closed relations.

(b) The unique T -enrichment H of C is M-closed.

Proof. (a)⇒ (b) is trivial. (b)⇒ (a) follows from the fact that for any object A in C,
the T -algebra structure of H∗(A) is the unique T -algebra structure on A.

5.4. Corollary. For any variety V of universal algebras, the following conditions are
equivalent:

(a) V is a T -enrichable category with M-closed relations.

(b) There exists a central M-closed interpretation T −→ Th[V ].

Note that in a T -enrichable category C, (strict) M -closedness is the same as (strict)
(M,H∗)-closedness in the sense of Definition 2.3, where H is the unique T -enrichment
of C. This observation allows us to derive the following characterization theorem for T -
enrichable categories with M -closed relations from the similar characterization (Theorem
2.4) of M -closed functors:

5.5. Theorem. For any T -enrichable category C, the following conditions are equivalent:

(a) Every relation R −→ A1 × ... × An in C is strictly M-closed.

(b) C has M-closed relations, i.e. every relation R −→ An in C is M-closed.

If M satisfies the condition (*) from Section 1, then the conditions above are also equiv-
alent to the following condition:

(c) Every reflexive relation R −→ An in C is M-closed.
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6. Closedness properties of internal relations in Mal’tsev, unital,
strongly unital and subtractive categories

In the case when T = Th[sets], any category C is T -enrichable, and,

• the functor hom : Cop × C −→ AlgT is the unique T -enrichment of C,

• and hom∗ = 1C : C −→ C = AlgT C.

6.1. Definition (A.Carboni, M.C. Pediccho, and N.Pirovano [8]). A category
is said to be a Mal’tsev category if every binary reflexive relation in it is an equivalence
relation.1

To say that every (binary) reflexive relation in C is an equivalence relation is the same
as to say that every reflexive relation in C is difunctional. Since the difunctionality matrix
satisfies (**), by Theorem 5.5, reflexive relations in C are difunctional if and only if all
binary relations are difunctional. Further, from Theorem 5.5 we can deduce the following
characterization theorem for Mal’tsev categories, in the same way as the characterizations
3.3 and 3.4 of Mal’tsev varieties were deduced from Theorem 2.4:

6.2. Corollary (A.Carboni, M.C. Pediccho, and N.Pirovano [8]). A category
is a Mal’tsev category if and only if the following equivalent conditions are satisfied:

(a) Every relation r : R −→ A × B is difunctional.

(b) Every relation r : R −→ A × A is difunctional.

(c) Every reflexive relation r : R −→ A × A is symmetric.

(d) Every reflexive relation r : R −→ A × A is transitive.

We also have the following result:

6.3. Theorem. Let M be an arbitrary Mal’tsev matrix. Then, a category has M-closed
relations if and only if it is a Mal’tsev category.

Proof. This follows from the fact that strict closedness with respect to a Mal’tsev matrix
is the same as difunctionality.

1The notion of a Mal’tsev category was first introduced by A. Carboni, J. Lambek, and M.C. Pedicchio
in [7]; however, in [7] the definition of a Mal’tsev category required in addition Barr exactness, which was
later omitted in [8].
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Henceforth T = Th[pointed sets]. In this case a T -enrichable category is the same as
a pointed category. Recall that a pointed category is a category in which the terminal
object is at the same time initial, and then it is called the zero object. Let C be a
pointed category. The unique T -enrichment H of C assigns to each pair of objects X and
Y in C the pointed set (hom(X,Y ), 0), where the base point 0 is the unique morphism
0 : X −→ Y that factors through the zero object.

Recall that a pair of morphisms f, g having the same codomain C is said to be jointly
extremal epimorphic, if any monomorphism h : B −→ C such that both f and g factor
through h is necessarily an isomorphism.

6.4. Definition (D.Bourn [4], F. Borceux and D.Bourn [2]). A pointed category
C is said to be unital if it satisfies the following equivalent conditions:

(a) For any two objects A and B in C, the product injections ι1 = (1A, 0) : A −→
A × B, ι2 = (0, 1B) : B −→ A × B are jointly extremal epimorphic.

(b) For any object A in C, the product injections ι1, ι2 : A −→ A×A are jointly extremal
epimorphic.

(c) For any object A in C, the morphisms ι1, ι2, (1A, 1A) : A −→ A × A are jointly
extremal epimorphic.

6.5. Theorem. For any pointed category C, the following conditions are equivalent:

(a) C is unital.

(b) Every binary relation r : R −→ A × A in C is compatible with(
1A 0 1A

0 1A 1A

)
.

(c) C has M-closed relations, where

M =

(
x 0 x
0 x x

)
. (9)

Proof. (a)⇒ (b) is trivial.
(b)⇔ (c) follows from Proposition 4.3.
(c)⇒ (a) follows from the following simple observations:

• If (c) is satisfied then any binary relation R −→ A × B in C is strictly closed with
respect to the matrix (9) (by Theorem 5.5),

• for any two objects A and B in C, the matrix(
π1 0 π1

0 π2 π2

)
(10)

where π1 and π2 denote the product projections π1 : A × B → A, π2 : A × B → B,
is a row-wise interpretation of (9),
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• C satisfies 6.4(a) if and only if any binary relation R −→ A × B in C is compatible
with the matrix (10), for any two objects A and B in C.

Below, by a pointed variety we mean a variety V of universal algebras, which is pointed
as a category. For such V , by 0 we denote the central nullary term of Th[V ].

From Theorem 6.5 and Corollary 5.4 we obtain:

6.6. Corollary (F.Borceux and D.Bourn [2]). For any pointed variety V, the
following conditions are equivalent:

(a) V is unital.

(b) V is a Jónsson-Tarski variety in the sense of J.D.H. Smith [19], i.e. the system of
term equations {

u(x, 0) = x,

u(0, x) = x

is solvable in Th[V ].

As defined in [12], a subtractive category is a pointed category in which for any reflexive
relation r : R −→ A×A, if (0, 1A) : A → A×A factors through r, then (1A, 0) : A → A×A
also factors through r. Thus, a pointed category C is subtractive if every reflexive relation
R −→ A × A in C is compatible with (

0 1A

1A 0

)
,

or equivalently, if every relation R −→ A × A is compatible with(
1A 0 1A

1A 1A 0

)
.

From Proposition 4.3 we obtain:

6.7. Theorem. A pointed category is subtractive if and only if it has M-closed relations,
where

M =

(
x 0 x
x x 0

)
. (11)

6.8. Corollary [12]. For any pointed variety V, the following conditions are equivalent:

(a) V is a subtractive category.

(b) V is a subtractive variety in the sense of A.Ursini [22], i.e. the system of term
equations {

s(x, 0) = x,

s(x, x) = 0

is solvable in Th[V ].

From Lemma 3.5 and Theorem 6.7 we obtain:
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6.9. Theorem. A pointed category is subtractive if and only if it has M-closed relations,
where

M =

(
x y y x
x x 0 0

)
.

For a pair of monomorphisms f, g having the same codomain, we will write f � g if
f = gh for some morphism h. We write f ≈ g if f � g and at the same time g � f ,
which is the case if and only if f = gh for some isomorphism h.

Below SEpis C denotes the class of all split epimorphisms in C.

6.10. Definition (D.Bourn [4],[5], F. Borceux and D.Bourn [2]). A pointed
category C is said to be strongly unital if it satisfies the following equivalent conditions:

(a) For any two objects A and B in C and for any relation r = (r1, r2) : R −→ A × B,

[r2 ∈ SEpis C ∧ [(1A, 0) � r]] ⇒ 1A×B ≈ r.

(b) For any object A in C and for any relation r : R −→ A × A,

[[(1A, 1A) � r] ∧ [(1A, 0) � r]] ⇒ 1A×A ≈ r.

6.11. Proposition [12]. For any pointed category C, the following conditions are equiv-
alent:

(a) C is strongly unital.

(b) C is subtractive and unital.

Proof. C is subtractive if and only if

[[(1A, 1A) � r] ∧ [(1A, 0) � r]] ⇒ (0, 1A) � r

is satisfied for any relation r : R −→ A × A in C. According to Definition 6.4(c), C is
unital if and only if

[[(1A, 1A) � r] ∧ [(1A, 0) � r] ∧ [(0, 1A) � r]] ⇒ 1A×A ≈ r

is satisfied for any r : R −→ A × A. For each r, the implication in 6.10(b) is satisfied if
and only if both of the implications above are satisfied. Hence, C is strongly unital if and
only if C is subtractive and unital.

6.12. Theorem. For any pointed category C, the following conditions are equivalent:

(a) C is strongly unital.

(b) C has M-closed relations, where

M =

(
x 0 0 x
x x y y

)
. (12)

Proof. This follows from Proposition 6.11 and the simple observation that a homomor-
phic binary relation between pointed sets is strictly closed with respect to the matrix (12)
if and only if it is strictly closed with respect to both of the matrices (9) and (11), which
determine the classes of unital and subtractive categories, respectively.
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6.13. Corollary (F.Borceux and D.Bourn [2]). For any pointed variety V, the
following conditions are equivalent:

(a) V is strongly unital.

(b) The system of term equations {
p(x, 0, 0) = x,

p(x, x, y) = y

is solvable in Th[V ].
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