
Theory and Applications of Categories, Vol. 14, No. 6, 2005, pp. 111–124.

ABSTRACT PHYSICAL TRACES

SAMSON ABRAMSKY AND BOB COECKE

Abstract. We revise our ‘Physical Traces’ paper [Abramsky and Coecke CTCS‘02]
in the light of the results in [Abramsky and Coecke LiCS‘04]. The key fact is that the
notion of a strongly compact closed category allows abstract notions of adjoint, bipartite
projector and inner product to be defined, and their key properties to be proved. In
this paper we improve on the definition of strong compact closure as compared to the
one presented in [Abramsky and Coecke LiCS‘04]. This modification enables an elegant
characterization of strong compact closure in terms of adjoints and a Yanking axiom,
and a better treatment of bipartite projectors.

1. Introduction

In [Abramsky and Coecke CTCS‘02] we showed that vector space projectors

P : V ⊗ W → V ⊗ W

which have a one-dimensional subspace of V ⊗ W as fixed-points, suffice to implement
any linear map, and also the categorical trace [Joyal, Street and Verity 1996] of the
category (FdVecK,⊗) of finite-dimensional vector spaces and linear maps over a base
field K. The interest of this is that projectors of this kind arise naturally in quantum
mechanics (for K = C), and play a key role in information protocols such as quantum
teleportation [Bennett et al. 1993] and entanglement swapping [Żukowski et al. 1993], and
also in measurement-based schemes for quantum computation. We showed how both the
category (FdHilb,⊗) of finite-dimensional complex Hilbert spaces and linear maps, and
the category (Rel,×) of relations with the cartesian product as tensor, can be physically
realized in this sense.

In [Abramsky and Coecke LiCS‘04] we showed that such projectors can be defined,
and their crucial properties proved, at the abstract level of strongly compact closed cate-
gories. This categorical structure is a major ingredient of the categorical axiomatization
in [Abramsky and Coecke LiCS‘04] of quantum theory [von Neumann 1932]. It captures
quantum entanglement and its behavioural properties [Coecke 2003]. In this paper we will
improve on the definition of strong compact closure, enabling a characterization in terms
of adjoints — in the linear algebra sense, suitably abstracted — and Yanking, without ex-
plicit reference to compact closure, and enabling a nicer treatment of bipartite projectors,
coherent with the treatment of arbitrary projectors in [Abramsky and Coecke LiCS‘04].
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112 SAMSON ABRAMSKY AND BOB COECKE

We are then able to show that the constructions in [Abramsky and Coecke CTCS‘02]
for realizing arbitrary morphisms and the trace by projectors carry over to the abstract
level, and that these constructions admit an information-flow interpretation in the spirit of
additive or ‘particle-style’ traces [Abramsky 1996, Abramsky, Haghverdi and Scott 2002].
It is the information flow due to (strong) compact closure which is crucial for the abstract
formulation, and for the proofs of correctness of protocols such as quantum teleportation
[Abramsky and Coecke LiCS‘04].

A concise presentation of (very) basic quantum mechanics which supports the devel-
opments in this paper can be found in [Abramsky and Coecke CTCS‘02, Coecke 2003].
However, the reader with a sufficient categorical background might find the abstract pre-
sentation in [Abramsky and Coecke LiCS‘04] more enlightening.

2. Strongly compact closed categories

As shown in [Kelly and Laplaza 1980], in any monoidal category C, the endomorphism
monoid C(I, I) is commutative. Furthermore any s : I → I induces a natural transforma-
tion

sA : A
� � I ⊗A

s ⊗ 1A� I ⊗A
� � A .

Hence, setting s • f for f ◦ sA = sB ◦ f for f : A → B, we have

(s • g) ◦ (r • f) = (s ◦ r) • (g ◦ f)

for r : I → I and g : B → C. We call the morphisms s ∈ C(I, I) scalars and s • − scalar
multiplication. In (FdVecK,⊗), linear maps s : K → K are uniquely determined by the
image of 1, and hence correspond biuniquely to elements of K. In (Rel,×), there are just
two scalars, corresponding to the Booleans B.

Recall from [Kelly and Laplaza 1980] that a compact closed category is a symmetric
monoidal category C, in which, when C is viewed as a one-object bicategory, every one-
cell A has a left adjoint A∗. Explicitly this means that for each object A of C there exists
a dual object A∗, a unit ηA : I → A∗ ⊗ A and a counit εA : A ⊗ A∗ → I, and that the
diagrams

A
� � A ⊗ I

1A ⊗ ηA� A ⊗ (A∗ ⊗ A)

A

1A

�
�

� I ⊗ A �
εA ⊗ 1A

(A ⊗ A∗) ⊗ A

�
�

(1)
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and

A∗ �� I ⊗ A∗ ηA ⊗ 1A∗
� (A∗ ⊗ A) ⊗ A∗

A∗

1A∗

�
�

� A∗ ⊗ I �
1A∗ ⊗ εA

A∗ ⊗ (A ⊗ A∗)

�
�

(2)

both commute. Alternatively, a compact closed category may be defined as a ∗-autonomous
category [Barr 1979] with a self-dual tensor, hence a ‘degenerate’ model of linear logic
[Seely 1998].

For each morphism f : A → B in a compact closed category we can define a dual f ∗,
a name �f� and a coname �f�, respectively as

B∗ �� I ⊗ B∗ ηA ⊗ 1B∗
� A∗ ⊗ A ⊗ B∗

A∗

f ∗

�
�

� A∗ ⊗ I �
1A∗ ⊗ εB

A∗ ⊗ B ⊗ B∗

1A∗⊗ f ⊗ 1B∗

�

A∗⊗A
1A∗⊗f� A∗⊗B I

�
�

�
�

�

�f�

�

�
�

�
�

�
�f�

�

I

ηA

�

A⊗B∗
f⊗1B∗

� B⊗B∗

εB

�

In particular, the assignment f �→ f ∗ extends A �→ A∗ into a contravariant endofunctor
with A � A∗∗. In any compact closed category, we have

C(A ⊗ B∗, I) � C(A,B) � C(I, A∗ ⊗ B) ,

so ‘elements’ of A⊗B are in biunique correspondence with names/conames of morphisms
f : A → B

Typical examples are (Rel,×) where X∗ = X and where for R ⊆ X × Y ,

�R� = {(∗, (x, y)) | xRy, x ∈ X, y ∈ Y }
�R� = {((x, y), ∗) | xRy, x ∈ X, y ∈ Y }

and, (FdVecK,⊗) where V ∗ is the dual vector space of linear functionals v : V → K and
where for f : V → W with matrix (mij) in bases {eV

i }i=n
i=1 and {eW

j }j=m
j=1 of V and W
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respectively we have

�f� : K → V ∗ ⊗ W :: 1 �→
i,j=n,m∑

i,j=1

mij · ēV
i ⊗ eW

j

�f� : V ⊗ W ∗ → K :: eV
i ⊗ ēW

j �→ mij.

where {ēV
i }i=n

i=1 is the base of V ∗ satisfying ēV
i (eV

j ) = δij, and similarly for W . Another
example is the category nCob of n-dimensional cobordisms, which is a basic ingredient of
Topological Quantum Field Theories in mathematical physics, see e.g. [Baez 2004].

Each compact closed category admits a categorical trace, that is, for every morphism
f : A ⊗ C → B ⊗ C a trace TrC

A,B(f) : A → B is specified and satisfies certain axioms
[Joyal, Street and Verity 1996]. Indeed, we can set

TrC
A,B(f) := ρ−1

B ◦ (1B ⊗ εC) ◦ (f ◦ 1C∗) ◦ (1A ⊗ (σC∗,C ◦ ηC)) ◦ ρA (3)

where ρX : X � X ⊗ I and σX,Y : X ⊗ Y � Y ⊗ X. In (Rel,×) this yields

x TrZ
X,Y (R)y ⇔ ∃z ∈ Z.(x, z)R(y, z)

for R ⊆ (X × Z) × (Y × Z) while in (FdVecK,⊗) we obtain

TrU
V,W (f) : eV

i �→
∑

α
miαjα eW

j

where (mikjl) is the matrix of f in bases {eV
i ⊗ eU

k }ik and {eW
j ⊗ eU

l }jl.

2.1. Definition. [Strong Compact Closure I] A strongly compact closed category is a
compact closed category C in which A = A∗∗ and (A⊗B)∗ = A∗ ⊗B∗, and which comes
together with an involutive covariant compact closed functor ( )∗ : C → C which assigns
to each object A its dual A∗.

So in a strongly compact closed category we have two involutive functors, namely a
contravariant one ( )∗ : C → C and a covariant one ( )∗ : C → C which coincide in
their action on objects. Recall from [Kelly and Laplaza 1980] that ( )∗ being a compact
closed functor means that it preserves the monoidal structure strictly, and also the unit
and counit, i.e.

�1A∗� = (�1A�)∗ ◦ u−1
I and �1A∗� = uI ◦ (�1A�)∗ (4)

where uI : I∗ � I. This in particular implies that ( )∗ commutes with ( )∗ since ( )∗

is definable in terms of the monoidal structure, η and ε — in [Abramsky and Coecke
LiCS‘04] we only assumed commutation of ( )∗ and ( )∗ instead of the stronger requirement
of equations (4).

For each morphism f : A → B in a strongly compact closed category we can define
an adjoint — as in linear algebra — as

f † := (f∗)∗ = (f ∗)∗ : B → A .

It turns out that we can also define strong compact closure by taking the adjoint to be a
primitive.
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2.2. Theorem. [Strong Compact Closure II] A strongly compact closed category can
be equivalently defined as a symmetric monoidal category C which comes with

1. A monoidal involutive assignment A �→ A∗ on objects.

2. An identity-on-objects, contravariant, strict monoidal, involutive functor f �→ f †.

3. For each object A a unit ηA : I → A∗ ⊗A with ηA∗ = σA∗,A ◦ ηA and such that either
the diagram

A
� � A ⊗ I

1A ⊗ ηA � A ⊗ (A∗ ⊗ A)

A

1A

�
�

� I ⊗ A �
(η†

A ◦ σA,A∗) ⊗ 1A

(A ⊗ A∗) ⊗ A

�
�

(5)

or the diagram

A
� � I ⊗ A

ηA ⊗ 1A� (A∗⊗ A) ⊗ A
�� A∗⊗ (A ⊗ A)

A

1A

�
�

� I ⊗ A �
η†

A ⊗ 1A

(A∗⊗ A) ⊗ A �
� A∗⊗ (A ⊗ A)

1A∗⊗ σA,A

�

(6)

commutes, where σA,A : A ⊗ A � A ⊗ A is the twist map.

4. Given such a functor ( )†, we define an isomorphism α to be unitary if α−1 = α†.
We additionally require that the canonical natural isomorphisms for associativity,
unit and symmetry given as part of the symmetric monoidal structure on C are
(componentwise) unitary in this sense.1

While diagram (5) is the analogue to diagram (1) with η†
A ◦ σA,A∗ playing the role

of the coname, diagram (6) expresses yanking with respect to the canonical trace of the

1This stipulation is in fact also needed in the first definition of strong compact closure. Note also
that, for simplicity, we take the assignment ( )∗ on objects to be strictly monoidal, that is, satisfying
the equations (i) (A ⊗ B)∗ = A∗ ⊗ B∗ and (ii) I∗ = I. While the first of these is actually satisfied in
(FdHilb,⊗), taking ( )∗ to be conjugation as in the ensuing discussion, the second is not. There is always
an explicitly definable isomorphism u : I � I∗ in any compact closed category. If we drop equation (ii),
we must add the requirement that η†

I ◦ ηI = 1I, i.e. that the unit object has dimension 1. This ensures
that u is unitary.
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compact closed structure. We only need one commuting diagram as compared to diagrams
(1) and (2) in the definition of compact closure and hence in Definition 2.1 since due to the
strictness assumption (i.e. A �→ A∗ being involutive) we were able to replace the second
diagram by ηA∗ = σA∗,A ◦ ηA. Note that now f∗ := (f †)∗ = (f ∗)†.

Returning to the main issue of this paper, we are now able to construct a bipartite
projector (i.e. a projector on an object of type A ⊗ B) as

Pf := �f� ◦ (�f�)† = �f� ◦ �f∗� : A∗ ⊗ B → A∗ ⊗ B ,

that is, we have an assignment

P : C(I, A∗ ⊗ B) −→ C(A∗ ⊗ B,A∗ ⊗ B) :: Ψ �→ Ψ ◦ Ψ†

from bipartite elements to bipartite projectors. Note that the use of ( )∗ is essential in
order for Pf to be endomorphic.

We can normalize these projectors Pf by considering sf • Pf for sf := (�f∗� ◦ �f�)−1

(provided this inverse exists in C(I, I)), yielding

(sf • Pf ) ◦ (sf • Pf ) = sf • (�f� ◦ (sf • (�f∗� ◦ �f�)) ◦ �f∗�) = sf • Pf ,

and also
(sf • Pf ) ◦ �f� = �f� and �f∗� ◦ (sf • Pf ) = �f∗� .

Any compact closed category in which ( )∗ is the identity on objects is trivially strongly
compact closed. Examples include relations and finite-dimensional real inner-product
spaces, and also the interaction category SProc from [Abramsky 1995].

So, importantly — and less trivially —, is the category (FdHilb,⊗) of finite-dimensional
complex Hilbert spaces and linear maps. We take H∗ to be the conjugate space, that is,
the Hilbert space with the same elements as H but with the scalar multiplication and the
inner-product in H∗ defined by

α •H∗ φ := ᾱ •H φ 〈φ | ψ〉H∗ := 〈ψ | φ〉H ,

where ᾱ is the complex conjugate of α. Hence we can still take εH to be the sesquilinear
inner-product.

Conversely, an abstract notion of inner product can be defined in any strongly compact
closed category. Given ‘elements’ ψ, φ : I → A, we define

〈ψ | φ〉 := ψ† ◦ φ ∈ C(I, I) .

As an example, the inner-product in (Rel,×) is, for x, y ⊆ {∗} × X,

〈x | y〉 = 1I for x ∩ y �= ∅ and 〈x | y〉 = 0I for x ∩ y = ∅

with 1I := {∗} × {∗} ⊆ {∗} × {∗} and 0I := ∅ ⊆ {∗} × {∗}. At the abstract level, we
can prove the defining properties both of inner-product space adjoints and inner-product
space unitarity:

〈f †◦ ψ | φ〉B = (f †◦ ψ)†◦ φ = ψ†◦ f ◦ φ = 〈ψ | f ◦ φ〉A
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〈U ◦ ψ | U ◦ ϕ〉B = 〈U †◦ U ◦ ψ | ϕ〉A = 〈ψ | ϕ〉A
for ψ, ϕ : I → A, φ : I → B, f : B → A and U : A → B. An alternative way to define the
abstract inner-product is

I
ρI � I ⊗ I

1I⊗uI� I ⊗ I∗
φ⊗ψ∗� A ⊗ A∗ εA � I

where uI : I � I∗ and ρI : I � I ⊗ I [Abramsky and Coecke LiCS‘04]. Here the key data
we use is the coname εA : A ⊗ A∗ → I , and also ( )∗; cf. also the above examples of both
real and complex inner-product spaces where εA := 〈− | −〉. Hence it is fair to say that

strong compact closure

compact closure
� inner-product space

vector space
.

Finally, note that abstract bipartite projectors Pf have two components: a ‘name’-
component and a ‘coname’-component. While in most algebraic treatments involving
projectors these are taken to be primitive, in our setting projectors are composite entities,
and this decomposition will carry over to their crucial properties (see below). We depict
names, conames, and projectors as follows:

�f�

�f�
Pf :=

�f�

�f∗�

In this representation, diagrams (1) and (6) can be expressed by pictures respectively as

εA

ηA

η†
A

ηA

σA,A

=

=

where the vertical lines are identities and εA := η†
A ◦ σA,A∗ .



118 SAMSON ABRAMSKY AND BOB COECKE

3. Information-flow through projectors

3.1. Lemma. [Compositionality - Abramsky and Coecke LiCS‘04] In a compact closed
category

λ−1
C ◦ (�f� ⊗ 1C) ◦ (1A ⊗ �g�) ◦ ρA = g ◦ f

for A
f� B

g� C, ρA : A � A ⊗ I and λC : C � I ⊗ C, i.e.,

�f�

�g�
=

g

f

in our graphical representation.

Following [Abramsky and Coecke LiCS‘04, Coecke 2003] we can think of the informa-
tion flowing along the grey line in the diagram below, being acted on by the morphisms
which label the coname and the name respectively.

�f�

�g�

We refer to this as the information-flow interpretation of compact closure. Many variants
can also be derived [Abramsky and Coecke LiCS‘04, Coecke 2003]. The pictures expressing
the diagrams (1) and (6) become

ε

η

η†

η

σ

=

=
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Geometrically, this just says that the line can be ‘yanked straight’.

Lemma 2 of [Abramsky and Coecke CTCS‘02], which states that we can realize any
linear map g : V → W using only (FdHilb,⊗)-projectors, follows trivially by setting
f := 1V while viewing both �1V� and �g� as being parts of projectors — all this is up to a
scalar multiple which depends on the input of Pg. Note that by functoriality 1V ∗ = (1V )∗
and hence P(1V )∗ = P1V ∗ . As discussed in [Coecke 2003] this feature constitutes the
core of logic-gate teleportation, which is a fault-tolerant universal quantum computational
primitive [Gottesman and Chuang 1999]. Explicitly,

3.2. Lemma. In a strongly compact closed category C for f : A → B,

f ⊗ (�1A∗� ◦ �ξ�) = s(f, ξ) • (σA,B ◦ (P1A∗ ⊗ 1B) ◦ (1A ⊗ Pf ))

where s(f, ξ) ∈ C(I, I) is a scalar, σA,B : A⊗A∗⊗B → B⊗A∗⊗A is symmetry, ξ : A∗→ B∗

is arbitrary, and s(f, f∗) = 1I.

Lemma 1 of [Abramsky and Coecke CTCS‘02], that is, we can realize the (FdHilb,⊗)-
trace by means of projectors trivially follows from eq.(3), noting that η = �1� and ε = �1�
and again viewing these as parts of projectors. Explicitly:

3.3. Lemma. In a strongly compact closed category C for f : A ⊗ C → B ⊗ C,

TrC
A,B(f) ⊗ (�1C∗� ◦ �ξ�) = s(ξ) • ((1A ⊗ P1C∗ ) ◦ (f ⊗ 1C∗) ◦ (1B ⊗ P1C∗ ))

where s(ξ) ∈ C(I, I) is a scalar, ξ : C → C is arbitrary, and s(1C) = 1I.

Indeed, since σA∗,A ◦ �1A� = �(1A)∗� = �1A∗� by functoriality, eq.(3) is

f

�1�

�1�

= Tr(f)

Interestingly, using the information-flow interpretation of compact closure, provided f
itself admits an information-flow interpretation, this construction admits one too, and can
be regarded as a feed-back construction. As an example, for f := (g1 ⊗ g2) ◦ σ ◦ (f1 ⊗ f2),
we have (use naturality of σ, the definition of (co)name and compositionality)
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f1 f2

g1 g2

σ

�1�

�1�

=

f1

g2

f2

g1

When taking f itself to be a projector Pg = �g� ◦ �g∗� we have

�f�
�f∗�

�1�

�1�

=
f∗

f ∗

using σ◦�f� = �f∗�, naturality of σ and compositionality. Note that the information-flow
in the loop is in this case ‘forward’ as compared to ‘backward’ in the previous example.
For f of type A ⊗ (C1 ⊗ . . . ⊗ Cn) → B ⊗ (C1 ⊗ . . . ⊗ Cn) we can have multiple looping:

P

σ

σ

�1�

�1�

Note the resemblance between this behavior and that of additive traces [Abramsky 1996,
Abramsky, Haghverdi and Scott 2002] such as the one on (Rel, +) namely

x TrZ
X,Y (R)y ⇔ ∃z1, . . . , zn ∈ Z.xRz1R . . . RznRy

for R ⊆ X + Z × Y + Z. In this case we can think of a particle traveling trough a
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network where the elements x ∈ X are the possible states of the particle. The morphisms
R ⊆ X × Y are processes that impose a (non-deterministic) change of state x ∈ X to
y ∈ R(x), emptyness of R(x) corresponding to undefinedness. The sum X + Y is the
disjoint union of state sets and R + S represents parallel composition of processes. The
trace TrZ

X,Y (R) is feedback, that is, entering in a state x ∈ X the particle will either halt,
exit at y ∈ Y or, exit at z1 ∈ Z in which case it is fed back into R at the Z entrance, and
so on, until it halts or exits at y ∈ Y .

For a more conceptual view of the matter, note that the examples illustrated above
all live in the free compact closed category generated by a suitable category in the sense
of [Kelly and Laplaza 1980]. Indeed our diagrams, which are essentially ‘proof nets for
compact closed logic’ [Abramsky and Duncan 2004], give a presentation of this free cat-
egory. Of course, these diagrams will then have representations in any compact closed
category. For a detailed discussion of free constructions for traced and strongly compact
closed categories, see the forthcoming paper [Abramsky 2005].

4. (FRel,×, Tr) from (FdHilb,⊗, Tr)

In [Abramsky and Coecke CTCS‘02] §3.3 we provided a lax functorial trace-preserving
passage from the category (FdHilb,⊗, Tr) to the category of finite sets and relations
(FRel,×, Tr). This passage involved choosing a base for each Hilbert space. When we
restrict the morphisms of FdHilb to those for which the matrices in the chosen bases are
R

+-valued we obtain a true functor.

The results in [Abramsky and Coecke LiCS‘04], together with the ideas developed in
this paper, provide a better understanding of this passage. In any monoidal category,
C(I, I) is an abelian monoid [Kelly and Laplaza 1980] (Prop. 6.1). If C has a zero object
0 and biproducts I⊕ ...⊕ I we obtain an abelian semiring with zero 0I : I → I and addition
−+− : ∇I ◦ (−⊕−) ◦∆I : I → I. When in such a category every object is isomorphic to
one of the form I ⊕ · · · ⊕ I (finitary), as is the case for both (FdHilb,⊗) and (FRel,×),
then this category is equivalent (as a monoidal category) to the category of C(I, I)-valued
matrices with the usual matrix operations. Note that this equivalence involves choosing
a basis isomorphism for each object. For (FdHilb,⊗) we have C(I, I) � C and for
(FRel,×) we have C(I, I) � B, the semiring of booleans. Such a category of matrices is
trivially strongly compact closed for (

⊕i=n
i=1 I)∗ :=

⊕i=n
i=1 I,

η := (δi,j)i,j : I →
(

i=n⊕
i=1

I

)
⊗

(
j=n⊕
j=1

I

)

(using distributivity and I ⊗ I � I), and

ε :

(
i=n⊕
i=1

I

)
⊗

(
i=n⊕
i=1

I

)
→ I :: (ψ, φ) �→ φT ◦ ψ
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where φT denotes the transpose of ψ. In the case of (FRel,×), this yields the strong
compact closed structure described above. If the abelian semiring C(I, I) also admits
a non-trivial involution ( )∗, an alternative compact closed structure arises by defining
ε :: (ψ, φ) �→ (φT )∗ ◦ψ, where ( )∗ is applied pointwise. The corresponding strong compact
closed structure involves defining the adjoint of a matrix M to be (MT )∗, i.e. the involution
is applied componentwise to the transpose of M . In this way we obtain (up to categorical
equivalence) the strong compact closed structure on (FdHilb,⊗) described above, taking
( )∗ to be complex conjugation.

Now we can relate trace preserving and (strongly) compact closed functors to (involu-
tion preserving) semiring homomorphisms. Any such homomorphism h : R → S lifts to a
functor on the categories of matrices. Moreover, such a functor preserves compact closure
(and strong compact closure if h preserves the given involution), and hence also the trace.
Clearly there is no semiring embedding ξ : B → C since ξ(1+1) = ξ(1) �= ξ(1)+ξ(1). Con-
versely, for ξ : C → B neither ξ(−1) �→ 0 nor ξ(−1) �→ 1 provide a true homomorphism.
But setting ξ(c) = 1 for c �= 0 we have ξ(x + y) ≤ ξ(x) + ξ(y) and ξ(x · y) = ξ(x) · ξ(y)
which lifts to a lax functor — FRel is order-enriched, so this makes sense. Restricting
from C to the abelian semiring R

+ we obtain a true homomorphism, and hence a compact
closed functor.
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