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CATEGORICAL MODELS AND QUASIGROUP HOMOTOPIES

GEORGE VOUTSADAKIS

ABSTRACT. As is pointed out in [Smith (1997)], in many applications of quasigroups
isotopies and homotopies are more important than isomorphisms and homomorphisms.
In this paper, the way homotopies may arise in the context of categorical quasigroup
model theory is investigated. In this context, the algebraic structures are specified by
diagram-based logics, such as sketches, and categories of models become functor cate-
gories. An idea, pioneered in [Gvaramiya & Plotkin (1992)], is used to give a construction
of a model category naturally equivalent to the category of quasigroups with homotopies
between them.

1. Introduction

Traditionally, when the categorical study of classes of algebras is undertaken the role of
morphisms in the categories under investigation is played by the ordinary homomorphisms
of universal algebra (see, e.g., [Borceux (1994)], Vol. II, Chapter 3). However, in the case
of quasigroups, a different kind of morphism may be more important, depending on the
application at hand, than ordinary quasigroup homomorphisms [Smith (1997)]. These are
quasigroup homotopies. A homotopy from a quasigroup Q = 〈Q, ·, /, \〉 to a quasigroup
P = 〈P, ·, /, \〉 is a triple (h1, h2, h3) of set maps from Q to P, such that, for all x, y ∈ Q,
h3(x · y) = h1(x) · h2(y) (see, e.g., [Smith & Romanowska (1999)], I.4).

An alternative to equational logic for specifying algebraic structures is provided by
graph-based logics, such as sketches. [Barr & Wells (1990)] and [Coppey & Lair (1984),
Coppey & Lair (1988)] provide very readable introductions to sketches and a good part of
the first two sections of the present paper heavily draws on their treatment. In addition,
the 6th Lesson of [Coppey & Lair (1988)] contains sketches specifying many of the best
known algebraic and graph-based structures. Following [Barr & Wells (1990)] and [Coppey
& Lair (1984), Coppey & Lair (1988)], a sketch for quasigroups is given in the following
section. Model morphisms in model categories of sketches being natural transformations,
they are really tailored to capture the ordinary homomorphisms of universal algebra.
Thus, as it is shown in Section 3, the category of models of the sketch for quasigroups is
the category of quasigroups with homomorphisms between them.

This introduction motivates the main question we are faced with: What is the role of
homotopies in categorical quasigroup model theory, or, rephrasing, how may one capture
homotopies of quasigroups in the context of categorical quasigroup model theory? One
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feature of the sketch for quasigroups that spoils the admissibility of homotopies is the use
of direct squares and of the accompanying projections. Roughly speaking, these force a
natural transformation η from a model M to a model N to obey commutativity of

M(Q) N(Q)�
ηQ

M(Q2) N(Q2)�
ηQ2

�

M(p1)

�

N(p1)

M(Q) N(Q)�
ηQ

M(Q2) N(Q2)�
ηQ2

�

M(p2)

�

N(p2) (1)

whence ηQ2 = ηQ × ηQ and ηQ becomes necessarily a homomorphism. If this problem is
to be overcome, one has to get rid of the direct squares which entails approaching the
design of the sketch with a different philosophy in mind.

What comes to the rescue is an idea, first exploited by Gvaramiya and Plotkin in
[Gvaramiya & Plotkin (1992)]. Its cornerstone is the introduction of different sorts for
each of the arguments of the quasigroup multiplication. In the present context, this has
the effect of transforming direct powers to direct products of different objects and, thus,
dissolves the difficulty imposed by the previous requirement that (1) commute. Based on
this idea, the notion of a ∗-automaton was defined in [Gvaramiya & Plotkin (1992)] and
it was shown that every quasigroup gives rise to an invertible ∗-automaton and that every
invertible ∗-automaton is isomorphic to one derived in this way by some quasigroup.

Adapting this idea to the present context, a modified sketch for quasigroups with
homotopies is presented, such that its models in the category of sets are the invertible
∗-automata of [Gvaramiya & Plotkin (1992)] and the model morphisms between them,
which are homomorphisms of the multi-sorted algebras, correspond to homotopies between
the associated quasigroups. It is then shown in the last section that this model category
and the category of quasigroups with homotopies between them are naturally isomorphic
categories.

In [Smith (1997)], Smith showed, using a “semisymmetrization technique”, that the
category of quasigroups with homotopies is isomorphic to a category of homomorphisms
between semisymmetric quasigroups, i.e., quasigroups satisfying the semisymmetric iden-
tity (y·x)·y ≈ x. The question remains open of whether Smith’s result may be exploited, in
the present context, so that a sketch be obtained having as its model category a category
isomorphic to the category of quasigroups with homotopies.

2. Sketching Quasigroups

[Barr & Wells (1990)] and [Coppey & Lair (1984), Coppey & Lair (1988)] “sketch” some
of the most commonly encountered algebraic structures. They are the source of the
graph-theoretic and categorical definitions that are used in this and the next section in
developing the standard sketch for quasigroups and showing that it corresponds to the
category of quasigroups with homomorphisms between them. Definitions that pertain
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directly to quasigroups and their morphisms may be found in [Smith & Romanowska
(1999)].

2.1. Definition. A (directed) graph G = 〈V,E, s, t〉 consists of a set V of nodes or
vertices, a set E of edges, and two functions s, t : E → V, associating with each edge e its
source vertex s(e) and its target vertex t(e), respectively. One writes e : s(e)→ t(e)
in this case. Let G = 〈V,E, s, t〉 and G′ = 〈V ′, E ′, s′, t′〉 be graphs. A graph morphism
h : G → G′ is a pair h = 〈h1, h2〉, with h1 : V → V ′ and h2 : E → E ′ satisfying
s′(h2(e)) = h1(s(e)) and t′(h2(e)) = h1(t(e)), for all e ∈ E.

As an example and for future reference we introduce the graph Gq with Vq = {Q1, Q2},
Eq = {p1, p2,m, l, r, 〈p1,m〉, 〈m, p2〉, 〈p1, l〉, 〈r, p2〉}, where sq and tq are given diagrammat-
ically as follows:

p1, p2,m, l, r : Q2 → Q1,

〈p1,m〉, 〈m, p2〉, 〈p1, l〉, 〈r, p2〉 : Q2 → Q2.

2.2. Definition. Let G be a graph. A path in G is a sequence (e1, . . . , en) of edges in
G, such that, for all i = 1, . . . , n− 1, t(ei) = s(ei+1).

Two paths p = (e1, . . . , en) and q = (f1, . . . , fm) in G are said to be parallel if
s(e1) = s(f1) and t(en) = t(fm).

An equation in G is a pair of parallel paths p and q as above, and is usually denoted
by enen−1 . . . e1 ≈ fmfm−1 . . . f1.

The following are equations in the graph Gq defined previously.

p1〈p1,m〉 ≈ p1 p2〈p1,m〉 ≈ m p1〈m, p2〉 ≈ m p2〈m, p2〉 ≈ p2

p1〈p1, l〉 ≈ p1 p2〈p1, l〉 ≈ l p1〈r, p2〉 ≈ r p2〈r, p2〉 ≈ p2

Also
l〈p1,m〉 ≈ p2 r〈m, p2〉 ≈ p1

m〈p1, l〉 ≈ p2 m〈r, p2〉 ≈ p1

2.3. Definition. Let G be a graph. A diagram d in G is a graph morphism d : D → G,
where D = 〈U, F, σ, τ〉 is the shape graph of d.

A cone v � d in G with vertex v and base d consists of a diagram d in G, a vertex
v ∈ V and a collection of edges {eu : u ∈ U}, called projections, such that s(eu) = v
and t(eu) = d(u), for all u ∈ U. The cone v � d is said to be discreet or a product cone
if F = ∅ and a finite product cone if, in addition, |U | < ω.

Let, for instance, Dq = 〈Uq, Fq, σq, τq〉 be the graph with Uq = {u1, u2}, Fq = ∅ and
dq : Dq → Gq the diagram in Gq determined by dq1(u1) = dq1(u2) = Q1. Define the
cone Q2 � dq in Gq by specifying that p1 : Q2 → Q1 and p2 : Q2 → Q1 be the two cone
projections.
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2.4. Definition. [Barr & Wells (1990)] A limit sketch S = 〈G,Q,L〉 consists of a
graph G, a set Q of equations in G and a set L of cones in G. If all cones in L are product
cones then S is called a product sketch and if they are all finite, then S is called a
finite product sketch or an FP-sketch.

Let Sq = 〈Gq, Qq, Lq〉 be the sketch with graph Gq, set of equations Qq, containing
all the equations displayed above, and set of cones Lq = {Q2 � dq}. Sq is the sketch for
quasigroups.

2.5. Definition. Let S = 〈G,Q,L〉 be a limit sketch and C a category. A model
M : S → C of S in C is a graph morphism M : G→ C, where C is the underlying graph
of C, such that all equations in Q become commuting diagrams in C and all cones in L
become limit cones in C.

Given two models M1,M2 of S in C, a model morphism h : M1 → M2 is a natural
transformation from M1 to M2, i.e., a family hv : M1(v) → M2(v), v ∈ V, of morphisms
in C, such that, for all e ∈ E, with s(e) = v1, t(e) = v2, the following rectangle commutes
in C :

M1(v2) M2(v2)�
hv2

M1(v1) M2(v1)�hv1

�

M1(e)

�

M2(e)

Models of S in C together with model morphisms form a category, which is denoted by
ModC(S).

In case C is a category with specified limits, a model of S in C has to carry all cones in
L to specified limit cones and a model morphism has to preserve all limits corresponding
to limit cones on the nose.

2.6. Definition. A quasigroup Q = 〈Q, ·, /, \〉 is a set Q equipped with binary
operations x · y or, simply, xy of multiplication, x/y of right division and x\y of left
division, such that the following identities hold:

x\(x · y) ≈ y (x · y)/y ≈ x
x · (x\y) ≈ y (x/y) · y ≈ x

Let Q and P be two quasigroups. A quasigroup homomorphism h : Q → P is a
function h : Q→ P, such that h(x · y) = h(x) · h(y), for all x, y ∈ Q.

A triple (h1, h2, h3) : Q → P of functions from Q to P is a quasigroup homotopy
if h3(x · y) = h1(x) · h2(y), for all x, y ∈ Q.

Note that, if h : Q → P is a quasigroup homomorphism, then, for all x, y ∈ Q,
h(x/y) = h(x)/h(y) and h(x\y) = h(x)\h(y). Similarly, if (h1, h2, h3) : Q → P is a
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quasigroup homotopy, then h1(x/y) = h3(x)/h2(y) and h2(x\y) = h1(x)\h3(y), for all
x, y ∈ Q (see [Smith (1997)]).

We denote by Set the category of all small sets and by Set→ the category of all small
sets with the usual specified limits. The same notation will also be used to denote the
underlying graphs of these two categories for simplicity. The following proposition is a
first step in relating the notions that were introduced in this section.

2.7. Proposition. Let Q = 〈Q, ·, /, \〉 be a quasigroup. Define the graph morphism
MQ : Gq → Set→, as follows:

MQ(Q1) = Q MQ(Q2) = Q×Q
MQ(p1)((x, y)) = x MQ(p2)((x, y)) = y
MQ(m)((x, y)) = x · y MQ(l)((x, y)) = x\y
MQ(r)((x, y)) = x/y
MQ(〈p1,m〉)((x, y)) = (x, x · y) MQ(〈m, p2〉)((x, y)) = (x · y, y)
MQ(〈p1, l〉)((x, y)) = (x, x\y) MQ(〈r, p2〉)((x, y)) = (x/y, y)

Then MQ is a model of Sq in Set→.

In addition, quasigroup homomorphisms give us concrete examples of model mor-
phisms in ModSet→(Sq):

2.8. Proposition. Let Q,P be two quasigroups, h : Q → P a quasigroup homomor-
phism and MQ,MP : Sq → Set→ the two models of Sq in Set→ defined as in Proposition
2.7. η : MQ → MP, defined by ηQ1 = h and ηQ2 = (h, h) is a model morphism of Sq in
Set→.

3. Homomorphisms of Quasigroups

It is now shown that the only objects in ModSet→(Sq) are the ones given by Proposition
2.7 and, similarly, that the only model morphisms in this category are the ones provided
by Proposition 2.8. What role do homotopies play in the context of the categorical model
theory of quasigroups? The use of direct squares and, more generally, direct powers and
the associate projections in the sketch that specifies a particular structure makes it im-
possible to accomodate homotopy-like morphisms in the form of natural transformations.
To answer this question a new categorical specification of quasigroups will be introduced
in the next section. The trick is to specify multiplication as a multisorted operation
distinguishing between the values that can be substituted for each of its arguments (see
[Gvaramiya & Plotkin (1992)]).

3.1. Proposition. Let M : Sq → Set→ be a model in ModSet→(Sq). Then 〈M(Q1),
M(m),M(r),M(l)〉 is a quasigroup.
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Proof. Since Q1
p1← Q2

p2→ Q1 is carried by M to a specified product cone, we have
M(Q2) = M(Q1)×M(Q1), withM(p1),M(p2) the first and second coordinate projections,
respectively. Now it is clear that M(m),M(r) and M(l) are binary operations on M(Q1).

The pair of equations

p1〈p1,m〉 ≈ p1 p2〈p1,m〉 ≈ m,

interpreted in M, give, for all (x, y) ∈M(Q1)
2,

M(p1)(M(〈p1,m〉)(x, y)) = M(p1)(x, y) and

M(p2)(M(〈p1,m〉)(x, y)) = M(m)(x, y),

whence, since M(pi) is the i-th projection, i = 1, 2,

M(〈p1,m〉)(x, y) = (x,M(m)(x, y)), for all x, y ∈M(Q1).

Similarly, one obtains that

M(〈m, p2〉)(x, y) = (M(m)(x, y), y),

M(〈p1, l〉)(x, y) = (x,M(l)(x, y)) and

M(〈r, p2〉)(x, y) = (M(r)(x, y), y), for all x, y ∈M(Q1).

Now from l〈p1,m〉 ≈ p2 we get M(l)(M(〈p1,m〉)(x, y)) = M(p2)(x, y), whence

M(l)(x,M(m)(x, y)) = y,

and, similarly,

M(r)(M(m)(x, y), y) = x, M(m)(x,M(l)(x, y)) = y, and

M(m)(M(r)(x, y), y) = x.

Thus 〈M(Q1),M(m),M(r),M(l)〉 is a quasigroup, as claimed.

A similar result is obtained next concerning the morphisms in the model category
ModSet→(Sq).

3.2. Proposition. Let M,N : Sq → Set→ be models in ModSet→(Sq) and η : M → N a
morphism in ModSet→(Sq). Then ηQ1 : M(Q1) → N(Q1) is a quasigroup homomorphism
from 〈M(Q1),M(m),M(r),M(l)〉 into 〈N(Q1), N(m), N(r), N(l)〉.
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Proof. It suffices to show that,

for all x, y ∈M(Q1), ηQ1(M(m)(x, y)) = N(m)(ηQ1(x), ηQ1(y)),

i.e., that the following rectangle commutes

M(Q1) N(Q1)�
ηQ1

M(Q1)×M(Q1) N(Q1)×N(Q1)�ηQ1 × ηQ1

�

M(m)

�

N(m)

Since M(Q1)×M(Q1) = M(Q2) and N(Q1)×N(Q1) = N(Q2), this would certainly be
true if ηQ1 × ηQ1 = ηQ2 . But, since η : M → N is a natural transformation, we have
commutativity of

M(Q1) N(Q1)�
ηQ1

M(Q1)×M(Q1) N(Q1)×N(Q1)�ηQ2

�

M(p1)

�

N(p1)

M(Q1) N(Q1)�
ηQ1

M(Q1)×M(Q1) N(Q1)×N(Q1)�ηQ2

�

M(p2)

�

N(p2)

whence
ηQ2(x, y) = (ηQ1(x), ηQ1(y)), for all x, y ∈M(Q1),

as required.

The results that we have obtained so far may be summarized in the following

3.3. Theorem. ModSet→(Sq) is the category corresponding to the usual universal
algebraic variety of quasigroups, i.e., the category of quasigroups with homomorphisms
between them.

Next, let M : Sq → Set be a model of Sq in Set. Since Set is not assumed to have
specified limits, it is not necessarily the case thatM(Q2) = M(Q1)×M(Q1). One may now
only conclude that M(Q2) ∼= M(Q1)×M(Q1). Denote by φM : M(Q1)×M(Q1)→M(Q2)
the isomorphism that makes the following diagram commute

M(Q1) M(Q2)�
M(p1)

M(Q1)�
M(p2)

M(Q1)×M(Q1)

π1

�
�

�
�

�
��� �

φM π2

�
�

�
�

�
���

where π1, π2 are the ordinary coordinate projections in Set.
The following propositions show that the model category obtained is essentially the

same as before modulo the isomorphism φM .
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3.4. Proposition. Let M : Sq → Set and φM : M(Q1) ×M(Q1) → M(Q2) be as
above. Then 〈M(Q1),M(m)φM ,M(r)φM ,M(l)φM〉 is a quasigroup.

Proof. It is clear that M(m)φM ,M(r)φM and M(l)φM are binary operations on M(Q1).

p1〈p1,m〉 ≈ p1 and p2〈p1,m〉 ≈ m

give

M(p1)M(〈p1,m〉) = M(p1) and M(p2)M(〈p1,m〉) = M(m),

whence

M(p1)M(〈p1,m〉)φM = π1 and M(p2)M(〈p1,m〉)φM = M(m)φM ,

which together imply that

M(〈p1,m〉)φM = φM〈π1,M(m)φM〉.

Similarly, we obtain

M(〈m, p2〉)φM = φM〈M(m)φM , π2〉, M(〈p1, l〉)φM = φM〈π1,M(l)φM〉

and M(〈r, p2〉)φM = φM〈M(r)φM , π2〉.
Now, we have M(l)M(〈p1,m〉) = M(p2), whence

M(l)M(〈p1,m〉)φM = M(p2)φM , i.e., M(l)φM〈π1,M(m)φM〉 = π2.

Similarly, one may obtain the remaining three identities for the quasigroup 〈M(Q1),
M(m)φM ,M(r)φM ,M(l)φM〉.

Similarly, one obtains the following proposition, whose proof is omitted.

3.5. Proposition. Let M,N : Sq → Set and φM : M(Q1) × M(Q1) → M(Q2),
φN : N(Q1) × N(Q1) → N(Q2) be as above. Suppose that η : M → N is a mor-
phism in ModSet(Sq). Then ηQ1 : M(Q1) → N(Q1) is a quasigroup homomorphism from
the quasigroup 〈M(Q1),M(m)φM ,M(r)φM ,M(l)φM〉 to the quasigroup 〈N(Q1), N(m)φN ,
N(r)φN , N(l)φN〉.

So, what modification is needed in the quasigroup sketch, so that its model category
be the category Qtp of quasigroups with quasigroup homotopies between them? In the
next section a modified sketch is introduced whose model category will be shown to be
naturally equivalent to Qtp. We do not know, however, whether a limit sketch exists
whose category of models is isomorphic to Qtp. Smith’s semisymmetrization result in
[Smith (1997)] may prove helpful in answering this question.
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4. The Modified Sketch

The new graph Gt has vertex set

Vt = {Q1, Q2, Q3, Q12, Q13, Q32}
and its edges are given diagrammatically as follows:

p12
1 : Q12 → Q1 p12

2 : Q12 → Q2

and, similarly, for p13
1 , p

13
3 and p32

3 , p
32
2 ,

m : Q12 → Q3 l : Q13 → Q2 r : Q32 → Q1

and, finally,
〈m, p12

2 〉 : Q12 → Q32 〈p12
1 ,m〉 : Q12 → Q13

〈p13
1 , l〉 : Q13 → Q12 〈r, p32

2 〉 : Q32 → Q12.

The following is a list of equations in Gt. The set of these equations is denoted by Qt :

p13
1 〈p12

1 ,m〉 ≈ p12
1 p13

3 〈p12
1 ,m〉 ≈ m p32

3 〈m, p12
2 〉 ≈ m p32

2 〈m, p12
2 〉 ≈ p12

2

p12
1 〈p13

1 , l〉 ≈ p13
3 p12

1 〈p13
1 , l〉 ≈ l p12

1 〈r, p32
2 〉 ≈ r p12

2 〈r, p32
2 〉 ≈ p32

2

l〈p12
1 ,m〉 ≈ p12

2 r〈m, p12
2 〉 ≈ p12

1

m〈p13
1 , l〉 ≈ p13

3 m〈r, p32
2 〉 ≈ p32

3

Compare the equations in Qt with those in Qq displayed in Section 2.
Finally, let Lt be the set consisting of the following cones, given in diagrammatic form

Q1 Q2

Q12

p12
1

�
�

���
p12

2

�
�

���
Q1 Q3

Q13

p13
1

�
�

���
p13

3

�
�

���
Q3 Q2

Q32

p32
3

�
�

���
p32

2

�
�

���

Let St = 〈Gt, Qt, Lt〉 be the sketch with graph Gt, set of equations Qt and set of cones
Lt, as constructed above. St is the sketch for quasigroup homotopies.

Now the following proposition may be easily verified.

4.1. Proposition. Let Q = 〈Q, ·, /, \〉 be a quasigroup. Define the graph morphism
NQ : Gt → Set→ as follows:

NQ(Q1) = NQ(Q2) = NQ(Q3) = Q,

NQ(Q12) = NQ(Q13) = NQ(Q32) = Q×Q,
NQ(p12

1 )(x, y) = NQ(p13
1 )(x, y) = NQ(p32

3 )(x, y) = x

and
NQ(p12

2 )(x, y) = NQ(p13
3 )(x, y) = NQ(p32

2 )(x, y) = y,
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NQ(m)(x, y) = x · y NQ(l)(x, y) = x\y NQ(r)(x, y) = x/y

NQ(〈m, p12
2 〉)(x, y) = (x · y, y) NQ(〈p12

1 ,m〉)(x, y) = (x, x · y)
NQ(〈p13

1 , l〉)(x, y) = (x, x\y) NQ(〈r, p13
3 〉)(x, y) = (x/y, y)

Then NQ is a model of St in Set→.

Moreover, by analogy with Proposition 2.8, we have the following:

4.2. Proposition. Let Q,P be two quasigroups, (h1, h2, h3) : Q → P a quasigroup
homotopy and NQ, NP : St → Set→ the two models of St defined as in Proposition 4.1.
η : NQ → NP, defined by

ηQ1 = h1 ηQ2 = h2 ηQ3 = h3

ηQ12 = (h1, h2) ηQ13 = (h1, h3) ηQ32 = (h3, h2),

is a model morphism of St in Set→.

5. Homotopies of Quasigroups

In this section, it is shown that the category of models ModSet→(St) essentially contains
quasigroups with homotopies between them. More precisely, that ModSet→(St) is nat-
urally equivalent to Qtp. The proof is based on the fact that the three sets in which
the vertices Q1, Q2 and Q3 of Gt are mapped in Set→ by any model M : St → Set→
are isomorphic. So up to isomorphism, i.e., a renaming of the elements corresponding
to Q1 and Q2, M will be shown to define a quasigroup with universe M(Q3). Then all
model morphisms in ModSet→(St) between two models M and N may be appropriately
translated to homotopies between the quasigroups with the universes M(Q3) and N(Q3).

5.1. Lemma. Let M : St → Set→ be a model in ModSet→(St), xM ∈ M(Q1) and
yM ∈M(Q2). Then φyM

: M(Q1)→M(Q3) and ψxM
: M(Q2)→M(Q3), defined by

φyM
(x) = M(m)(x, yM) and ψxM

(y) = M(m)(xM , y),

for all x ∈M(Q1), y ∈M(Q2), respectively, are bijections.

Proof. We only show that φyM
: M(Q1)→M(Q3) is a bijection. The case of ψxM

may
be handled similarly.

Suppose x1, x2 ∈M(Q1), with φyM
(x1) = φyM

(x2). Then

M(m)(x1, yM) = M(m)(x2, yM),

whence M(r)(M(m)(x1, yM), yM) = M(r)(M(m)(x2, yM), yM) and, therefore, x1 = x2.
Thus φyM

is one-to-one.
Next, let z ∈M(Q3). Then, for x = M(r)(z, yM) ∈M(Q1), we have

φyM
(x) = M(m)(x, yM) = M(m)(M(r)(z, yM), yM) = z.

Thus, φyM
is also onto.
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With Lemma 5.1 at hand, it may now be shown that ModSet→(St) is essentially the
category Qtp of quasigroups with homotopies between them. Note that, because of
Lemma 5.1, to make the correspondence that is established between ModSet→(St) and the
category Qtp of quasigroups with homotopies between them natural we must fix a way
of choosing the elements xM and yM in M(Q1) and M(Q2), respectively. Luckily enough
any choice will do. To this end, an arbitrary choice function c for the class |Set→| − {∅}
will be fixed later in the section.

The work is divided again into two steps. In the first we deal with objects and in the
second with morphisms in ModSet→(St).

5.2. Proposition. Let M : St → Set→ be a model in ModSet→(St), xM ∈M(Q1) and
yM ∈M(Q2). Then

〈M(Q3),M(m)〈φ−1
yM
, ψ−1

xM
〉, φyM

M(r)〈iM(Q3), ψ
−1
xM
〉, ψxM

M(l)〈φ−1
yM
, iM(Q3)〉〉

is a quasigroup.

Proof. Using Lemma 5.1, it is easy to verify that M(m)〈φ−1
yM
, ψ−1

xM
〉, φyM

M(r)〈iM(Q3),
ψ−1

xM
〉 and ψxM

M(l)〈φ−1
yM
, iM(Q3)〉 are all binary operations on M(Q3). So it suffices to show

that they obey the quasigroup laws. We only verify one of the four laws. The proofs of
the remaining three are very similar.

ψxM
M(l)〈φ−1

yM
, iM(Q3)〉(x,M(m)〈φ−1

yM
, ψ−1

xM
〉(x, y))

= ψxM
M(l)(φ−1

yM
(x),M(m)(φ−1

yM
(x), ψ−1

xM
(y)))

= ψxM
(ψ−1

xM
(y)) = y,

the second equality being valid because of the corresponding equation imposed by Qs.

Given a modelM : St → Set→, xM ∈M(Q1) and yM ∈M(Q2), denote byM∗
xM ,yM

(Q3)
the quasigroup

〈M(Q3),M(m)〈φ−1
yM
, ψ−1

xM
〉, φyM

M(r)〈iM(Q3), ψ
−1
xM
〉, ψxM

M(l)〈φ−1
yM
, iM(Q3)〉〉

associated with it by Proposition 5.2.
Now for the morphisms in ModSet→(St) we have the following proposition.

5.3. Proposition. Let M,N : St → Set→ be two models in ModSet→(St), xM ∈
M(Q1), yM ∈ M(Q2), xN ∈ N(Q1) and yN ∈ N(Q2). Finally, let η : M → N be a
morphism in ModSet→(St). Then

(φyN
ηQ1φ

−1
yM
, ψxN

ηQ2ψ
−1
xM
, ηQ3) : M(Q3)→ N(Q3)

is a quasigroup homotopy from M∗
xM ,yM

(Q3) into N∗
xN ,yN

(Q3).
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Proof. We need to show that

ηQ3(M(m)〈φ−1
yM
, ψ−1

xM
〉(x, y)) = N(m)〈φ−1

yN
, ψ−1

xN
〉(φyN

ηQ1φ
−1
yM

(x), ψxN
ηQ2ψ

−1
xM

(y)).

We have

N(m)〈φ−1
yN
, ψ−1

xN
〉(φyN

ηQ1φ
−1
yM

(x), ψxN
ηQ2ψ

−1
xM

(y)) = N(m)(ηQ1φ
−1
yM

(x), ηQ2ψ
−1
xM

(y))

= N(m)(〈ηQ1 , ηQ2〉(φ−1
yM

(x), ψ−1
xM

(y)))

= ηQ3(M(m)〈φ−1
yM
, ψ−1

xM
〉(x, y)),

the last equality being valid because η : M → N is a natural transformation.

Now suppose that there is available a choice function c for the class |Set→| − {∅} of
all nonempty sets, i.e., for all X ∈ |Set→|, X �= ∅, c(X) ∈ X. Then, it can be shown that
the category Qtp of quasigroups with homotopies between them is naturally equivalent
to ModSet→(St).

The functor F : Qtp→ ModSet→(St) is defined by

F (Q) = NQ, for all Q ∈ |Qtp|,
and, given (h1, h2, h3) ∈ Qtp(Q,P), F ((h1, h2, h3)) is the model morphism in ModSet→(St)
defined in Proposition 4.2.

The functor G : ModSet→(St)→ Qtp is defined by

G(M) = M∗
c(M(Q1)),c(M(Q2))(Q3), for all M : St → Set→,

and, given η ∈ ModSet→(St)(M,N),

G(η) = (φc(N(Q2))ηQ1φ
−1
c(M(Q2)), ψc(N(Q1))ηQ2ψ

−1
c(M(Q1)), ηQ3).

It is a routine calculation to check that F and G are indeed functors. So to prove the
natural equivalence it suffices to exhibit natural isomorphisms µ : IQtp → G ◦ F and
ν : IModSet→ (St) → F ◦ G. Note that G(F (〈Q, ·, /, \〉)) is the quasigroup with universe Q
and multiplication, right division and left division given, respectively, by

(x, y) → (x/c(Q)) · (c(Q)\y)
(x, y) → (x/(c(Q)\y)) · c(Q)
(x, y) → c(Q) · ((x/c(Q))\y).

So, it is natural to define

µQ1(x) = x · c(Q), µQ2(x) = c(Q) · x, µQ3(x) = x,

i.e.,
µQ1 = φc(Q), µQ2 = ψc(Q), µQ3 = iQ.
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µQ is an isotopy and, for all Q,P ∈ |Qtp|, and (h1, h2, h3) ∈ Qtp(Q,P), commutativity
of

P G(F (P))�
µP

Q G(F (Q))�µQ

�

(h1, h2, h3)

�

G(F ((h1, h2, h3)))

is easy to verify. For instance, for the first component, diagram chasing gives

(φc(P )h1φ
−1
c(Q))φc(Q) = φc(P )h1.

Next, given M : St → Set→, the model F (G(M)) has

F (G(M))(Q1) = F (G(M))(Q2) = F (G(M))(Q3) = M(Q3)

and, moreover,
F (G(M))(m) = M(m)〈φ−1

c(M(Q2)), ψ
−1
c(M(Q1))〉

F (G(M))(r) = φc(M(Q2))M(r)〈iM(Q3), ψ
−1
c(M(Q1))〉

F (G(M))(l) = ψc(M(Q1))M(l)〈φ−1
c(M(Q2)), iM(Q3)〉.

So, now, we define

νM(Q1) = φc(M(Q2)), νM(Q2) = ψc(M(Q1)), νM(Q3) = iM(Q3).

Clearly, νM is also an isotopy and, for all M,N : St → Set→ and η : M → N in
ModSet→(St), commutativity of

N F (G(N))�
νN

M F (G(M))�νM

�

η

�

F (G(η))

may be verified as follows:

(F (G(η)) ◦ νM)Q1 = F (G(η))Q1νM(Q1)
= φc(N(Q2))ηQ1φ

−1
c(M(Q2))φc(M(Q2))

= φc(N(Q2))ηQ1

= νN(Q1)ηQ1

= (νN ◦ η)Q1

and, similarly, for Q2, Q3, Q12, Q13 and Q32.
We have, thus, shown the following
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5.4. Theorem. The category Qtp of quasigroups with homotopies between them and
the model category ModSet→(St) of the product sketch St in Set→ are naturally isomorphic
categories.
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Aurelio Carboni, Università dell Insubria: aurelio.carboni@uninsubria.it
Valeria de Paiva, Palo Alto Research Center: paiva@parc.xerox.com
Martin Hyland, University of Cambridge: M.Hyland@dpmms.cam.ac.uk
P. T. Johnstone, University of Cambridge: ptj@dpmms.cam.ac.uk
G. Max Kelly, University of Sydney: maxk@maths.usyd.edu.au
Anders Kock, University of Aarhus: kock@imf.au.dk
Stephen Lack, University of Sydney: stevel@maths.usyd.edu.au
F. William Lawvere, State University of New York at Buffalo: wlawvere@buffalo.edu
Jean-Louis Loday, Université de Strasbourg: loday@math.u-strasbg.fr
Ieke Moerdijk, University of Utrecht: moerdijk@math.uu.nl
Susan Niefield, Union College: niefiels@union.edu
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