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COLOCALIZATIONS AND THEIR REALIZATIONS AS SPECTRA

FRIEDRICH W. BAUER

ABSTRACT. Every chain functor AAA∗ (cf. appendix B below or [2] §4), admits a L-
colocalization (corollary 1.3., L a subcategory of the category on which AAA∗ is defined)
AAAL

∗ which (in contrast to the case of L-localizations, cf. [3]) in general does not allow a
realization as a spectrum (even if AAA∗ stems from a spectrum itself). The [E, ]∗- colo-
calization of A. K. Bousfield [6] is retrieved as a special case of a general colocalization
process for chain functors.

Introduction

It is well-known that every spectrum A can be localized in the sense of A. K. Bousfield
[5] with respect to another spectrum E. This amounts to the existence of a natural exact
sequence of spectra

EA �� A
η

�� AE (1)

where EA is E-acyclic, AE E-local and η an E-isomorphism. E-local means that [B, AE] =
0 for any E-acyclic spectrum B.

Every spectrum A gives rise to a chain functor AAA∗ (cf. appendix B or [2] for further
references). Let L ⊂ Top2 or L ⊂ B (= the Boardman category [1]) be a full subcategory
(e.g. L = {E}, being determined by a single object), then there exists a natural L-
localization sequence

LAAA∗ �� AAA∗
η

�� AAAL∗ (2)

which implies (1) as a special case.
The objective of the present paper is to establish a dual L-colocalization sequence for

chain functors

AAAL
∗

η
�� AAA∗ �� LAAA∗ (3)

where LAAA∗ is L-acyclic, η an L-isomorphism and AAAL
∗ L-colocal (i.e. [AAAL

∗ , BBB∗] = 0 for any
L-acyclic chain functor BBB∗).

Theorem 1.3 and Corollary 1.4 are existence theorems for L- colocalizations. So far we
have (for the assertions, not for the proofs) full duality with the case of L-localizations.
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However, even if the chain functor AAA∗ originates from a spectrum A (i.e. if it can be
realized as a spectrum), it turns out that in general AAAL

∗ can not be realized as a spectrum,
because it does not have compact carriers. So we rediscover the fact that in general
there are no colocalizations on the level of spectra. In the case L = {E} we present in
§2 an explicit construction of AAAE

∗ by means of the E-colocalization of a specific (highly
irregular, i.e. not realizable) chain functor Z∗, which is taken from [3]. By enlarging the
given category (e.g. the category of Boardman spectra, the same would also work for pairs
of CW-spaces) by some “formal S-duals” DE, we are permitted to deal with homology
theories of the form {E, }∗ (which are isomorphic to DE∗( ) = {S•, ( )∧DE}∗ whenever
a S-dual DE exists). Although {E, }∗ does not have compact carriers, it turns out that
(theorem 3.1.) DE-colocalization of a chain functor AAA∗ can be realized by a spectrum.
As a result we obtain a {E, }∗-colocalization of a spectrum as a spectrum and not only
as a chain functor. This coincides with the results of [6].

The proof of the main theorem is accomplished in §4 and prepared by some material
on chain functors in an appendix A.

In contrast to [2], [3] we do not require that homology theories and (even regular)
chain functors (cf. appendix B)) automatically have compact carriers, so that {E, }∗
now becomes a homology theory. In our present notation a chain functor might be an
irregular one (cf. Appendix B).

The results of this paper have been recorded in the expository article [4].

1. Colocalizations of chain functors:

Suppose that L ⊂ K ⊂ Top2 are categories and L a full subcategory of K. Alternatively
we may take a full subcategory of the Boardman category [1].

1.1. Definition.

1) A chain functor CCC∗ is L-acyclic, whenever for any (E,F ) ∈ L there exists a chain
homotopy D : C∗(E,F ) �� C∗+1(E,F ), D : 1 � 0, i.e.

dD(ζ) +D(dζ) = ζ, ζ ∈ C∗(E,F ).

We assume that D commutes with l : C ′
∗ ⊂ C∗, i.e. D(ζ) ∈ C ′

∗+1, ζ ∈ C ′
∗.

2) Let [· · · , · · · ] denote the set of all homotopy classes of chain functor transformations.
A chain functor AAA∗ is L-colocal whenever [AAA∗, BBB∗] = 0 for any L-acyclic chain functor
BBB∗.

3) A transformation ω : AAA∗ �� BBB∗ between chain functors is an L-isomorphism whenever
H∗(ω) = ω∗ is an isomorphism on the category L.

1.2. Remark. Observe that we do not require the naturality of the chain homotopy in
1).

The main objective of this paper is the verification of Theorem 4.2, which subsumes:
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1.3. Theorem. To any L and any (regular) chain functor AAA∗ there exists a natural
(regular) L-colocal AAAL

∗ and a L-isomorphism η : AAAL
∗ �� AAA∗.

We call (AAAL
∗ , η) the L-colocalization of AAA∗. The analogy with L-localizations as treated

in [3] can be pursued even further by introducing

LAAA∗ = AAA∗ ∪η coneAAAL
∗

which is L-acyclic: Suppose z = c + c1 ∈ A∗(E) ∪η coneAL
∗ (E), E ∈ L, is a cycle,

c ∈ A∗(E)), c1 ∈ cone AL
∗ (E). We calculate: dc1 = −dc ∈ (cone AL

∗ ) ∩ A∗, hence
dc1 ∈ η(AL

∗ (E)). Because η is an L- isomorphism, dc1 = dc2, c2 ∈ η(AL
∗ (E)). We

deduce that z ∼ z1 = c + c2 ∈ A∗(E) ∪η AL
∗ (E) and therefore z1 ∼ z2 ∈ AL

∗ (E). So
z ∼ 0 ∈ LA∗(E). Since all chain complexes involved are free, the acyclicity of LAAA∗ follows.

We have:

1.4. Corollary. To any L and any chain functor AAA∗ there exists a natural (in the same
sense as in theorem 1.3.) exact colocalization sequence

AAAL
∗

η
�� AAA∗ �� LAAA∗

with L-colocal AAAL
∗ , L-acyclic LAAA∗ which are regular, whenever AAA∗ is, and L-isomorphism

η.

Proof. Only naturality has not yet been proven. However the construction of a Lγ : LAAA∗
�� LBBB∗ associated with a γ : AAA∗ �� BBB∗, fitting into a homology commutative diagram

is immediate.

1.5. Proposition. A chain functor AAA∗ is L-colocal whenever the following condition is
satisfied:

2 ′) Any L-isomorphism γ : BBB∗ �� CCC∗ induces an isomorphism

[AAA∗, γ] : [AAA∗, BBB∗]
≈ �� [AAA∗, CCC∗].

Proof. Define

KKK∗ = CCC∗ ∪γ coneBBB∗,

then we have an exact sequence of chain functors

Σ−1KKK∗ �� BBB∗
γ

�� CCC∗ �� KKK∗

where Σ−1KKK∗ is the (formal) desuspension which is defined as for chain complexes. Now
KKK∗ turns out to be L-acyclic and [AAA∗, KKK∗] = 0 is equivalent to the statement that [AAA∗, γ] :
[AAA∗,BBB∗] �� [AAA∗,CCC∗] is an isomorphism.

1.6. Proposition. Let 1AAA∗
1η

�� AAA∗, 2AAA∗
2η

�� AAA∗ be two L-colocalizations of AAA∗, then
there exists a homotopy equivalence γ : 1AAA∗ �� 2AAA∗, commuting with iη, i = 1, 2.

In view of 1.5, the proof is immediate.



COLOCALIZATIONS AND THEIR REALIZATIONS AS SPECTRA 165

1.7. Remarks.

1) The formal suspensions and desuspensions used in the proof of 1.5 are not related to
any excision properties of the individual (regular or irregular) chain functors involved.

2) If AAA∗ is a chain functor which allows a realization | AAA∗ | as a Boardman spectrum or
alternatively AAA∗ is the chain functor associated with a spectrum, then it is not necessarily
true that AAAL

∗ can be realized as a spectrum | AAAL
∗ | (cf. [2] for further reference). The

reason is that AAAL
∗ , while enjoying all other properties of a realizable chain functor, does

not necessarily have compact support. In the next section we will encounter an explicit
example even for the case that L consists of a single object. So L-colocalizations do not
always exist for (and as) spectra while they are always available as chain functors.

3) If AAA∗ has compact carriers, then AAA∗ | L in general does not (because L may not contain
any compact subsets at all). This is also the reason that, in contrast to L-localizations in
[3] (cf. in particular the proof of 4.1.), we cannot change AAAL

∗ by simply taking compact
carriers. The resulting chain functor would no longer be a L-colocalization of AAA∗.

2. AAAL
∗ for L = {E} a single object

In this case we write AAAE
∗ instead of AAAL

∗ . The purpose of this section is to give an explicit
description of E-colocalization in this case. To this end we briefly recall the definition of
the (irregular) chain functor ZZZ∗ (cf. [3] §3 or appendix B):

Zn(X) =

{ 〈zX〉 · · · dzX = 0, n = 0, X �= ∅
0 . . . . . . otherwise

Zn(X,A) = 0, A �= ∅
This can easily be endowed with the structure of an irregular chain functor.

In order to describe Z
E
∗ (X) explicitly, we refer to the existence proof of an E-colocal-

ization in §4 and in appendix A.
According to the existence proof of an E-colocalization (cf. §4), the generating elements

of Z
E
∗ (X) are of the form w[ζ, f ], where w denotes a word in the sense of the proof of A.1

and ζ = mzE, m ∈ Z. Suppose AAA∗ is any chain functor defined on K, then we establish
a new (irregular) chain functor

Ãn( ) = (A∗(E) ⊗ Z
E
∗ ( ))n =

⊕
p+q=n

Ap(E) ⊗ Z
E
q ( ),

with the usual boundary operator. We set

Ã′
∗( ) = A∗(E) ⊗ (ZE

∗ )′( )

and ϕ, κ for Ã∗ are the tensor products of the identity of A∗(E) with the corresponding
ϕ, κ for Z

E
∗ . Moreover l : Ã′

∗( ) ⊂ Ã∗( ) is the tensor product 1⊗ l, correspondingly for
i′ = κi. This furnishes an irregular chain functor (cf. appendix B or [3] §3).
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2.1. Claim. For any ζ ∈ A∗(E) we have a chain homotopy ζ � l κ(ζ).

Proof. The relations ϕκ � 1, j#ϕ � l imply lκ � j# : A∗(E) �� A∗(E, ∅) = A∗(E).
Let ζ ⊗mw[zE, f ] ∈ Ã∗(X,Y ), f : E �� (X,Y ), w a word as in the proof of A.1, be
given, then we find

η̃ : Ã∗(X,Y ) �� A∗(X,Y )

by setting

η̃(ζ ⊗mw[zE, f ]) = mwf#(ζ), m ∈ Z

whenever this is defined and mwκ(ζ), when w(ζ) is not defined, which happens whenever
ζ �∈ A′

∗(E), w [zE, 1] ∈ (ZE
∗ )′(X,Y ) and w is of the form w = w1 ϕf , with continuous f .

This furnishes a mapping of irregular chain functors.

2.2. Proposition.

1) η̃ is an E-isomorphism;

2) let BBB∗ be E-acyclic, then for any γ : Ã̃ÃA∗ �� BBB∗ one has

γ � 0.

Proof. .

1) Let ζ ⊗mw[zE, f ] ∈ Ã∗(E) be an element, we can assume that f = 1E, moreover w
is a word w : E �� E. By inspecting all possible words of this kind in A.1, we deduce
that

2.3. Claim. [(**)] The assignment

ζ ⊗mw[zE, 1] �→ wζ ⊗m[zE, 1]

induces an E-isomorphism.

Proof of (**). The inverse (up to homology) to

η̃ : Ã∗(E) �� A∗(E)

is

η̄(ζ) = ζ ⊗ [zE, 1].

We calculate:

η̄η̃(ζ ⊗mw[zE, 1]) = mwζ ⊗ [zE, 1]

η̃η̄(ζ) = η̃(ζ ⊗ [zE, 1]) = ζ.

Due to (**) this implies that η̃ is an E-isomorphism.



COLOCALIZATIONS AND THEIR REALIZATIONS AS SPECTRA 167

2) Let z ∈ Zn(Ã∗(X,Y )) be a cycle, then there exists because of proposition A.1 B) a cycle

z ∼ z′ =
m∑

i=1

ζi ⊗ [zE, fi]. We collect all elements with the same fi, obtaining z′ =
∑

fi#zi,

observing that all zi are cycles themselves. Therefore γzi = dxi is bounding. Hence
γfi#zi = fi#γzi = dfi#xi and consequently

γz′ = d
∑

fi#xi

is bounding. As a result we confirm that any γz is bounding which completes the proof
of 2).

2.4. Theorem. There is a homotopy equivalence of (irregular) chain functors

γ : A∗(E) ⊗ Z
E
∗ ( ) � AAAE

∗ ( ),

which is compatible with η̃, η.

Proof. This follows from 1.6 and 2.2.

2.5. Remark. A∗(E)⊗Z
E
∗ does not have compact carriers unless E is compact, because

a continuous f : E �� X does not necessarily factor through some f1 : E ��

K ⊂ X, K compact. As a result [zE, 1E] ∈ Z
E
∗ (E) does not have a counterimage in some

Z
E
∗ (K), K ⊂ E, K compact. This implies that Z

E
∗ ( ) and consequently that A∗(E)⊗Z

E
∗ ( )

does not necessarily have compact carriers.

3. [E, ]∗-colocalization:

Among the homology theories defined on the Boardman category B (cf. [1]), respectively
on a category of pairs of CW-spaces K, we encounter those of the type [E, ]∗ (E ∈ B)
respectively

{E, }∗ = colim
k

[Σ∗+kE,Σk( )], E ∈ K.

They satisfy all conditions of a generalized homology theory with the exception of the
compact carrier condition. According to a theorem of A. Neeman ([7], theorem 2.1.) a
homology theory h∗( ) is isomorphic to a homology theory {E, }∗, for some E ∈ B if
and only if h∗ preserves products, i. e. whenever

h∗( Π
ι∈J

Xι) ≈ Π
ι∈J

h∗(Xι).

If E is an object which admits an S-dual (e.g. a finite CW-spectrum), we have

{E, }∗ = DE∗( ).
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So, by an abuse of notation, we call such a homology theory DE∗ also, even when the
object DE is not defined within the original category.

The natural transformations γ : DE∗ �� DE ′
∗ are in one-to-one correspondence

with stable homotopy classes of mappings γ̂ : E ′ �� E, while the transformations
γ : [E, ]∗ �� F∗ are in one-to-one correspondence with stable mappings γ̂ : S•

�� E ∧ F. In the same way we associate γ : F∗ �� [E, ]∗ with γ̂ : F ∧ E �� S•.
If DE is not defined as an object in the original category, we employ this strategy as a
definition of new morphisms, so that we can enlarge the original categories B or K by
these new objects and morphisms, denoting the new category by B respectively K. The
[E, ]∗-colocalization is nothing but the DE-colocalization in K.

Let A be a spectrum, AAA∗ the associated chain functor with A �| AAA∗ |, then we define

A∗(DE) = (DE)∗(A).

Using the terminology of §4, the elements of Ã∗(X,Y ) are classes of pairs [ζ, f̄ ], ζ ∈
A∗(DE), f̄ : DE �� X∪CY . By the previous identification, we discover the associated
f : S• �� (X ∪ CY ) ∧ E which factors over a finite subcomplex K ⊂ (X ∪ CY ) ∧ E,
whose cells are ∧-products of finitely many cells σ ∧ ε, σ in X ∪CY , ε in E. As a result,
f factors over X ′ ∧E, X ′ ⊂ X ∪CY , a finite, hence compact, subcomplex. This confirms
that Ã∗ admits compact carriers.

According to the proof of 4.1 all generating elements of ADE
∗ (X,Y ) are of the form

w[ζ, f̄ ], with w being a word as in the proof of A.1. Hence AAADE
∗ has compact carriers. All

other properties of a chain functor are readily verified as in the appendix. As a result we
have:

3.1. Theorem. Let A be a Boardman spectrum, then the chain functor AAADE
∗ can be

realized as a spectrum | AAADE
∗ |= AAA[E, ]∗.

3.2. Remark. In [6] A. K. Bousfield introduced a [E, ]∗-colocalization which agrees
with the present one where defined.

4. Proof of the colocalization theorem:

Suppose L ⊂ K is a subcategory of a category of pairs of topological spaces or of pairs of
spectra in the Boardman category. We need the following:

4.1. Theorem. For each chain functor LLL∗ : K �� ch, there exists a chain functor L̄LL∗
on K and a transformation of chain functors τ : LLL∗ | L �� L̄LL∗ | L (defined on L) such
that for any chain functor KKK∗ on K and any transformation α : LLL∗ | L �� KKK∗ | L, there
exists a ᾱ : L̄LL∗ �� KKK∗ satisfying (ᾱ | L)τ = α. Regularity of LLL∗ implies that of L̄LL∗.

Proof. In a first step we neglect the specific properties of a chain functor, dealing
merely with functors L∗, K∗ going into the category of free chain complexes, equipped
with subfunctors L′

∗, K
′
∗ and natural inclusions l : L′

∗ ⊂ L∗, i′ : L∗(A) ⊂ L′
∗(X,A)

respectively for K∗. Having extended L∗ | L over K to a L̃∗, we are able to apply A.1.
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I) Let (ζi, fi) be pairs, ζi ∈ L∗(Ei, Fi), fi : (Ei, Fi) �� (X,A) continuous, then we
establish an equivalence relation

(ζ1, f1) ∼ (ζ2, f2)

which is generated by the relationship

(ζ1, f1g) ∼ (g#ζ1, f1), g ∈ L.

Let L̃∗(X,A) (L̃′
∗(X,A)) be the free abelian group generated by equivalence classes [ζ, f ]

(ζ ∈ L′
∗(E,F )) of such pairs together with the following relations:

−[ζ, f ] = [−ζ, f ]

[ζ1, f ] + [ζ2, f ] = [ζ1 + ζ2, f ].

The resulting groups are still free abelian.
Suppose h : (X,A) �� (Y,B) ∈ K, then we set

h#[ζ, f ] = [ζ, hf ] (1)

d[ζ, f ] = [dζ, f ]. (2)

This furnishes a functor L̃∗ : K �� ch (L̃′
∗ : K �� ch) together with inclusions l, i′,

defined in the following way:
The inclusion l[ζ, f ] = [l(ζ), f ] is obvious. Suppose [ζ, f ] ∈ L̃n(F ), f : F �� A, then

f determines a mapping f̃ as the composition

(F, F )
(f,f)

�� (A,A) ⊂ (X,A)

allowing us to set i′[ζ, f ] = [i′(ζ), f̃ ]. Since i′ for LLL∗ is by definition natural (in (X,A))
this equips L̃∗ with the required i′.

Suppose ζ ∈ Ln(X,A), then there exists by definition a natural chain homotopy χ(ζ),
commuting with l and i′, satisfying

dχ(ζ) + χ(dζ) = i0#(ζ) − i1#(ζ).

By setting

[ζ, f ] = [χ(ζ), f × 1],

we find a chain homotopy for L̃∗

dχ[ζ, f ] = [χ(ζ), f ] + χ[dζ, f ] = i0#[ζ, f ] − i1#[ζ, f ].
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We have a transformation

τ : L∗ | L �� L̃∗ | L

ζ � �� [ζ, 1E,F )], ζ ∈ L∗(E,F ).

Suppose α is given, then

α̃ : L̃∗ �� K∗

[ζ, f ] � �� K∗(f)(α(ζ))

is defined on K and satisfies

(α̃ | L)τ = α.

Both τ and α̃ commute with the natural chain homotopies inherent in L̃LL∗, KKK∗ and LLL∗.
Suppose [ζ, f ] ∈ L̃∗(X,X), f : (E,F ) �� (X,X), then we find f ′ : (E,E) �� (X,X)
and a ξ ∈ L∗+1(E,E) such that dξ = g#ζ, g : (E,F ) ⊂ [E,E). As a result

d[ξ, f ′] = [ζ, f ].

This ensures that L̃∗(X,X) is always acyclic. All other properties of a partial chain
functor (cf. appendix A) are immediately verified.

We still have to ensure that for the derived homology of L̃∗ an excision axiom holds:
Let (ζ, f), f : (E,F ) �� (X,A), ζ ∈ Z∗(L∗(E,F )) be a pair and suppose Ū ⊂ IntXA,
then we define V = f−1(U) and observe that V̄ ⊂ IntEF . By restricting f we obtain
a map f ′ : (E \ V, F \ V )) �� (X \ U,A \ U). Let i : (X \ U,A \ U) ⊂ (X,A), i′ :
(E \ V, F \ V )) ⊂ (E,F ) be the inclusions, then there exists a ζ ′ ∈ Z∗(L∗(E \ V, F \ V ))
such that i′#ζ

′ ∼ ζ. Hence

i#([ζ ′, f ′]) ∼ [ζ, f ].

So i# is epic.
Let [ζ ′, f ′] be a given cycle and suppose d[ξ, f ] = [dξ, f ] = i#[ζ ′, f ′], then excision for

LLL∗ enables us to find [ξ′, f ′] satisfying d[ξ′, f ′] = [ζ ′, f ′], so that i# is monic.
II) This provides us with a L̃∗ : K �� ch (L̃′

∗ : K �� ch) satisfying all prerequisites

of A.1. We obtain a chain functor L̄LL∗ =
¯̃
LLL∗ by applying A.1.

There is an inclusion L∗ ⊂ L̄∗ commuting with the operators ϕ, κ, δ, δi etc., and
therefore a transformation of chain functors τ : LLL∗ | L �� L̄LL∗ | L. Let α be a
transformation as in the theorem. Assume that ζ̄ ∈ L̄∗ is any element, then either ζ̄ ∈ L̃∗
allowing us to set ᾱ(ζ̄) = α̃(ζ̄) or ζ̄ �∈ L̃∗. In this case ζ̄ = Σwiζ̃i, ζ̃i ∈ L̃∗ in a unique
way, where wi is a word in the sense of the proof of A.1, so that we are entitled to set

ᾱ(ζ̄) = Σwiα̃(ζ̃i).

This furnishes a transformation ᾱ : L̄LL∗ �� KKK∗ satisfying (ᾱ | L)τ = α.
This completes the proof of the theorem for regular LLL∗. The changes in the irregular

case are, in view of A.5, immediate.
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4.2. Theorem. Let AAA∗ be any chain functor, L as before, then there exists a natural (in
AAA∗) L-colocalization

η : AAAL
∗ �� AAA∗

(cf. definition 1.1.2)). More precisely we have:

1) η is an L-isomorphism;

2) if BBB∗ is L acyclic, then [AAAL
∗ , BBB∗] = 0;

3) Let γ : AAA∗ �� BBB∗ be a transformation of chain functors then there exists in a
canonical way a γL : AAAL

∗ �� BBBL
∗ such that the diagram

BBBL
∗ BBB∗η

��

AAAL
∗

BBBL
∗

γL

��

AAAL
∗ AAA∗

η �� AAA∗

BBB∗

γ

��

(3)

is commutative up to homology. If AAA∗ is regular, then AAAL
∗ is also regular.

Proof. Let LLL∗ = AAA∗, α : AAA∗ | L �� AAA∗ | L be the identity, then we have ᾱ : Ā∗
�� AAA∗ such that (ᾱ | L∗) is an isomorphism. We set

AAAL
∗ = ĀAA∗

and

ᾱ = η.

Suppose BBB∗ is L-acyclic, z ∈ Ā∗(X,Y ) a cycle, then A.1 B) implies that z ∼ z′ ∈
Z∗(Ã∗(X,Y )). Now z′ =

∑
[ζi, fi] and, because of (2), we can assume that there is a

representation of z′ as a sum with all [ζi, fi] being cycles. Let ω : AAAL
∗ �� BBB∗ be a

mapping. We deduce, because BBB∗ is L-acyclic, that there exists a ξi in BBB∗ such that
dξi = ω[ζi, 1], hence d

∑
fi#ξi =

∑
fi#ω[ζi, 1] = ω

∑
[ζi, fi] = ω(z′). Thus ω(z) is

bounding. Since BBB∗ is a free chain complex, this implies ω � 0.
Concerning naturality, we consider γ : AAA∗ �� BBB∗ and construct in a functorial way

γL : AAAL
∗ �� BBBL

∗ . First, we set

γL[ζ, f ] = [γ ζ, f ].

For free generators, we define

γLw[ζ, f ] = w[γ ζ, f ].

This furnishes a transformation γL : AAAL
∗ �� BBBL

∗ in a canonical way. In order to
investigate the homology commutativity of (3), let z ∈ Zn(AL

∗ (X,Y )) be a cycle, then
there exists a cycle z ∼ z′ =

∑
[ζi, fi]. Since

γ η(z′) =
∑

fi#γ ζi = η γL(z′),

the assertion follows.
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A. Appendix: Auxiliary material for the proof of the main theorem

This section is devoted to some material on chain functors which is needed in §4 to
establish Theorem 4.1 and especially Theorem 4.2, which is the existence theorem for
colocalizations. For further background, e.g. concerning explicit definitions of chain
functors, regularity, etc., we refer to [2] for further references or to the next section
(appendix B), where, for the convenience of the reader, the definitions are recorded.

Let C∗ : K �� ch be a functor into the category of free chain complexes, l : C ′
∗ ⊂ C∗

a subfunctor, i′ : C∗(A) ⊂ C ′
∗(X,A) a natural inclusion (all going into direct summands,

cf. [2] for further references), then CCC∗ need not be a chain functor: There may be no
ϕ : C ′

∗(X,A) �� C∗(X), κ : C∗(X) �� C ′
∗(X,A) and no chain homotopies j# ϕ �

l, ϕ κ � 1 together with all the other relations which are required for a chain functor
and which are eventually not available.

We list now all these properties and conditions, by expressing them as specific opera-
tions on CCC∗:

1) There are possibly non-natural chain mappings ϕ, κ.

2) There are (non-natural) homomorphisms

δ1 : C∗(X) �� C∗+1(X)

δ2 : C ′
∗(X,A) �� C ′

∗+1(X,A)

satisfying {
dδ1(ζ) + δ1(dζ) = ϕκ(ζ) − ζ
dδ2(ζ) + δ2(dζ) = j# ϕ(ζ) − l(ζ).

(1)

The existence of δi takes care of the above mentioned chain homotopies. The existence of
δi (as well as that of δ) follow for a chain functor, because C∗( ) is assumed to be free.

3) There is a homomorphism

η : Z∗(C∗(X,A)) �� C ′
∗(X,A) ⊕ C∗+1(X,A) ⊕ C∗−1(A)

η(ζ) = (η1(ζ), η2(ζ), η3(ζ))

satisfying

ζ + d η2(ζ) = l η1(ζ) + q#δs#η4(ζ),

q : (A,A) ⊂ (X,A), s : A ⊂ (A,A)

where δ stems from 1). This expresses the fact that every cycle z ∈ C∗(X,A) is homologous
to a cycle of the form

l z′ + q#a, z′ ∈ C ′
∗(X,A), a ∈ C∗(A,A)

dz′ ∈ im i′, dz′ = i′ da.
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4) There exists a homomorphism

β : B∗(X,A) �� C∗(A)

B∗( ) = bounding cycles, satisfying

i′ β(ζ) = dη1 (ζ);

5)

λ : j−1
# B∗(X,A) �� C ′

∗(X,A) ⊕ C∗(A)

λ(ζ) = (λ1(ζ), λ2(ζ)),

satisfying

κ ζ = dλ1(ζ) + i′ λ2(ζ).

Here 4), respectively 5), are translations of

ker ψ ⊂ ker ∂̄

and

ker j∗ ⊂ ker p∗ κ∗,

p : C ′
∗(X,A) �� C ′′

∗ (X,A) = C ′(X,A)/im i′, j∗, p∗ denoting the induced mappings for
homology.

There are no relations between all these operations and continuous mappings except
those already mentioned and the fact that i′ = κ i is natural (i.e. commutes with contin-
uous mappings).

By an abuse of notation, we write e.g. δ : (X,X) �� (X,X), η2 : (X,A) ��

(X,A) and do not distinguish between these symbols and the original homomorphisms.
This allows us to combine them with continuous maps as if they constitute new morphisms
which induce the original homomorphisms.

We now form words w by using these operators or continuous mappings, where we
assume of course that the compositions (like ϕκ, κδ1, but not necessarily ϕδ1) make
sense.

Suppose that (C∗, C ′
∗, l, i

′) is in the following sense partially a (free) chain functor
(or simply: a partial-chain-functor):

p1) C∗(X,X) is always acyclic; all inclusions j induce monomorphisms C∗(j) onto direct
summands, the same holds for i′ and l; the homology groups of C∗ satisfy an excision
property; there are natural and chain homotopies D, commuting with i′ and l, satisfying,
for each ζ ∈ L∗(X,A),

dD(ζ) +D(dζ) = i0#(ζ) − i1#(ζ);
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p2) if ζ ∈ C∗ and v is any of the operators 1) - 6) (i.e. ϕ, κ, δi, ηi, β, λ, ), then either
none or all those vζ which formally make sense, are defined;

p3) if κζ is defined, then ϕ κ ζ is also defined;

p4) let ζ =
∑

ai ζi, ai �= 0, ζi a base element (with respect to a basis of C∗) be given and
vζ is defined, then all vζi are defined.

A.1. Proposition. There exists a chain functor C̄CC∗ = {C̄∗, C̄ ′
∗ , i

′, l, ϕ, κ}, C∗ ⊂ C̄∗,
C ′

∗ ⊂ C̄ ′
∗ such that

A) all operations 2) - 7) of C̄∗ agree with those of C∗ whenever both are defined.

B) The inclusion C∗(X,A) ⊂ C̄∗(X,A) induces an isomorphism of homology groups.

Proof. Let 1C∗ ⊃ C∗ be a partial chain functor satisfying p1) - p4) and in addition the
following condition:

p5) 1ζ ∈ 1C∗ �� 1ζ =
∑

wiζi, where wi denotes an operation v as in p2) or a word of
the form ϕ κ and ζi ∈ C∗. Such an extension is called strongly admissible and denoted by
1C∗ ≥ C∗. More generally we have for C∗ ≤ 1C∗ ⊂ 2C∗ the possibility to detect 2C∗ as a
strongly admissible extension 1C∗ ≤ 2C∗ by the same procedure. We observe:

A.2. Claim. [(*)] If 1C∗ ≥ 2C∗ is a strongly admissible extension, then the inclusion
induces an isomorphism of homology groups:

H∗(1C∗(X,A)) ≈ H∗((2C∗(X,A)).

Proof. The conditions p1) - p5) guarantee that the extension of 2C∗ to 1C∗ neither
produces new cycles nor does it convert non-bounding into bounding cycles.

A chain of strongly admissible extensions
1C∗ ≤ · · · ≤ 2C∗

is called an admissible extension. Let S be the set of all admissible extensions with the
≤ relation as partially ordering.

A.3. Claim. [(**)] S is inductive.

Proof. Let T ⊂ S be a tower, then ⋃
C̃∗∈T

C̃∗

is an upper bound for all C̃∗ ∈ T.
The proposition is now reduced to the verification of:

A.4. Claim. [(***)] A maximal C̄∗ is a chain functor satisfying B).

Proof. Suppose there exists a ζ ∈ C̄∗ such that vζ for some v as before is not defined.
Without loss of generality, we can assume that ζ is a base element. Considering the free
abelian group generated by vζ for all v as in p2), p3), we achieve an admissible extension of
C̄∗ contrary to the assumption that C̄∗ is maximal. So, with every ζ ∈ C̄∗ and every letter
v, we conclude that vζ ∈ C̄∗, guaranteeing that C̄∗ is a chain functor. By construction of
S and in view of (*), the homologies of C̄∗ and C∗ are isomorphic.
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This completes the proof of A.1.

The following corollary is immediate:

A.5. Corollary. Suppose that i′ : C∗(A) �� C ′
∗(X,A), l : C ′

∗ �� C∗ as well
as j# = C∗(j) for inclusions j are not necessarily inclusions, then there still exists an
irregular C∗ satisfying A) and B).

B. Appendix: Chain functors and associated homology theories

In this appendix, we present without proofs for the convenience of the reader some material
about the definition of and the motivation for chain functors. Concerning details we refer
to [2].

It would be advantageous to define a homology theory h∗( ) as the derived homology
of a functor

C∗ : K �� chchch,

K = the category on which h∗ is defined (e.g. a subcategory of the category of all pairs of
topological spaces, or pairs of spectra or pairs of CW spaces or CW spectra together with
the appropriate morphisms), chchch = category of chain complexes (i.e. C∗ = {Cn, dn, n ∈
Z, d2 = 0} ∈ chchch). Let (X,A) ∈ K be a pair, then one would like to have an exact sequence

0 �� C∗(A)
i#

�� C∗(X)
j#

�� C∗(X,A) �� 0 (1)

such that the associated boundary ∂̄ : Hn(C∗(X,A)) �� Hn−1(C∗(A)) corresponds to
the boundary ∂ : hn(X,A) �� hn−1(A) via the isomorphism h∗( ) ≈ H∗(C∗( )). In
accordance with [2] we call a homology with this property flat. Due to a result of R. O.
Burdick, P. E. Conner and E. E. Floyd (cf. [4] for further reference), this implies for K

= category of CW pairs that h∗( ) is a sum of ordinary homology theories, i.e. of those
satisfying a dimension axiom, although not necessarily in dimension 0.

We call a functor C∗ together with a short exact sequence (1) determining the boundary
operator, a chain theory for h∗. The non-existence of such a chain theory gives rise to the
theory of chain functors.

A chain functor CCC∗ = {C∗, C ′
∗, l, i

′, κ, ϕ} is

1) a pair of functors C∗, C ′
∗ : K �� chchch, natural inclusions i′ : C∗(A) ⊂ C ′

∗(X,A), and
l : C ′

∗(X,A) ⊂ C∗(X,A, )

2) possibly non-natural chain mappings

ϕ : C ′
∗(X,A) �� C∗(X)

κ : C∗(X) �� C ′
∗(X,A),

chain homotopies ϕκ � 1, j# ϕ � l (j : X ⊂ (X,A)), as well as an identity

κ i# = i′ i : A ⊂ X.
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3) All inclusions k : (X,A) ⊂ (Y,B) are supposed to induce monomorphisms. All
C∗(X,X) are acyclic.

The exact sequence (1) is replaced by the sequence

0 �� C∗(A)
i′ �� C ′

∗(X,A)
p

�� C ′
∗(X,A)/im i′ �� 0 (2)

and there exists a homomorphism

ψ : H∗(C ′
∗(X,A)/im i′) �� H∗(C∗(X,A)) (3)

[z′] � �� [l(z′) + q#ā]

where z′ ∈ C ′
∗(X,A), dz′ ∈ im i′, q : (A,A) ⊂ (X,A), ā ∈ C∗(A,A), dā = −dz′. It is

assumed that ψ is epic.
Since C∗(A,A) is acyclic, dz′ ∈ im i′, such that an ā exists and [l(z′) + q#(ā)] is

independent of the choice of ā. This assumption implies that each cycle z ∈ C∗(X,A) is
homologous to a cycle of the form l(z′)+q#(ā), with z′ being a relative cycle, the analogue
of a classical relative cycle z ∈ C∗(X) with dz ∈ im i#, whenever (1) holds, i.e. whenever
we are dealing with a chain theory.

4) We assume

ker ψ ⊂ ker ∂̄, (4)

∂̄ : Hn(C ′
∗(X,A)/im i′) �� Hn−1(C∗(A)) being the boundary induced by the exact

sequence (2). Moreover, we assume

ker j∗ ⊂ ker p∗ κ∗, (5)

with e.g. κ∗ denoting the mapping induced by κ for the homology groups.

5) Homotopies H : (X,A) × I �� (Y,B) induce chain homotopies D(H) : C∗(X,A)
�� C∗+1(Y,B) naturally and compatible with i′ and l.

These are almost all the ingredients of a chain functor we need. The derived (or
associated) homology of a chain functor

h∗(X,A) = H∗(C∗(X,A))

respectively for the induced mappings, is endowed with a boundary operator

∂ : Hn(C∗(X,A)) �� Hn−1(C∗(A)),

determined by ∂̄ as follows: We seek to ζ ∈ Hn(C∗(X,A)) a representative l(z′) + q#(ā)
and set

∂ζ := ∂̄[z′] = [i′−1 d z′]. (6)

This turns out to be independent of the choices involved.
This h∗( ) satisfies all properties of a homology theory with the exception of an excision

axiom. Therefore it is convenient to add:
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6) Let p : (X,A) �� (X ′, A′) be an excision map (of some kind, e.g. p : (X,A)
�� (X/A, ;),) then p∗ = H∗(C∗(p)) is required to be an isomorphism.

Then it turns out that H∗(C∗( )) = h∗( ) becomes a homology theory. Moreover
it turns out that under very general conditions on K every homology theory h∗( ) is
isomorphic to the derived homology theory of some chain functor.

Let λ : C∗ �� L∗, λ′ : C ′
∗ �� L′

∗ be natural transformations, where CCC∗, LLL∗ are
chain functors, compatible with i′, l and the natural homotopies of 5), then we call λ : C∗C∗C∗

�� L∗L∗L∗ a transformation of chain functors. Such a transformation induces obviously a
transformation λ∗ : H∗(C∗C∗C∗) �� H∗(L∗L∗L∗) of the derived homology (i.e. λ∗ commutes also
with the boundary ∂ as defined in (6)). This furnishes a category Ch of chain functors.
Aweak equivalence in Ch is a λ : C∗C∗C∗ �� L∗L∗L∗ which has a homotopy inverse. Incidentally
there are also fibrations and cofibrations, endowing Ch with the essential features of a
closed model category .

One could require that λ also commutes with ϕ and κ, however it turns out that up to
homotopy this does not matter ([2] proposition 4.5.). Furthermore we can introduce the
homotopy category Chh with chain homotopy classes of transformations of chain functors
Chh(· · · , · · · ) = [· · · , · · · ] as morphisms.

In order to establish all this, it becomes sometimes necessary to assume that a chain
functor C∗C∗C∗ satisfies:

7) All chain complexes C∗(X,A) are free. However this is not a severe restriction as the
following lemma ensures:

B.1. Lemma. To any chain functor C∗C∗C∗ there exists a canonically defined chain functor
L∗L∗L∗ and a transformation of chain functors λ : L∗L∗L∗ �� C∗C∗C∗ compatible with ϕ and κ,
inducing an isomorphism of homology, such that:

L1) All L∗(X,A) have natural bases bbb in all dimensions;

L2) b ∈ bbb �� db ∈ bbb; b ∈ bbb �� i′(b) ∈ bbb, l(b) ∈ bbb, whenever this is defined and makes
sense;

L3) For every homology class ζ ∈ H∗(C∗(X,A)) there exists a basic b ∈ (λ∗)−1ζ.

Proof. Consider the free abelian group F (Cn(X,A)) determined by the elements of
C∗(X,A) and convert this into a chain complex F∗(X,A) in an obvious way. To each
a ∈ Cn(X,A) corresponds a basic ā ∈ F (Cn(X,A)). Let i : M∗ ⊂ F∗ be the subcomplex
generated by all elements of the form

∑
mi āi − ∑

mi ai and define

L∗(X,A) = F∗(X,A) ∪i cone M∗(X,A).

This furnishes evidently a functor into the category of chain complexes. We set

λ(
∑

mi āi) =
∑

mi ai,

and λ | M∗ = 0.
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Moreover
∑

mi āi ∈ L′
∗ whenever all ai ∈ C ′

∗, respectively for the elements of cone M∗.
This implies that L2) holds. One can immediately equip L∗L∗L∗ and λ with the structure of
a chain functor, respectively of a transformation between chain functors.

Every cycle z ∈ Zn(C∗(X,A)) is of the form λ(z̄) = z, hence λ∗ is epic. Any cycle
z̃ ∈ Zn(L∗(X,A)) is homologous to a z̄, for some z ∈ Zn(C∗(X,A)): Suppose z̃ = Σmiai +
c where c ∈ cone M∗, then we have z̃ = a + c1 where c1 ∈ cone M , hence da = da ∈
cone M∗, implying that da = da = 0. So a and c1 are cycles, and since c1 is bounding in
cone M∗, we conclude that z̃ ∼ a. If z = dx, then z̄ = dx̄ and λ∗ is therefore monic.

This completes the proof of the lemma.

Finally we repeat the definition of an irregular chain functor (cf. [2] definition 4.1.)
for more details or [3] §3 for an example): {C∗, C ′

∗, ϕ, κ, i
′, l} satisfies all conditions of a

chain functor, but we do no longer require a) that all inclusions induce isomorphisms; b)
nor that i′, l are necessarily monomorphisms; c) nor any excision properties. Whenever
we talk about a regular chain functor, we mean that it is not irregular.

The role of the unnatural mappings ϕ and κ seems at the first glance to be a little
mysterious. A chain functor KKK∗ is called flat whenever ϕ, κ and the chain homotopies
ϕκ � 1, j# ϕ � l are natural. In the beginning, we introduced the concept of a flat
homology theory.

B.2. Theorem. The following conditions for a homology theory are equivalent:

1) h∗ is flat;

2) there exists a flat chain functor associated with h∗.

B.3. Corollary. For a homology theory defined on the category of CW spaces, condi-
tions 1), 2) are equivalent to

3) h∗ is the direct sum of ordinary homology theories.
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