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MORE ON INJECTIVITY IN LOCALLY PRESENTABLE
CATEGORIES

Dedicated to Horst Herrlich on the occasion of his 60th birthday

J.ROSICKÝ1) 2), J. ADÁMEK1) AND F.BORCEUX

ABSTRACT. Injectivity with respect to morphisms having λ-presentable domains and
codomains is characterized: such injectivity classes are precisely those closed under
products, λ-directed colimits, and λ-pure subobjects. This sharpens the result of the first
two authors (Trans. Amer. Math. Soc. 336 (1993), 785-804). In contrast, for geometric
logic an example is found of a class closed under directed colimits and pure subobjects,
but not axiomatizable by a geometric theory. A more technical characterization of
axiomatizable classes in geometric logic is presented.

1. Introduction

In [2], classes of objects injective with respect to a set M of morphisms of a locally
presentable category K were characterized: they are precisely the classes closed under
products, λ-directed colimits and λ-pure subobjects for some cardinal λ (see Part 2 below
for the concept of λ-pure subobject). In fact, the formulation in [2] did not use λ-pure
subobjects, but accessibility of the class in question. However, a full subcategory of K,
closed under λ-directed colimits, is accessible iff it is closed under λ′-pure subobjects
for some λ′ (see [3], Corollary 2.36). The main result of our paper is a “sharpening”
of the previous result to a given regular cardinal λ: by a λ-injectivity class we call a
class of all objects injective with respect to M, where M is a set of morphisms with
λ-presentable domains and codomains. If K is a locally λ-presentable category, we prove
that λ-injectivity classes in K are precisely the full subcategories closed under products,
λ-directed colimits, and λ-pure subobjects.

In contrast, the generalization from injectivity with respect to morphisms to injectivity
with respect to cones, which was presented by H.Hu and M.Makkai [7], does not allow
a corresponding “sharpening” – which is unfortunate, since this is closely connected to
geometric logic. Hu and Makkai proved that classes given by injectivity with respect to a
set of cones are precisely those closed under λ-directed colimits and λ-pure subobjects for
some λ (again, we use Corollary 2.36 of [3] to put the original result into our terminology).
We present an example of a class of Σ-structures, for a finitary signature Σ, which is closed
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under directed colimits and pure subobjects, but which is not a cone-injectivity class for
any set of cones with finitely presentable domains and codomains. In particular, the class
is not axiomatizable by geometric logic in StrΣ. We introduce a rather technical concept
of being strongly closed under pure subobjects. This, then, is a full characterization of
classes axiomatizable by geometric logic.

Let us recall that, given an arrow h : A → A′ in a category K, an object X is called
h-injective, provided that every morphism from A to X factors through h, i.e. the map

hom (h,X) : hom (A′, X)→ hom (A,X), f 7→ fh

is surjective. This is an important concept in algebra, where h is usually required to
be a monomorphism, and in model theory (where general h’s are considered). A class
A of objects is called an injectivity class provided that there is a collection M of mor-
phisms such that A consists of precisely all objects that are h-injective for all h ∈ M
(we write A =M-Inj); if M is small, we speak about a small-injectivity class , and if all
domains and all codomains ofM-maps are λ-presentable objects of K, we speak about a
λ-injectivity class . In case that the base category K is locally presentable (in the sense of
Gabriel and Ulmer [5]), then every small-injectivity class is a λ-injectivity class for some λ,
and conversely, every λ-injectivity class is a small-injectivity class. But small-injectivity
classes are interesting also in such categories as Top - see e.g. [6], where they are called
implicational subcategories.

A full characterization of small-injectivity classes in a locally presentable category K
has been presented in [2]: they are precisely the classes A of objects, for which there
exists a regular cardinal λ such that A is closed under

(i) products,

(ii) λ-directed colimits,

and

(iii) λ-pure subobjects.

(Let us recall that λ-pure monomorphisms are precisely the λ-directed colimits of re-
tractions (as objects of K→), and if K is the category of all Σ-structures for some λ-ary
signature Σ, then this categorical concept coincides with that of a λ-pure submodel, used
in model theory.) In the present paper, we prove that for each locally λ-presentable cat-
egory K, the conditions (i) – (iii) above precisely characterize λ-injectivity classes in K.
The proof is substantially more difficult than that in [2].

More generally, given a cone H = (hi : A → A′i)i∈I , an object X is H-injective iff
every map from A to X factors through hi for some i ∈ I. A class of objects is called
a (small-)cone-injectivity class if it can be axiomatized by injectivity with respect to a
class (or set) of cones. If all domains and codomains of all those cones are λ-presentable,
we speak about λ-cone-injectivity classes.
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Injectivity in locally presentable categories is treated in [3] where the reader also
finds standard categorical concepts used in our paper. We use the notation StrΣ for
the category of Σ-structures and homomorphisms, where Σ is a finitary many-sorted
signature. This is a locally finitely presentable category.

2. Characterization of Injectivity Classes

2.1. Remark. Recall that a morphism m : A → B of a locally λ-presentable category
K is called λ-pure provided that in each commutative square

X
h //

f

��

Y

g

��
A m

// B

with X and Y λ-presentable the morphism f factors through h. As an object of A ↓ K,
m is λ-pure iff m is a λ-directed colimit of retractions, see [3]. Every λ-pure morphism is
a regular monomorphism.

2.2. Theorem. Let K be a locally λ-presentable category. A full subcategory of K is a
λ-injectivity class iff it is closed under

(i) products

(ii) λ-directed colimits

and

(iii) λ-pure subobjects.

Proof. The necessity is easy: closedness under products and λ-directed colimits is triv-
ial. To prove closedness under λ-pure subobjects m : P → Q, we are to show that if Q
is h-injective then P is h-injective for all maps h : A→ B with A,B both λ-presentable.
Let u : A→ P be a morphism. There exists v : B → Q making the following square

A
h //

u

��

B

v

��
P m

// Q

commutative (h-injectivity of Q) and since u factors through h (λ-purity of m), the h-
injectivity of P follows.
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For the sufficiency, we can assume that K is the category StrΣ of all Σ-structures for
some finitary relational signature Σ. (The general case follows from the fact that K can
be considered as a full reflective subcategory of StrΣ closed under λ-directed colimits
– see 1.47 of [3]. This implies that K is closed under (i) – (iii), see Remark 2.31 in [3].
Consequently, given a full subcategory L of K closed under (i) – (iii) in K, then L =M-
Inj for some setM of morphisms of StrΣ having λ-presentable domains and codomains.
The reflector F : StrΣ → K obviously preserves λ-presentability of objects and satisfies
L = F (M)-Inj.)

Thus, let L be a full subcategory of StrΣ, where Σ is a finitary relational signature,
closed under (i) – (iii). Put

M = {f : A→ B in StrΣ ; A and B are λ-presentable

and every object of L is injective with respect to f}.

We will prove that L = M-Inj. We first observe that L is weakly reflective, i.e., every
object K of StrΣ has a morphism rK : K → K∗ (weak reflection) with K∗ in L such that
every object of L is injective with respect to rK . This follows from 2.36 and 4.8 in [3].
Now L ⊆ M-Inj by the choice of M, and to prove M-Inj ⊆ L, we verify the following
implication:

K ∈M-Inj ⇒ any weak reflection of K in L is λ-pure.
It then follows from (iii) that K ∈ L, and this will prove

M-Inj = L .

Thus, given K ∈ M-Inj and a weak reflection r : K → K∗ in L, we are to prove that in
any commutative square

A
h //

u

��

B

v

��
K r

// K∗

with A and B λ-presentable the map u factors through h. We will work with the arrow-
category (StrΣ)→ and consider the morphism (u, v) : h→ r.

Claim: There is a factorization u = u2 ·u1 and a morphism (u1, v1) : h→ r̄ for some object
r̄ of (StrΣ)→, where r̄ : K̄ → K̄∗ is a weak reflection of K̄ in L and K̄ is λ-presentable
in StrΣ.

Proof of claim. Consider all morphisms (u1, v1) : h → r̄ where r̄ : K̄ → K̄∗ is a weak
reflection of K̄ in L and u = u2 · u1 for some u2. Since (u, v) : h→ r is such a morphism,
we can take the smallest α such that K̄ is α-presentable in StrΣ. We are to prove α ≤ λ.
Assuming α > λ we derive a contradiction. Let us first remark that an object A of StrΣ
is α-presentable iff it has
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(a) less than α elements (i.e., the union of all underlying sets of all sorts has cardinality
< α)

and

(b) less than α relational symbols σ ∈ Σ with σA nonempty.

(See 1.14 (2) in [3].) Consequently, for every regular cardinal α ≥ ℵ0, any α-presentable
object in StrΣ is a colimit of a smooth α-chain (i.e., a chain whose limit steps form a
colimit of the preceding part) of objects of presentability smaller than α.

Let us express the above object K̄ as a colimit of a smooth α-chain kij : Ki → Kj

(i ≤ j < α) of objects Ki of presentability less than α, let kiα : Ki → K̄ (i < α) denote
the colimit cocone. We define an α-chain k∗ij : K∗

i → K∗
j (i ≤ j < α) in L and a natural

transformation
ri : Ki → K∗

i (i < α)

by transfinite induction. (This idea has been used in [2] already, see the proof of IV. 3.)

(i) r0 : K0 → K∗
0 is a weak reflection of K0 in L.

(ii) i 7→ i+ 1: Form a pushout of ri and ki,i+1

Ki
ri //

ki,i+1

��

K∗
i

k̂i,i+1

��
Ki+1

r̂i

// K̂i+1

Choose a weak reflection r∗i+1 : K̂i+1 → K∗
i+1 in L and put ri+1 = r∗i+1r̂i and

k∗i,i+1 = r∗i+1 · k̂i,i+1.

(iii) Given a limit ordinal j, form a colimit

K̂j = colim
i<j

K∗
i

with colimit maps k̂ij : K∗
i → K̂j (i < j) and choose a weak reflection r∗j : K̂j →

K∗
j in L, then rj = r∗j · (colim

i<j
ri) and k∗ij = r∗j k̂ij.

Observe that every object L of L is ri-injective for all i < α (i.e., each ri : Ki → K∗
i is a

weak reflection of Ki).

Proof. This is obvious for i = 0. If this holds for all smaller ordinals than i (> 0), then
it holds for i as well: given f : Ki → L, we can define a compatible cocone f ∗ij : K∗

j → L
(j ≤ i) with f ∗j rj = f kji by transfinite induction as follows:
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(i) f ∗0 is any map with f ∗0 r0 = f k0i (this exists by the choice of r0);

(ii) given f ∗j , the pushout property yields a unique f̂j+1 : K̂j+1 → L and we choose any

map f ∗j+1 : K∗
j+1 → L with f̂j+1 = f ∗j+1r

∗
j+1;

(iii) given a limit ordinal j and f ∗k for k < j, the j-chain-colimit property yields a unique

f̂j : K̂j → L and we choose any map f ∗j : K∗
j → L with f̂j = f ∗j · r∗j .

The object K∗
α = colim

i<α
K∗

i lies in L because α-chains are λ-directed (recall that α > λ is

a regular cardinal). Thus, for the map

rα = colim
i<α

ri : K̄ → K∗
α

there exists s : K̄∗ → K∗
α with rα = sr̄. (Recall that r̄ is a weak reflection of K̄.)

In (StrΣ)→ we thus obtain a morphism

(u1, sv1) : h→ rα .

Now h is, obviously, λ-presentable in (StrΣ)→, thus that last map factors through some
of the objects ri, i < α. This is the desired contradiction with the minimality of α: each
ri : Ki → K∗

i is a weak reflection of Ki, and Ki has smaller presentation rank than α.
This proves the claim.

We are ready to prove that u factors through h. Let us consider a factorization
u = u2 · u1 and a morphism (u1, v1) : h → r̄ as in the above claim. Let us express K̄∗

as a λ-directed colimit of λ-presentable objects Qt, t ∈ T , in StrΣ with a colimit cocone
qt : Qt → K̄∗. Since both K̄ and B are λ-presentable, the maps r̄ and v1 both factor
through qt0 for some t0 ∈ T and then there exists (since A is λ-presentable) t1 > t0 in T
with a commutative diagram as follows:

A

u1

��

h // B

v1

��

ṽ1

}}{{
{{

{{
{{

{{
{

Qt1

qt1

!!B
BB

BB
BB

BB
BB

K̄

r̃

>>}}}}}}}}}}}

r̄
// K̄∗

Since all objects of L are r̄-injective, they are also r̃-injective; moreover, K̄ and Qt1 are
both λ-presentable, thus,

r̃ ∈M .

This implies that K is r̃-injective. Choose d : Qt1 → K with u2 = dr̃ to obtain

u = u2u1 = dr̃u1 = dṽ1h ,

the desired factorization. Thus, r is λ-pure, and K ∈ L.
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2.3. Remark. The reader may well wonder whether the condition of closedness under
λ-pure subobjects is not superfluous: after all

(i) closedness under λ-directed colimits implies closedness under split subobjects

and

(ii) every λ-pure subobject is a λ-directed colimit of split subobjects, see [3] 2.30.

However, (ii) holds in the arrow-category of K, not in K itself. The following Example
demonstrates that, indeed, λ-pure subobjects are essential:

2.4. Example. A class of graphs which is closed under products and directed colimits,
but is not an ω-injectivity class: We denote by Gra the category of graphs, i.e., pairs
(X,R) of sets with R ⊆ X × X, and graph homomorphisms. Let A be the class of all
graphs containing nodes xn ∈ X (n ∈ N) such that xnRxn+1 for each n ∈ N . It is clear
that A is closed under products and nonempty colimits in Gra. However, A is not closed
under ω-pure subobjects. In fact, let A denote the graph obtained from an infinite path
x0, x1, x2, . . . (starting in the node x0) by gluing a path of length n to x0 for each n ∈ N .
Then

A ∈ A and B /∈ A

where B is the strong subgraph of A over all nodes distinct from xk for k ≥ 1. However,
B is an ω-pure subgraph of A because given any finite (= finitely presentable) subgraph
V of A there exists a morphisms h : V → B with h(x) = x for all nodes x of B. In fact:
let n be the largest index with xn ∈ V and for each k ≤ n denote by x′k the k-th node on
the path of length n in A, then put h(x) = x if x = B and h(xk) = x′k.

3. Characterization of Classes Axiomatizable by Geometric Logic

Recall that geometric logic is the first-order logic using formulas of the following form

(1) (∀x)
(
ϕ(x)→

∨
i∈I

(∃ yi) ψ(x, yi)
)

where x and each yi is a finite string of variables, and ϕ and each ψi is a finite conjunction
of atomic formulas. For example, given a cone H with finitely presentable domain and
codomains in StrΣ, injectivity with respect to H can be axiomatized by a formula (1),
where ϕ(x) expresses the presentation of the domain of H, and ψ(x, yi) expresses the
presentation of the i-th codomain, and the connecting morphism. Consequently, every
ω-cone-injectivity class in StrΣ is axiomatizable in geometric logic. Conversely, every
formula (1) can be translated to ω-cone-injectivity in StrΣ, see [3].

Observation. Every class of structures axiomatizable by geometric logic is closed in
StrΣ under directed colimits and pure subobjects.

The converse does not hold:
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3.1. Example. A class of Σ-structures (Σ finitary) closed under directed colimits and
strong subobjects, which is not an ω-cone-injectivity class: Let Σ be the (one-sorted)
signature of countably many unary relation symbols σn (n ∈ ω). For every set A ⊆ ω
denote by Ā the Σ-structure over the set {0} with σn 6= ∅ iff n ∈ A. Further denote by I
the initial (empty) object of StrΣ.

Choose a disjoint decomposition

ω =
⋃
n∈ω

Bn , Bn infinite

and denote by B the full subcategory of StrΣ consisting precisely of

(i) I

and

(ii) all B̄ where B ⊆ ω is a set such that there exists n ∈ ω and a set M ⊆ ω of
cardinality ≤ n with B = Bn ∪M .

B is obviously closed under substructures (strong subobjects), since B-objects have no non-
trivial substructures. And it is closed under directed colimits: if B̄t (t ∈ T ) is a directed
collection in B, then there exists n ∈ ω such that each B̄t has the form B̄t = Bn ∪Mt for
Mt of at most n elements. Since T is directed, the set M =

⋃
t∈T

Mt also has at most n

elements, and colim B̄t = Bn ∪M ∈ B.

However, B is not an ω-cone-injectivity class. In fact, B does not contain the terminal
Σ-structure ω̄, although any ω-cone-injectivity class containing B contains ω̄ too. Indeed:
ω̄ is injective with respect to all nonempty cones, and we observe that there exists no
empty ω-cone H to which all B-objects are injective. (In fact, let M be the domain of H.
Since M is finitely presentable, there exists n ∈ ω such that (σk)M = ∅ for all k ≥ n. Put
B = Bn ∪ {0, 1, . . . , n− 1}, then the constant map is a Σ-homomorphism from M to B̄,
consequently, B̄ is not injective with respect to the empty cone with domain H.)

3.2. Definition. A span A
n←− C

m−→ B is called λ-pure provided that for each commu-
tative square

X
h //

f

��

Y

g

��
A Cn
oo_ _ _ _

m
// B

with X and Y λ-presentable the morphism nf factors through h (i.e., there is t : Y → A
with nf = th). If λ = ω we say just pure.
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3.3. Examples. (1) For each morphism r : B → A the inverse relation of the graph of

r, i.e., A
r←− B

1−→ B, is pure. Also any subspan of the inverse of a graph is pure. These
are precisely the relations A

n←− C
m−→ B where n factors through m; we call them split

spans .

(2) A λ-directed colimit of split spans is λ-pure. More precisely, let Sp (K) denote
the category whose objects are spans A

n←− C
m−→ B in K and whose morphisms are

commutative diagrams

A

u

��

C
noo

v

��

m // B

w

��
A′

n′
// C ′

m′
// B

If K has λ-directed colimits, then so does Sp(K), and a λ-directed colimit of split spans is
λ-pure. This follows easily from the fact that (λ-directed) colimits are formed object-wise
in Sp(K).

3.4. Remark. In a locally λ-presentable category the latter example of λ-pure spans is
canonical: every λ-pure span is a λ-directed colimit of split spans. The proof is analogous
to that of 2.30 in [3].

3.5. Definition. A subcategory L of a category K is strongly closed under λ-pure sub-
objects provided that L contains every object A of K with the following property:

given a morphism n : C → A in K with C λ-presentable, there exists a λ-pure span
A

n←− C
m−→ B with B ∈ L.

3.6. Remark. (1) Given a morphism m : C → D, for each cardinal λ let us denote
by Hλ(m) the set of all spans (h, f) where h : X → Y is a morphism with X and Y
λ-presentable, and f : X → C is a morphism with a commutative square

X
h //

f

��

Y

���
�
�
�

C m
// D

A span A
n←− C

m−→ B is λ-pure iff Hλ(m) ⊆ Hλ(n). Thus, L is strongly closed under
λ-pure subobjects iff L contains every object A ∈ K with the following property: given
n : C → A, C λ-presentable, there exists m : B → A with B ∈ L such that Hλ(m) ⊆
Hλ(n).

(2) This is, indeed, stronger than closedness under λ-pure subobjects. For, given
L ∈ L and a λ-pure subobject i : A→ L, we prove that A ∈ L as follows: Let n : C → A

be a morphism with C λ-presentable, then A
n←− C

in−→ L is a λ-pure span.
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(3) Strong closedness under λ-pure subobjects implies closedness under λ-directed
colimits (and thus is, indeed, much stronger than closedness under λ-pure subobjects).

In fact, let A be a λ-directed colimit of Ai ∈ L with a colimit cocone
(
Ai

hi−→ A
)

i∈I
. For

each morphism n : C → A with C λ-presentable there exists i ∈ I such that n factors as

n = ain
′ for some n′ : C → Ai, and we have a pure span A

n←− C
n′
−→ Ai, thus, A ∈ L.

3.7. Theorem. Let K be a locally λ-presentable category. Then λ-cone-injectivity classes
of K are precisely the full subcategories strongly closed under λ-pure subobjects.

Proof. I. Suppose that L is strongly closed in K under λ-pure subobjects. For every
object A in K − L we construct a sink γA as follows: choose a morphism n : C → A,
C λ-presentable, such that no λ-pure span A

n←− C
m−→ B with B ∈ L exists. Given any

morphism m : C → B with B ∈ L we thus have a commutative square

Xm

fm

��

hm // Ym

gm

��
A C

noo_ _ _ _ _
m

// B

on K with Xm and Ym λ-presentable such that n · fm does not factor through hm. Form
a pushout of fm and hm:

Xm

fm

��

hm // Ym

f∗
m

��
gm

��0
0

0
0

0
0

0
0

0
0

C
m∗

//

m

((Q
QQQQQQQQQQ B∗

  A
A

A
A

A
A

B

Since C, Xm and Ym are λ-presentable, so is B∗. We denote by γA the cone of all
m∗ : C → B∗ (indexed by all m ∈

⋃
B∈L

hom (C,B) ), and we first observe that since γA

has a λ-presentable domain and all codomains, it is essentially small. We claim that

L = {γA}A∈K−L-Inj ,

i.e., that an object of K lies in L iff it is cone-injective with respect to each γA. In fact,
given B ∈ L then for every morphism m : C → B we have a factorization of m through
m∗, a member of γA, thus, B isM-injective.

Conversely, let A be an object of K injective to all of the above cones, then we prove
that A ∈ L. In fact, assuming A ∈ K − L we have the above cone γA and since A is
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γA-injective, the morphism n : C → A factors through m∗ for some m : C → B with
B ∈ L. But then n · fm factors through hm (since if t ·m∗ = n then t · f ∗m · hm = n · fm),
in contradiction to the above choice of hm, fm, and gm.

II. Suppose that L is a λ-cone-injectivity class in K. LetM be a set of cones with λ-
presentable domains and codomains such that L =M-Inj. We will prove that L contains
any object A satisfying the condition of the above definition of strong closedness under
λ-pure subobjects. Thus, given a cone γ = (C

ci−→ Ci)i∈I in M, we are to show that
A is γ-injective. In fact, let n : C → A be a morphism. There exists a λ-pure span
A

n←− C
m−→ B with B ∈ L. Since B ∈ M-Inj, the morphism m factors through some ci,

say, m = m′ · ci.

C

1

��

ci // Ci

m′

��
A C

noo_ _ _ _
m

// B

From the λ-purity we conclude that n · 1 factors through ci, thus, A is γ-injective.

3.8. Corollary. A class of Σ-structures can be axiomatized by geometric logic iff it is
strongly closed under pure subobjects in StrΣ.

3.9. Remark. (1) We can speak, more generally, about infinitary geometric logic: given
a regular cardinal λ, a formula (1) is λ-geometric provided that x and yi are strings of
less than λ variables and ϕ and ψi are conjunctions of less than λ atomic formulas. The
above corollary generalizes as expected: classes axiomatized by λ-geometric theories are
precisely those strongly closed under λ-pure subobjects.

(2) λ-geometric logic precisely describes λ-cone-injectivity classes in StrΣ. Analo-
gously, λ-injectivity classes are described by λ-regular logic, i.e., logic using formulas

(2) (∀x)
(
ϕ(x)→ ∃ y ψ(x, y)

)
where, again, x and y are strings of less than λ variables and ϕ and ψ are conjunctions of
less than λ atomic formulas. Thus, Theorem 2.2 characterizes classes of structures axioma-
tizable by λ-regular logic: they are the classes closed under products,
λ-directed colimits and λ-pure subobjects.

This seems to be a new result for λ > ℵ0; let us remark that, however, for λ = ℵ0 a
more elementary proof follows from Compactness Theorem. A class closed under products
and directed colimits is namely closed under ultraproducts; being closed under pure (in
particular, under elementary) subobjects, the class is axiomatizable in the first-order logic,
and our result then easily follows.

(3) We now turn to a special case of cone-injectivity classes for which a good char-
acterization can be formulated. If M is a set of cones and each cone consists of strong
epimorphisms only, we callM-Inj a strong cone-injectivity class .
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If the domains and codomains in all those cones are λ-generated objects (i.e., objects
A such that hom (A,−) preserves λ-directed unions), then we speak about strong λ-cone-
injectivity classes, and we prove that those are precisely the classes closed under λ-directed
unions and subobjects. This depends on (strong epi, mono)-factorizations of morphisms.
We work, more generally, with an abstract factorization system. Following [1] we say that
K is an (E ,M)-structured category provided that E is a class of epimorphisms, M is a
class of monomorphisms, both closed under composition, with E ∩M = Iso and every
morphism has an essentially unique (E ,M)-factorization.

3.10. Definition. Let K be an (E ,M)-structured category. A λ-directed colimit whose
colimit cocone is formed by M-morphisms is called a λ-directed union. An object K is
called λ-generated provided that hom (K,−) preserves λ-directed unions.

3.11. Lemma. In a locally λ-presentable (E ,M)-structured category every object is a
λ-directed union of λ-generated objects.

Proof. Every object K is a λ-directed colimit of λ-presentable objects Ki (i ∈ I). If
ki : Ki → K (i ∈ I) denotes the colimit cocone and ki = miei is an (E ,M)-factorization
of ki, with mi : K ′

i → K, then the objects K ′
i form a λ-directed diagram with a colimit

cocone mi : K ′
i → K (i ∈ I), due to the diagonal fill-in. Since Ki is λ-presentable and

ei : Ki → K ′
i lies in E , it follows easily from the diagonal fill-in that K ′

i is λ-generated.

3.12. Remark. In a locally λ-presentable (E ,M)-structured category, λ-generated ob-
jects are precisely the E-quotients of all λ-presentable objects – this has been proved for
E = strong epis in [3], 1.61, and the general case is analogous.

3.13. Definition. A class of objects is called a strong λ-cone-injectivity class if it has
the formM-Inj for a set of cones formed by E-morphisms whose domains and codomains
are λ-generated.

3.14. Theorem. Let K be a locally λ-presentable (E ,M)-structured category. A full
subcategory of K is a strong λ-cone-injectivity class iff it is closed in K under λ-directed
unions and M-subobjects.

Proof. Necessity is clear. For the sufficiency, let L be a full subcategory of K closed
under λ-directed unions andM-subobjects.

(a) L is an accessible category. In fact, L is closed under λ-pure subobjects in K, since
by 2.31 in [3],

λ-pure ⇒ regular mono ⇒ member ofM .

By 2.36 of [3] it is sufficient to prove that L is closed under µ-directed colimits for some
regular cardinal µ. By the above remark, K has only a set of λ-generated objects, thus,
there exists a regular cardinal µ such that

λ-generated ⇒ µ-presentable .

Let Li (I ∈ I) form a µ-directed diagram in L with a colimit li : Li → K (i ∈ I) in K.
We are to prove that K ∈ L. By the above Lemma, K is a λ-directed union of λ-generated
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objects, say, kj : Kj → K (j ∈ J). Since Kj is µ-presentable, kj factors through some
li, i.e., there exists i ∈ I and d : Kj → Li with kj = li · d. Now kj ∈ M implies d ∈ M,
thus, Kj ∈ L (since L is closed under M-subobjects). Thus, K is a λ-directed union of
L-objects, which proves K ∈ L.

(b) L is a cone-reflective subcategory of K, i.e., for every object K ∈ K there exists
a cone with domain K to which all L-objects are injective. This is proved in 2.53 of [3].
Moreover, every object K ∈ K has a cone-reflection in L all members of which are E-epis:
this follows immediately from the closedness of K underM-subobjects.

(c) Let H be the following collection of cones in K: for each λ-generated object K of
K we choose a cone-reflection (rK

i : K → Ki)i∈I(K) of K in L with rK
i ∈ E for each i ∈ I

and let H be the set of all these cones. It is sufficient to prove that an object K ∈ K lies
in L iff K is injective with respect to all cones of H.

Thus, letK be injective with respect toH-cones. By the above Lemma, we can express
K as a λ-directed union of λ-generated objects kt : Kt → K (t ∈ T ). Since K is initial
with respect to a cone-reflection (rKt

i ), kt factors through some rKt
i which, since kt ∈ M

and rKt
i ∈ E , implies that rKt

i is an isomorphism. In other words, Kt ∈ L (for each t ∈ T ).
Since L is closed under λ-directed unions, this implies K ∈ L.

3.15. Remark. The factorization of Σ-homomorphisms to surjective Σ-homomorphisms
followed by inclusions of substructures yields StrΣ as an (epi, regular mono)-structured
category. Then λ-generated Σ-structures are Σ-structures generated by less than λ ele-
ments in a usual sense. If a cone (hi : A → Bi)i∈I has all hi surjective and all A and Bi

λ-generated then (2) is (equivalent to) a universal sentence of the logic L∞,λ. We obtain,
from Theorem 3.7,

3.16. Corollary. A class of Σ-structures is axiomatizable by a universal theory of the
logic L∞,λ iff it is closed under submodels and λ-directed unions.

3.17. Remark. Corollary 3.16 has an easy direct proof: any class L of Σ-structures
which is closed under substructures and λ-directed unions can be axiomatized by universal
sentences of L∞,λ

(∀~x)
∨
i∈I

πAi
(~x)

where {Ai}i∈I is a representative set of Σ-structures Ai ∈ L generated by less then λ-
elements and πAi

is the diagram of Ai reduced to generators.

Corollary 3.16 documents the well-known fact that a class of Σ-structures with at
most countably many elements, which is axiomatizable in Lω1,ω1 , cannot be axiomatized
by a universal theory in Lω1ω1 (see [4] 2.4.11). An analogous example cannot be found
in Lω,ω: any class of Σ-structures axiomatizable in Lω,ω and closed under substructures is
axiomatizable by a universal theory in Lω,ω.
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