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EXPONENTIABILITY OF PERFECT MAPS:
FOUR APPROACHES

SUSAN NIEFIELD

ABSTRACT. Two proofs of the exponentiability of perfect maps are presented and
compared to two other recent approaches. One of the proofs is an elementary approach
including a direct construction of the exponentials. The other, implicit in the literature,
uses internal locales in the topos of set-valued sheaves on a topological space.

1. Introduction

This is a paper about the exponentiability of perfect maps in the category Top of topolog-
ical spaces and continuous maps. Perfect maps can be thought of as generalized compact
Hausdorff spaces, and it has been known since at least the mid 1940’s that all locally
compact Hausdorff spaces are exponentiable in Top [Fo]. However, although general-
ized locally compact spaces and exponentiable morphisms in Top have been extensively
considered since the late 1970’s, it was not until just last year that a proof appeared
establishing the exponentiability of perfect maps. In fact, there have been two recent
proofs, but neither is constructive and both depend on the axiom of choice. One [CHT],
by Clementino, Hofmann, and Tholen, involves an ultrafilter-interpolation characteriza-
tion of exponentiable maps. The exponentials are constructed via partial products (as
in [DT]) in the category of grizzly spaces and are shown to be in Top using the Exten-
sion Lemma of [P] which is an application of the Prime Filter Theorem [J2]. The other
[RT], by Richter and Tholen, is a general categorical proof that pullback along a perfect
morphism preserves quotient maps. The setting there is a finitely complete category with
a proper pullback stable factorization system. Though constructive itself, one then uses
Freyd’s Adjoint Functor Theorem [Fr] to obtain exponentiability of perfect maps in Top.

Here we present two additional proofs. One is implicit in the literature but uses
internal locales in the category of sheaves on a topological space and a theorem from
[N3] for which it is necessary to assume that the codomain of the perfect map is a sober
space. The other consists of an elementary proof using the characterization [N1,N2] of
exponentiable morphism in Top together with an explicit description of the exponentials
so that the approach is self-contained relative to its reliance on [N1,N2]. Moreover, it is
entirely constructive and makes no assumption on the spaces involved.

We begin with a review of exponentiability (Section 2) and perfect maps (Section 3)
in Top. In the next two sections, we present the elementary and internal locale proofs,
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respectively, concluding in Section 6 with a few remarks about their relationship to the
two earlier approaches.

2. Exponentiability in Top

Let A be a category with finite limits. Recall that an object Y is said to be exponentiable
in A if the functor − × Y : A → A has a right adjoint, usually denoted by ( )Y . A
morphism p: Y → T is said to be exponentiable in A if it is exponentiable in the category
A/T , whose objects are morphisms of A and morphisms are commutative triangles over
T . Note that we will follow the customary abuse of notation and write −×T Y and ( )Y

for −× p and ( )p, respectively.
When A = Top, taking X to be a one-point space in the natural bijection

Top(X × Y, Z) ∼= Top(X,ZY )

one easily sees that the space ZY can be identified with the set Top(Y, Z) of continuous
maps from Y to Z, and so the question of exponentiability becomes one of finding suitable
topologies on the function spaces ZY .

Perhaps the first exponentiability result in print appeared in the 1945 paper [Fo] by
R. H. Fox where the function space problem was clearly stated, and it was shown that a
separable metric space is exponentiable if and only if it is locally compact. Fox attributed
his interest in this problem to a question posed to him in a letter from Hurewicz.

A complete characterization of exponentiable spaces appeared in the 1970 paper [DK]
of Day and Kelly where they proved that the functor − × Y preserves quotient maps
if and only if the lattice O(Y ) of open subsets of Y is a continuous lattice in the sense
of Scott [S], and that a Hausdorff space satisfies this property if and only if it is locally
compact. Since −× Y preserves coproducts in any case, the preservation of quotients is
necessary and sufficient for the exponentiability of Y . Note that sufficiency follows from
Freyd’s Adjoint Functor Theorem but one can also directly construct the exponentials
and use the given condition to establish the adjunction.

In 1978, Hoffmann and Lawson [HL] extended the connection with local compactness
to all sober spaces, and Hyland [H] proved that the exponentiable objects in the category
Loc of locales are precisely the locally compact ones. That same year, Niefield [N1,N2]
also extended the Day/Kelly characterization to Top/T , and used it to show that every
locally compact space over a Hausdorff space T is exponentiable, and that the inclusion
of a subspace of T is exponentiable if and only if it is locally closed, i.e., the intersection
of an open and a closed subspace.

More recently, Lowen-Colebunders and Richter [LR] showed that the exponentials ZY

in Top can be described using the way-below relation on the continuous lattice O(Y ),
and then Richter [R] generalized this result to the fiberwise case.

For a further discussion of the influence of [DK], the reader is referred to Isbell’s article
“General function spaces, products, and continuous lattices” [I]. For more on exponentia-
bility, see also [N4].
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3. Perfect Maps

Recall that a continuous function p: Y → T is called proper if it closed and has compact
fibers, separated if the diagonal Y → Y ×T Y is closed, and perfect if it is both proper
and separated. Note that p is proper if and only if 1 × p: X × Y → X × T is closed for
every topological space X [B], and separated if and only if all y �= y′ with py = py′ can
be separated by disjoint open neighborhoods in Y .

Perfect is clearly a generalization of compact Hausdorff since Y → 1 is proper (respec-
tively, separated) if and only if Y is compact (respectively, Hausdorff). In fact, Johnstone
showed in [J3] that this relationship goes much further. The setting in [J3] is the category
Sh(T ) of set-valued sheaves on T . As in any topos, the subobject classifier ΩT (given by
U �→ O(U)) is an internal locale in Sh(T ). The map p: Y → T induces a geometric mor-
phism with direct image p∗: Sh(Y ) → Sh(T ) which takes F to the sheaf U �→ F (p−1U).
Since the direct image of any geometric morphism preserves internal locales, one can con-
sider properties of p∗(ΩY ) as a locale in the topos Sh(T ). In this context, Johnstone shows
that if p is proper, then p∗(ΩY ) is compact and if p is perfect, then p∗(ΩY ) is compact and
regular. He also establishes the converse to each of these statements in the case where T
is a TD-space in the sense of [A], i.e., points of T are locally closed.

For more on internal locales, the reader is referred to [J1], [J2], and [JT].

4. Exponentiability of Perfect Maps

In this section, we recall the characterization of exponentiable morphisms in Top pre-
sented in [N1,N2], and apply it to obtain the exponentiability of perfect maps. We
conclude with a description of the relevant exponentials so that the interested reader
can verify that perfect maps are exponentiable without explicit reference to the general
characterization in [N1,N2].

Recall that if Y is a topological space, then H ⊆ O(Y ) is called Scott-open if it is
upward closed, i.e.,

U ∈ H, U ⊆ V ⇒ V ∈ H

and it satisfies the finite union property, i.e.,

⋃
α∈A

Uα ∈ H ⇒ ⋃
α∈F

Uα ∈ H

for some finite F ⊆ A.
For a continuous map p: Y → T and t ∈ T , let Yt denote the fiber of Y over t, i.e., the

set p−1t with the subspace topology. Given H ⊆ ⋃
t∈T O(Yt), we write

⋂
H for the subset

of Y whose fiber over t is given by

(⋂
H

)
t

=
⋂

Ht =
⋂{Vt|Vt ∈ Ht}

In [N1,N3], it was shown that:
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4.1. Theorem. A map p: Y → T is exponentiable in Top if and only if whenever U is
open neighborhood of y in Y , there exists H ⊆ ⋃

t∈T O(Yt) such that
(i) Upy ∈ Hpy

(ii) Ht is Scott-open, for all t ∈ T
(iii) {t ∈ T |Vt ∈ Ht} is open in T , for all V ∈ O(Y )
(iv)

⋂
H is a neighborhood of y in Y

To show that perfect maps satisfy this condition, we first prove the following lemma.

4.2. Lemma. If p: Y → T is a separated map with compact fibers and U is open neigh-
borhood of y in Y , then Fpy ⊆ Upy, for some closed neighborhood F of y in Y .

Proof. For each x ∈ Ypy \Upy, since p is separated, there are disjoint open neighborhoods
V and W of x and y in Y , respectively. Since Ypy \ Upy is a compact set which is covered
by the V ’s, there is a finite covering family V1, . . . , Vn. Let F = Y \ (V1 ∪ . . .∪ Vn). Then
Fpy ⊆ Upy, since Ypy \ Upy ⊆ (V1 ∪ . . . ∪ Vn)py. To see that F is a neighborhood of y, one
easily shows that W ⊆ F , where W = W1 ∩ . . .∩Wn is clearly a neighborhood of y in Y .

4.3. Theorem. Every perfect map is exponentiable in Top.

Proof. Suppose p: Y → T is a perfect map. To apply Theorem 4.1, let U be open
neighborhood of y in Y and let F be as in Lemma 4.2. Consider

Ht = {Vt ∈ O(Yt)|Ft ⊆ Vt}

Then Upy ∈ Hpy since Fpy ⊆ Upy, Ht is Scott-open since Ft is a closed subset of a compact
set and hence compact, and

⋂
H is a neighborhood of y in Y since F ⊆ ⋂

H. It remains
to show that the set

G = {t ∈ T |Vt ∈ Ht}
is open in T , for all V open in Y . Since p is a closed map, it suffices to show that
p(F \ V ) = T \ G. But, t �∈ G ⇐⇒ Vt �∈ Ht ⇐⇒ Ft �⊆ Vt ⇐⇒ ∃y ∈ Ft such that
y �∈ Vt ⇐⇒ t ∈ p(F \ V ), to complete the proof.

We conclude this section with a description of the exponentials ZY when p: Y → T is a
perfect map. This is the same construction given in [N1,N2] for an arbitrary exponentiable
map. Note that here, as in the general case, all but the continuity of the counit ε holds
when no assumption is made about the map p: Y → T .

Given q: Z → T , let ZY denote the set of pairs (σ, t), where t ∈ T and σ: Yt → Zt is
continuous. Suppose ZY has the topology generated by the sets

〈H,W 〉 = {(σ, t)|σ−1Wt ∈ Ht}

where H ⊆ ⋃
t∈T O(Yt) satisfies (ii) and (iii) of Theorem 4.1 and W is open in Z. Then the

projection qp: ZY → T is clearly continuous, for if G is open in T , then (qp)−1G = 〈H,Z〉,
where H =

⋃
t∈G O(Yt).
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Consider η: Z → (Z ×T Y )Y given by ηz = ((z,−), t), where qz = t. To see that η
is continuous, suppose ηz ∈ 〈H,W 〉, where H satisfies (ii) and (iii), and W is open in
(Z ×T Y )Y . Then

(z,−)−1Wt = {y ∈ Yt|(z, y) ∈ Wt} ∈ Ht

For each y in this set, let U × V be an open neighborhood of (z, y) in W . Since Ht is
Scott-open, we know (∪V )t ∈ Ht, and so V ′

t ∈ Ht, for some finite union V ′ = V1∪ . . .∪Vn.
Let

U ′ = U1 ∩ . . . ∩ Un ∩ q−1G

where G = {t′ ∈ T |V ′
t′ ∈ Ht′} which is open in T by (iii). Then it is not difficult to show

that z ∈ U ′, and ηU ′ ⊆ 〈H,W 〉 since

V ′
t′ ⊆ {y′ ∈ Yt′|(z′, y′) ∈ Wt′}

for all z′ ∈ U ′ where qz′ = t′, and it follows that η is continuous.
Consider ε: ZY ×T Y → Z given by ε((σ, t), y) = σy. To see that ε is continuous,

suppose ε((σ, t), y) ∈ W , where W is open in Z, and let Ut = σ−1Wt. Then y ∈ Ut, and
taking F and H as in the proof of Theorem 4.3, it follows that ((σ, t), y) ∈ 〈H,W 〉 ×T F ◦

and ε(〈H,W 〉 ×T F ◦) ⊆ W , where F ◦ denotes the interior of F in Y , establishing the
continuity of ε.

5. Exponentiability and Internal Locales

As noted in Section 3, Johnstone [J3] showed that if p: Y → T is perfect, then p∗(ΩY ) is
a compact regular locale in Sh(T ). He also proved that compact regular locales in Sh(T )
are (stably) locally compact. Now, Niefield [N3] showed that if T is a sober TD-space,
then the map p: Y → T is exponentiable in Top if and only if p∗(ΩY ) is locally compact
as an internal locale in Sh(T ). Thus, with these conditions on T , it follows that perfect
maps are exponentiable in Top.

Note that since Hyland gave a constructive proof [H] of the exponentiability of locally
compact locales, it establishes the result for internal locales, as well. Consequently, p∗(ΩY )
is exponentiable as a locale in Sh(T ), whenever p is perfect.

6. Concluding Remarks

We conclude by comparing the two “new” proofs with the others. As noted in the intro-
duction, the proofs presented here are constructive while the others depend on the axiom
of choice. The internal locale approach (Section 5) has the advantage of being short and
yielding an explicit construction of the exponentials (since the theorem from [N3] does)
but it is not the most general result possible (there is the assumption that T is a sober
TD-space). Moreover, it is highly non-elementary due to its reliance on internal locales in a
topos. The approach suggested by [N1,N2] (Section 4) is direct and elementary especially
if one bypasses the reliance on Theorem 4.1 in establishing the adjunction.
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