Theory and Applications of Categories, Vol. 10, No. 2, 2002, pp. 71-93.

A HOMOTOPY DOUBLE GROUPOID OF A HAUSDORFF SPACE

RONALD BROWN, KEITH A. HARDIE, KLAUS HEINER KAMPS, TIMOTHY
PORTER

ABSTRACT. We associate to a Hausdorff space, X, a double groupoid, p2D(X ), the
homotopy double groupoid of X. The construction is based on the geometric notion of
thin square. Under the equivalence of categories between small 2-categories and double
categories with connection given in [BM] the homotopy double groupoid corresponds to

the homotopy 2-groupoid, Go(X), constructed in [HKK]. The cubical nature of p5'(X) as
opposed to the globular nature of G (X) should provide a convenient tool when handling
‘local-to-global’ problems as encountered in a generalised van Kampen theorem and
dealing with tensor products and enrichments of the category of compactly generated
Hausdorff spaces.

Introduction

We associate to a Hausdorff space, X, a double groupoid, pQD(X ), called the homotopy
double groupoid of X. The construction is based on the geometric notion of thin square
extending the notion of thin relative homotopy introduced in [HKK]. Roughly speaking,
a thin square is a continuous map from the unit square of the real plane into X which
factors through a tree. More precisely, the homotopy double groupoid is a double groupoid
with connection which, under the equivalence of categories between small 2-categories and
double categories with connection given in [BM], corresponds to the homotopy 2-groupoid,
G2 (X), of X constructed in [HKK]. We make use of the properties of pushouts of trees
in the category of Hausdorff spaces investigated in [HKK]. The construction of the 2-cells
of the homotopy double groupoid is based on a suitable cubical approach to the notion
of thin 3-cube whereas the construction of the 2-cells of the homotopy 2-groupoid can be
interpreted by means of a globular notion of thin 3-cube.

Why double groupoids with connection?

The homotopy double groupoid of a space and the related homotopy 2-groupoid are
constructed directly from the cubical singular complex and so remain close to geometric
intuition in an almost classical way. Unlike in the globular 2-groupoid approach, however,
the resulting structure remains cubical and in particular is symmetrical with respect to the
two directions. Cubes subdivide neatly so complicated pasting arguments can be avoided
in this context. Composition as against subdivision is easy to handle. The ‘geometry’ is
near to the surface and naturally leads to the algebra.
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72 BROWN, HARDIE, KAMPS, PORTER

We see this as an elegant model for the 2-type of a space. Elegance often goes with effi-
ciency. The algebra fits better than that of the related model in ‘local-to-global’ situations
such as encountered in a generalised van Kampen theorem as has already proved true in
the relative case of the homotopy double groupoid of a triple of spaces of Brown-Higgins
[BH 1]. Similarly the tensor product structure of cubical sets transfers to our model and
this can then be applied to get information on function spaces and a double groupoid en-
richment for the category of compactly generated Hausdorff spaces in which the geometry
of higher homotopies is more transparent than, say, in the related 2-groupoid enrichment.

1. The singular cubical set of a topological space

We shall be concerned with the low dimensional part (up to dimension 3) of the singular
cubical set

RO(X) = (RJ(X),0;, 05, =)

» M Yy My

of a topological space X. We recall the definition (cf. [BH 2,BH 1]).
For n > 0 let
R (X) = Top(I", X)

denote the set of singular n—cubes in X, i.e. continuous maps I" — X, where I = [0, 1]

is the unit interval of real numbers. We shall identify R5(X) with the set of points of X.

For n = 1,2, 3 a singular n—cube will be called a path, resp. square, resp. cube, in X.
The face maps

97,05 : RI(X) — RY (X) (i=1,...,n)

resp. degeneracy maps
g RY (X)— RIX) (i=1,...,n)

are given by

ﬁf(a)(sl,... ,Sn_l) = CL(Sl,... 7Si—17075i+17--- 7Sn—1);
8f(a)(31,... ,Sn_l) = CL(817... 78i—1>175i+17~' ,Sn_1)7
resp.
si(b)(sl,... ,Sn) = b(Sl,... 5 Si—1y Sit+1y- - - ,Sn)

where a : I" — X, resp. b: I"! — X, are continuous maps.
The face and degeneracy maps satisfy the usual cubical relations (cf. (1.1) of [BH 2],
(5.1) of [KP]).
If a € RY(X), then
0(a) = (0 (a), 0 (a), ..., 0, (a),0; (a))

r¥n r¥n



A HOMOTOPY DOUBLE GROUPOID OF A HAUSDORFF SPACE 73

will be called the boundary of a.

A path a € RP(X) will sometimes be denoted a, by abuse of language and will be
called a path from ag to a;, denoted a : ag =~ a.

If a:ag>~a; and b : by ~ b; are paths such that a; = by, then we denote by

a+b:ayg~b
their concatenation, i.e.

a(2s), if 0

b(2s —1), if 5

A L

(1.1) (a+b)(s) = {

NN

S
S

VAR/A

If 7 is a point of X, then ¢;(x) € RY(X), denoted e,, is the constant path at z, i.e.
e;(s) =z for all s € I.
If a:x~yis apath in X, we denote by —a : y ~ x the path reverse to a, i.e.
(—a)(s) =a(l—s) for s € I.

If = is a point of X, we write ®, or simply ® for the doubly degenerate square 961 (2) =
8161(1‘), 1.e.
Oz(s,t) =z for all s,t € I.

A square u € R5(X) will sometimes be denoted u,; by abuse of language. Then
Oy (u), 0 (u), 0y (u), Oy (u) correspond to g, Uy ¢, Us o, Us1- Similarly, a cube U € RF(X)
will sometimes be denoted by U, ;.

A square u € RP(X) may be illustrated by the following picture.

9 U,0 a; (u> = Uot U, 1
1 0y (u) = usp U= Usy OF (u) = Us 1
Uy

u
1.0 07 (u) = uyy ’

Besides the boundary, @ = 9(u), of a square u € RS(X), we will have to consider its
0-skeleton, 1, defined by

U= (UO,Oa Up,1, U1,0, U1,1) .
If u € RP(X) is a square, then we denote by u its reflexion, i.e.

—

Ugy= Uy s for s,t € I.
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In the set of squares R5(X) we have two partial compositions +; (vertical composition)
and +, (horizontal composition). If u,v € RFY(X) are squares such that 9, (u) = 9; (v),
then u 47 v is defined by

u(2s,t), i

f s
v(2s — 1,t), if

<
<s

[ N

(1.2) (u 41 v)(s,t) = {

o= O
IN N

If u,w € RY(X) are squares such that 95 (u) = 05 (w), then u 45 w is defined by

u(s, 2t), foge<?
1.3 + 1) = 2
( ) (u Qw)(s ) {w($,2t— 1>’ lf% < <1

Similarly, in the set of cubes R5'(X) we have three partial compositions 41, 4, +3.
If u € RS(X) is a square, then —ju, —yu are defined by

(—u)(s,t) = u(l — s,t) resp. (—au)(s,t) = u(s, 1 —t).

The obvious properties of vertical and horizontal composition of squares are listed in [BH
2,BH 1]. In particular we have the following interchange property.
Let u, v/, w,w’ € RS(X) be squares, then

(1.4) (U 42 w) +1 (U +2w') = (u+1 u) +2 (w +1 W),

whenever both sides are defined.

More generally, we have an interchange property for rectangular decomposition of
squares. In more detail, for positive integers m, n let o, : I*> — [0,m] x [0,n] be the
homeomorphism (s,t) — (ms,nt). An m x n subdivision of a square u : [> — X is a
factorisation u = u' o @, »; its parts are the squares u;; : I — X defined by

wij(s,t) =u'(s+i—1,t+75—1).

We then say that w is the composite of the squares u;;, and we use matrix notation
u = [u;;]. Note that we can also write

utqv=" utsw=[u w]
v Y
and that the two sides of the interchange property (1.4) can be written

U w
uow'|’

Finally, we define two functions, called connections,

(1.5) -, Tt : RY(X) — RI(X)
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as follows. Let a € RP(X) be a path, a : z ~ y, then let
' (a)(s,t) = a(max(s,t)); T (a)(s,t) = a(min(s, t)).
The following formulae are obvious.

07T (a) =0, (a) =a; 0T (a) =0T (a) = ey
(1.6) 0Tt (a) = 8 I'(a) =e,; 0T (a) = 05T (a)
I (e;) =T (e,) = s

a;

The full structure of RP(X) as a cubical complex with connections and compositions

has been exhibited in [ABS].

2. Double tracks, 2-tracks

2.1. DEFINITION. Let a,a’ : x ~ 1y be paths in X. Then a relative homotopy v : a ~ a’ :
x =~y between a and d' is a square u € RS (X) such that

O(u) = (a,d, ey, e,) .
2.2. DEFINITION.

(1) Let u : I? — X be a square in X. Then the homotopy class of u relative to the
boundary I* of I will be called a double track and denoted by {u}.

(2) If u:a=~ad :x~yis a relative homotopy, then the double track {u} will be called
a 2-track from a to a' and denoted by {u} : a = d'.

Explicitly, we have the following conditions.

(1) Let u be a square in X with boundary d(u) = (a,d’,b,t’) and let u’ be another
square. Then {u} = {«'} if and only if O(u) = O(v') and there exists a 3-cube
U € RS(X) such that

O(U) = (u,u',e1(a),e1(a’),e1(b),e1(V)) .

(2") Let u,u' : a ~ a' : x ~ y be relative homotopies. Then {u} = {«'} if and only if
there is a 3-cube U € RJ(X) such that

IU) = (u,u',e1(a),e1(a’), Og, ©y).

fu:a~d:x~yandv:d ~d : x>~y are relative homotopies, vertical pasting
(1.2) of u and v induces a vertical pasting operation on 2-tracks, denoted {u} +; {v} :
a = a”", yielding a groupoid structure (with identities, {e;(a)}, denoted 0 or 0,) on the
set [[, X(z,y) of 2-tracks between paths in X from z to y. Similarly if u:a >~ a1 x>y
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and w : b~ b :y ~ z, horizontal pasting (1.3) of homotopies induces a horizontal pasting
operation on 2—-tracks

({u}, {w}) — {u} +2 {w}:a+ b= d 4V,
satisfying the interchange law

({u} 2 {w}) +1 ({u'} +2 {w'}h) = {u} +1{u'}) +2 (w} +1 {w'}).

3. Thin squares

The following definition is crucial for the construction of the homotopy double groupoid.
Recall first that if K and L are (finite) simplicial complexes then a map ¢ : |[K| — |L|
between the underlying spaces of K resp. L is PWL (piecewise linear) if there exist
subdivisions of K and L relative to which ® is simplicial. Also by a tree we mean the
underlying space |K| of a finite 1-connected 1-dimensional simplicial complex K.

3.1. DEFINITION. (1) A square u : I — X in a topological space X is thin if there is
a factorisation of u

(3.2) w122 g, P X
where Jy, is a tree and ®,, is PWL on the boundary I? of I2.

(2) A double track is thin if it has a thin representative.

3.3. EXAMPLE. Let a € RP(X) be a path. Then the degeneracies £,(a), £2(a) and the
connections I'"(a), I'*(a) are thin. This is shown by the factorisations

a

_>X

ei(a) : P 5T 5 X eg(a) 1P 2N T
resp.
I (a): P21 5% X, T (a): 1P 22T -5 X,
where pr; denotes the projection onto the ¢-th coordinate.

3.4. REMARK. Explicitly, the condition on ®, in Definition 3.1 means

(i) there is a finite 1-connected, 1-dimensional simplicial complex L, such that J, =
| L,

(ii) there is a subdivision of 12 and a subdivision of L, on which P, 2 12— [, is
simplicial.

Then it is not hard to see that, without loss of generality, we may assume that the vertices
of I? are elements of the subdivision of /2. Furthermore, by a common refinement type
argument, one can show that in Definition 3.1 the condition

(%) ®, is PWL on the boundary of I*
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is equivalent to the condition
(k) ®,, is PWL on each edge of the boundary of I°.

Finally, it may happen in (3.2) that a segment of the subdivision of I? is mapped
constantly under u but is mapped bijectively under ®, onto a segment of the subdivision
of L,. Then p, will map this segment constantly. By contracting the segment to a point
we see that, without changing the double track of u, we may assume that &, is a relative
homotopy if u is a relative homotopy. It follows that a 2-track is thin in the sense of
Definition 3.1 (2) if and only if it is thin in the sense of Definition 2.1 (2) of [HKK].

In order to be able to make use of a central lemma of [HKK] dealing with pushouts of
trees, from now on, we assume that

X is a Hausdorff space.

3.5. PROPOSITION. The class T? of thin squares in X is closed under vertical and hor-
1zontal composition of squares.

PROOF. We restrict ourselves to horizontal composition +5. Let u,w € R$(X) be thin
squares such that 95 (u) = 9, (w). Then we have to show that u + w is thin. Let

o p Ny Du
I’ =5 J, =% X resp. I? =% J, =5 X

be factorisations of u resp. w according to the definition of thin squares. Consider the
diagram

oy
P —
+
m A X\
p
(3.6) I J ——s X

_ 05 Oy, Tw
772 2 / Pw

where 75 (s) = (s,1) and n; (s) = (s,0). The central quadrilateral is supposed to be a
pushout in the category of Hausdorff spaces. Then, by Lemma 2.3 of [HKK], J is a tree
and 7, 7, are PWL. Let p be the induced map, let ¢, = 7, Py, Y0 = TWwPw. Then vy, @,
are PWL on 12 and

P2yt x

with ® = ¢, 4+ ,, gives the desired factorisation of u +5 w. ]
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We conclude this section by two filling lemmas. For the definition of a box and a filler
in a cubical set, we refer the reader to Definition I. 5.3 of [KP], (see also Definition (2.2)
of [K]).

3.7. LEMMA. Let
v = (—,@,k‘,k*,h‘,h*)

be a (3,1,0)-box in RE(X) such that the reflexions of k=, k™, h™,h* are all thin relative
homotopies. Then there exists a filler A € RP(X) of v such that Oy X is thin.

SKETCH OF PROOF. Retracting I® onto the given faces via the usual affine projection
from a suitable point outside the cube we obtain a cube H € R5(X) such that 0, (H)
can be illustrated by the following picture where a twiddled line denotes a constant path.

h+

Let w : I? — I? be the square indicated by the picture

where the four corners are appropriate connections and the other parts are mapped by
affine transformations. Let U : I* — I? be the obvious homotopy joining Uy s; = w and
Ui =idge. Then K = 9, (H)o U : I — X is a cube such that 0] (K) = 0; (H) and
J; (K) can be described by the following picture
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S S S

h-i-

where the four corners are appropriate connections. By assumption and by 3.3 all the
components of J; (K) are thin, hence 0] (K) is thin by Proposition 3.5.

Furthermore, the restriction of K to I x I2 is constant. Hence we have an induced
map K : I3/ ~— X where

(rys,t) ~ (1,s,t) for each (s,t) € I?.
Pasting K and H appropriately, we obtain the desired filler \. [
3.8. LEMMA. Let u,v: I? — X be thin squares such that
O(u) = (a",a™,b",b") =9(v) .
Then there eists a filler A € RZ(X) of the (3,3, 1)-box

= (uvU751(a7>781<a+)751(b7>7 _)
such that OF X is thin.

SKETCH OF PROOF. Applying the standard retraction argument as in the proof of
Lemma 3.7 we obtain a filler A € RS (X) of v such that 95"\ can be illustrated by the
following picture.

&1 (CL+)

b+ (4 81(b_) v b+

ei(a™)

Let w : I? — X denote the square indicated by the figure
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&1 (CL+)

b+ [ 81(b_) v b+

e1(a”)

where the four corners are appropriate connections. It follows that w is thin. Let
w: 1?2 g, 2 X

be a factorisation of w as in Definition 3.1(1). Precomposition with a suitable deformation
I? — I? yields a factorisation of 95 A\ which shows that 95 \ is thin. L

4. The homotopy double groupoid of a Hausdorff space

In this section we associate with a Hausdorff space X the structure of a double groupoid,
p5(X), which will be called the homotopy double groupoid of X. More precisely, we shall
introduce the structure of what has been called ‘special double groupoid with special
connection’ in [BS] and more recently edge symmetric double groupoid with connection
[BM].

We briefly recall some of the basic facts about double groupoids in the above sense.
In the first place, a double groupoid, D, consists of a triple of groupoid structures

<D25D1781_78f_>+17€1)7 <D27D1782_>a;_>+27€2>
(D1>D0781_78f_7+a5)

as partly shown in the diagram

The elements of Dy resp. D; are called squares resp. edges. The compositions, +1,
resp. o, are referred to as wvertical resp. horizontal composition of squares. The axioms
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for a double groupoid include the usual relations of a 2-dimensional cubical set and the
interchange law. The interchange law allows one to use matrix notation for composites of
squares, as indicated in section 1, in an arbitrary double groupoid.

The data for the homotopy double groupoid, p5(X), will be denoted by

(P5(X), G(X), 07,0, +1,e1), (p7(X), G(X), 85,05, +o,22)
(G(X), X,07, 0, +.).
Here G(X) denotes the path groupoid of X of [HKK]. We recall the definition. The objects

of G(X) are the points of X. The morphisms of G(X) are the equivalence classes of paths
in X with respect to the following relation ~.

4.1. DEFINITION. Let a,a’ : © ~ y be paths in X. Then a is thinly equivalent to d,
denoted a ~1 o, if there is a thin relative homotopy between a and o' (cf. (2.1), (3.1)
(1).

We note that ~p is an equivalence relation. Reflexivity and symmetry are clear,
transitivity follows from Proposition 3.5. We use (a) : x ~ y to denote the ~r class of a
path a : x ~ y and call (a) the semitrack of a. The groupoid structure of G(X) is induced

by concatenation,+, of paths. Here one makes use of the fact that if a : v ~ 2/, @' : 2/ ~

2", a” 2" ~ 2" are paths then there are canonical thin relative homotopies

(a+da)+ad" ~a+ (d+d"):x~2" (rescale)
at+ey~a:x~a; e, +a~a:x~x (dilation)
a+ (—a) ~ e, : x ~x (cancellation).

(Explicit formulae are given on pp. 47,48 of [Spa].)
The source and target maps of G(X) are given by

O (a) =z, 0/ {a) =y,

In order to construct p5(X) we define a relation on the set of squares, R5'(X). We
introduce the notion of cubically thin homotopy.

4.2. DEFINITION. Let u,u’ be squares in X with common vertices, i.e. i, = i’.
(1) A cubically thin homotopy U : u =7 u' between u and u' is a cube U € RS (X) such
that

(i) U is a homotopy between u and u', i.e.
oy (U) =u, 07 (U)=u,
(ii) U is rel. vertices of I?, i.e.
0,0, (U), 050, (U), 8505 (U), 0505 (U)

are constant,
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(iii) the faces OX(U) are thin for o« = 1, i =1,2 (c¢f. (3.1) (1)).

(2) The square u is cubically T-equivalent to u', denoted w =7 ' if there is a cubically
thin homotopy between u and u'.

REMARK. For the definition of the relation =7 condition 4.2 (1) (iii) in the definition of
a cubically thin homotopy can be replaced by

(iii") the 2-tracks of the faces 0%(U) are thin for o = £1, i =1, 2.

The obvious proof makes use of composition of cubes and a dilation argument together
with 3.3 and Proposition 3.5. [

4.3. PROPOSITION. The relation =3 is an equivalence relation on R5(X) .

PrROOF. The only problem is transitivity: the fact that U +; V is cubically thin if U and
V are and 95 (U) = 9y (V) follows from Proposition 3.5.

If u € RI(X) we write {u}7, or simply {u}z, for the equivalence class of u with
respect to =7 . We denote the set of equivalence classes R5'(X)/ =7 by p5(X).

In view of the relation =% of (4.2)(2) the face maps

0% RY(X) — RI(X) (i=1,2,a=+1)
of the singular cubical set RM(X) induce maps
O+ pp(X) — G(X)
by the formula
O {utr = (07u)
for {u}r € p5(X).
In a similar way, the degeneracy maps ¢; : RY(X) — R5(X) (i = 1,2) induce maps
g G(X) — pZD(X)
by the formula
ei(a) = {ei(a)}r

for (a) € G(X).
It follows that the cubical relations of the singular cubical set RP(X) endow p5'(X)
with the structure of a 2-dimensional cubical set. ]

The following proposition describes the effect of composing a thin square and an
arbitrary square.

4.4. PROPOSITION. Ifu,v € R5(X) are squares such that 0y (u) = 05 (v) and v is thin,
then

0
VtoU =7 U,

and similarly for the other three cases.
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PROOF. For 0 < s < 1, let vy : I — X be given by vs(t) = v(s,t). We define
A: I3 — X by
A(r,s,t) =T (vg)(r, 1)

where I'” is the connection defined in (1.5). Then for the boundary of A we have
a(A) = (Uvg?a;(v)a Fi(aliv)v F7<81+U)7 57518;<U>) )

where v is the reflexion of v.
Since v is assumed to be thin and degeneracies and connections are thin (cf. 3.3), it
follows that A is a cubically thin equivalence

Ao =D 605 (v) .

If H denotes the constant equivalence

e1(u) u=5 u,

then A +3 H is defined and we have
As H :v4ou =7 05 (v) +2u ,

furthermore

£20F (V) 42 u =7 u

by a dilation type argument. It follows that

v—l—guzgu.

Next, we show how vertical, resp. horizontal, composition in p5(X) is induced by
vertical, resp. horizontal, composition in RP(X).
For i = 1,2 let Di(X) = RY(X) M; RF(X) be given by the pullback

Dy(X) ——> RP(X)
o7

RI(X) Q0 R7(X)

)

Thus Di(X) is the domain of the composition +; : D(X) — RY(X) (cf. (1.2), (1.3)).
Define A%(X) to be the quotient of Di(X) by the relation

(u,v) = (v, 0")
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if there is a pair of cubes (H, K) such that
OsH=u, O K=v, 0 H=1u', 0f K=", 0 H=0; K

and the reflexions of the remaining faces of H, K are thin relative homotopies.

For (u,v) € Dy(X) let {(u,v)} € AL(X) denote the equivalence class of (u,v) with
respect to =.

In the following proposition Di(X) is compared with the domain p3(X) M; p5(X) of
the composition +; to be defined in p5'(X).

4.5. PROPOSITION. There is a natural bijection
0t AY(X) — p2(X) M pR(X).

PRrOOF. The function 7 is induced by the two projections AL(X) — p5(X) defined by
the projections Dj(X) — R5(X), i.e. for (u,v) € Di(X) we have

n{(u,v)} = {ujr, {vir) .

We define an inverse £ to . For convenience, we assume ¢ = 2. Let
({u}r, {v}r) € p5'(X) M2 p5(X).

Then there is a thin relative homotopy h : 95 (u) =~ 9 (v). So u 4 (7@ +9 v) is defined.
Let

(4.6) E({uyr, {v}r) = {(u, b+ v)}.

We have to prove that ¢ is well defined.

The idea is borrowed from Proposition 3 of [BH 1] where it is shown that the homotopy
double groupoid of a triple of spaces inherits two well defined partial compositions in
dimension 2 (see also Proposition 6.2 of [B 4]).

Let v/, v/, b’ be alternative choices in (4.6). Then there are cubes U,V € RS(X) such
that

05 (U)=wu, 05 (U)=1u', 05 (V) =w, 0 (V) =1

and the reflexions of the remaining faces of U and V are thin relative homotopies. By
Lemma 3.7 we obtain a cube H € RS(X) such that

O(H) = (07 (H), ®, O (U), 95 (V), h, I)
and 9y (H) is thin. The pair of cubes (U, H 4+ V') shows that
(%71 +ov) = (U, B 44 0)

as required.
It is clear that &y = 1. From Proposition 4.4 it follows that n& = 1. [



A HOMOTOPY DOUBLE GROUPOID OF A HAUSDORFF SPACE 85

REMARK. The inverse £ to 1 can also be described by the formula

(4.7) E({uyr, {vlr) = {(u +2 h.v)}.

4.8. THEOREM. The compositions 41,4+, on RS(X) are inherited by p3(X) making
p5(X) into a double groupoid.

SKETCH OF PROOF. In order to define +5 on p5(X), let ({ulr, {v}r) € p5(X) My p5(X).
Then

(4.9) {u}r +2 {v}r = {u/ +2V'}r

for any choice ' € {u}r,v" € {v}7 such that d; (u) = 95 (v). Then +, is well defined on
p5/(X) by definition of the relation =.
In particular, we have

(4.10) {ubr +2 {0} = {fu h W]}z

if h: 0 (u) ~ 05 (v) is a thin relative homotopy.
The definition of +; is similar. In particular, for ({u}r, {w}r) € p5(X) My pF(X) we
have

u

(4.11) {u}r +1 {wlr={| ¥ |}o,

if k: 01 (u) ~ 9y (w) is a thin relative homotopy.
Then +; and 4, induce two groupoid structures on p5(X) with identities
{e1(a)}r, resp. {e2(a)}r, and inverses given by

—1{U}T = {—1U}T, resp. —a2 {U}T = {—2U}T .

Furthermore the face maps p3(X) — G(X) and degeneracy maps G(X) — p5(X) are
morphisms of groupoids.

To verify the interchange law, suppose @, 7,10, 2 € p3(X), where @ = {u}r, etc. are
such that both sides of

(4.12) (@ +ow) 41 (042 2) = (@ +10) +2 (0 +1 2)

are defined. Then there are thin relative homotopies h, k, h', k' such that the following
composite is defined.

u?{w
W o K
v ok oz

Evaluating this in two ways gives the interchange law (3.5). [
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This completes the construction of p5'(X) as a double groupoid.

5. Connections and thin structure

A connection pair on a double groupoid, D, is given by a pair of maps
F_,P+ . D1 — DQ.

The edges of I'"(a), I'f(a) for a € D; are described by the formulae (1.6) suitably
interpreted in the framework of a double groupoid.

Furthermore, I'~ and T'" are required to satisfy the usual transport laws (cf. 1.7 of
[BS], (28) of [B 4], p. 167 of [BM]) describing the connection of a composite of edges, e.g.

_ I'(a) e1(b)
ceen = | La) 2

In order to construct a connection pair on p5(X) we make use of the connections
-, It RY(X) — RI(X)

(cf. (1.5)).

Let a,a’ € RP(X) be paths, a,a’ : z ~ y. We claim that a ~p o’ implies '~ (a) =5
I=(a') (similarly, I'*(a) =7 I'F(a’)), where ~7 is the relation of Definition 4.1. Let
h :a~d :x ~y be a thin relative homotopy. Then shifting I'"(a) to I'"(a’) along
I'“(h),0 < r <1, where h, : hyg =~ h,; : * ~ y we obtain a cubically thin homotopy
I'(a) =5 T (d).

It follows that we have two induced functions

I, TF: G(X) — pP(X)

together with the obvious relations induced by (1.6). In order to verify the transport law
for I, let a,b € RP(X) be composable paths, a : © ~ %, b:y ~ 2 Then we have to
compare I'"(a + b) and the composite square

=56 20

We observe that we have factorisations
I (a+b) = (12 -5 1“2 X)),
w= (1> 2 1 8 X)

of '~ (a+b) resp. u through the unit interval such that ¢ and ¢ coincide on the boundary
I? of I%. Since I is a convex set it follows that ¢ and 1 are homotopic rel. I?. Hence there
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is a homotopy rel. 12 between I'"(a + b) and u. Since a homotopy rel. I? is a cubically
thin homotopy, it follows that I'~(a+b) =7 u which proves the transport law for I'". The
transport law for I't is proved in a similar way.

Finally, a similar factorisation argument together with a dilation type argument shows
that

[T+ (a) T7(a)] =F 1(a), resp. [?FEZH =2 e5(a).

This implies that T=, 't : G(X) — p5(X) are “inverse” to each other in both directions.

This completes the construction of the homotopy double groupoid p3(X) of a Haus-
dorff space X.

Brown and Mosa have shown in section 4 of [BM] (following [BH 1]) how a connection
on a double groupoid gives rise to a thin structure. We note that connections and thin
structures have been exploited in [Spe] and [SW] in the theory of homotopy pullbacks and
pushouts and the theory of homotopy commutative cubes.

For the definition of a thin structure we need the following general construction asso-
ciating with an arbitrary groupoid C the double groupoid (JC of commuting squares in C,

i.e. the squares in [JC are quadruples (c Z b) of arrows a, b, ¢,d in C such that ab, cd are

defined and are equal. Then, by definition, a thin structure on a double groupoid D is a
morphism of double groupoids

©:0D, —D

which is the identity on Dy and Dy. The elements of Dy lying in ©(C1D;) are called thin.
If D is a double groupoid with connection pair (I'",'"), then by Theorem 4.3 of [BM]

D inherits a thin structure © such that the thin elements @(c Z b ) can be described
explicitly by the formulae

() = (e1(@) +2 T (5)) +1 (T (€) 2 21(d))
= (e2(c) +1 T (d)) +2 (T () +2 £2(b))-
The next aim is to characterise the thin structure on the homotopy double groupoid
p5(X) inherited by the connection pair described above.
5.1. DEFINITION. An element {u}r € p3(X) is called

(1) algebraically thin if it is thin in the sense of Brown-Mosa [BM],

(2) geometrically thin if it has a thin representative in the sense of Definition 3.1 (1).

Our main result on this is:

5.2. THEOREM. An element {u}r € p5'(X) is algebraically thin if and only if it is geo-
metrically thin.

PROOF. The forward implication follows from the Brown-Mosa formulae, since any com-
position of thin squares is thin (Proposition 3.5) and the elements '*(a), &;(a) for
a € RP(X) are all thin (3.3). n
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In order to show the converse implication we first observe
5.3. PROPOSITION. Let u,v: I — X be thin squares such that u | [*> = v | I*. Then

0

Proor. This follows from Lemma 3.8. [
We can generalise Proposition 5.3 to:

5.4. PROPOSITION. Let u,v : I? — X be thin squares such that (0fu) = (0%v) for
a==1, 1=1,2. Then

0
u :T V.

PROOF. We can use the given thin homotopies and the usual retraction argument to
define a cubically thin homotopy u =7 v’ where v’ | I> = v | I? and u' is also thin. Now

apply Proposition 5.3. [

Now we can complete the proof of Theorem 5.2. Suppose u : [ 2 — X is thin. Let
v = O(u | I?) be one of the thin elements given by the Brown-Mosa formulae (Theorem
4.3 of [BM]). By Proposition 5.4, u =7 v. But {v}r is thin in the sense of Brown-Mosa.m

Next we show that p3(X) satisfies the homotopy addition lemma in dimension 2.
If U:I? — X is a cube in X, then we denote the faces of U by
o = (OYU)7, by = 05U, c¢o=05U (o= =1).
We write @,, etc. for the corresponding elements of p3(X). We use matrix notation in
the double groupoid p3(X).
5.5. PROPOSITION. [homotopy addition lemma] If U € RY(X), then

— I~ a4 |
in pS(X), where each T~ (resp. ') stands for T~ (p) (resp. T (p)) for an appropriate
p € RI(X).

PrROOF. We adapt the proof of Proposition 5 of [BH 1], to the present situation, see also
Proposition 6.3 of [B 4].
Consider the maps g, @1 : I — I defined by

't — ) —I © a ©
wo=|—my 1§ mo|. p1=lea ny e,

. ?7% - © e ©
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where n® : I — I® denotes the map which inserts « at the i—th coordinate.

Then ¢y, 1 agree on 12 and so, since I3 is convex, are homotopic rel. I2. It follows
that Uy and Uop; are homotopic rel. 12 which implies that Ue gy and Uep; are
cubically T-equivalent. But the composite matrix given in the proposition is the element
in pQD(X ) corresponding to U oy, whereas by a dilation argument it can be shown that
U o, is cubically T-equivalent to c,. [

6. Relation with the homotopy 2-groupoid

In [BM] Brown and Mosa present an equivalence of categories
A:2—Cat=0O—-Cat: v,

where 2 — Cat denotes the category of small 2-categories and [1—Cat is the category
of (edge symmetric) double categories with connection. The functor A associates to a
2-category, C, the double category, A\C, whose squares are the squares of 1-cells in C
inhabited by a 2-cell of C, a construction which goes back to Ehresmann [E].

The functor v assigns to a double category, D, the 2-category, vD, it contains in the
obvious way, i.e. yD consists of those squares in D whose vertical edges are identities.

In this section we clarify the relation between the homotopy double groupoid p5'(X)
of a Hausdorff space X and the homotopy 2-groupoid Go(X) of [HKK]. We show that
G(X) is isomorphic to the 2-groupoid vp5 (X) contained in p3(X).

We recall the definition of Ga(X). As for the homotopy double groupoid the 1-
dimensional structure of Gg(X) is the path groupoid G(X). In [HKK] the 2-cells of
G2(X) have been constructed by a two stage process, part geometric and part alge-
braic. If z,y are points of X, then Go X (x,y) has been defined as the quotient groupoid
I, X (x,y)/NX(z,y) where II, X (z,y) denotes the groupoid of 2-tracks between paths
in X from = to y and NX(z,y) is the normal subgroupoid of II X (z,y) consisting of
those 2-tracks which are thin (see section 2 of [HKK]). However, it has been noted in
[HKK] that the 2-cells of Go(X) can also be obtained in a one stage geometric process
determined by the notion of globularly thin homotopy defined as follows.

6.1. DEFINITION. Letu:a~a :x~y and v :b>=b :x ~y be relative homotopies.

(1) A globularly thin homotopy U : u =3 u' between u and v’ is a cube U € RJ(X)

such that
oU) = (u,u’,@;(U),@j(U),@x,Gy)
and
Oy (U):a~b:x~yresp. 05 (U) :a' =~V :x~y
are thin.

(2) The square u is globularly T-equivalent to u’, denoted u =3 u’, if there is a globularly
thin homotopy between u and u'.
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Let RO(X) C RY(X) be the subset of relative homotopies. We denote the set of
equivalence classes RS (X)/ =3 by pS(X).

The following result is clear.

6.2. PROPOSITION. The 2-cells of the homotopy 2-groupoid Go(X) are in bijective cor-
respondence with the elements of pS(X). n

6.3. THEOREM. The inclusion RS(X) — RS (X) of the subset of relative homotopies
induces an injection ¢ : pS(X) — p3(X).

The proof of Theorem 6.3 will make use of a folding map assigning a relative homotopy
to an arbitrary square (cf. [BM]).

6.4. DEFINITION. The folding map
$: RP(X) — RY(X)
s given by
O(u)=[T u_]
foru € RS(X), where ™ =T70;5 (u) and _I = T~ (u).
PROOF of Theorem 6.3. Let

wia~ad :r~yandu :b~b x>~y

be relative homotopies such that u is cubically T-equivalent to u'.
Let U € RP(X), U :u =7/, be a cubically thin homotopy between u and /, i.e. U
is a homotopy rel. vertices of I? between u and u’ such that

=0, (U), 2 =05 (U), 73=205(U), 74 =95 (U)

are thin.
We shall construct a 3-cube V' € RS(X) with the following properties:
(1) v=09; (V) and v' = 9; (V) are relative homotopies such that

e 1 O 1
v=puand v =pu

(2) 95 (V) = @, and 95 (V) = &,
(3) the faces 9, (V) and 95 (V) are thin.
In particular, V is a globularly thin homotopy, V : v =% ¢'. Then it follows that

!/

©) _0O _O

hence u is globularly T-equivalent to u/, as required.
The construction of V' proceeds as follows. For 0 < r < 1 let U, : I? — X be given
by U,(s,t) = U(r,s,t). We define V, : I? — X by



A HOMOTOPY DOUBLE GROUPOID OF A HAUSDORFF SPACE 91

where @ is the folding map of 6.4 and obtain a continuous map
Vil — X, V(rs,t) = V,(s,t).

The properties of the connections I'", I'" used in the definition of the folding map ® allow
us to read off the boundary of V:

U:[QxUQy]v [QwUIQy]v
05 (V) = @, ;(V> Oy,
9y (V) =10 1 714], 05 (V) = [13 12 Oy].

Hence, (2) is fulfilled. By a dilation type argument v, resp. v’, are globularly T-equivalent
to u resp. «’. Thus, (1) is true. Finally, (3) holds since a vertical composite of thin
homotopies is thin by Proposition 3.5. m

6.5. COROLLARY. Under the equivalence of categories
A:2—Cat=0—-Cat: vy

constructed in Section 5 of [BM] the homotopy 2-groupoid Go(X') and the homotopy double
groupoid p5(X) correspond to each other.

PROOF. Let ¢ : Go(X) — 7vp5(X) denote the obvious functor which maps 0-cells
and 1-cells identically. By Theorem 6.3 ¢ is an injection on 2-cells. Using a simple
filling argument it is not hard to show that ¢ is also surjective on 2—cells. Hence ¢ is an
isomorphism. [

REMARK. Since Go(X) contains the information on all mo(X,x), x € X, within it,
clearly this information is also encoded in p3'(X). This can be extracted directly without
recourse to the above result: If © € X, mo(X, ) is precisely the set of {u}r for v with
all its faces at x. There is an obvious action of G(X) on {m (X, x)},cx which induces
the usual action of the fundamental groupoid, IT; (X), of X on this family of groups. We
leave the details for the reader. ]

This gives: From p3(X) one can extract II;(X) and its action on the family
{ma(X, x)},ex of second homotopy groups of X based at points of X.
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