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THE CYCLIC SPECTRUM OF A BOOLEAN FLOW

JOHN F. KENNISON

ABSTRACT. This paper defines flows (or discrete dynamical systems) and cyclic flows in
a category and investigates how the trajectories of a point might approach a cycle. The
paper considers cyclic flows in the categories of Sets and of Boolean algebras and their
duals and characterizes the Stone representation of a cyclic flow in Boolean algebras. A
cyclic spectrum is constructed for Boolean flows. Examples include attractive fixpoints,
repulsive fixpoints, strange attractors and the logistic equation.

Introduction

Suppose we have a flow in Sets by which we mean a set S with a function t : S → S.
We might think of S as the set of all possible states of a system and t(s) as the state the
system will be in one time unit after being in state s. We are interested in the long-term
future of a system that starts out in state s. If S has no further structure, then the
successive states, {tn(s)}, (called the “trajectory of s”) either repeat so that the system
eventually cycles or the system takes on a sequence of distinct states.

But suppose S has more structure, such as a topological structure. In this case, the
trajectory of s might approach a limiting state, or a limiting cycle, or a strange attractor
or become chaotic. To account for this possible structure on S, we define a flow in a
category and define when a flow is cyclic.

After some general observations, we focus on flows in Sets, the category of Sets, and
Bool, the category of Boolean algebras, and their duals. We show that cyclic flows in
Bool have special properties and show how any flow in this category can be broken down
into its cyclic parts by constructing the cyclic spectrum (which is an example of a Cole
spectrum, see [2]).

There is a one-to-one correspondence between flows in Bool and in the dual category
Stone of compact, Hausdorff, totally disconnected spaces. But the notion of a cyclic flow
in a category is not self-dual, so there are two different ways a flow in these categories
can be cyclic. For example, in Stone we define what is meant by a nearly cyclic flow
and, if not finite, such a flow is cyclic as a flow in Bool but not in Stone. It essentially
corresponds to a “strange attractor”.

For applications we would like to examine flows on a set S which has a Stone topology.
In many well-known examples, S has a topology but it is usually connected. However, as
shown in Example 10 we can often find an associated Stone topology.
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Much of this paper should be of interest to dynamical system theorists who know a
little category theory as found in [5] or even the first chapter of [1]. Further concepts
are in [1, 2, 3, 6], while [7, 8] give information about dynamical systems.

1. Flows in a Category

In this section we define flows and cyclic flows in a category.

Definition 1. Let C be a category. Then (X, t) is a flow (or discrete dynamical system)
in C if X is an object of C and t : X → X is a morphism.

If (A, s) and (B, t) are flows in C, then h : A → B is a flow homomorphism from (A, s)
to (B, t) if hs = th.

Definition 2. A category C is well-behaved if it is complete and co-complete and if
every morphism f can be written as f = me where m is a mono and e is an extremal epi
(meaning that whenever e = gh with g mono then g is an isomorphism.)

About well-behaved categories. The following notation and elementary properties
for well-behaved categories is either fairly standard or well-known or readily proven:

(WB1) If A and B are objects of C, then A ⊆ B indicates that A is a subobject of B,
meaning that there is an implicit mono from A to B.

(WB2) For f, g ∈ Hom(X,Y ) we let Equ(f, g) ⊆ X denote the equalizer of f, g.

(WB3) If {Ai ⊆ B} for all i, then
∨

Ai denotes the supremum of {Ai} in the partially
ordered family of all subobjects of B.

(WB4) If f : X → Y and if A ⊆ X then then f(A) denotes the smallest subobject of Y
through which A → X → Y factors.

(WB5) (Diagonal lemma) If se = mr with m mono and e extremal epi, then there exists
a “diagonal” map d with de = r and md = s.

(WB6) Given f : X → Y and B ⊆ Y and {Ai ⊆ X} a set of subobjects of X with
f(Ai) ⊆ B for all i, then f(

∨
Ai) ⊆ B.

Definition 3. Let (X, t) be a flow in a well-behaved category C. We say that (X, t) is
cyclic if

∨
Equ(tn, IdX) = X, the maximum subobject of X.

1.1. Lemma. Let h : (A, s) → (B, t) be a flow homomorphism and let E(n) = Equ(sn, IdA)
and F (n) = Equ(tn, IdB). Then h(E(n)) ⊆ F (n).

Proof. Straightforward.
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1.2. Lemma. Let C be a well-behaved category and let X = Colim {Xi} be a colimit in
C with coprojections ci : Xi → X. Let B ⊆ X be such that ci(Xi) ⊆ B for all i. Then
B = X, the maximum subobject of X.

Proof. Let m : B → X be the mono which represents B ⊆ X. Let di : Xi → B be such
that mdi = ci (which exist as ci(Xi) ⊆ B). Because m is mono it is readily seen that the
family {di} has the compatibility property which implies the existence of d : X → B with
dci = di for all i.

It follows (using the colimit property) that md = IdX and then (as m in mono) that
dm = IdB which shows that m is an isomorphism and so B represents the maximum
subobject of X.

1.3. Proposition. In a well-behaved category, colimits of cyclic flows are cyclic.

Proof. Let {(Xi, ti)} be a small diagram of cyclic flows in the well-behaved category
C. Let X = Colim {Xi} with coprojections ci : Xi → X. Then it is readily shown
that there is a unique t : X → X for which each ci is a flow homomorphism. Let
Ei(n) = Equ(tni , IdXi

) ⊆ Xi and let E(n) = Equ(tn, IdX) ⊆ X. Let B =
∨

E(n), It
suffices to show that B = X.

By the Lemma 1.1, we see that ci(Ei(n)) ⊆ E(n) so ci(Ei(n)) ⊆ B for all i. By (WB6)
and Lemma 1.2, ci(

∨{Ei(n)}) ⊆ B so ci(Xi) ⊆ B for all i and so B = X.

1.4. Proposition. In a well-behaved category, extremal quotients of cyclic flows are
cyclic.

Proof. Let (A, s) be a cyclic flow and let the extremal epi h : A → B be a flow
homomorphism. We must show that (B, t) is cyclic. Let E(n) = Equ(sn, IdA) and
F (n) = Equ(tn, IdB). It suffices to show that

∨
F (n) = B. But since

∨
E(n) = A it

readily follows, using 1.1 and (WB6), that h factors through
∨

F (n) and an extremal epi
can only factor through the maximum subobject.

Example 1. In Sets, the category of Sets, (X, t) is a cyclic flow iff X is a disjoint union
of finite cycles, where a finite cycle is a set {x0, x1, . . . , xn−1} where t(xi) = xi+1 where
i + 1 is computed mod n. (We then say that x is a periodic point with period n.)

Example 2. Let t : X → X be a function on a set X. Then, regarded as a flow in
Setsop, (X, t) is cyclic iff t is one-to-one.

Proof. Let Q(n) be the equivalence relation on X generated by all pairs of the form
(x, tn(x)). Then X is cyclic iff (x, y) ∈ ⋂

Qn implies x = y. Assume X is cyclic and
that t(x) = t(y). Then (x, y) ∈ Q(n), for all n, as (x, tn(x)), (y, tn(y)) ∈ Q(n) and
tn(x) = tn(y). So x = y and t is one-to-one.

Conversely, assume the t is one-to-one and that (x, y) ∈ Q(n) for all n. Since t is
one-to-one, it can readily be shown that (x, y) ∈ Q(n) iff x = y or x = tk(y) with k a
multiple of n or y = tm(x) with m a multiple of n. Now if x = tm(y) for a unique m. then
(x, y) cannot be in Q(n) once n > m. On the other hand, if x = tm(y) for more than one
m, then x, y are in a cyclic orbit of some period p (as t is one-to-one) and (x, y) ∈ Q(p)
implies x = y.



THE CYCLIC SPECTRUM OF A BOOLEAN FLOW 395

Notation. The categories Bool and Stone were defined in the introduction. It is readily
shown that both categories are well-behaved with the monos being the one-to-one maps
and the extremal epis being just the epis which are the onto maps.

It is well-known that Bool and Stone are dual to each other, see [3]. We denote the
contravariant equivalences between these categories by:

Clop : Stone → Bool and Pts : Bool → Stone

So Clop(X) is the Boolean algebra of clopens of X and Pts(B) is the Stone space of
all points of B and is equivalent to the prime ideal spectrum of B (the Zariski and Patch
topologies coincide).

If (X, t) is a flow in Stone then (B, τ) is a flow in Bool where B = Clop(X) and
τ = Clop(t). We will often write (B, τ) = Clop(X, t)

Definition 4. (X, t) is a Boolean cyclic flow in Stone if (X, t) is a flow in Stone such
that (B, τ) = Clop(X, t) is a cyclic flow in Bool.

Example 3. Let (X, t) be a flow in Stone. Then (X, t) is cyclic in Stone iff the set of
periodic points of X is dense, where x ∈ X is periodic iff tn(x) = x for some n ∈ N.

On the other hand, (X, t) is Boolean cyclic iff every b ∈ B is periodic under τ where
(B, τ) = Clop(X, t).

Example 4. The group of p-adic integers, Ẑp = LimZpn , with t(z) = z + 1, is Boolean
cyclic but is not cyclic in Stone.

Proof. It is not cyclic as a flow in Stone because it has no periodic points. In Stone,
Ẑp is the limit of cyclic flows. So Clop(Ẑ) is the corresponding colimit in Bool which is
cyclic by Proposition 1.3.

Remark. It is instructive to see why Ẑp of the above example is Boolean cyclic. Let b be

a clopen of Ẑp. Note that finite intersections of sets of the form π−1
pn (a) for n ∈ N, a ∈ Zpn

form a base for the topology on X. Since b is open, b is a union of such basic open sets
and since b is closed, and therefore compact, b is a finite such union. So b depends only
on finitely many coordinates, which means there exist k = pn with b = π−1

k (πk(b)) and so

τ k(b) = b. Ẑp is an example of a “nearly cyclic” flow, see the remark following Definition
5 in the next section.

Example 5. Let X =
∏{Zn : n ∈ N} where Zn is the cyclic group of integers mod n.

Then X has a compact product topology and (X, t) is a flow in Stone where t(x) = x+1
(where 1 is the element of X which projects onto the image of 1 in each Zn). Then X is
not at all cyclic in Stone (it has no finite cycles) but X is Boolean cyclic.

Proof. By duality, Clop(X) is the coproduct of the cyclic flows Clop(Zn). The result
follows from Proposition 1.3.

Example 6. Let X be the coproduct in Stone of Zp for p prime and let t(x) = x+ 1 on
each component. Then X is cyclic in Stone but not Boolean cyclic. (But see Example
9.)
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Proof. As a coproduct of Stone cyclic flows, X is Stone cyclic, by 1.3. Note that the
coproduct is the Stone-Čech compactification of the discrete union of the Zp’s. But the
clopens of X coincide with the subsets of this discrete union (as both represent maps to
the two-point Stone space). From this it is easy to see that X is not Boolean cyclic.

2. The Stone Space of a Cyclic Boolean Algebra.

In this section, we explore and characterize those flows (X, t) in Stone which are Boolean
cyclic. Aside from the characterization result (Theorem 2.13) we show that, for a Boolean
cyclic flow in Stone, the closure of the trajectory of a single point must be “nearly cyclic”.

Notation and Remark. In what follows: (X, t) will be a flow in Stone with (B, τ) =
Clop(X, t). If B is (Boolean) cyclic, then τ is one-to-one and onto, so t : X → X must
be one-to-one and onto also.

When (X, t) is a flow, we will often use just X, instead of (X, t), referring implicitly
to the flow map t. Similarly, we may use B as short for (B, τ).

The Profinite Integers. We let Ẑ denote the profinite integers, or the free profinite
group on one generator, 1. We regard Ẑ as a flow in Stone with t(ζ) = ζ +1 for all ζ ∈ Ẑ.
(Most of the profinite groups we work with also have a ring structure and we let 1 denote
the unit. When there are obvious maps from the integers, Z, then “1” denotes the image
of 1 in Z.) Clearly the ring of integers Z is a subring of Ẑ and we will identify Z with its

image in Ẑ.

By the Chinese Remainder Theorem, Ẑ =
∏{Ẑp: p prime}, the product of the p-adic

integers as p varies over the primes of N. For every n ∈ N let qn : Ẑ → Zn be the
continuous homomorphism which preserves the generator 1. It readily follows that if n
divides m and if f : Zm → Zn is the homomorphism which preserves 1, then fqm = qn.

Note that Ẑ is Boolean cyclic by Proposition 1.3 because it is a limit of cyclic flows in
Stone, so Clop(Ẑ) is a colimit of cyclic flows in Bool.

If ζ ∈ Ẑ is given, we will say that “ζ ∼= k (mod n)” if qn(ζ) = qn(k).

2.1. Theorem. Let (B, τ) be a cyclic Boolean flow. Then there is a continuous group

action of Ẑ on B such that for n ∈ N and b ∈ B the action maps (n, b) to τn(b). This
determines the action and τ ζ(b) will denote the result of applying the action to (ζ, b).

Proof. Let ζ ∈ Ẑ and b ∈ B be given. Since B is cyclic, we can choose n ∈ N such
that τn(b) = b and define τ ζ(b) = τ k(b) where ζ ∼= k (mod n). We claim that this is
well-defined. Suppose τn(b) = τm(b) = b. Let s = lcm(n,m) and let fn : Zs → Zn and
fm : Zs → Zm be the maps which preserve 1. Then fnqs = qn and fmqs = qm. Let ζ ∼= k
(mod n) and ζ ∼= j (mod m).

We must show that τ k(b) = τ j(b). But let ζ ∼= h (mod s). Then (by considering the
projections of ζ) we get h ∼= j (mod m) so τh(b) = τ j(b) (as τm(b) = b) and, similarly,
τh(b) = τ k(b) so τ j(b) = τ k(b), proving that the action is well-defined.
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We note that each map τ ζ for ζ ∈ Ẑ is a Boolean homomorphism, because given any
finite subset of B we can find n such that τn(b) = b for all b in the finite subset, so there
is a k such that τ ζ = τ k on the entire finite subset. Since τ k is a Boolean homomorphism,
it follows that τ ζ is too.

It is immediate that this is a group action on B so it remains to show that it is
continuous (when B is given the discrete topology). Now suppose that τ ζ(b) = c. Let n
be chosen so that τn(b) = b. Then W = p−1

n (pn(ζ)) is open and τ ζ′(b) = c for all ζ ′ ∈ W .
This proves continuity.

2.2. Theorem. Let B be a cyclic Boolean flow and let X be the corresponding flow in
Stone. Then Ẑ acts continuously on X.

Proof. For each ζ ∈ Ẑ we have a Boolean homomorphism τ ζ on B. By duality, there is
a corresponding continuous map tζ on X. It also easily follows that this defines a group
action of Ẑ on X. (A left group action on an object is the same as a right group action

in the dual category, but since Ẑ is abelian there is no real difference between left and
right actions.) It remains to show that this action is continuous, using the given Stone
topology on X.

Let ζ ∈ Ẑ and x0 ∈ X be such that tζ(x0) = y0. Let b be a clopen neighborhood of
y0. We must find a neighborhood c of x0 and a neighborhood W of ζ such that the action
maps W × c into b. Since tζ is continuous, (tζ)−1(b) = c is a clopen neighborhood of x0.
So τ ζ(b) = c (recall that τ = t−1). By the above proof, there exists a neighborhood W of
ζ such that for ζ ′ ∈ W we have τ ζ′(b) = c. Then W and c have the required properties.

Definition 5. Let (X, t) be a flow in Stone. Then X is nearly cyclic if for every p, q ∈ X
and every neighborhood U of q, there exists a clopen b with q ∈ b ⊆ U such that the
sequence {tm(p)} is periodically in b, meaning that for some n there is a non-empty subset
{m1, . . .mi . . .} ⊆ {0, 1, . . . n − 1} with tm(p) ∈ b iff m ∼= mi (mod n) for some i.

Remark. Conceptually, a nearly cyclic flow is one which looks cyclic when we observe
how often it visits a small neighborhood b. But when we observe more closely, using a
smaller neighborhood, the period might change. Often it is doubled or multiplied by some
prime p.

In effect, a nearly cyclic flow is a “strange attractor” because every trajectory comes
close, infinitely often, to every point in the attractor and it is close to being cyclic (in the
sense mentioned above) yet is not cyclic.

2.3. Lemma. A nearly cyclic flow in Stone is Boolean cyclic.

Proof. Let (X, t) be a nearly cyclic flow in Stone and let (B, τ) = Clop(X, t). We say
that b has period n with respect to p ∈ X when tk(p) ∈ b iff tk+n(p) ∈ b. We claim that
this implies that τn(b) = b. For let U = (t−1)n(b) + b (where “+” denotes the Boolean
addition, or symmetric difference). We need to show that U is empty, so suppose that
q ∈ U . Then by the definition of nearly cyclic, there exists b′ ∈ B with q ∈ b′ ⊆ U
such that the sequence of points tk(p) frequently visits b′. But it is clear by the periodic
property of b that no such power of p can be in U , let alone b′.
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Now let W be any clopen of X. Clearly if q ∈ W there exists b with q ∈ b ⊆ W
where b has the periodic property (with respect to any p) so τn(b) = b for some n. Thus
W is a union of such periodic clopens b. But W is closed and therefore compact so W
is a finite union of periodic elements and such a union is periodic, because the Boolean
homomorphism τ , preserves finite unions.

Definition 6. If (X, t) is a flow in Stone and p ∈ X, we let T (p) denote the closure of
the trajectory of p. We also call T (p) the closed trajectory of p.

We further say that p is a generating point of X if T (p) = X.

2.4. Lemma. Let (X, t) be a Boolean cyclic flow in Stone with a generating point p. If
W is a clopen subset of X with t−1(W ) = W then W is either empty or all of X.

Proof. First we claim that t(u) ∈ W iff u ∈ W . Note that t(u) ∈ W iff u ∈ t−1(W ) iff
u ∈ W (since W = t−1(W )).

Now suppose W is non-empty. Since T (p) = X, the elements {tn(p)} are dense in
X so they meet every non-empty open set. Therefore there exists n with tn(p) ∈ W . It
follows from the above claim and induction that p ∈ W and then that every tk(p) ∈ W .
So W contains the trajectory of p and, since W is closed, the closed trajectory, T (p) of p.
But T (p) = X as p is a generating point.

2.5. Proposition. A flow in Stone with a generating point is nearly cyclic iff it is
Boolean cyclic.

Proof. Lemma 2.3 gives one direction. Conversely, let (X, t) be a Boolean cyclic flow in
Stone with a generating point. Let q, r be in X and let U be a clopen neighborhood of
r. We claim there exist k with tk(q) ∈ U . Since Clop(X, t) is Boolean cyclic, there exists
n ∈ N with τn(U) = (t−1)n(U) = U . Let Uk = τ k(U) for k = 1, . . . , n. Let W = ∪Uk. So
W is clopen. Also τ(W ) = W as the Boolean homomorphism τ preserves finite unions
and permutes the Ui’s. Since r ∈ W we see, by the above lemma that W = X. So q ∈ W
and so q ∈ τ k(U) for some k and so tk(q) ∈ U . Also q is periodically in U as τn(U) = U .

2.6. Lemma. Boolean cyclic flows in Stone are closed under the operations of taking
subflows and quotient flows.

Proof. Cyclic flows in Bool are obviously closed under quotient flows and subflows so
the result follows by duality.

Definition 7. Let (X, t) be a flow in Stone. By the t-action of N on (X, t) we mean
the mapping N × X → X which maps (n, x) to tn(x).

We say that (X, t) admits a continuous t-action by Ẑ if there is a continuous group

action of Ẑ on X which extends the t-action of N. Clearly such an action is unique if it
exists as N is dense in Ẑ. By Theorem 2.2, every Boolean cyclic flow in Stone has such
a continuous action by Ẑ.

When (X, t) does admits a continuous t-action by Ẑ we let tζ(x) denote the result of
applying the action to (ζ, x).
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2.7. Lemma. Let (X, s) and (Y, t) be flows in Stone which admit continuous t-actions

by Ẑ. If h : X → Y is a continuous homomorphism, then h preserves the actions of Ẑ on
X and Y .

Proof. Given p ∈ X, we need to show that h(sζ(p)) = tζ(h(p)) for all ζ ∈ Ẑ. But, as h
is a flow homomorphism, this is true for ζ ∈ N and the result follows as h is continuous
and N is dense in Ẑ.

2.8. Lemma. Let (X, t), a flow in Stone, admit a continuous t-action by Ẑ. Then the

orbit of a point under the action of Ẑ is the closed trajectory of that point under the action
of t. Also, each closed trajectory T (p) is Boolean cyclic.

Proof. Let us say that the “orbit” of p under Ẑ is the set {tζ(p) : ζ ∈ Ẑ} while the
“trajectory” of p under t is the set {tn(p) : n ∈ N}. Then T (p) is the closure of the
trajectory of p under t.

The orbit of p under Ẑ contains T (p) because it contains the trajectory and is closed
(as a compact set).

Conversely, since N is dense in Ẑ we see that the orbit of p under Ẑ is contained in
T (p), the closure of the trajectory under t.

Finally, Ẑ is Boolean cyclic by Proposition 1.3 as it is a limit (in Stone) of cyclic flows
(hence a colimit in Bool). Therefore T (p) is Boolean cyclic by Proposition 1.4.

2.9. Corollary. Each trajectory T (p) of a Boolean cyclic flow in Stone is a quotient

of Ẑ by a subgroup where the identity maps to p.

2.10. Lemma. Let (X, t), a flow in Stone, admit a continuous t-action by Ẑ. Then:

(1) X has a generating point iff every point of X is generating.

(2) Two closed trajectories, T (p) and T (q) overlap iff they coincide.

Proof.

(1) If X has a generating point, then X is Boolean cyclic by 2.8. The result now
follows from the proof of Proposition 2.5, which showed that every neighborhood of
r contains points of the form tk(q) where q, r were arbitrary points of X.

(2) Suppose that r ∈ T (p) ∩ T (q). Then by (1), T (p) and T (q) are both generated by
r so T (p) = T (r) = T (q).

Definition 8. Let (X, t) be a flow in Stone. We say that p ∼ q if T (p) ∩ T (q) is
non-empty. We say that X is regular if ∼ is a closed equivalence relation on X (that is,
an equivalence relation which is closed as subset of X × X.)

If X is regular, we let X/∼ denote the set of all ∼-equivalence classes and give it the
quotient topology (induced by the obvious map X → X/∼).

Clearly X/∼ is the set of closed trajectories of X and, as noted below, it has a compact
Hausdorff topology.
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Remark. For compact Hausdorff spaces, the quotient topology induced by a closed
equivalence relation is always compact Hausdorff. While this result is well-known (it
is part of the theorem that compact Hausdorff spaces are equational over Sets) the proof
is often abbreviated or omitted in standard references. So, for the record, here is a proof,
supplied to me by Michael Barr:

2.11. Proposition. The quotient of a compact Hausdorff space by a closed equivalence
relation is compact and Hausdorff.

Proof. Let X be a compact Hausdorff space and let E ⊆ X×X be a closed equivalence
relation. Let q : X → X/E be the quotient map and give X/E the quotient topology.
Clearly X/E is compact, so it remains to show that it is Hausdorff.

We claim that q is a closed mapping. Let A ⊆ X be a closed subset. To prove that
q(A) is closed in the quotient topology, we need to show that q−1(q(A)) is closed. Regard
A × X and E as closed subsets of X × X and let F = E ∩ (A × X). Then F is clearly
closed and so is compact, so p2(F ) is a closed subset of X where p2 : X × X → X is the
second projection. But p2(F ) = q−1(q(A)).

Now let c, d be distinct points of X/E. Choose x, y in X with q(x) = c, q(y) = d.
Then, since {x}, {y} are closed subsets so are {c}, {d} (as q is closed). We need to find
disjoint open neighborhoods in X/E of c, d. But this is equivalent to finding closed subsets
V,W of X/E such that c /∈ V and d /∈ W and V ∪W = X/E, as the complements of V,W
are then the required neighborhoods. But q−1(c) and q−1(d) are disjoint closed subsets
of X so, by normality, there exist disjoint open subsets E,F of X with q−1(c) ⊆ E and
q−1(d) ⊆ F . Then V = q(X \ E) and W = q(X \ F ) have the required properties.

2.12. Lemma. Let (X, t), a flow in Stone, admit a continuous t-action by Ẑ. Then X
is regular.

Proof. That ∼ is an equivalence relation follows directly from Lemma 2.10. To show
that ∼ is closed, let {pi : i ∈ I} be an indexed family of members of X and let U be an
ultrafilter on I with Lim U pi = p. Choose qi with qi ∼ pi for all i and let Lim U qi = q.
Then we must show that q ∼ p.

But by above results, if qi ∼ pi then there exists an ζi ∈ Ẑ such that qi = tζi(pi). Let

Lim U ζi = ζ (in the compact topology on Ẑ). Then, in X × Ẑ we see that Lim U (ζi, pi) =
(ζ, p).

Since the action is continuous, it preserves this limit so q = tζ(p) which shows that
q ∼ p.

2.13. Theorem. The following statements are equivalent for (X, t) a flow in Stone:

(1) (X, t) is Boolean cyclic

(2) (X, t) admits a continuous t-action by Ẑ.

(3) X is regular and every closed trajectory T (p) is nearly cyclic.
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Proof.

(1) ⇒ (2) By Theorem 2.2.

(2) ⇒ (3) By Lemmas 2.8 and 2.12.

(3) ⇒ (1) Let X be regular and let every T (p) be nearly cyclic. Think of {Ti : i ∈ X/∼}
as an indexing of the closed trajectories of X. (Strictly speaking, Ti = i but this
might be notationally confusing.)

Let (B, τ) = Clop(X, t) be the corresponding Boolean flow. Let b ∈ B. Let bi = b∩Ti

and let ni be the period of bi in the cyclic Boolean algebra of all (relatively) clopen
subsets of Ti. If the ni are bounded, then let n be their least common multiple. It
is clear that τn(b) = b.

On the other hand, assume that {ni} is not bounded. Then we can find an ultrafilter
U on the set X/∼ such that for every U ∈ U , the set {ni : i ∈ U} is unbounded.
Let T = Lim U Ti in the quotient topology on X/∼.

Let b′ = b ∩ T . Then, since Clop(T ) is Boolean cyclic, there exists n such that
τn(b′) = b′. Now, by choice of U , we can choose qi ∼ pi such that qi ∈ τn(bi) + bi for
all i ∈ U where U ∈ U . (Note that + denotes the symmetric difference.) Then let
q = Lim U qi so, by regularity, and because the map from X to X/∼ is continuous,
q ∈ T . But qi ∈ τn(b)+b so (as τn(b)+b is closed, q ∈ τn(b)+b) but this contradicts
q ∈ T as T ∩ (τn(b) + b) is empty.

2.14. Proposition. Let (X, t) be a flow in Stone for which all closed trajectories are
nearly cyclic and all but finitely many of them are actually cyclic. Further suppose there
is a bound n such that every cyclic trajectory has period no bigger than n. Then (X, t) is
Boolean cyclic.

Proof. The proof follows from the first two paragraphs of the above proof of (3) ⇒
(1).

Remark. The converse of 2.14 is false. Consider a product X = Ẑm where m is a large
cardinal (say at least as large as the cardinal of Ẑ). Then X is clearly Boolean cyclic
as X is a product (and so Clop(X) is a coproduct) of Boolean cyclic spaces. But X
can have no finite cyclic trajectories, as they would have to project onto finite cycles on
each component Ẑ. Nor can X have only finitely many closed trajectories (by cardinality
considerations).

3. Constructing the Spectrum

The previous section showed that Boolean cyclic spaces are fairly special. We would like
to construct a cyclic reflection for every Boolean flow. Unfortunately, the subcategory of
cyclic Boolean flows is not reflective (as, for example, it is not closed under products, see
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Example 6). We can get a reflection if we work in a bigger category which might be called
the “category of Boolean flows in Grothendieck toposes”.

The objects of this category are pairs (E , B) where E is a Grothendieck topos and B
is a Boolean flow in E (that is, a flow in the category Bool(E) of Boolean algebras in E).
By a morphism (λ∗, f) : (E , B) → (F , C) we mean an inverse image functor λ∗ : E → F
along with a flow homomorphism f : λ∗(B) → C in F . Consider the subcategory of all
(E , B) where B is cyclic and all morphisms (λ∗, f) where f is mono. Then this category
is reflective and the reflection is an example of a Cole spectrum. See [2, pages 205-210].

Remark. The category of Boolean cyclic flows is not a reflective subcategory of all
Boolean flows, but it is coreflective. The coreflection seems not very interesting as it
just gives the subalgebra of all b for which b = τn(b) for some n. However, by duality,
this means that the Boolean cyclic flows in Stone are reflective in the category of all
flows in Stone. If we start with N with the map t(n) = n + 1 and take its Stone-Čech

compactification, we get a flow in Stone whose Boolean cyclic reflection is Ẑ.

Before describing the Cole spectrum, we will establish some properties of Boolean
cyclic flows in a Grothendieck topos.

3.1. Lemma. If (C, τ) is a Boolean cyclic flow in a Grothendieck topos, then τ is an
isomorphism.

Proof. To prove that τ is one-to-one, let K be the kernel of τ . It suffices to prove that
K = {0}. But let E(n) = Equ(IdC , τn) then

∨
E(n) = C. It is readily established that

K ∩ E(n) = {0} for all n and so K =
∨

(E(n) ∩ K) = {0}.
A similar proof establishes that τ is onto as τ maps each E(n) onto itself.

3.2. Lemma. Boolean cyclic flows in any topos are closed under the formation of sub-
flows.

Proof. Let (C, τ) be a cyclic flow in the topos E . By the above lemma, τ is one-
to-one and onto. Let A be a subflow. Then the maps IdC and τn pull back along A
to IdA and τn

A. Since pullbacks preserve equalizers, E(n) = Equ(IdC , τn) pulls back to
EA(n) = Equ(IdA, τn

A) and the result follows because pulling back (or intersecting with
the subobject A) preserves sups of subobjects.

Remark. It can readily be seen that the above statement is not true for all categories.
Even for the well-behaved category Stone, Example 6 shows a space that is Stone cyclic
but with non-cyclic subobjects (for example, there are closed subsets of the Stone-Čech
compactification which do not meet any Zp).

3.3. Proposition. Let C be a Boolean flow in a Grothendieck topos E. If C is cyclic
(in E) then there is a canonical action of Ẑ on C which extends the action of N.

Proof. Let E(n) = Equ(IdC , τn) so that
∨

E(n) = C. Given ζ ∈ Ẑ we define τ ζ on
E(n) as τ k where ζ ∼= k (mod n). We claim that these definitions are compatible on the
overlaps, E(n) ∩E(m). The claim follows by showing that E(n) ∩E(m) = E(gcd(n,m))
the proof of which uses negative powers of τ , as τ−1 exists.

By the claim, the above maps {τ k} patch together to give us a morphism τ ζ : C → C.
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3.4. Corollary. Let C be a cyclic Boolean flow in a Grothendieck topos E. Then there
is a canonical action of Ẑ on Γ(C) which extends the action of N. (where Γ is the global

sections functor). Note that Ẑ need not act continuously on Γ(C).

We now start to construct the spectrum for B, a Boolean flow in Sets. This means
finding a map (γ∗, η) : (Sets, B) → (E , B#) with the appropriate universal property
(which is restated in Proposition 3.5 below) As a convenience, we will find the non-trivial
cyclic spectrum, thus requiring that the cyclic object satisfy 0 	= 1.

3.5. Proposition. Let B be a flow in Boolean algebras (in Sets). Then the cyclic
spectrum of B coincides with the topos which classifies non-trivial cyclic quotients of B.

Proof. The classifying topos for cyclic quotients has a map (γ∗, η) : (Sets, B) → (E , B#)
with η epi and B# cyclic such that for any other map (λ∗, f) : (Sets, B) → (F , C), with f
epi, there is (to within equivalence) a unique inverse image functor δ∗ such that δ∗γ∗ = λ∗

and δ∗(B#) = C. To show that this is the Cole spectrum, let (λ∗, f) : (Sets, B) → (F , C)
be given (without assuming that f is epi). Then use the mono/epi factorization of f to
get a cyclic quotient of C and apply the above property (so that δ∗(B#) maps via a mono
to C).

The details that the two concepts (Cole spectrum and quotient classifier) coincide
are now straightforward. For example, if (γ∗, η) : (Sets, B) → (E , B#) is the Cole cyclic
spectrum, then we need to prove that η is epi. But, if not, then η factors through a proper
subobject of B# and, by the spectral property, B# must map monomorphically to that
subobject which gives two ways to map B# monomorphically to itself.

Notation.

(1) We will use γ∗
E or just γ∗ denote the unique inverse image functor from Sets to

any given Grothendieck topos E . Its adjoint will be denoted by either γ∗ or by Γ
which is the usual notation for the global sections functor which maps E to the set
HomE(1, E).

(2) It follows that γ∗(B) is just the coproduct of “B copies of 1” which we will denote
by

∑
1b where the subscript b denotes the fact that the copies of 1 are indexed by B.

We also let b : 1b → γ∗(B) denote the coprojections associated with this coproduct.
We may then drop the subscript b and simply write b : 1 → γ∗(B), particularly
when we need to remember that 1a = 1b for all a, b ∈ B. The different sections
labeled “b” are preserved by the functors and operations we are working with, so
there is no danger of significant confusion.

First Step. We first construct the topos which classifies “Boolean monoflow quotients
of B” (see below). Here the construction of [4] applies and it gives us a spatial topos
which is a good starting point.

Definition 9. By a Boolean monoflow we mean a non-trivial flow (B, τ) in Bool for
which τ is one-to-one. Note that both Boolean monoflows and Boolean cyclic flows
make sense in any Grothendieck topos and by Lemma 1.1, every Boolean cyclic flow
is a monoflow.
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Construction of the monoflow quotient classifier. Let (B, τ) be a flow in
Bool (in Sets ). We follow the construction of [4].

Let {Bv : v ∈ V } be an indexing of the non-trivial monoflow quotients of B and let
qv : B → Bv be the quotient map. For every b ∈ B let N(b) = {v ∈ V : qv(b) = 0}.
Topologize V so that the sets {N(b)} form a base. (Note that N(a) ∩ N(b) = N(a ∨ b).)
Define a set Bo and a function q : Bo → V so that Bv = q−1(v). Regard each b ∈ B as a
map b : V → Bo for which b(v) = qv(b). Topologize Bo with the largest topology making
each map a continuous. Then:

3.6. Proposition. With the notation of the above construction, Bo is a sheaf over V
and it classifies non-trivial monoflow quotients of B in Grothendieck toposes.

Proof. We sketch the proof, most of which follows from [4]. It is straightforward to
show that Bo is the etale space of a sheaf over V and that Bo is a monoflow because
the stalks {Bv} are. It is clear that the canonical map from γ∗

V (B) to Bo is an epi by
considering its action on stalks.

Let E be a Grothendieck topos and let M be a Boolean monoflow in E along with an
epi flow homomorphism f : γ∗

E(B) → M .
For b ∈ B let E(b) be the equalizer of b, 0 : 1 → M . Let O(V ) be the partially ordered

set of open subsets of V and let Sub(1E) be the partially ordered family of subobjects of
1 in E . Define λ : O(V ) → Sub(1E) so that λ(N(b)) = E(b) and extend to all of O(V ) by
taking unions. Then λ preserves all unions and finite intersections because each relevant
property of O(V ) follow from intuitionistic logic from a finite number of facts about B and
axioms satisfied by non-trivial monoflows. As is well-known, this determines an inverse
image functor λ∗ : Sh(V ) → E .

Since M is a quotient of γ∗(B), we see that M is γ∗(B) modulo the ideal
∨

b(E(b)).
So M is determined by the subobjects E(b) and the coproduct and coequalizer struc-

ture on E . In the same way, Bo is determined by the equalizers N(b) and the coproduct
and coequalizer structure on Sh(V ) all of which is preserved by λ∗. So λ∗(Bo) = M .

Remark. In view of the above we need only to force the above generic monoflow quotient
of B to be cyclic. This is done by using the smallest Lawvere-Tierney topology (or nucleus)
j on Sh(V ) for which the embedding of

∨
E(n) to Bo becomes epi. To that end, we make

the following definition:

Definition 10. Use the above notation and for each b ∈ B let bk = b + τ k(b). Then
N(bk) is the largest open subset of V on which b = τ k(b) (as sections of Bo). Let O(V )
be the Heyting algebra of open subsets of V and let j be the smallest Lawvere-Tierney
topology on O(V ) such that for each b ∈ B, the set {N(bk)} covers V . (These form a
subbase for the covers). We must then consider finite intersections of the {N(bk)} and
intersect them with U to form a cover of U for each U ∈ O(V ).)

Notation.

(1) We let j-Sh(V ) denote the resulting topos obtained from O(V ) and let “j-sheaves”
refer to sheaves over O(V ) which are also sheaves with respect to the topology j.
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(2) We let B# denote the j-sheafification of Bo in the topos of j-Sh(V ).

3.7. Proposition. The object B# in the topos j-Sh(V ) classifies cyclic quotients of B.
Equivalently this gives us the Cole cyclic spectrum.

Proof. We must show that j is the smallest topology making Bo cyclic. Clearly, by the
definition of j, each b ∈ B is in

∨
E(n) and, as γ∗(B) maps onto Bo, this means that∨

E(n) will cover Bo, and hence its j-sheafification, B#.
Conversely, if

∨
E(n) is the maximum subobject, then, pulling this back down to 1b,

we find that the covers defining the j-topology must be epi families.

3.8. Proposition. Let B, B#, j-Sh(V ) be as above. The points of j-Sh(V ) correspond to
cyclic quotients B → C in Sets and each such quotient extends to a flow homomorphism
Γ(B#) → C.

Proof. A point of j-Sh(V ) is an inverse image functor to Sets. Such a functor preserves
epis and cyclicity and so maps η to a cyclic quotient of B. Conversely, any such quotient
arises in this way because of the universal property of the spectrum.

Let λ∗ : j-Sh(V ) → Sets be such a point and let λ∗(B#) = C. By adjointness, there
is a corresponding map Γ(B#) → Γ(λ∗(C)). But Γλ∗ is a geometric functor from Sets to
Sets so is equivalent to the identity and the result follows.

Notation. Given a Boolean flow (B, τ), we let V and B# be constructed as above. We
let Γ(B#) be the global sections of B# and let η1 : B → Γ(B#) be the adjunct of the
canonical map η : γ∗(B) → B# in j-Sh(V ).

We say that “B has enough maps into cyclic flows in toposes” if η1 is one-to-one. We
note that for η1 to be one-to-one it is sufficient, but not presumably necessary that “B
has enough maps into cyclic flows in Sets” meaning that if b ∈ B is non-zero then there
exists a flow homomorphism h : B → C with C cyclic and h(b) non-zero.

Remark: Transfinite Time. Given a flow (X, t) in Stone, think of t(x) as the state
a system is in one unit of time after being in state x. Then we would like to define tζ(x)
and think of it as the state ζ units of time after state x where ζ could be transfinite (i.e.

in Ẑ). But if X# is defined as Γ(B#) then, by 3.4, tζ(x) is defined only for x ∈ X# not
for x ∈ X. However the map η1 : B → Γ(B#) gives us a map from X# → X so in some
sense, X# is the space where transfinite time makes sense.

If B has “enough maps onto cyclic flows in Sets”, then η1 is one-to-one and X# maps
onto X. In this case, we might think of X# as a sort of covering of X for which τ lifts to
a one-to-one, onto map which comes from a cyclic flow in a topos.

Remark: Methods for computing the spectrum. The spectrum is further ex-
plored by the examples below. It is useful to first note the following:

Finding a Boolean quotient of B is equivalent to finding an ideal of B, by which we
mean a subset I for which:

(1) 0 ∈ I.
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(2) a, b ∈ I imply a ∨ b ∈ I.

(3) a ∈ I and b ≤ a imply b ∈ I.

If we want I to be a flow ideal (so that B/I has a natural flow) then we must add:

(4) a ∈ I implies τ(a) ∈ I.

If the quotient is to be non-trivial, then we require:

(5) 1 /∈ I

Finally, if we want the quotient to be a monoflow, then we need the kernel of τ to be {0},
so we add:

(6) τ(a) ∈ I implies a ∈ I.

Ideals satisfying (1)–(6) are the points of the space V . Another approach to finding
quotients of B is to let (X, t) = Pts(B, τ). Then quotients of B correspond, by duality,
to closed subsets of X. Given such a closed subset A, the corresponding ideal I is the set
of all clopens b for which b ∩A is empty. Point (4), above, is equivalent to the condition:

(4′) a ∈ A implies t(a) ∈ A. This makes sense as A is then a subflow in Stone.

Point (5) clearly translates into:

(5′) A is non-empty.

Point (6) is not so easy to restate as a condition about A but if t is one-to-one and onto,
then point (6) is restated as:

(6′) (For t one-to-one and onto): t(x) ∈ A implies x ∈ A.

Also, if t is not onto, point (6) implies that A ⊆ tn(X) for all n.

Example 7: An attractive fixpoint. Let X = N ∪ {∞} with t(n) = n + 1 and
t(∞) = ∞. Let (B, τ) = Clop(X, t) (where X has the obvious Stone topology). We
first find the monoflow quotients of B. They correspond to closed subsets A as discussed
above. Since A ⊆ ⋂

tn(X) we see that the only admissible A is {∞}. So V has a single
point which contains those clopens b that do not contain ∞. The coverings add nothing
as Bo is already cyclic (with a cyclic stalk of {0, 1} over I).

In effect, the spectrum eliminated all but the point at infinity and Γ(B#) is just
Clop{∞}.
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Example 8: An attractive and a repulsive fixpoint. Let X = Z ∪ {−∞,∞}
and let t(z) = z + 1, with t(∞) = ∞ and t(−∞) = −∞. Give X the obvious Stone
topology. Let (B, τ) = Clop(X, t) Then t is one-to-one, onto, so we need only consider
quotients by closed subsets A which satisfy a ∈ A iff t(a) ∈ A.

This means that A ∩ Z must be either empty or all of Z. If it is all of Z then A must
be X (as A is closed). If A ∩ Z is empty then A may also contain any non-empty subset
of {−∞,∞}. So V has four points. It is straightforward to verify that V has five open
sets, namely:

∅ = N(X), N(∞), N(−∞), N(−∞,∞), N(0) = X
The j-coverings yield the fact that N(−∞,∞) covers, so, in effect we get the two

points −∞ and ∞.

Remark. A goal for further work would be to extend this approach to try to distinguish
repulsive from attractive fixpoints.

Example 9. Let X =
∑{Zp : p ∈ P} where P is the set of primes, with t(z) = z + 1

on each component. Let B = Clop(X) We note that B is the algebra of clopens of X
which is the Stone-Čech compactification of of S =

⋃{Zp} (the disjoint union in Sets ).
However B can more simply be viewed as the algebra of subsets of S (as subsets of S and
clopens of X both correspond to maps from X to the two-point Stone space).

Since X is hard to work with, we will directly look for the right kind of ideals. We
note that the zero ideal I0 = {0} is in V as t is onto (so τ is one-to-one). Also, the only
open neighborhood in V of I0 is V itself, so the stalk at I0 will give us the set of global
sections.

For any c the elements ck = c + τ k(c) will miss the Zp ⊆ X once p divides k. So if
a = b modulo any of these j-coverings, they must agree when intersected with each Zp

which implies a = b. This means that the separation and the sheafification of Bo with
respect to the j-topology do not affect the stalk at I0. (The stalks at ∞ are undoubtedly
affected by closed subsets A which are disjoint from every Zp.) But the upshot is that
the set of global sections (= stalk at I0) remains the same, so Γ(B#) = B. Thus while
B is not Boolean cyclic (see Example 6) B can be represented as the global sections of a

cyclic flow in a topos. In particular, Ẑ acts on B (although here the action is obvious).
In view of Theorem 2.13, the corresponding action on X cannot be continuous.

Example 10: A brief look at the Logistic Equation. Consider the map t(x) =
rx(1 − x) which maps [0, 1] to itself, where r is a parameter satisfying 0 ≤ r ≤ 4.
Unfortunately [0, 1] is not a Stone space because it is connected, but we can readily
disconnect it by replacing each x ∈ [0, 1] with x− and x+. We then discard 0− and
1+ which are not needed. The resulting set, St[0, 1], has an obvious linear ordering and
is a Stone space in the order topology (which is generated by the subbase {L(b) : b ∈
St[0, 1]} ∪ {U(a) : a ∈ St[0, 1]} where L(b) = {x : x < b} and U(a) = {x : x > a}).

The clopens of St[0, 1] are essentially finite unions of intervals, with b ∨ c being the
interior of the closure of b ∪ c as in the double negation topology. Note that there is a
natural way to define t as a continuous flow on St[0, 1].
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In examining the spectrum of St[0, 1] we note that for small values of r, the methods
used above show that the spectrum simply picks out the periodic points, without regard
for whether they are attractive or repulsive. As r approaches a value called “r∞” (which is
about 3.569946) we pick up new periodic points whose period is twice the largest previous
period. Eventually, at r = r∞, a strange attractor appears, see [8, pages 3-4]. This
strange attractor is nearly cyclic and will therefore be a point in the spectrum.

Beyond r∞, chaos begins.
For the case of r = 4, the set P of periodic points of [0, 1] (and so of St[0, 1]) is dense

and two clopen subsets are the same iff they have the same intersection with P . Because
of this, it can be shown that there are enough Boolean cyclic quotients in Sets for η1 to
be one-to-one. It follows that the dual map from X# to St[0, 1] is onto. (r=4 is the only
value for which X# maps onto St[0, 1] as can be readily seen by the fact that t is not even
onto when r < 4.)

Finally, there is the flow on [0, 4] × [0, 1] given by t(r, x) = (r, rx(1 − x)). All I have
on this is a rough beginning. We need to replace [0, 4] × [0, 1] by a Stone space. This
is equivalent to describing a subalgebra of the algebra of double negation opens which is
preserved by t−1. One candidate is generated by the “vertical trapezoids” or sets of the
form {(r, x) : a < r < b, L(r) < x < U(r)} where L and U are linear functions. The
trapezoid shape is needed in order for them to be preserved by t−1.
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