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THE TOPOS OF BALL COMPLEXES
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Foreword by F.W. Lawvere

There are hints in the 1983 Pursuing Stacks of Alexander Grothendieck, that parallel
to the simplicial core of piecewise linear geometry, another topos should exist expressing
the core of quadratic geometry. Mike Roy successfully undertook the construction of such
a topos. It is based on the intuition that spheres can be defined in terms of balls in two
opposite ways. (The boundary of a 3-ball is the union of two copies (hemispheres) of
the 2-ball, and the equator of those two embeddings is itself the union of two copies of
a 1-ball. Similar combinatorics persist into higher dimensions.) Investigating these rela-
tions suggested the definition of a ‘non-linear homology’ whose possible applications still
need to be further explored. The thesis also provided one of the crucial inputs to later
determination of Aufhebung relations, and in particular to the qualitative description of
dimension 1.

Editor’s note: Page 55 of the thesis was removed from this reprint (it only contained a
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Transmitted by M. Menni, J. Rosický, and R. Street. Reprint published on 2021-03-29.
2020 Mathematics Subject Classification: 18B25, 18F10, 55U10.
Key words and phrases: Topos Theory, Combinatorial Topology.
Copyright 2021 by Michael Roy. Permission to copy for private use granted.

1



N. 

'N 

THE TOPOS OF BALL COMPLEXES 

By 

Michael Roy 

September 1997 

A DISSERTATION SUBMITTED TO THE 

FACULTY OF THE GRADUATE SCHOOL OF STATE 

UNIVERSITY OF NEW YORK AT BUFFALO 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 



® Copyright 1997 

by 

Michael Roy 



Acknowledgments 

I would like to thank my advisor Prof. F. W. Lawvere for the many hours he has 

spent teaching me Category Theory and Mathematics in general. His dedication to 

science has been a constant source of inspiration to me. 

I would like to thank Prof. S. H. Schanuel and Prof. S. D. Schack for taking the time 

to serve on my dissertation committee. I also would like to thank Prof. S. H. Schanuel 

for his suggested improvements to the dissertation and for helpful discussions which 

have led to clarification of several parts of the dissertation. 

I would like to thank Krassimir Ianakiev and Roberto Rairnondo for help in the 

correction of the manuscript, but mostly I would like to thank Olga Arbelaez for the 

incredible work she has done in typing the manuscript. 

111 



It 

Contents 

Acknowledgments 	 111 

Abstract 
	 1 

1 Introduction 	 2 

2 BaIl Complexes 	 - 	 6 

	

2.1 	The site: The category of balls B .....................6 

	

2.2 	The topos of presheaves on B: Ball Complexes .............8 

	

2.3 	Some Exactness Properties ........................9 

	

2.4 	5 is a Topos of Spaces 	..........................12 

	

2.5 	Nonlinear Homology ...........................40 

	

2.6 	Abelian Group Objects in S .......................46 

lv 



In 

2.7 Homotopy Categories Revisited .....................49 

2.8 	The points of S ..............................52 

Bibliography 	 56 

V 



Abstract 

We make a detailed investigation of the topos of Ball Complexes S. This is a presheaf 

topos whose site B is the category with objects B, the n-balls, and for successive 

balls , the inclusion of the upper and lower hemisphere and a common retraction 

squashing the ball onto its solid equator B 	B+1. For any three successive 
Si 

balls B ---- B+1 ± B 2  we have 6 j 5 = 8k8j and no further relations. 

We demonstrate some of the remarkable properties of E. We compare this topos with 

two other toposes which are commonly used in combinatorial topology, observing 

some surprising similarities between all three and also certain striking contrasting 

features. 
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Chapter 1 

Introduction 

In this dissertation we make a study of the topos of Ball Complexes E. This is a 

presheaf topos whose site B is the category with objects B, the n-balls, and for 

successive balls , the inclusion of the upper and lower hemisphere and a common 

retraction squashing the ball onto its solid equator B 	'- 	For any three 
61 

successive balls B r6  B+1 	B 2  we havebibi = 8k8i and no further relations. 

Hence any map in B can be factored as a (split) epimorphism followed by a (split) 

monomorphism. 

The first object of E that we study is the n-sphere 5?1•  Intuitively, a sphere can be 

obtained from gluing two hemispheres, but also a sphere is that part where certain 

upper and lower hemispheres agree. Hence we show that Sn  can be obtained as a 

pushout and an equalizer. 

The topos of Ball Complexes is shown to satisfy the axioms for a "topos of spaces" (see 

[4]). Two other important examples of toposes of spaces are mentioned in this paper, 

2 
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3 

namely simplicial sets and the Boolean algebra classifier. Throughout this dissertation 

these topoi are often compared with E. For example, in all three cases one can truncate 

the site obtaining a full subcategory and thus, on taking Kan extensions, an essential 

subtopos or level in the ambient topos. Composing these functors we obtain skeletal 

and coskeletal endofunctors. In all these examples the double negation sheaves are 

just sets and constitute level zero. The smallest level for which the components of any 

X E E equals the components of the skeleton of X is called level 1. (Of course we have 

this characterization for any topos equipped with a connected components functor to 

level zero). In E, level 1 is the truncation at B1, the topos of reflexive graphs.This is 

also true of simplicial sets; it is also true that in the Boolean algebra classifier level 

1 is the truncation at the second object in the site, but here this is a different topos 

of graphs called two-way reflexive graphs. An equivalent characterization of level 1 

is that it is the smallest level for which the coskeletal inclusion preserves coproducts. 

In fact, these topoi have the property that not only level 1 but all levels greater than 

level 0 have their sheaf inclusion preserving coproducts. 

For any presheaf topos one is always interested in finding the smallest level that 

generates by colimits. Lawvere has shown that reflexive graphs generate simplicial sets 

and that the Boolean algebra classifier is codiscretely generated. By "generate" we 

mean that an object of simplicial sets is a quotient of a sum of 1-coskeletal objects, and 

an object of the Boolean algebra classifier is a quotient of a sum of codiscrete objects. 

Moreover, in either topos every object is a quotient of a 1-coskeletal object.We show 

that for presheaf topoi of this ilk, a "level n generates" is equivalent to "cosk(C) = 

C" for every representable C. We then prove that no level can generate E by showing 

that, for any n we can find an m for which COSkn(Bm ) :A Bm , where Bm  E B. Another 

sharp distinction between 5 and simplicial sets or the Boolean algebra classifier is that 

each subcategory B -* B has a left adjoint retraction, something not true of the 
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other sites. Thus at the level of essential toposes there is a further functor 7r, left 

adjoint to the skeletal inclusion. This functor is in a sense like 7ro  in that they are 

both obtained as reflexive coequalizers; in particular, all the ir functors preserve 

finite products. 

For a given topos X and level X in X, one can ask if there is a smallest level 

Xm  for which the n-skeletal inclusion of X, in X factors through the m-coskeletal 

inclusion of Xm  i n X. Lawvere (see [5], [6], and [91) has given the name "Aufhebung 

of level n" to the level.m (if it exists ). In 5, the Aufhebung function is simply the 

successor function; that is, level n = Aufhebung of level n-i = flth truncated topos. 

Furthermore, one can define coAufhebung in the obvious way and this suprisingly 

exists for Ball Complexes and is also the successor function; that is, if X in S is 

n-coskeletal, then X is (n + 1) - skeletal. 

In [4], Lawvere showed that if X is a reflexive graph, the subcategory S(X) of S 7'/X 

consisting of Y -* X discretely fibered over X is a topos, and furthermore, if X is 

replaced by the loop L = 	then S(L) is the topos of irreflexive graphs. A similar 

result is true for 5: Using an appropriate L E S and the same construction, one 

obtains 8(L) = $Bono where Bm ,no  is the subcategory of B consisting only of 

monomorphisms. In the lower hemisphere(Australia) this is known as the topos of 

globular sets. 

Another feature that S and simplicial sets have in common is the Dold-Kan-Moore 

Theorem, which states that the category of abelian objects in simplicial sets is equiv-

alent to the category of chain complexes. The result is also true for Ball Complexes, 

but here the proof is much simpler than in the simplicial case. However, for an abelian 

object in simplicial sets , the homology groups of the associated chain complex and 

"Moore complex" are isomorphic, but in the case of Ball Complexes, with boundary 
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given by taking the difference of hemispheres in some arbitrarily chosen manner, these 

two complexes are not isomorphic even if the abelian object is freely generated by a 

ball complex of sets. 

Since the topos of Ball Complexes comes equipped with 7r functors that preserve 

finite products, we are able to define homotopy categories 7(e) for each ii E N. 

The objects of these categories are those of S and the horn-sets are N(E)(X, Y) = 

(yx)(B) for X,Y E E. However, for n > 0, the only terminal objects in 7(E) 

are already terminal in E.For n=0, this is not the case. We show that the repre-

sentables B are "contractible" in S in the sense that they are terminal objects of 

Ro(S).Furthermore, we prove the surprising result that Sn  is contractible. 

In the last section, we consider the points of S. The filtering functors B -+ S in some 

sense correspond to those subsets of N containing 0. The corresponding points have 

inverse image functors, which when applied to a ball complex, take the sum of all the 

nondegenerates at stages labelled by the subset. 



Chapter 2 

Ball Complexes 

2.1 	The site: The category of balls B 

The category of balls B is the category with objects B,., n E N to be thought of as 

solid n - balls, and for any two successive objects B, B,.+1, two inclusions 80,  61  of 

B,. into B,.+1, which we picture as the inclusions of the hemispheres, and a common 

retraction p for 80  and 6. For any three successive balls 

B,. -'- B,.+1 	- B,.+2, 
_ C- 

Si 	 Si 

we have öo& = 6k°& and no further relations. This can be motivated by the following 

result: the functor B 	. S, described on objects as B,. i 	{x E R : lixU 	1}, 

where the hemisphere inclusions are x i 	(x,1 /i - IxI2), and the retract is x = 

(x1 , . . ., x,.) I 	. (x1 , . . ., x,._1 ), is a faithful functor. 

Every map f in B can be factored uniquely as (split) epimorphism p followed by a 

(split) monomorphism 6. Schanuel has observed that one can define a "suspension" 



It 

CHAPTER 2. BALL COMPLEXES 	 7 

functor T which "shifts" a map f up one level: 

T(Brn 	Bk 	B8 ) = Brn+i 	B 	B81  

Lawvere points out that there are endofunctors of B which interchange hemispheres, 

identify hemispheres, or leave them unchanged at any chosen stages; that is, 4N 	End(B), 

and we see that there are continuum many suspension functors. 

If a map f has image Bk,  we may say that f has rank k. In this way we see that 

every map of rank k is a k - fold suspension of a unique map of rank 0. For any fixed 

i, the maps Bk 	Bk+l, k > 0, are not the components of a natural transformation 

1 	• T, since, for example, the diagram 

does not commute if 6j  0 Si.  Similarly, the maps Bk+l ---- Bk, k > 0, do not form 

the components of a natural transformation T P  1. 

In any category the set of endomaps of a given object fQrm a monoid. If for any B in 

B we denote by M the set of all endomaps of B, then for any x, y E M, xyx = xy. 

In fact, 

I x if rank(y) > rank(x), 
xy= 

j y if rank(y) < rank(x). 

Monoids M satisfying the equation xyx = xy V x, y E M are called graphic monoids. 

In B the set of all maps of rank > r (r fixed) forms a (non full) subcategory of B. 

Its set-theoretic complement is a two-sided ideal of B; hence, if we restrict these two 
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classes of maps to M, the endomaps of rank > r form a submonoid of M and its 

complement in M is a bi-ideal of M. Bi-ideals play an important role in displaying 

these monoids (see [11]). Between any two objects Bm and Bn  there are 2n + 1 maps 

Bm 	- Bn  if m > n and 2in+2 if m < n. Hence in M there are 2n+ 1 elements, 

two of which are constants: that is, elements c such that cx = c Vx E M. These 

two elements "generate" all non identity elements by suspension "restricted" to M. 

If we restrict our suspension functor T to M, since any x E M is uniquely x = 

for some p, k, T(x) = 8kp e M+1, defining the submonoid of maps of rank > 1. 

Hence, T induces an injective monoid homomorphism T : M a— M+1. 

2.2 	The topos of presheaves on B: Ball Complexes 

The topos of Ball Complexes E is defined to be the category of presheaves on B, 

SBOP ;  that is, it consists of all contravariant set-valued functors X : B°' - S and 

natural transformations between them. 

In the spirit of the Yoneda lemma, if X E $B° and x E X(B) we think of x as a 

figure of shape B in X: B 	• X. In this way we may refer to x as an n - ball 

of X. This gives precise meaning to the upper and lower hemisphere of x, for these 

are simply the two composites B_1 	B, r  X. We say that x is a degenerate 

- ball if x factors across an m - ball y with m < n: 

X 
B 

Bm  

That every, degenerate n - ball x can be so expressed uniquely with y non- degenerate 
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is the content of an Eilenberg-Zilber lemma for Ball Complexes: For any X E $B°P 

and any degenerate n - ball x of X, there is a unique non-degenerate rn - ball y of 

X with m < n such that x = y p. The proof of this result is similar to (but simpler 

than) the proof of the Eilenberg-Zilber lemma for simplicial sets given in [1]. 

The functor T : B - B induces three endofunctors of SB°I',  namely, the restriction 

TX along T, and the left and right adjoints of TX,  the left and right Kan extensions 

along T, T! and T. Note that, in contrast with shifting operators, T is faithful. 

Recall that any presheaf BOP X  S is the colimit urn (B/X " B Yoneda 

where q is the labelling functor of the corresponding discrete fibration. For any X in 

E, the presheaf T(X) is given by 

T!(X) = urn (Yoneda o T o q: B/X 	• E). 
B/X 

Similarly T(X) is an inverse limit. 

2.3 Some Exactness Properties 

We can picture the first four objects of the category B: 

B0 B1  B2  B3_______  :  __::____ 

A single point, a closed interval whose two endpoints are the two inclusions of the 

point, a solid disc with bounding ;semicircles equal to the two inclusions of the interval, 

etc. In this picture the union of the two (hemisphere) inclusions 5 : B_1  C 	B, 

the (n - 1) - sphere 81,  is the intersection of two hemisphere inclusions & 

B 	B+1, the equator of B+1. For example, S1  is both the union of the two 
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arcs in B2  and the equator of B3. This double description of the spheres persists into 

the presheaf category as we now show. 

Consider the Yoneda embedding B 	S °  of the category B in presheaves on 

B. More generally, we would like to show that, Vn > 0, the pushout P of the map 

2Bn _ 2  -* B_1  with itself 

2Bn _2 	. B,_1  

_F 
Bn_i 	P 

a 

and the pullback Q of '5o,'5  in E 

/1 Qc 

71 16, 

B 	B 
'50 

are the same. (Note that, because of the common retraction p for 60  and 61, Q is also 

the equalizer of 5, bi and -y = 1 is the equalizer inclusion. Also, we may test the 

pushout P with the object B_1  and identity maps; hence, a and /3 have a common 

retraction). Here, B_2  = B_1  = 0, the initial object in E. We now define the (n-i)-

sphere in E, S', and show that P = Q = Sn_i. The (n-1)-sphere is the subobject 

of B whose value at Bk is S'(Bk) = Eran k<_(n _i)(Bk )  Bn). This defines a sieve on 
So 

B and hence S'' E E. Moreover, the equalizer Q 
a— Bn 	B+i is the sieve on 

Si 
Bn whose elements at stage Bk are maps Bk 	• Bn  for which 8o  o f = bi  o f; such 

an f must factor through an inclusion B_1  a—  B. Hence Q is the sieve generated 
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by B_1 	B, and therefore Q = S'. In particular, there are two inclusions 
5, 

B_1 .---  S' and the diagram 

commutes. If T is any object in E with (ri - 1) - balls x0 , x1  such that the outer 

square in the diagram commutes, i.e., xo  . 6j  = 	8, j E {O, 11, then there is a 

unique map 9 with O(Si) = x, i € {O, Q. 

2B_2 	B, 1  

T 

(Later, we shall see that S' 1  is the "(n - 1) - skeleton" of B, n > 1). 

Observe that S = 2 and S' = 0, and that, for n> 1, S'' is a connected subobject 

of Bn  in E. Moreover, if we apply T! to S" 1  (using the pushout form of S 1 ) we 

see that T!(S') = 8", n > 1. Furthermore, since bi  o 8k = 8k, we see that in the 

diagram below the composite 8k  i equalizes 60  and 61  and there is, therefore, a unique 
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induced inclusion of spheres independent of the choice of k 

S'' 	•Bn C 	: B+1 
I 	 fl 

I 	 I 
Ok 

c 60 Sn 	B 1 	: B+2 
8 

that is, S" 1  C S. 

2.4 	E is a Topos of Spaces 

In this section we shall show that S is a "topos of spaces". Recall from [4] that a topos 

E defined over another topos S should at least satisfy the following three axioms to 

qualify as a topos of spaces. 

Axiom 0. E r  S is local; i.e, we have (not only) F*  H r, (but also) F H V. 

S is defined over the topos of abstract sets, as are all Grothendieck topoi.' For any 

space X E 5, F(X) = 5(1,X), the "points" of X, since 1 is the terminal object of 

S. Since 1 is representable as B(—,B0 ) we have FX = X(B0 ). We may think of 

(the fully faithful) f*  as including the discrete spaces into S and (the fully faithful) F! 

including the codiscrete/chaotic spaces. For presheaf toposes like 5, the values that 

F* takes are constant presheaves: For any S E S, B E B, F*(S)(B) = S and for 

any B 	Bm , F*(S)(Bm)  '*'S"'  F*(S)(B)  is the identity map on S. In contrast, 

S ifn=0, F!(S)(B) = 5B(1,B) 

= { S2  if n > 0, 

'S need not be the category of abstract constant sets, but for simplicity we will assume it is. 
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and for any B 	Bm, B(1,Bm ) 	. 8, and 1 	B in B, F!(S)(f)(0)( x ) = 
I 	 2 ____ 2 O(fx). We may picture FS) for any S E S as S c__ S 	S '-i = ...,' where 

the top and bottom arrows are the projections and the middle is the diagonal map. 

At all other stages, the induced inclusion is an isomorphism. Note also that F. is a 

retraction of both F and F! (F*,  p1 being full and faithful). 

The categories of discrete and codiscrete spaces are identical since they are equiva-

lent, to 5, yet as subcategories of E they are totally opposite in the following sense: 

a discrete space totally lacks the cohesion to connect any of its points, whereas, in 

stark contrast, a codiscrete space has total cohesion: any two points can be con- 

nected. Moreover, there is a canonical inclusion F*(S) 	V(S) for any S E S and 

these spaces have exactly the same points (apply the points functor F and this map 

becomes an isomorphism); but the maps from a codiscrete to a discrete are constant. 

Axiom 1. There is a F! H F*  and it preserves finite products 

F!(X x Y) 	F!(X) x F! (Y) 

F(1) 	1 	VX,YeE 

F, is called the connected components functor and for any X in E, F!(X) is its discrete 

space of components. In the case that E is the topos of presheaves on a small category 

C, 

F, always exists and its value at any X in E is F!(X) = 	X(C). However, Fi can 
CEC 

often fail to preserve finite products. For example, for a generalized space such as 

right G - sets, C a group, F!(X)  is the set of orbits of the right G - set X. Taking 

C to be the right regular representation of C (a G - set), we have F!(G) = 1, but 

F1(G x G) = IGI since each orbit of G x G is generated by <g, 1 > for g E C. 
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The importance of the product preservation is that it enables us to construct a ho-

motopy category from E. First note that, like any cartesian closed category, E is 

enriched in itself with horns yX  V X, Y in E. This makes sense since there is a 

canonical composition map ZY x 	Zx for any X, Y, Z in E. 

If A is any category that is enriched in E it has of course an underlying category A 

enriched inS whose horns can be defined by k(X,Y) = E(1,A(X,Y)), X,Y E A; 

in case A = E this recovers E. But we can also define a different category [A] 

that is also enriched in S: Again [A] has as objects those of A but we now take 

[A] (X, Y) = F!(A(X, Y)); it is essential that F, preserve products for composition 

to be defined. Specializing to A= E, we have a homotopy category [E] with objects 

those of E and for any X, Y in E, [E](X, Y) = F! (Y X ). In the case of Ball Complexes 

F! (Y X ) is the set of homotopy classes of maps X 	Y, where two maps X 	: y 

arehomotopicifthereisamapB1 	!'X such that F.8o =fandF.8i =g. F 

is called a homotopy from f to g. 

Proposition: The connected components functor of E, F!,  preserves finite products. 

Proof: The truncation B1  of B, rBO BjC 	• B is a full subcategory whose 

presheaf category is the topos of reflexive graphs. Its connected components functor 

r0  (being the object part of a reflexive coequalizer) preserves finite products (see [2]). 

As a consequence of the lemma on page 19, we shall see that for any space X E 5, 

the colimit F!(X) depends only upon its restriction i*(X)  to reflexive graphs; more 

precisely: F! = lroi*. 

Axiom 2: The subobject classifier Q of E is connected: F!(1l) = 1. 

We prove F!(e) = 1. In general if E = 5c° and X E E, then F!(X) = 1 if and 

only if the category C/X is connected, where C/X is the category of C figures of X. 
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Suppose X = ft and we have an n - ball of Q , i.e., a sieve R on B. Then for any 

point of B, B0  - -- B,,, we have R 6i E e(Bo ), a point of Q. Henceany n - ball 

can be connected to a point and so we show that both points of Q,, can be connected; 

these points are the empty sieve and maximal sieve B(—, B0 ) on B0 . Consider the 

diagram below where < 6k > is the sieve generated by 8k 

0 	 So*(< SU >) 

B0  

1 .80 B0 c 	B1 	 B0  

The diagram shows that 0 = Si*(< so >), B0 = So*(<  80  >), hence, the top and 

bottom of Q, 1 0 : f can be connected via I <6 ° >
; i.e., we have 

1 	 i 

Since Q is not only connected but also has the structure of a monoid with zero, ftY  is 

connected for any X. Hence any space X can be embedded into a contractible space 
{}x x 	 ,, via X a—  fl (the singleton map). 

Since both the topos 	presheaves on the category S of finite non-empty sets (see 

[7] for more details about this topos), and the topos SA°P  of simplicial sets satisfy the 

three axioms (the verifications are similar to those given for Ball Complexes), they are 

thus "toposes of spaces". Although these toposes are themselves of interest, they shall 

be used here primarily for comparison with E. These two topoi share some common 

features. For example, both contain as reflective subcategories the cartesian closed 
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category c of groupoids. The reflection for the inclusion in both cases is known as 

the Poincaré functor (which preserves finite products). Another well known cartesian 

closed subcategory of S°  is the category of simplicial complexes. In fact, this is the 

cartesian closed category of double-negation separated objects in 	Furthermore, 

we shall see later that certain (similarly defined) endofunctors of both, topoi behave 

equally well with respect to preservation of particular limits and colimits. In contrast, 

however, Ss°  is codiscretely generated (while 	is not) because 

S 	cSSOP ,  
r' 

the restriction of F!  to finite sets, is the Yoneda embedding. Since any presheaf topos 

is generated by representables, we see that SS°P  is codiscretely generated. Although 

this is not true of simplicial sets, in this section we shall show that in both toposes 

any object is a quotient of a "1 - coskeletal" object. 

The topos S°  is also known as the Boolean algebra classifier. Its role in the category 

of toposes defined over sets is to classify Boolean algebras in these topoi. More 

precisely, there is a natural equivalence of categories 
5S°P 

Bool. aig. (.T) 

between geometric morphisms 	S 0  and Boolean algebra objects in F, for 

any 17  over sets. Since 2 E S has the structure of a Boolean algebra (there is a 

switching map 2 	2 which is not present in ), the presheaf F!(2) = 2( ) inherits 

this structure (since F' preserves products) and therefore is a Boolean algebra object 
s° 	 f of S . For any map of topoi T 	• X, we take f* ( F(2)) as the Boolean algebra 

classified by f. The topos of simplicial sets has the property of classifying linear orders 

in topoi defined over sets. Here the generic linear order is given by (-, [1]). 

It's worth pointing out here that it is not only toposes of spaces which are both local 

and essential over sets; there are other categories which are not topoi but have this 
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property. For example, the category of groupoids has this property: 

o H disc. H pts. H codisc. 

The codiscrete/chaotic inclusion sends any set S to the groupoid that has exactly one 

map i 
- j between any two objects i,j of S. Its left adjoint, pts. sends a groupoid 

G to its set of objects G (1, G), where 1 is the terminal, one object groupoid. The 

discrete functor, applied to any set S, gives the groupoid with objects the elements 

of S and whose maps are all identity maps. For any G E G, iro(G) is the connected 

components of G, where any two objects g, h € G are in the same component if they 

are isomorphic. Hence we see that the categories of discrete and codiscrete groupoids 

are equivalent (being equivalent to S) but are totally opposite as subcategories in G. 

Also, observe that functors 

codisc(2) 	 G 

pick out the arrows of G, and functors 

411~ codisc(3) = . 	, 	 G 

tell us what arrows compose and what their composite is. Hence any groupoid G is a 

quotient of a sum of codiscrete groupoids. Another way to see this is via the inclusion 

ç r 	• SS°, induced by S hja0tjc g. Any G in 9, thought of as an object of SS°P , 

can be covered by codiscrete spices. Applying the Poincaré reflection, we see G as 

quotient of chaotic groupoids. 

In this section we begin the Hegelian analysis of the study of levels in our topos 

S. First, we build the framework for such an analysis for a general topos and then 

specialize to E. 
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A level in a category C is a functor from C to a smaller category A which has left 

and right adjoint sections. This is also known as a unity and identity of opposites 

UlO (see [5], [6] and [9]) because the two inclusions of A are as categories identical 

to A but united in the larger C are opposite as described by the adjointness. Hence 

the example of Groupoids with its discrete and codiscrete inclusions of sets is a UJO. 

.skA  QC coskA  

aim 

A 
Returning to the level A in C and composing functors, we obtain two endofunctors 

of C. These endofunctors are called the coskeleton and skeleton functors for this 

level, or coskA , skA , respectively. A level B is lower than level A if, for example, 

the skeletal inclusion of B into C factors through the skeletal inclusion of A into 

C. A sharper distinction can be made between these levels if we declare B to be 

qualitatively lower than A if its skeletal and coskeletal inclusions into C both factor 

through the coskeletal inclusion of A into C. This is equivalent to coskA(skB ) = skB  

and coskA (coskB ) = coskB . Let us denote this relationship between A and B by 

If for a given B there is a smallest level A for which BA, then we say 

that level A is the Aufhebung of level B(see [5], [6] and [9]). (By "smallest" we mean 

among the partially ordered class of all levels in C). 

Suppose now C is a topos X defined over a topos Xo . Consider the poset of levels in 

X and let us assume these adjunctions are enriched in Xo, where Xo  is considered as 

the smallest nontrivial level. For any level X,. , the right coskeletal inclusion of X is 

the sheaf inclusion of an essential subtopos. The left skeletal inclusion, by contrast, is 

usually not a subtopos, and we think of anobject of this category as negating a sheaf 

for this level. In the previous examples, we can (via geometric realization) picture 

the n - skeleton of a space X as that part of X consisting of things of dimensions 
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< n, whereas the n - coskeleton of X has all the holes of dimension > n in X filled 

in. 

We now would like to assign dimensions to levels. An object X of X has dimension 

less than or equal to that of a level if the skeleton for this level fixes X. Let 1 be the 

terminal category with its left and right inclusions into X being the inclusion of the 

initial and terminal objects. We say that 0 has dimension -, and if 0 is a sheaf 

for the right codiscrete inclusion of X0  in X, then the Aufhebung of dimension —oo 

is dimension 0, with the 0 - dimensional spaces being the discrete inclusion of X0  in 

X. Furthermore, if the discrete inclusion has a left adjoint components functor 7r 0, 

then dimension 1, defined as the Aufliebung of dimension 0 (i.e., the smallest level 

X for which n0), can also be described as the smallest level X for which 

7roskX=7r0 X 	VXEX. 

The latter follows from the following 

Proposition: Suppose that 7t0 exists: 

Then n>>0  if and only if V X E X, 7rosk,X 7r0 X. 

Proof: =:VXEX,YEX0  

	

ir0(sk(X)) 	Y 

	

sk(X) 	• 0*(Y) 

	

X 	cosk(0*(Y)) 

	

X 	0*(Y) 
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By uniqueness of adjoints, 7ro  sk = 7ro . 

=: VXEX,YEXO  

	

X 	cosk(0*(Y)) 

sk(X) -v 0(Y) 

	

iro(sk(X)) 	Y 

	

iro(X) 	y 

Again by uniqueness, cosk0* = 0* 

Usually sheaf inclusions do not preserve sums, but we see here that if a level n is 

qualitatively higher than dimension zero, the functor n. preserves all sums. 

Proposition: For n0, n. preserves all coproducts. 

	

Proof: Observe that 	implies 	n preserves discretes; that is, for any discrete 

8, nw(S) = S. Let A, i E 5, be a set of objects of E,. Let A j  c±L- 	A1  be the j 
S 

summand inclusion. If we apply n, to the diagram 

A 

we get 

n(A) 
	

tj) 
72, (EAj 

H 
S 

V 	 7 

1 
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a pullback since n, preserves all inverse limits. Since the diagram is a pullback for 

any j E S, n 
( TA)  is the coproduct of the n(A), i E S; i.e., 

S 

Recall that any lex functor C F  X between a small lex category C and a lex 

cocomplete category X induces an adj unction R X 	: L with L H R and 

L a lex functor. Here R is the functor defined V X E X, C E C as R(X)(C) = 

X(F(C), X). If we take F to be X --. X, then the result is a geometric morphism 

X 	X". If the direct-image functor is full and faithful then we say that X is 

n - generated, for then every object of X is a colimit of n. values, i.e., a quotient of 

a sum of n - coskeletal objects. In this way we may think of X as analogous to the 

sheaves for a subcanonical topology on Xn  even if X itself is not a presheaf topos. 
X OP  x.___ 

Let us now return to the topos E of Ball Complexes. We would like to study the levels 

(essential subtoposes) in E. However, we need to know exactly what all the essential 

subtoposes are before we can compare these levels. From [8] we see that the essential 

subtoposes of E are all of the form SCOP  where C c—.- B is a full subcategory of B 

closed under the splitting of idempotents (the same is true of S°  and SIXOP)  The 

full subcategories of B are simply the truncations of B at n E N for some n (this is 
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also true of both S and ). Let S = SBfOP and follow the notation in the diagram: 
SBOP  

	

n H n*I n* 	H-I 

SB P  
Lemma: For n > 0, B, E B, fl*(Br)  is connected. 

Proof: Any m - ball of n*(B,.)  can be connected to a point via any 1 c 6k B, so 

we show that both points can be joined. Since, for example, Si  -6i  = Si, we see that 

61  connects the two points (see diagram) o 

1 	B1 	Bm. 

We shall now show that the two definitions of level 1 are equivalent. 

Proposition: If n > 0, then n,, preserves coproducts. 

Proof: Let X, j E J be a set of objects of . For any B3  E B we have 

1 	n (TA   (B3) 

B5 	• n*(i) 

n*(B) 	• >X3  
J 

X, 

J3 	• n,(X) 

Yoneda 

-I n 

n(B3 ) is connected 

n* H n 

Yoneda 

- 1 is connected 
1 	. 

J 

Hence n* (Exi) (B3 ) = n(X)(B3 ) and we conclude that n (Exi) = 

Since the collection X, j E J was arbitrary, the result follows. 
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It follows (from adjointness) that F!(X) = iro(n(X)) for X E E, n > 0. In particular, 

we may take n = 1 and hence the set of components of a ball complex is the set of 

components of the associated reflexive graph. (See below for a brief discussion on 

reflexive graphs). 

The lemma and hence the proposition are both true for SS°P  and S' °  and we can 

say more for these toposes. First, let us observe another feature that simplicial sets 

and Ball Complexes have in common. If we truncate L and B at the level of the 

second object, we get a category 1 --- I where I denotes the interval. The topos of 

presheaves on this category is called reflexive graphs. A typical graph X has edges 
a . X, with the source and target vertices of a given by the two composites 

The arrows I - 1 - X are the degenerate edges. In particular we can picture 

reflexive graphs with every edge an arrow connecting two degenerate edges denoted 

by solid dots. I can be pictured as I = . 	.. If we truncate S at 2 we get the 
r 	

i category S1  : 1 	2 	2, where T is the nterchange map. An object X of $sop  

can also be pictured as having edges and dots, but here the presence of r implies that 

for any edge a there is a canonical companion edge a r that travels in the opposite 

direction; hence this topos is called two-way reflexive graphs. The next proposition 

shows that not only is the topos of simplicial sets 1 - generated, but every object in 

it can be covered by a 1 - co.skeletal object. 

Proposition (Lawvere): The topos of simplicial sets is 1 - generated. 



CHAPTER 2. BALL COMPLEXES 	 24 

First a little discussion and notation. For any of the three toposes under consideration 

the n - skeleton of a space X at stage in, kn(X)m , consists of all figures of X of 

shape in (in - simplices, in - balls, etc.) that are degenerated from a figure of X of 

shape q where q < n. In particular, .sk(p) is that subobject of p consisting of maps 

that factor through some n C 	p. Let /. n denote the truncation of A at n. 

Proof: The first thing we prove is that for n ~1, cosk(m) = in V in E L. 

Let p E A with p > n. By adjointness natural maps p 	• cosk(rn) correspond to 

maps sk(p) 	in. We must show that any map sk(p) 	in extends uniquely 

toap 	- masinthediagram: 

Taking Jto be the component off at 0, p 	m, defines the unique extension. Hence 

maps p - cosk(in) are precisely maps p - in, and by Yoneda cosk(in) = in. 

Let X E 8A°• Since the representables generate any presheaf topos, there are objects 

n3 E L for j in some set J and an epimorphism Tn j 	• X. But for n > 0, 

= 	n*n*(nj) = 
n*( 

I:n*(nj)) I (n*(nj)), the last equality being true since n preserves 

sums. Hence n (n(ni )) 	X, and so simplicial sets are n - generated. 

In particular, simplicial sets are 1 - generated and any simplicial set can be covered 

by a 1 - coskeletal simplicial set coming from a reflexive graph. We know that SSOP 

is codiscretely generated, but it is also true that any X E SSOP is the quotient of a 

1—coskeletal object. In fact, for any n > 0 and S E S, cosk(S) = S. The codiscrete 
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inclusions in either topos, however, do not preserve sums. 

Lawvere has pointed out the following construction. Suppose that X is a topos in 

which a level Xc, generates and a,. preserves coproducts. Let X E X, cover X with 

an a - co.skeletal object and take the kernel pair 

70 

a(W) - X, 
lrj 

where 7ri  o 8 = 1. We can also cover Y with an a - coskeletal object a,.(D) —i-- Y 

and thus obtain the following diagram 

160 

a,.(D + W) = a,.(D) + a,.(W) 	a,.(W) - X, 

where Oi  = ir o (y + 6). Since 'y + 6 is an epimorphism, and since the first diagram is 

a coequalizer diagram, the second diagram is also a coequalizer diagram. Moreover, 

(y + 6) o y = 8 and hence Oi oIL= ri  o 8 = 1. Since a,. is a full inclusion, Oi and a 

come from arrows in Xe,. Thus we have a functor 

Xcx'op 
 coeq  Oc. 

which preserves finite products and all coproducts. When X = 	we can take Xc, 

to be the topos of reflexive graphs. Thus simplicial sets receive a surjective functor 

from a graphics topos 

= (S10)1° •-.--- 

In sharp contrast to the 0 - generation of SS°P  and 1 - generation of 	5B° is  

not n - generated for any n. Before we can prove this we need some general remarks 

about presheaf topoi. 

Lemma: In any presheaf category, the representables are projective and connected. 
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Lemma: Let C be a small category and J a Grothendieck topology on C. If X E SC°P 

is a sheaf for this topology, then any retract of X is also a sheaf. 

Proposition: Let X be a presheaf topos SC°P  and suppose that all of its essential 

subtoposes X are of the form S °1', where C c .- C is a full subcategory of C. 

The following are equivalent: 

X is n - generated 

cos k(C)=C 	V C E C 

Proof: (a) = (b). Let C e C. Since X is n - generated, there is a collection of 

objects A E 	E I for some set I and epimorphism 

L. C. 
aEI 

Since C is projective, there is a section p  for 0. 

But the domain of p is the connected C and therefore p must factor through a sum-

mand n(A) for some/3 E I: 

Therefore, C is a retract of n(A) and is therefore n - coskeletal, i.e., cosk(C) = C. 

(b) 	(a). If X E Scop  , then there are representables C E C, c E I for 

some set I and an epimorphism >Cc. °.. X. Since n*n*(C) = C, we have 

X and hence X is covered by a sum of values of n. 



CHAPTER 2. BALL COMPLEXES 
	

27 

We now show that E = SB°P  is not n - generated by showing, equivalently, there is 

no n for which every representable is a sheaf for the level n. 

Lemma: Let e be the topos of Ball Complexes. If n > 0, and m > n + 2, then 

coskn(Bm ) 

Proof: For -8m  to be n - coskeletal for any B3  E B, we must uniquely extend the 

arrow p  in the diagram 

to a 	Choose m > . > : Any is determined by its value at the two inclusions 

B 	B3  (since they generate sk(B3 )). Define by (S) = so, (Si) = 8. Then 

there are two extensions iT = 6o and = 81  for p. 

However, we do have the following 

Lemma: For n > 0, cosk(B) = Bn  

Proof: Let k > n and consider a map sk fl(Bk ) 	• B,. Let B 	Bk be the 
61  

hemispherical inclusions which "generate" s k (Bk). Let 

pm(S) = ft : B 	B. 

By naturality fo  S = f . S for every B3 	B, and therefore fo = fi; we may take 

= 	p and this is obviously unique. 

In particular, coski (Bi ) = B1  and, therefore, cosk(Bi ) = B1  Vn > 0. This implies 

that the n - coskeletal endofunctors preserve homotopies. In a moment, we shall 
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see that sk has a left adjoint. Hence, since sk(B1 ) = B1  for n > 0, and since 

skn  therefore preserves binary products for n E N, we see that the n - skeletal 

endofunctors preserve homotopies for n > 0. 

For any presheaf topos X the topos of sheaves for the canonical topology is defined 

to be the smallest subtopos of X for which the representables are sheaves. Hence 

we see that the topos of canonical sheaves for $sop  is S, where the sheaf inclusion 

is the codiscrete functor F'. In the case of simplicial sets all representables are 1 - 

coskeletal, therefore, the canonical sheaves are 1—coskeletal (reflexive graphs). Since 

the representables in BOP  are not n - coskeletal for any given n, we see that the 

canonical topology is the trivial one. 

If X is either SS°P  or 	we have seen that the n - coskeleton functors preserve 

all coproducts if n > 0. The n - skeletal functors have good properties also, for they 

preserve equalizers for any ri. The situation is even stronger for Ball Complexes since 

here the skeletal inclusion n, has a left adjoint 7rn  for all n : this functor is induced 

by a functor p, left adjointto the inclusion 

where p, is defined on objects as p(Bk ) = Bn  for k > n and p(Bk) = Bk if 

k < n. That this defines a functor follows from showing p H i; we show that 

B8 	ip(B3 ) is the unit of the adjunction where 71, is the identity if s < n and 

the unique map if s > n. If s > n and B3 	i(Bk ), then we may factor this 

uniquely as B3  -- B 	. i(B,), with the first map the unit. The case with 

s < n is clear. 
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Taking the left Kan extension ir7, of B pn  B, we have ir = pa,, n = p, and 

= 	which we may picture as 

SBOP  

	

H ! H * H n 	
HHHt 

SB P  

F! H F*  H F H F! 

We thus have n!1r H sk H cosk, and hence skn  preserves all inverse limits as well 

as all direct limits. Of course the same is true of n. and later in this section we shall 

use its preservation of finite products. 

Let us return to the analysis of the levels in the topos of Ball Complexes. We begin 

by calculating the Aufhebung of level n. First, we shall need a lemma. 

Lemma: If X E SBOP and x and y are degenerate n - balls of X that have a 

hemisphere in common, then x and y are equal. 

Proof: We may write x = 	p and y = 	p for some (n - 1) - balls x', y'. Since 

x 	= y . 6i  for some B 1 	B, we have x' = x 	= y 	= y'. Hence x = y. 

Proposition: The Aufhebung function is the successor function. 

Proof: Let X E $B°P and suppose that X is n - skeletal. We shall prove that X 

is (n + 1) - coskeletal. To be a sheaf for level n + 1 means precisely that, for any 

Bm  E B and any Skn+i (Bm ) 	X in E, we can uniquely extend to an m - ball 
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of X: 
Bm  

H 
s+( m) 

If rn < n + 1, then .kn+i (Bm ) = Bm  and the result follows trivially, so assume 

rn > n + 1. Observe that the sieve skn+i (Bm ) is generated by the two inclusions 

B+1 c-__. Bm ; hence p  is determined by (S), i E {0, 11. Furthermore, o(8 j ) are 
6 

both (n + 1) - balls of X and are therefore degenerate since X is n - skeletal. Using 

the naturality of we have (S) 	= (Sj), hence 5) and p(S')  have the same 

upper and lower hemisphere and are therefore equal by the lemma. We may take 

to be (8) . p and again this is unique by the lemma. 

Moreover, if X is an n—skeletal object, then it is a quotient of a sum of representables 

B2 , i < ri. From the lemma on page 27, we see that X is, therefore, a quotient of an 

n - coskeletal object. 

Michael Zaks, in [16], has calculated the Aufhebung function for the lattice of essential 

subtoposes of $A°P•  He found that Aufhebung of level n is n + 1 for n < 2, and 2n - 1 

for n > 2. The calculation for SSOP  has still to be carried out. 

Axiom 2 for a topos of spaces requires that 1 be connected. In the case of s'° and 

SB°P ,  f has the further property of being a cogenerator. Richard Squire has given 

neccesary and sufficient conditions on C for Q in S° to cogenerate and has explicitly 

proved 1 cogenerates simplicial sets (see [15]). Presheaf toposes SC°"  for which the 

monoid of endomaps of any C inC is a graphic monoid are called graphic toposes. 

Gustavo Arenas proved that the subobject classifier in a graphic topos cogenerates 

(see [101). In particular, Q E $B°P cogenerates. 
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Proposition (Gustavo Arenas): If $0P  is a graphic topos, then 1 c7çenerates. 

Proof: If X 	Y are different, then the composites C —f--.- X 	 : y are different 

for some x and C. Let z = fx, w = gx. Let Y 	Q be the characteristic map of z 

or w. 	- 

Then if in both cases 0 does not distinguish f and g, we have w E< z>, z E< w>. 

Therefore, there are endomaps c, 3 of C and w = z c, z = w /9. We have 

w=zo'=w/3c=w/3a/3=zc/3=w/3=z 

In contrast to the Aufhebung definition we may ask the following question: for a given 

level n and n - coskeletal inclusion into the big category, does there exist a smallest 

level m for which the rn - skeletal inclusion into the big category includes the "lower" 

ii - coskeletal sheaf inclusion? Remarkably, for E this m exists and is actually ii + I. 

Before proving this, let us first look at these n - coskeletal spaces in some more detail. 

We have already seen that codiscrete objects are "constant" at stages beyond B1. It is 

natural to ask if something similar is true for ri - coskeletal objects, n > 0. Since we 

can describe the 1 —coskeletal objects using the reflexive graphs, we give the following 

description: For any reflexive graph X, 1(X) can be described in terms of mapping 

into X; explicitly, for Bm  E B and n = 1, 1*(X)(Bm ) = Ref. Gphs. (1*(Bm),  X). 

We now need to see exactly what the graphs 1*(Bm)  look like. For in = 0, 1*(Bo)  is 

the graph whose vertices 1*(Bo )(Bo ) = B(B0 , B0 ) are one in number and has edges 

1*(Bo )(B1 ) = B(B1 , Bo ); therefore, we may picture this graph as a dot with only 

a degenerate edge, •. The graph 1*(B1)  is a bit more interesting. Its vertices are 

B(B0 , B1 ) and its edges are the elements of B(B1 , B1 ). This consists of an edge 

B1 	B1  with source and target the vertices 1 . 8o = 60  and 1 . Si = Si, respectively; 

therefore we picture this as an arrow, • 	• •. The other two edges of 1(B1 ) are 

the elements B1  -- B0 c . B1 , which begin and end at S. So these are the 
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degenerate loops at the vertices 6i  and the graph 1*(Bi)  is • 	•. The graphs 

in > 1, are all equal to • 	: • and the maps Bm p—  Bm+i all induce 
61 

isomorphisms between these graphs. Therefore, the description of 1(X) is: 

1(X)(B0) = Ref. Gphs. (.,X), the vertices of X; 

1(X)(B1) = Ref. Gphs. (. 	- ., X), the edges of X; and 

1*(X)(B,n ) = Ref. Gphs. (. 	., X), the parallel edges of X, m> 1, 

with the maps Bm 	Bm+i inducing isomorphisms between 1*(X)(Bm ) and 1(X)(Bm+i). 

61 
All told, 0 - coskeletal objects are 1 - skeletal and 1 -, coskeletal objects are 

2 - skeletal. In general we have the following 

Proposition: In the topos E = SBOP, ii - coskeletal implies (n + 1) - skeletal. 

Proof: We show that, for X E E and m > fl, * ( X)(Bm ) and fl*(X)(Bm+i ) are 

isomorphic. By definition, fl* (X)(Bm ) = En ( fl*(Bm ),X) and we have 

*(B) ..,,_ fl*(Bm+i ). 
C- 

61 * 

It suffices to show that fl*(Bm+1 ) and fl*(Bm)  are isomorphic. For any Bk .L.. Bm+i E 

fl*(Bm+l )(Bk ) and k < ii, we have s*(p*(f)) = &pf. Since  f must factor through 

some B1 CL Bm+i, 1 < k, we see that 

Bk 	Bm+i 	Bm 	Bm+i = Bk 	- Bm+i. 

Therefore, fl*(Bm+i ) 	 fl*(Bm ) and it follows that (nX)(B3 ) are all isomorphic for 

s > n. This means that nX is (n + 1) - skeletal. 

Since the category of n - skeletal objects are (n + 1) - coskeletal as well as (n + 
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1) - skeletal, and similarly, since the category of n - coskeletal objects are not only 

(n + 1) - coskeletal, but also (n + 1) - skeletal, we have the union of n - skeletons 

and n - coskeletons contained in the intersection of the (n + 1) - skeletons and 

the (n + 1) - coskeletons. The following is a picture of these categories and their 

inclusions into the next level: 

C, . 	 co, L  

C. 

For any n > 0, we also have the following picture where the inclusions have names 

F, C, K, L, M, N for simplicity: 

FHHG 

K 	L 

1m+1 

M 	N 

We have F(KM) (GL)M (by the Aufhebung re1ation) (FL)M (by the coAufhe-

hung relation) F(LM) and therefore KM LM; similarly, KN LN. Thus we 
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see that the left and right inclusions among levels have the same properties under 

composition as 8, 61  within B (even though this is not some trivial functorality). 

Consider the full subcategory T 	E, where the n - skeletal and n - coskeletal 

inclusions agree, i.e., those X E E, for which the canonical map n!(X) - n(X) is 

an isomorphism. Recall that for X E 

= 

This means that X E Tn  precisely when 

For n > 0, to give the map f is equally to give a pair of n - balls x, y of X whose 

hemispheres are equal: x 6, = y . bi  i E 10, 1}. Hence X E T if and only if any pair 

Bn 	X with equal hemispheres are themselves equal. Let T -.--- S, denote the 

inclusion. Given X E E, n > 0, "x y if and only if x 	= y 	i E 10, 1}" defines 

an equivalence relation on n - balls of X. Hence there is a reflection 	Tfl . T 

with r(Y)(B) = Y(B)/ 	for Y E E, and the unit of the adjunction r H 

i 	Y -- r(Y) is an epimorphism. If Y is a product II 6 jY for Yi E En, I a set, then 

= ll€i(Y2(B)/ 	hence r preserves all products. Furthermore, 

recall that for any reflective subcategory B of a cartesian closed category A, the 

reflection preserves finite products if and only if B is closed under exponentiation by 

all objects of A. Thus, in particular, for n > 0, Tn  is closed under exponentiation by 

objects of E, under inverse limits, and for n > 0, all coproducts. 

When ii = 0, S E To  precisely when S 	52  is an isomorphism; therefore, TO 

0 	1. For n = 1, E1  is the topos of reflexive graphs and T1  is the reflective 
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subcategory YB1  of S, whose objects "live on their points": for any X E T, and any 

pair of edges I 
W 

: X with w 	z there is a node 1 a  I distinguishing them: 

wa 54 za. Here the subobject classifier Il for reflexive graphs is • 	• and hence 

ri (1l) = • 	•. 

Of course if C is any category with a terminal object 1, then we may define (see 

[3]) Yc to be the reflective subcategory of SCOP  whose objects X satisfy the above 

condition with I now an arbitrary object in C, in particular, YB  makes sense for 

n E N. But for n 0 1, Tn  0 YB.  For example, the reflection S °1' 	YB 
So 

identifies the two (n - 1) - balls B_1 	B, in B (among other things) since they 
61 

have the same points; i.e., B 	YB. On the other hand, since Bn  = n!(B) = n(B) 

(Lemma on p.  27), we have Bn  E T. 

In any presheaftopos X = SCOP, each representable C has a maximal proper subobject 

M C-  C. For any D E C, the D - figures of M consists of maps D - C that are 

not split epi. If X is either SS°P  or SA°P  and n is a representable, then M = sk_ i (n). 

This is also known as the boundary of n, ö(n), since the geometric realization of the 

pushout 

is the n - sphere. Here the geometric realization assigns to any n the free convex 

space on the underlying n + 1 - element set. In [1], it is shown that Cat is a reflective 

subcategory of simplicial sets 
G 

D 
The authors also explicitly calculate G(5(n)) for all n > 0. It is therefore of interest 

to know for which levels 0(n) is a sheaf. This is answered in the following proposition. 
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Proposition: Let X = SCOP be simplicial sets or the Boolean algebra classifier. For 

Ti >0, 

I 	n. 
CO*Skm (5(fl)) 

1() m~n 

Proof: Let m <n, p e C, then 

1 - coskm (5(n)(p)) 

Skm (P) 	. 5(n) 
skm (p) 	. n 

p 
Hence, by Yoneda coskm (5(n)) = fl. 

Let m > n. We wish to show that any map extends uniquely to a as in the 

commutative diagram 

Vo 

where the map is determined by 	: p 	n (where 	is the component of p 

at 0) with p(f) = 	o f (In 	this 	is order-preserving). The point is to show 

that 	belongs to 5(n)(p). If m > p everything is trivial, so assume that m < p. 

If o is surjective, then let o be a section of o. Since the image of n 	• is 

n < m, a belongs to km (p). But then p(a) = 	a = 1 	5(n), contradiction. 

Hence we choose 7 = Vo : p 	5(n) and clearly this is unique. Conversely, if we 

have a non-surjective map p 	n, then composing with 	defines a natural map 

.Skm (p) 	5(n). All told 

p 	COSkm (5(n)) 

p 	.5(n) 
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and COSkm (3(fl)) = 3(n). In other words, 3(n) is a sheaf for levels m> n. 

Given any Bn  E E', n > 1, we can "collapse" the subobject sk_1(B) a—.  B, to a 

point via the pushout 

The object Sn  has one k - ball in dimension k < ri; two n - balls, one which is 

non-degenerate; and only their degeneracies in higher dimensions. If we label the 

degenerate and nondegenerate n - balls (and their degeneracies) by * and 0 respec-

tively, then we can define a commutative monoid structure on Sn  by constructing the 

natural map Sn  x Sn 	5n defined at stages k > n by 

(0,0)i 	•0 

Observe that S,. is an example of a space where a nondegenerate ball can have a 

degenerate hemisphere. For n > 1, the unique map S 	Sn+1 is constantly the 

point of Sn+i.  Of course, Sn  is n - skeletal, but it is not n - coskeletal. Both 572 

and 5,, are connected for n > 1 and moreover, S (having the structure of a monoid 

with 0) has the property that S,,x  is connected for all X E e, i.e., 5,, is contractible. 

In section 7 we prove the surprising result that 572  is contractible for ii > 0. 

Now let us see some of the consequences of the Aufhebung and coAufhebung relations. 
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Consider the diagram below 

If F denotes the connected components functor for both E and E, and if I' denotes 

the discrete inclusion for sets into both Sn  and E, then, for any X E E, Y E En, 

Z E En-i, and S.E S, we have 

	

i*irn(X) 	 Z 

7rn(X) 	 i(Z) 
x 	 fl !i(Z) = ni(Z) 
X 	(n - 1)(Z) 

(ri - 1)*(X) 	• Z 

	

F!n*(X) 	S 

	

n*(X) 	Fe(S) 
x 	• n* F*(S) = F*(S) 

	

F!(X) 	• S 

Hence i*lrn = (n - 1)* and  F!n* = FT. We therefore know that 7r(X)(Bk) = X(Bk) 

for k < n, and so we calculate ir(X)(B). 
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The functor ir is the left Kan extension of B --- B; hence, for any X E e and B,-, e 

B, ir(X)(B) = X ØB  B(B,(—)). Recall that this is the quotient E X(B) x 

B(B,p(B3 ))/ 	where we "mod-out" by the equivalence relation generated by 

the identifications (x,p(f)g) = (x f,g).  Let x 0 k be an element of ir(X)(B), 

where x E X(B), B 	• p(B3 ). If s > n, then p(B3 ) = B, hence x 0 k = 

x ® p(6)k = x .  S 0 k, where B 	• B. This means our analysis reduces to 

considering only those elements x ® k, x e X(B), B 	k • B, and since if y e 

X(B +1 ), y & 0 lB = y 610 'Ba, we see that ir(X)(B) is the reflexive coequalizer 
So 

X(B1) -p_  X(B,) - ir(X)(B). Consider the diagram below 
51 

ir (X) (Ba ) 

/ 
7r_1  (X)(B_1 ) 

The first thing to observe is that there are two induced epimorphisms with a common 

section; these are simply the maps 

ir(X)(B) E1 ir(X)(B_i ) = X(B_1). 
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The second observation is that these two epimorphisms are "coequalized" by 

X(B_1 ) - 7r_i (X)(B_1 ). Hence we have ir(X)(B) - ir_i (X)(B_i ) in 

sets. 

We have seen that 7r(X)(B) is the object part of a reflexive coequalizer (but also 

lr fl(X)(Bk) = X(Bk) for k < n). Hence, we have the following 

Proposition: The functors ir preserve finite products for n > 0. 

Corollary: The full subcategory of n - skeletal objects in E is closed under expo-

nentiation by arbitrary objects of S. In particular, ni preserves exponentiation. 

Corollary: The functors 7rn  preserve homotopies of maps for n > 0. 

The functors ir do not preserve equalizers. For example, 

sk(B +i ) 	Bi c
C- 

B+2 

is an equalizer diagram, but ir(sk(B+i)) = fl*(Bn+i ) is not the equalizer of B 	: B. 

2.5 Nonlinear Homology 

In this section we define the nonlinear homology of an X E S and investigate a 

particular quotient topos of S. 
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Consider the following pullback diagram in Cat 

2 
Bmona 	• B 

I 
w 

_________ 
Ir 

(— 

Here i is the (non-full) inclusion of the subcategory B mono  of B, consisting of only the 

hemisphere maps of B; C is the quotient category of B obtained via q by identifying 

the hemisphere maps of B at all stages; p is the quotient functor to the natural 

numbers W which also identifies each pair of hemisphere maps; and j is the (non-

full) inclusion of W in C in which each unique monomorphism gets a unique retraction 

in C. 

B' 

Now consider the diagram of presheaf toposes on each of these categories and the 

essential geometric morphisms induced by each functor 

° S mono  

'H 
SWOP 	 :c 

Here for simplicity, we write C for S °  and C for SC",  where C is the truncation 

of C at stage n. Note that the toposes SBOMPOno 
I 

SW°P , and their essential subtoposes 

S2°'0ro, S''" are all examples of étendues since they have sites consisting of only 

monomorphisms. 

For any X in 	PI(X)n is the coequalizer of the structure maps 

X(B +1 ) 	: X(B), 
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and p!(X)+l 	p!(X)n  is the induced (not necessarily epimorphic) map of co- 

equalizers. This functor does not preserve finite products: the truncation of S°'° 

to level one is the topos of irrefiexive graphs, where B1  is the generic edge which 

also satisfies the equation B12  = B1  + 2B0 ; this equation is also true in SB'0nb  since 

1 	: $B mono  c_ SB'ono preserves coproducts and B0 , B1. In SW°P,  the equation 

W,,2  = W Vn E N is true for a trivial reason, and so if P!  did preserve prod-

ucts, then p!(Bfl = W1  + 2W0  would give a contraddiction. However, for any 

Y E E, p!i*(X)n  = rr(X)(B), and the map induced by W < W 1  in W is 

— ir(X)(B), mentioned before. In particular, p!i* preserves finite 

products since the ir functors do. Note that S'o10, like irrefiexive graphs, has a ir0  

functor which does not preserve finite products and hence is not a "topos of spaces". 

The opposite is true of 8W°P•  Here 7ro  preserves finite products since, for example, 

Wm X W = Wm in  (m,n). However, in contrast with irreflexive graphs and SB0.0, the 

subobject classifier for Sw°J'  is not connected. 

For any W E W, p*(Wn)  is the presheaf on Bmono  with one element at stages Bk, 

k < n, and no elements for k > n; the induced map p*(Wn ) 	p*(Wn+i ) is the 

obvious inclusion. For any Y e S°°, a map p*(Wn ) 	Y picks an element y  of 

Y at stage B with the property that y  60  = 	= y,, say, and furthermore 

Yn-1 80 = Ym-1 S, etc. Hence a W - element of p..(X) is a Yn  and the action of 

W,_1  < W, on Yn  is y, 	Yn—i. This means (the counit) p(Y) c • Y is the 

subobject of Y consisting of elements whose hemispheres are equal at all stages. We 

shall call these elements "pancakes". 

Since SW°P  is fully included in $Bono,  there is a canonical map p 	P! and hence 

a map pi 	' 	P!i. Since the objects "representing" p,, (described above) clearly 

are connected, both pi  and  p!2*  preserve finite sums and products. Let E - -- SW°P 

be the image of . Then H also preserves finite sums and products. For any X E E 
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we define the nonlinear homology of X to be H(X) 

41)  p*i*(.X) 	p!i(X) 

H(X) 

The elements of H(X) are equivalence classes of "pancakes" in X. For a pancake 

B 	' • X, if B+1 
W  X connects y to x = w S, then 

x 6 = (w 6) 8, = w• (6 o 	= w (6.0 	= (w 6) -6i = y 8 

Hence x is also a pancake. This means that a homology class containing a pancake 

consists only of pancakes. Furthermore, saying that X consists entirely of pancakes 

is equivalent to saying that no pair of distinct ri - balls can be connected. Hence X 

consists of pancakes if and only if H(X) = X Vn. 

The functor q*  is the full inclusion of C in S, the subcategory whose objects consist 

entirely of pancakes (note that pi = j*q*  by Beck-Chevalley). For any X E E, 

q(X) 	• X is the subobject of pancakes in X; e.g., F*(S) 	• V(S) for any 

S E S. This category C is, of course, a quotient tôpos of E. The essential subtopos 

C1  of C is 5{0,1}0,  the right actions of the commutative two element monoid, studied 

by Lawvere in [3]. 

More generally, let C 	C denote the full inclusion. This functor has a left adjoint 
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C k, - C (c.f. B - B) and these induce functors 
Pri 

k! 	-1 k- 	 C 

H 	nfl 
11Th ! 	Hji 	 C 

at the level of presheaf toposes. For any n and m > n, the maps Cm+i 	. Cn induce 
P 

/2(Cm+i) ._____ /1 *( _ 	Cm ) in C. For any Ck 	Cm+i, k n we have Sopo f = f, and 

therefore ii(Cm) 	uL(Cn. m+i). This means 	= 	and k, = 	Letting n 0, 

we see that the points and connected components functors of C are equal (this is also 

true for Ca ). Since QC  has two points, we conclude that it is not connected (similarly, 

fZc is not connected). 

Lawvere has shown that the generic object C1  = I{0 ,1} of C1  has the property JI = 212 . 

Since the sheaf inclusion /21 preserves exponentiation, products, and (being also left 

adjoint to 4) sums, this equation is also true in C (and C, n > 1). 

However, q*(Ci ) = S1  and since S1  is contractible (equivalently, S1  is connected) we 

see that the inclusion of pancakes does not preserve exponentiation. 

For n 0 1, q*(Cn)  =A S, but for any n it is the n - skeleton of a certain object L 

that will now prove to be of importance. 

In [4] Lawvere exhibits the following relationship between irreflexive graphs S 	: . = 

B° 	 B° 	 . 	 B°' 5 'mono  and reflexive graphs S i . For any object X E S ' , one can construct the 

full subcategory of SB"/X 5(Bi/x)°P, consisting of those Y 	• X with discrete 
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fibers: 

In other words, any edge x in Y that becomes degenerate via f was already degenerate. 

These subcategories are all toposes. Let us denote them by S(X). If we specialize to 

the loop L = of SBP,  we have the 

Proposition (Lawvere): S 	• 8(L) 

Consider now the equivalent construction in E/X, where X E E. We consider the 

subcategory of objects Y 	X in E/X with discrete fibers: 

X 
Bm  

'I 
/ 

I 	/ 	If 
I 	/ 

1?' 

That is, any rn - ball x in Y whose image under f is degenerated from an n - ball in 

X is degenerate itself. Equivalently, 

sIc(Y) C- 

sk(f) 	 f 

sk(X) c  

is a pullback Vn E N. 

We look for an object L in E which will play the role of the ioop in reflexive graphs. 
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Let L be the ball complex sketched in part below 

'S 

S 

This object has precisely one nondegenerate and n degenerate n - balls, the latter 

collection having one n - ball for each possible degeneration. Hence E - L belongs 

to 8(L) C E/X if and only if nondegenerates are mapped to nondegenerates, and 

m - balls degenerated from nondegenerate n - balls are mapped to the unique m - ball 

in L parameterizing these elements. Thus we have the 

Proposition: S(L) = S B°" mono 

Corollary: Let Ln  = i(L) = q*(Cn ). If S(X) is the analogous construction in 

E/X for X E E, then S(L) = 

2.6 Abelian Group Objects in E 

We now look at the category A of Abelian groups in the topos of Ball Complexes. 

We shall show that A is equivalent to the category K of Abelian chain complexes 

(c.f. [14]) and we shall also give an example to show that there is not a normalization 

theorem for A (c.f. [14]). 

Given an object G in 4 we define the chain complex A(G) by A(G) = G and where 
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the differential is defined on G by S = 61  - 6. This is indeed a differential since 

52 = DoS = (6-6)0(6-8) = 61061-60 0 51-6i080+60060 = 	 = 0 

Define N(G)2  to be the subcomplex of A(G) whose nth term is N(G) = ker(G  - -- G,_1) 

and whose differential is given by 5(x) = Si(x), x E N(G). This defines a differential 

since 

5(5(x))= (x.8i ).8 j  =(x.6o).51 =061 0. 

Furthermore, A and N define functors A 	AC. 

Examples: For any X E S we can define an object A(X) in A with A(X) = Z . X, 

the free Abelian group on X, and whose hemisphere and degeneracy maps are those 

uniquely determined by the hemisphere and degeneracy maps of X. If we compose 

A and A 

. /

A \C 

A A AC 

we obtain a functor which we shall denote by C = A o A. Let X = B, n > 

0. Then C(X) = ( 2n + 1)Z where one generator is nondegenerate and all others 

are degenerate. C+1(X) = ( 2n + 1)Z and all generators are degenerate; hence 

im (C +1(X) 	. C(X)) = 0. C_1(X) = 2nZ, where two generators (coming 

from B_1  c 	 B) are nondegenerate and all others are degenerate. The kernel of 

C(X) 	C_1(X) is 2nZ and hence we have H(C(X)) = 2nZ. Since none of 

the elements of C(X) are in the kernel of 5, we have N(A(X)) = 0 and therefore 

H(N(A(X))) = 0. This means that the inclusion of complexes N(G) 	A(G) 

need not induce an isomorphism on homology for an object C E A (c.f. [141). 

2 N(G) is not an object of A 
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For any G E A we can form the sub complex D(G) a—  A(G) consisting of degenerates 

of C. The differential on D(G) is the restriction of the differential of A(G) and 

is identically zero. The quotient complex CN(G) = A(G)/D(C) with the induced 

differential is called the normalized complex of C. In the above example C +1(X) 

consists entirely of degenerates and therefore im (CNTh1  (A(X)) 
a  (CN(A(X))) = 

0. The element 'B E C(X) is the only nondegenerate generator, and therefore 

CN(A(X)) --- CN,(A(X)) is the map Z 	Z 6 Z, 'B 	 - 8). Clearly 

the kernel of this map is zeroS  and therefore H(CN(A(X))) = 0. This means that the 

complexes CN(G)  and A(G) need not be chain equivalent for C E A (c.f. [14]). 

Theorem: (Dold-Kan-Moore theorem for Ball Complexes). If G is an Abelian group 

in e, then A(G) = fl N(G), for all n. 

Proof: When n = 0, the equation is true. Assume the equation is true for n < q. We 

have Gq 	Gq _i  with Sop = 1 and henceGq  = ker(8o ) x im(p) = Nq(G) X Gq _i . 
So 

By the induction hypothesis applied to Gq_i,  we have 

q-1 
Gq  = Nq(G) X 11 N1(G). 

We now construct a functor F : 	A which is inverse to N. Given a chain 

complex K, define F(K) as follows: F(K) = fl K. The hemisphere maps 

F(K) --ø.  F_1 (K) are defined by Si =< , 	_1+ao7r >, 60 =< lro,...,lrn _1 >, 

and the map F_1(K) ' . F,(K) is p =< 1,0 >. Note that ker(So ) 	K. F(K) 

is an object of A and F is a functor. N(F(K)) = ker(F(K) ° F_1(K)) K, 

and the differential is that of K. On the other hand, for G E A, F(N(G)) = 
rJn 

i=0 N(G) = G, by the Theorem. The hemisphere and degeneracy maps coincide 

with those of G. Hence F oN = 1A, N oF = 1,. 
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2.7 Homotopy Categories Revisited 

In section 4 we looked at the homotopy category 7-(g), consisting of homotopy classes 

of maps in E. In fact, there are a countably infinite many categories of this ilk: Given 

n E N, define 7- (S) to be the category whose objects are those of E and whose 

"horn-sets" are R(E)(1' X) = 7r(X1')(B), where X, Y E E. As before, the product 

preservation property of ir ensures that composition can be defined and that indeed 

7-i(E') is a category. (For n > 0, the map ir(X)(B) 	7r_1(X)(B_1 ) is the 

arrows function of a functor 7- (e) 	. ?-t_i(f') which is the identity on objects). 

For n > 0, if X E E has the property 7- 1(E)(Y, X) = 1 V Y E E, i.e., 7r(X1')(B) = 1, 

then in particular X1'(B0 ) = 1 and therefore there is precisely one map Y 	X 

for any Y. Hence, we see that X = 1. In short. X is terminal in 7-1(E) if and only 

if it is a terminal object in E. As we have already seen, this is not the case for n = 0, 

and as we shall now see, in 710(E) the representables are terminal. Before doing this 

let us remark that we could have required that 7(')(Y X) = ir(X'), dropping the 

requirement that the presheaf be evaluated at B. In this way the homotopy category 

is enriched in E, as opposed to sets. For example, 7- (E) is then enriched in reflexive 

graphs. 

Proposition: Bn  is a terminal object of 7-to(E). 

Proof: The points of BBn are maps B,. - B,.. We shall show that B,-, —L B,, can 

be connected to the constant map B,. -' B0 50  B,. (we could have picked the other 

constant map). Of course, by "connected to" we mean a homotopy B1  x B,. 	B,. 

It is trivial if n = 0, so we assume n > 0. The elements that "generate" B1  x B,, are 

the n - balls (4, 1B,.), (p1, 1B) (where p/is the map B,. - B1  or the identity 



CHAPTER 2. BALL COMPLEXES 	 50 

if n = 1), and the 1 - balls (1, (Sjp). Labelling these x, y, and a i  respectively, the 

incidence relations are as follows: 

y 8i  =x bi  = a 

x0  Si  =a1  

bo  =a0  Si 

Define <D by 

x0  i—'- B 	BO C  so  - B, X1 I 	1 B,  Y I 	1 B,  a0 	• B1  -- B0 	B 

(any j), a1  I 	B1 	B (any i). 

Let X be a ball complex with only one point. The presheaf B1  x X is generated by the 

k—balls (&p,x),  (pi,x) where xis a k—ball in X and Bk -.a- B0 , Bk —c-- B1 , where 

p1 can be the identity. Let X 
'P0 

: X be two endomaps of X. Defining B1  x X 	X 
'P1 

by 0 (Sip,x) = pj(x), 0 (pi,x) = x, we have the 

Proposition: If X E e has only one point, then it is contractible. 

Recall that C has the property that 7r0  = pts.; hence, for any object X consisting 

of pancakes, iro(X) = pts.(X). This means an object consisting of pancakes is con-

tractible if and only if it is connected. 

The full subcategory of one point objects of E is a reflective subcategory: Given any 

X E E, the reflection )i is obtained by identifying all the points of X via the pushout 

disc. pts. (X) c Ex   • x 

I 
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Since pts. preserves pushouts and 1, and since pts. (Ex) is an isomorphism, we have 

pts. (k) = 1. For example, E1  = Si  

Recall now the functor described in the first paragraph of page 1. Viewing this functor 

as taking values in the category Top of topological spaces and continuous maps we 

can take it its left Kan extension to obtain a realization functor E 	Top. This 

functor is left adjoint to the principal complex functor Top 	E, assigning to any 

space X E Top the Ball Complex whose value at any Bn is the set of all continous 

maps from Bn in Rn to X. We shall now show that r does not preserve finite products. 

First we need to return to the n - sphere S'' in E. 

Sn can be obtained as a pushout 

2B_1 	B 

a 

If we apply the realization functor r to this diagram, since r is a left adjoint and 

hence preserves pushouts, we see that r(Sn)  is the n - sphere in 

Now we need to study the object S x I in E. 5n  x I is generated by the n-balls 

ak = (Sk,pt), Yl,s = (8, 8 p), where B 	Bn+i, B—L B1  (p' can be 1B1)  and 

B _-L  B0 , n > 0, and the 1-ball xj = (Sjp, 1), where B0 	 The incidence 

relations are 

ak 	= xo  60 = y1,o 

ak 81  = xl  8i = yl,i 81 , 

xo  61 = Yl,i 

xi  80 = yi,o Si. 
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We define as follows: 

a0  —* 6k : B 	B+j, k arbitrary 

a1 	S : B c* B+1, 1 arbitrary 

Sop: B1  —+ B+1, 

B1 c_* 	i arbitrary 

Yo,o H—*  Sop: B —* B+1, 

Yi,o 	Sop : B — p B+1, 

yo,i ' 8o : B 	B+1, 

yi,i 	Si : B 	B+1. 

Hence we have the 

Proposition Stm is contractible for n > 0. 

A topological space X is contractible if the identity map lx  is homotopic to a constant 

endomap X 	1 	X. It is well known that the n — sphere in R' is not 

a contractible space. Suppose now that the realization functor r preserves finite 

products. We can apply r to the homotopy of the proposition to obtain a homotopy 

in Top connecting the identity on the n - sphere to a constant. Contradiction. 

2.8 	The points of E 

Diaconescu's Theorem (see [13])tells us that points S - Sc'correspond to filtering 

functors C 	• $ for any category C. We first calculate the filtering functors 

B 	$ and then the inverse image functors of the corresponding points. 
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A filtering functor B -f--.. $ satisfies the following three conditions: 

(1)F(B0)ø 

If a E F(B), B 	Bm  and F(f)(a) = F(g)(a) then there are Bk 
h B 

and b E F(Bk) with fh = gh and F(h)(b) = a 

If a E F(B), b E F(Bm ) then there are Bk 	B, Bk g  Bm  and c E F(Bk) 

with F(f)(c) = a, F(g)(c) = b 

For any filtering F, F(B0 ) = {*}, the one element set: If a b are elements of F(B0 ), 

then (3) implies there are Bk 	B0 , cE F(Bk) such that F(f)(c) = a, F(g)(c) = b. 

Since Bk 	• Bo  is unique we see that this cannot be true. 

so 
For any 1, B0 	B1  we have F(50 )(*) 54 F(8i )(*): If not, then (2) implies there is 

51 

a map Bk 
h • B0  such that 50h = 51h. It is clear that no h can have this property. 

In particular, F(B1 ) has at least two elements. It can have three elements but no 

more for the following reason: If a, b are distinct elements of F(B1 ) not in the image 

of either F(60 ) or F(61 ), then by (3) we have Bk 	B1 , c E F(Bk) and F(f)(c) = a, 

F(g)(c)=b. Clearly k> 0, and f g implies at least one of these must factor through 

some B0 ---.- B1 . Therefore, a or b is in the image of F(S). Contradiction. 

If a E F(B1 ) is not in the image of F(61 ), then F(So )(a) 54 F(Si )(a): If not, then 

by (2) we have b E F(Bk ), Bk 
h B1 , F(h)(b) = a, and 80h = 61h. This cannot 

happen by a previous analysis. 

We may say that a E F(B1 ), 1 > 0 is an adjoined element if it is not in the image of an 

F(S1 ). If x and y are adjoined elements, then F(p)(y) = x (assuming"y > x"): For 
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if x, y are in F(B), F(Bm ) respectively, then by (3) we have an element z E F(Bk), 

Bk 	 f  Bn, Bk 9  Bm with F(f)(z) = x, F(g)(z) = y. Since x,y are not in 

the image of any F(8), we must have f and g both epimorphisms and therefore 

(p)(y) = X. 

Using the above analysis we see that, for an arbitrary n, F(B) has at most 2n + 1 

elements. 

Suppose that F E Filt (B) and A C N is the subset (which includes zero) indexing 

the stages in which there is an adjoined element. The inverse image of the point 
f 	 i S 	• E corresponding to F s f* = _®BF. We shall now calculate f* (X) for an 

arbitrary X E E. Recall that 

XØBF = >X(B3) x F(B3 )/ 
N 

where ' is the equivalence relation generated by the identifications (x . o, y) = (x, 

E X(B8 ), y E F(B), B 	B. If X E X(Br ), Z E F(Br) the equivalence 

class of (x, z) is denoted by x ® z. Given any such x 0 z we can reduce this (via the 

above relations) to a unique x' 0  z' with x' e X(Bk) nondegenerate, z' E F(Bk) an 

adjoined element, and k E A: For if x = 	p with x' nondegenerate, and z = 

with z' adjoined, then 

If p6,  is 8k  for some k, then 

X'®pS .z' = 	Z = X1 . SkOZ. 

If x' 8k  is degenerate, say x' 8k = w p for some nondegenerate w, then x' 5k 0 z' = 

w p ® z' = w 0 p. z' and p. z' is an adjoined element. If p 5i  is an epimorphism, 

then p  z' is an adjoined element. The uniqueness of x' , z' is easy. Thus we have 

X®0F A  nondeg. X(BA). 
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Tim Van der Linden, Université catholique de Louvain: tim.vanderlinden@uclouvain.be


