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Preface to the original publication

During the academic year 1966/67 a seminar on various aspects of category theory and its
applications was held at the Forschungsinstitut für Mathemtik, ETH, Zürich. This volume
is a report on those lectures and discussions which concentrated on two closely related
topics of special interest: namely a) on the concept of “triple” or standard construction
with special reference to the associated “algebras”, and b) on homology theories in general
categories, based upon triples and simplicial methods. In some respects this report is
unfinished and to be continued in later volumes; thus in particular the interpretation of
the general homology concept on the functor level (as satellites of Kan extensions), is only
sketched in a short survey.

I wish to thank all those who have contributed to the seminar; the authors for their
lectures and papers, and the many participants for their active part in the discussions.
Special thanks are due to Myles Tierney and Jon Beck for their efforts in collecting the
material for this volume.

B. Eckmann
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Preface to the reprint

This volume was the culmination of a very exciting year at the Forsch (as we called it)
and it was to be just the beginning of a long excursion on the use of categorical methods
in homological algebra. For better or worse, the interests of the categorical community
soon turned to toposes and the papers in this volume have become more an end than a
beginning. Other things, for example, categorical methods in computer science, have also
intervened. I myself have not forgotten the subject, see [Barr (1995), (1996), and (2002)]
for some recent contributions. In the meantime, this volume passed out of print and has
largely been forgotten. Thus I conceived of reprinting it in order to make it available to
the next generation.

This would not have been possible without the generous and unrewarded help of a
small army of volunteers who typed parts of it. They are William Boshuk, Robert J.
MacG. Dawson, Adam Eppendahl, Brett Giles, Julia Goedecke, Björn Gohla, Mamuka
Jibladze, Mikael Johansson, Tom Leinster, Gábor Lukács, Francisco Marmolejo, Samuel
Mimram, Juan Martinez Moreno, Robert A.G. Seely, Sam Staton, and Tim Van der
Linden and I thank each of them warmly. I would like to especially thank Donovan Van
Osdol who proofread every page of the manuscript. He not only caught many minor
typing errors, but made a few mathematical corrections!

Michael Barr
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Introduction
The papers in this volume were presented to the seminar on category theory held during
the academic year 1966-67 at the Forschungsinstitut für Mathematik of the Eidgenössische
Technische Hochschule, Zürich. The material ranges from structural descriptions of cate-
gories to homology theory, and all of the papers use the method of standard constructions
or “triples.”

It will be useful to collect the basic definitions and background in the subject here,
and indicate how the various papers fit in. References are to the bibliography at the end
of the volume.

Before beginning, one must waste a word on terminological confusion. The expression
“standard construction” is the one originally introduced by Godement [Godement (1958)].
Eilenberg–Moore substituted “triple” for brevity [Eilenberg & Moore (1965a)]. The term
“monad” has also come into use. As for the authors of this volume, they all write of:

1. Triples. T = (T, η, µ) is a triple in a category A if T : A // A is a functor, and
η: idA

// T , µ:TT // T are natural transformations such that the diagrams

T TT
Tη //T

T

=

��????????????? TT

T

µ

��

T TT
ηT //T

T

=

��????????????? TT

T

µ

��
TT Tµ

//

TTT

TT

µT

��

TTT TT
Tµ // TT

T

µ

��

commute. η is known as the unit of the triple, µ as the multiplication, and the diagrams
state that η, µ obey right and left unitary and associative laws.

Notation: In the Introduction morphisms will be composed in the order of follow-
ing arrows. In particular, functors are evaluated by being written to the right of their
arguments.

As for the natural transformations, if ϕ:S // T is a natural transformation of
functors S, T : A // B, and ψ:U // V where U, V : B // C, then ϕU :SU // TU ,
Sψ:SU // SV are natural transformations whose values on an object A ∈ A are

AϕU = (Aϕ)U : (AS)U // (AT )U,

ASψ = (AS)ψ: (AS)U // (AS)V

Other common notations are (ϕU)A, (ϕ∗U)A as in [Godement (1958)], as well as
(Uϕ)A, . . . . This should make clear what is meant by writing Tη, ηT :T // TT , trans-
formations which are in general distinct.

The original examples which were of interest to Godement were:

(a) the triple in the category of sheaves over a space X whose unit is F //C 0(X,F ),
the canonical flasque embedding, and
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(b) the triple ( )⊗ R generated in the category of abelian groups A by tensoring with
a fixed ring R; the unit and multiplication in this triple are derived from the ring
structure:

A
a⊗1 // A⊗R A⊗R⊗R a⊗r0r1 // A⊗R

It was Godement’s idea that by iterating the triple simplicial “resolutions” could be
built up and homology theories obtained. For example, the complex of sheaves

0 //F // C 0(X,F ) //// C 0(X,C 0(X,F )) ////// · · ·

gives rise to sheaf cohomology. Although restricted to abelian categories, this was the
prototype of the general homology theories to which triples lead.

Note that the situation dualizes. A cotriple in a category B is a triple G = (G, ε, δ)
where G: B //B, ε:G // idB, δ:G // GG and counitary and coassociative axioms
are satisfied.

2. Algebras over a triple. A T-algebra [Eilenberg & Moore (1965a)] is a pair (X, ξ)
where X ∈ A and ξ:AT //A is a unitary, associative map called the T-structure of the
algebra:

X XT
Xη //X

X

=

��????????????? XT

X

ξ

��
XT X

ξ
//

XTT

XT

ξT

��

XTT XT
Xµ // XT

X

ξ

��

f : (X, ξ) // (Y, ϑ) is a map of T-algebras if f :X // Y in A and is compatible with
T-structures: fT.ϑ = ξf .

The category of T-algebras is denoted by AT.
For example, if A is the category of abelian groups and T is the triple ( )⊗R, then a

T-structure on an abelian group A is a unitary, associative operation A⊗R //A. Thus
AT is the category of R-modules.

Many other intuitive examples will soon appear. An example of a dual, less obvious
kind arises when a functor M // C is given. By taking the direct limit of all maps
M //X where M ∈M, one obtains a value of a so-called singular cotriple, XG. The
corresponding coalgebras, that is, objects equipped with costructures X // XG, have
interesting local (neighborhood) structures. Appelgate-Tierney study this construction in
this volume (“Categories with models”) taking for M //C such model subcategories as
standard simplices, open sets in euclidian space, spectra of commutative rings, . . . .

3. Relationship between adjoint functors and triples. Recall that an adjoint
pair of functors [Kan (1958a)] consists of functors F : A // B, U : B // A, together
with a natural isomorphism

HomA(A,BU)
∼= // HomB(AF,B)
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for all objects A ∈ A, B ∈ B.
Putting B = AF we get a natural transformation η: idA

// FU called the unit or
front adjunction. Putting A = BU , we get ε:UF // idB, the counit or back adjunction.
These natural transformations satisfy

F FUF
ηF //F

F

=

��????????????? FUF

F

Fε

��

U UFU
Uη //U

U

=

��????????????? UFU

U

ηU

��

P. Huber [Huber (1961)] observed that

T =


T = FU : A //A

η : idA
// T

µ = FεU :TT // T
G =


G = UF : B //B

ε :G // idB

δ = UηF :G //GG

are then triple and cotriple in A and B, respectively. This remark simplifies the task of
constructing triples. For example, Godement’s example () above is induced by the adjoint
pair of functors

Sheaves(X0)
f∗ //oo
f∗

Sheaves(X),

where X0 is X with the discrete topology and f :X0
//X is the identity on points.

Conversely, Eilenberg–Moore showed [Eilenberg & Moore (1965a)] that via the AT

construction triples give rise to adjoint functors. There is an obvious forgetful or underlying
A-object functor UT: AT // A, and left adjoint to UT is the free T-algebra functor
FT: A //AT given by AFT = (AT,Aµ). The natural equivalence

HomA(A, (X, ξ)UT)
∼= // HomAT(AFT, (X, ξ))

is easily established.
Thus, granted an adjoint pair A // B // A, we get a triple T = (T, η, µ) in A,

and we use the AT construction to form another adjoint pair A //AT. To relate these
adjoint pairs we resort to a canonical functor

B

A

B ATΦ //AT

A

U

��?????????????

UT

���������������__

F

????????????? ??

FT

�������������

with the properties FΦ = FT, U = ΦUT. Φ is defined by BΦ = (BU,BεU). Its values
are easily verified to be T-algebras. Intuitively, Bε:BUF // B is the canonical map
of the free object generated by the B “onto” B, and the T-structure of BΦ is just the
A-map underlying that.
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4. Tripleability. The adjoint pair (F,U) is tripleable [Beck (1967)] if Φ: B //AT is
an equivalence of categories.

Sometimes Φ is actually required to be an isomorphism of categories. This is particu-
larly the case when the base category A is the category of sets.

Readers who replace “triple” with “monad” will replace “tripleable” with “monadic”.
Intuitively, tripleableness of (F,U) means that the category B is definable in terms of

data in A, and that U : B // A is equivalent to a particularly simple sort of forgetful
functor.

Examples.

(a) Let V be an equational category of universal algebras (variety), that is, the objects of
V are sets with the algebraic operations subject to equational conditions (groups,
rings, Lie algebras, . . . , but not fields, whose definition requires mention of the
inequality x 6= 0). The adjoint pair A //V //A is tripleable, where V //A is
the underlying set functor and A //V is the free V -algebra functor ([Beck (1967)],
and see [Lawvere (1963)] for the introduction of universal algebra into category
theory). In fact, if the base category A is that of sets, F. E. J. Linton shows that
triples and equational theories (admitting a just amount of infinitary operations) are
entirely equivalent concepts ([Linton (1966a)], and “Outline of functorial semantics”,
this volume). From the practical standpoint, formulations in term of triples tend to
be concise, those in terms of theories more explicit. The components T, η, µ of the
triple absorb all of the operational and equational complications in the variety, and
the structure map XT //X of an algebra never obeys any axiom more involved
than associativity.

(b) In general, tripleableness implies a measure of algebraicity. The adjoint pair Sets
// Topological spaces // Sets (obvious functors) is not tripleable. But the paper

“A triple theoretic construction of compact algebras” by E. Manes (this volume)
shows that compactness is in this sense an “algebraic” concept.

(c) Let A be the category of modules over a commutative ring. Linear algebras are
often viewed as objects A ∈ A equipped with multiplicative structure. But here the
universal-algebra description of structure is inappropriate, a binary multiplication,
for example, not being a K-linear map A×A //A, but rather a K-bilinear map.
It was precisely this example which motivated the intervention of triples. Let A be
any known category of linear algebras (associative, commutative, Lie, . . . ). Then if
the free algebra functor exists, the adjoint pair A //A //A is tripleable.

In view of the applicability of the tripleableness concept in algebra and in geometry
(descent theory), it is useful to have manageable tests for tripleableness. Such tests are
discussed and applied by F. E. J. Linton in his paper “Applied functorial semantics, II”
(this volume).



10

5. Homology. Let A F //B U //A be an adjoint pair, ε:UF // idB the counit, and
let X ∈ B. Iterating the composition UF and using ε to construct face operators, we
construct a simplicial “resolution” of X:

X oo XUF oooo X(UF )2 oooooo · · ·

If appropriate coefficient functors are applied to this resolution, very general homology
and cohomology theories arise. These theories are available whenever underlying pairs of
adjoint functors exist. When the adjoint pairs are tripleable these theories enjoy desirable
properties, notably classification of extensions and principal homogeneous objects [Beck
(1967)].

A lengthy study of such homology theories is given in this volume by Barr–Beck,
“Homology and standard constructions”. Cotriple homology is well known to encompass
many classical algebraic homology theories, and agrees with general theories recently set
forth in these Lecture Notes by M. André [André (1967)] and D. G. Quillen [Quillen
(1967a)].

In “Composite cotriples and derived functors”, Barr studies the influence on homology
of so-called “distributive laws” between cotriples. Such distributive laws are discussed
elsewhere in this volume by Beck, in a paper which is more in the spirit of universal
algebra.

The classical “obstruction” theory for algebra extensions has not yet been carried
over to triple cohomology. In his paper “Cohomology and obstructions: Commutative
algebras”, Barr works out an important special case, obtaining the expected role for H2

(the dimension indices in triple cohomology being naturally one less than usual).
Finally, one has to wonder what the relationship between this adjoint-functor “simpli-

cial” homology and classical derived-functor theories is. In the final paper in this volume,
“On cotriple and André (co)homology, their relationship with classical algebra”, F. Ul-
mer shows that on an appropriate functor category level, triple cohomology appears as the
satellite theory—in the abelian category sense—of the not-so-classical “Kan extension”
of functors. Incidentally, as triple cohomology, that is to say, general algebra cohomology,
must not vanish on injective coefficients, it cannot be referred to categories of modules
after the fashion of Cartan–Eilenberg–Mac Lane.

This then summarizes the volume—apart from mention of F. W. Lawere’s paper “Or-
dinal sums and equational doctrines”, which treats in a speculative vein of triples in
the category of categories itself—the hope is that these papers will supply a needed and
somewhat coherent exposition of the theory of triples. All of the participants in the
seminar must express their gratitude to the E. T. H., Zürich, and the Director of the
Forschungsinstitut, Professor B. Eckmann, for the hospitality and convenient facilities of
the Forschungsinstitut in which this work was done.



An Outline of Functorial Semantics

F. E. J. Linton 1

This paper is devoted to the elucidation of a very general structure-semantics adjoint-
ness theorem (Theorem 4.1), out of which follow all other structure-semantics adjointness
theorems currently known to the author. Its reduction, in Section 10, to the classical the-
orem in the context of triples requires a representation theorem (see Section 9) asserting
that the categories of algebras, in a category A , tentatively described in Section 1 (and
used in [Linton (1969)] in the special case A = S ), “coincide” with the categories of
algebras over suitably related triples, if such exist.

Sections 7 and 8 pave the way for this representation theorem. A detailed outline of
the contents of Sections 3–11 is sketched in Section 2. Portions of this paper fulfill the
promises made in [Linton (1966)] and at the close of Section 6 of [Linton (1966a)].

1. Introduction to algebras in general categories.

Functorial semantics generalizes to arbitrary categories the classical notion [Birkhoff
(1935)] of an abstract algebra. This notion is usually [Cohn (1965), S lomiński (1959)]
defined, in terms of a set Ω of “operations”, a set-valued “arity” function2 n defined on
Ω, and a collection E of “laws3 governing the operations of Ω”, as a system (A ,A) con-
sisting of a set A so equipped with an Ω-indexed family A = {A(ϑ) | ϑ ∈ Ω} of n(ϑ)-ary
operations

A(ϑ) : An(ϑ) // A (ϑ ∈ Ω)

that the body of laws is upheld. An algebra homomorphism from (A,A) to (B,B) is
then, of course, a function g : A //B commuting with all the operations, i.e., rendering
commutative all the diagrams

A Bg
//

An(ϑ)

A

A(ϑ)

��

An(ϑ) Bn(ϑ)gn(ϑ) // Bn(ϑ)

B

B(ϑ)

��

(ϑ ∈ Ω)

Among the algebras of greatest interest in functorial semantics are those arising by a
very similar procedure from a functor

U : X //A

1The research here incorporated, carried out largely during the author’s tenure of an N.A.S.-N.R.C.
Postdoctoral Research Fellowship at the Research Institute for Mathematics, E.T.H., Zurich, while on
leave from Wesleyan University, Middletown, Connecticut, was supported in its early stages by a Faculty
Research Grant from the latter institution.

2Its values are often constrained to be ordinals, or cardinals, or positive integers.
3E.g., associativity laws, unit laws, commutativity laws, Jacobi identities, idempotence laws, etc.
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To spotlight the analogy, we first introduce some suggestive notation and terminology,
writing S for a category of sets (in the sense either of universes [Sonner (1962)] or of
Lawvere’s axiomatic foundations [Lawvere (1964), Lawvere (1966)]) in which A ’s hom
functor takes values.

Given the functor U : X // A , we define, for each A -morphism f : k // n, a
natural transformation

U f : Un // Uk

from the functor

Un = A (n, U(−)) : X //S

to the functor

Uk = A (k, U(−)) : X //S

by posing

(U f )X = A (f, UX) : UnX // UkX

(X ∈ |X |). Moreover, whenever, A,B, n, k are objects in A and f : k //n, g : A //B
are A -morphisms, we set

An = A (n,A) ∈ |S |,
Af = A (f, A) : An // Ak, and

gn = A (n, g) : An //Bn.

The class
n. t.(Un, Uk) (resp. S (An, Ak))

is to be thought of as consisting of all natural k-tuples of (or all k-tuple-valued) n-ary
operations on U (resp. on A).

A U-algebra is then defined to be a system (A,A) consisting of an object A ∈ |A | and
a family

A = {An,k | n ∈ |A |, k ∈ |A |}

of functions
An,k : n. t.(Un, Uk) //S (An, Ak)

satisfying the identities

An,k(U
f ) = Af (f ∈ A (k, n)) (1.1)

An,m(ϑ′ ◦ϑ) = An,m(ϑ′) ◦An,m(ϑ) (ϑ : Un // Uk, ϑ′ : Uk // Um) (1.2)
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Writing (compare [Eilenberg & Wright (1967)]a)

{An,k(ϑ)}(a) = ϑ ? a ( = ϑ ?A a, when one must remember A) (1.3)

whenever ϑ : Un // Uk and a ∈ An, the identities (1.1) and (1.2) become

U f ? a = a ◦ f (f ∈ A (k, n), a ∈ An) (ALG 1)

(ϑ′ ◦ϑ) ◦ a = ϑ′ ? (ϑ ? a) (ϑ : Un // Uk, ϑ′ : Uk // Um, a ∈ An) (ALG 2)

As U -algebra homomorphisms from (A,A) to (B,B) we admit all A -morphisms g : A //B
making the diagrams

(1.4)

Ak Bk

gk
//

An

Ak

An,k(ϑ)

��

An Bngn // Bn

Bk

Bn,k(ϑ)

��

commute, for each natural operation ϑ on U ; in the notation of (1.3), this boils down to
the requirement

g ◦(ϑ ? a) = ϑ ? (g ◦ a) (ϑ : Un // Uk, a ∈ An) (ALG 3)

We write U -Alg for the resulting category of U -algebras. The prime examples of
U -algebras are the U -algebras ΦU(X), available for each object X ∈ |X |, given by the
data

ΦU(X) = (UX,AU(X)), (1.5)

where, in the notation of (1.3), AU(X) is specified by

ϑ ? a = ϑX(a).

It is a trivial consequence of the defining property of a natural transformation that each
A -morphism U(ξ) (ξ : X //X ′) is a U -algebra homomorphism

U(ξ) : ΦU(X) // ΦU(X ′)

and that these passages provide a functor

ϕU : X // U -Alg :

{
X � // ΦU(X),
ξ � // U(ξ)

aEditor’s footnote: Although this paper has a different title from the original reference, this is the
only paper by Eilenberg and Wright found in MathSciNet.
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called the semantical comparison functor for U .
We must not ignore the underlying A -object functor

| |U : U -Alg //A :

{
(A,A) � // A,

g � // g.

For one thing, the triangle

X

A

U

��?????????????X U -Alg
ΦU // U -Alg

A

| |U
��������������

commutes. For another, awareness of | |U is the first prerequisite for a much more con-
cise description of U -Alg as a certain pullback. The only other prerequisite for this is
the recognition that the system A in a U -algebra (A,A) is nothing but the effects on
morphisms of a certain set-valued functor, again denoted by A, defined on the following
category TU , the (full) clone of operations on U : the objects and maps of TU are given
by

|TU | = |A |,
TU(n, k) = n. t.(Un, Uk);

the composition in TU is the usual composition of natural transformations. We point out
the functor

expU : A ? // TU :

{
n � // n,
f � // U f ,

and remark that the functions An,k are obviously the effects on morphisms of a functor
(necessarily unique)

A : TU //S

whose effect on objects is simply
A(n) = An.

(Proof: (1.1) and (1.2).) Likewise, given a U -algebra homomorphism g : (A,A) //(B,B),
the commutativity of (1.4) makes the system {gn : An //Bn | n ∈ |A |} a natural trans-
formation from A to B. In this way, the functor

U -Alg // (TU ,S )

making the square

(1.6)

A (A ∗,S )
Y

//

U -Alg

A

| |U

��

U -Alg (TU ,S )// (TU ,S )

(A ∗,S )

(expU ,S )

��
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commute; here functor categories and induced functors between them are denoted by
parentheses, and Y is the Yoneda embedding A //A (−, A). In Section 5 we shall see
(it can be proved right away, with virtually no effort)

Observation 1.1. Diagram (1.6) is a pullback diagram.

With this introduction to algebras in general categories behind us, we turn to a de-
scription of what lies ahead.

2. General plan of the paper.

Motivated both by Observation 1.1 and the desire to recapture the structure-semantics
adjointness of [Lawvere (1963)], we spend the next two sections, with a fixed functor

j : A0
//A ,

studying the passage from

V : A ?
0

// C

to the A -valued functor M(j)(V ) defined on the pullback of the pullback diagram

A (A ∗
0 ,S )

pullback

A

M(j)(V )

��

pullback (C ,S )// (C ,S )

(A ∗
0 ,S )

(V,S )

��
A (A ∗,S )

Y
// (A ∗,S ) (A ∗

0 ,S )
(j∗,S )

//

the passage from

U : X //A

to the composition

S(j)(U) : A ?
0 j?

//A ?

Y
// (A ,S )

(U,S )
// (X ,S ),

the adjointness relation between M(j) and S(j), and the modification of this adjoint-
ness that results from consideration of the full image cotriple on the (comma) category
(A ?

0 ,Cat). In Section 5 we present some remarks on the constructions of Sections 3-
4, including a proof of Observation 1.1 and an indication of the manner in which the
structure-semantics adjointnesses of [Bénabou (1966), Lawvere (1963), Linton (1966a)]
are recaptured by specializing the functor j.

The next three sections digress from the main line of thought, to present tangential
results, without which, however, the main line of thought cannot easily continue. In
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Section 6, the least important of these digressions, we present two completeness properties
of the categories of algebras arising in Section 4 (slightly less satisfying results along the
same line can be achieved also from those arising in Section 3—we forego them here).
The material of Sections 7-8 is necessitated by the frequent possibility of associating a
triple [Beck (1967)] T = (T, η, µ) to an A -valued functor U : X //A , in the manner
of [Appelgate (1965), Kock (1966), Tierney (1969)]. This can be done, for example, when
U has a left adjoint F : A // X , with front and back adjunctions η : idA

// UF ,
β : FU // idX , by setting

T = UF, η = η, µ = UβF.

It will be seen in Section 9 that if T is a triple suitably associated with U : X //A , the
category of U -algebras and the category A T (constructed in [Eilenberg & Moore (1965a),
Th. 2.2], for example) of T-algebras are canonically isomorphic. To this end, Section 7
reviews the definition of triples, of the categories A T, and of the construction [Kleisli
(1965)] of the Kleisli category of a triple, while Section 8 is devoted to a full elucidation
of the manner in which a triple A can be associated to an A -valued functor.

The above mentioned isomorphism theorem in Section 9 is proved there in two ways:
once by appeal to a general criterion, which depends on a result of Section 6 and on the
availability of a left adjoint to | |U : U -Alg //A , and once (sketchily) by a somewhat
more involved argument that constructs the isomorphism explicitly, still using, of course,
the left adjoint just mentioned.

In section 10, the result of Section 9 is used to recover the structure-semantics ad-
jointness for the context of triples from that of Section 4. Finally, in Section 11, we give a
proof of the isomorphism theorem of Section 9 that is entirely elementary—in particular,
that is quite independent of the knowledge that | |U has a left adjoint, and from which
that fact follows. The exposition of this last section is so arranged that it can be read
immediately after Section 1, without bothering about Sections 3-10.

3. Preliminary structure-semantics adjointness relation.

The granddaddy of all the structure-semantics adjointness theorems is the humble canon-
ical isomorphism

(X , (C ,S )) ∼= (C , (X ,S ))

expressing the symmetry [Eilenberg & Kelly (1966)] of the closed category Cat of cate-
gories. Here we are using (X ,Y ) to denote the category of all functors from X to Y ,
with natural transformations as morphisms.

Until further notice, fix a functor j : A0
//A .

The first prototype of structure and semantics (rel. j)) will be functors passing from
the category (Cat,A ) of A -valued functors U : X // A , with domain X ∈ |Cat|,
to the category (A ?

0 ,Cat) of all functors V : A ?
0

// C with codomain C ∈ |Cat|, and
back again, as outlined in Section 2. Of course, we think of (Cat,A ) and (A ?

0 ,Cat) as
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comma categories [Lawvere (1963)], so that the (Cat,A )-morphisms from U ′ : X ′ //A
to U : X //A are those functors x : X ′ //X satisfying U ′ = U ◦x, while (A ?

0 ,Cat)-
morphisms from V : A ′

0
//C to V ′ : A ?

0
//C ′ are those functors c : C //C ′ satisfying

V ′ = c ◦V .
The proof of the basic lemma below is so completely elementary that it will be omitted.

To find it, just follow your nose.

Lemma 3.1. For each pair of functors U : X // A , V : A ?
0

// C , the canonical
isomorphism

(X , (C ,S )) ∼= (C , (X ,S ))

(where S is a category of sets reeciving A ’s hom functor) mediates an isomorphism

M(j;U, V ) ∼= S(j;U, V ) (3.1)

between the full subcategory M(j;U, V ) ⊂ (X , (C ,S )) whose objects are those functors
F : X // (C ,S ) making the diagram

(3.2)

A (A ∗
0 ,S )

X

A

U

��

X (C ,S )F // (C ,S )

(A ∗
0 ,S )

(V,S )

��
A (A ∗,S )

Y
// (A ∗,S ) (A ∗

0 ,S )
(j∗,S )

//

commute, and the full subcategory S(j;U, V ) ⊂ (C , (X ,S )) whose objects are those
functors G : C // (X ,S ) making the diagram

(3.3)

A ∗
0 (A ,S )

C

A ∗
0

OO

V

C (X ,S )G // (X ,S )

(A ,S )

OO

(U,S )

A ∗
0 A ∗

j∗
// A ∗ (A ,S )

Y
//

commute. Moreover, the isomorphisms (3.1) are natural in the variables U ∈ (Cat,A )
and V ∈ (A ?

0 ,Cat).

The crudest structure and semantics functors (rel. j), to be denoted S(j) and M(j),
respectively, are defined as follows.

Given U : X //A in (Cat,A ), S(j)(U) is the composition

S(j)(U) = (U,S ) ◦Y ◦ j? : A ?
0

//A ? // (A ,S ) // (X ,S ).

It is clear that (x,S ) : (X ,S ) //(X ′,S ) is an (A ?
0 ,Cat)-morphism S(j)(U) //S(j)(U ′)

whenever x : X ′ //X is a (Cat,A )-morphism from U ′ : X ′ //A to U : X //A .
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In the other direction, given V : A ?
0

// C in (A ?
0 ,Cat), define M(j)(V ) to be the

A -valued functor from the pullback Pj
V in the pullback diagram

(3.4)

A (A ∗
0 ,S )

Pj
V

A

M(j)(V )

��

Pj
V (C ,S )// (C ,S )

(A ∗
0 ,S )

(V,S )

��
A (A ∗,S )

Y
// (A ∗,S ) (A ∗

0 ,S )
(j∗,S )

//

.

It is clear, whenever c : C // C ′ is an (A ?
0 ,Cat)-morphism from V : A ?

0
// C to

V ′ : A ?
0

// C ′, that
(c,S ) : (C ′,S ) // (C ,S )

induces a functor Pj
V ′

// Pj
V between the pullbacks that is actually a (Cat,A )-

morphism M(j)(V ′) //M(j)(V ).
With these observations, it is virtually automatic that S(j) and M(j) are functors

S(j) : (Cat,A ) // (A ?
0 ,Cat)?,

M(j) : (A ?
0 ,Cat)? // (Cat,A ).

Theorem 3.1. (Preliminary structure-semantics adjointness.) The functor S(j) is
(right) adjoint to M(j).

Proof. By the definition of pullbacks, a functor from S to Pj
V “is”

a pair of functors from X making the diagram

A (A ∗
0 ,S )

X

A
��

X (C ,S )// (C ,S )

(A ∗
0 ,S )
��

A (A ∗,S )
Y

// (A ∗,S ) (A ∗
0 ,S )

(j∗,S )
//

commute. Hence a morphism from U : X //A to M(j)(V ) “is” a functor F : X //(C ,S )
making diagram (3.2) commute, i.e., “is” an object ofM(j;U, V ), as defined in Lemma 3.1.

It is even easier to see that the (A ?
0 ,Cat)?-morphisms from S(j)(U) to V coincide with

the objects of the category S(j;U, V ) of Lemma 3.1. Consequently, the desired natural
equivalence

(Cat,A )(U,M(j)(V )) ∼= (A ?
0 ,Cat)?(S(j)(U), V )

( ∼= (A ?
0 ,Cat)(V,S(j)(U)))

is delivered by the isomorphism (3.1) of Lemma 3.1.
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Remark. In fact, (Cat,A ) and (A ?
0 ,Cat) are hypercategories [Eilenberg & Kelly

(1966)], both S(j) and M(j) are hyperfunctors, and the adjointness relation is a hyperad-
jointness. The same remark will apply to the adjointness of Theorem 4.1; however, we
know of no use for the stronger information.

4. Full images and the operational structure-semantics adjointness
theorem.

It is time to introduce the full image cotriple in (A ?
0 ,Cat). We recall that the full image

of a functor V : A ?
0

// C is the category TV whose objects and maps are given by the
formulas

|TV | = |A0|
TV (n, k) = C (V n, V k),

and whose composition rule is that of C . Then V admits a factorization

V = V ◦V : A ?
0

//TV
// C

where V and V are functors

V : A ?
0

//TV :
{n � // n,
f � // V f,

V : TV
// C :

{
n � // V n,
g � // g.

Moreover, if c : C // C ′ is an (A ?
0 ,Cat)-morphism from V to V ′ (i.e., if c ◦V = V ′),

then

Tc : TV
//TV ′ :

{n � // n
g � // cg

(is the only functor that) makes the diagrams

A ∗
0

TV ′
V ′ ''OOOOOOOO

TV

A ∗
0

77
V

ooooooooo TV

TV ′

��
TV ′ C ′

V ′
//

TV

TV ′

��

TV C
V // C

C ′

c

��

commute. Thus V � //V , c � //Tc is an endofunctor on (A ?
0 ,Cat), and the maps V : V //V

are (A ?
0 ,Cat)-natural in V . Since clearly V = V , we are in the presence of an idempotent

cotriple on (A ?
0 ,Cat).
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We use this cotriple first to define a clone over A0 as a functor V ∈ |(A ?
0 ,Cat)| for

which V = V—the full subcategory of (A ?
0 ,Cat) consisting of clones will be denoted

Cl(A0). Next, the formulas

Sj(U) = S(j)(U) : A ?
0

//TS(j)(U),

Sj(x) = TS(j)(x),

Mj = M(j)|Cl(A0),

serve to define functors

Sj : (Cat,A ) // (Cl(A0))?,

Mj : (Cl(A0))? // (Cat,A ),

called operational structure and operation semantics (rel. j), respectively; they will be
said to assign an A -valued functor U (resp., a clone over A0) its structure clone (resp.,
its category of algebras in A ) (rel. j).

Given V = V ∈ |Cl(A0)| and U ∈ |(Cat,A )|, Theorem 3.1 and the idempotence of
the full image cotriple immediately yield

(Cat,A )(U,Mj(V )) ∼= (A ?
0 ,Cat)(V,S(j)(U)) = (A ?

0 ,Cat)(V ,S(j)(U))

∼= Cl(A0)(V ,S(j)(U)) = Cl(A0)(V,Sj(U)),

identifications whose obvious naturality in U and V completes the proof of

Theorem 4.1. (Operational structure semantics adjointness.) Operational structure
(rel. j), Sj, is (right) adjoint to operational semantics (rel. j), Mj.

5. Remarks on Section 4.

The first two remarks establish a generalization of Observation 1.1 to the (rel. j) case.
They involve a fixed clone V : A ?

0
// C and a fixed functor j : A0

//A .
1. A one-one correspondence is set up between V -algebras in A (rel. j), i.e., objects

(A,A) of the pullback Pj
V , and systems (A, ?) consisting of

i) an object A of A ,

ii) pairing (ϑ, a) � // ϑ ? a : C (n, k)× Aj(n) // Aj(k)

satisfying the identities

(ϑ′ ◦ϑ) ? a = ϑ′ ? (ϑ ? a) (ϑ, ϑ′ C -morphisms), (5.1)

V (f) ? a = a ◦ j(f) (f an A0-morphism), (5.2)

by the equations

{An,k(ϑ)}(a) = ϑ ? a, (5.3)

A(n) = A (jn,A) = Aj(n). (5.4)
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Proof. If (A,A) ∈ |Pj
V |, formula (5.3) gives rise to a system ii) of pairings. That

identities (5.1) and (5.2) are valid for the resulting (A, ?) is a consequence of functoriality
of A and the relation

A ◦V = A (j(−), A). (5.5)

Conversely, if (A, ?) is a system i), ii) satisfying (5.1) and (5.2), the attempt to define a
functor A satisfying (5.5) by means of (5.3) and (5.4) is successful precisely because of
ii), (5.1) and (5.2), while (5.5) guarantees that (A,A) is in Pj

V . The biunivocity of these
correspondences is clear.

2. With the functor j : A0
//A and the clone V : A ?

0
// C still fixed, let (A,A)

and (B,B) be objects of Pj
V . Then, given g ∈ A (A,B), there is never more than one

natural transformation ϕ : A //B with

(g, ϕ) ∈Pj
V ((A,A), (B,B)), (5.6)

and there is one if and only if, in the notation of (5.3),

g ◦(ϑ ? a) = ϑ ? (ga) (5.7)

for all a ∈ Ajn, all ϑ ∈ C (n, k), and all n, k ∈ |A0|. Conversely, given the natural
transformation ϕ : A //B, there is a g ∈ A (A,B) satisfying (5.6) if the composition

A
Y
// (A ?,S )

(j?,S )
// (A ?

0 ,S ) (5.8)

is full, and there is at most one g if (5.8) is faithful. Hence if j is dense (this means that
(5.8) is full and faithful cf. [Lawvere (1963)] or [Ulmer (1968a)]—[Isbell (1960)] uses the
term adequate), the functor

Pj
V

// (C ,S ) :

{
(A,A) � // A,
(g, ϕ) � // ϕ,

(5.9)

arising in the pullback diagram (3.4) is full and faithful (indeed, the density of j is a
necessary and sufficient condition for (5.9) to be full and faithful for every clone V on
A0).

Proof. Given g : A // B, the requirement that (5.6) hold forces the components of ϕ
to be

ϕn = A (j(n), g) : Aj(n) //Bj(n),

and that takes care of uniqueness. That this system {ϕn}n∈|A0| is a natural transforma-
tion A // B iff g satisfies the identities (5.7) is elementary definition juggling. The
converse assertions are evident; the next assertion follows from them; and the statement
in parentheses is seen to be true by taking V = id: A ?

0
//A ?

0 when j is not dense.
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The next remark points out some dense functors j : A0
//A .

3. For any category A , idA : A // A is dense (this is just part of the Yoneda
Lemma). Moreover, if I is any set and Sℵ is the full subcategory of the category S of
sets and functions consisting of the cardinals (or sets of cardinality) < ℵ (ℵ ≥ 2), then
the inclusion Sℵ //S and the induced inclusion (Sℵ)

I //S I are both dense.
The following remarks interpret the results of Section 4 in the settings indicated in

Remark 3, using Remarks 1 and 2 when necessary.
4. When j : A0

// A is the inclusion in S of the full subcategory Sℵ0 of finite
cardinals, Theorem 4.1 is Lawvere’s structure-semantics adjointness theorem [Lawvere
(1963)].

5. If I is a set and j : A0
//A is the full inclusion (Sℵ)

I //S I , Theorem 4.1 is
Bénabou’s structure-semantics adjointness theorem [Bénabou (1966)].

6. When j = idS , Theorem 4.1 is the structure semantics adjointness theorem [Lin-
ton (1966a), Section 2]. 7. When j = idA , then, for any U : X // A , Sj(U) =
expU : A ? // TU , Pj

Sj(U)
= U -Alg, MjSj(U) = | |U , Observation 1.1 is the content of

Remarks 1 and 2, and ΦU : X // U -Alg is just the functor corresponding, under the
adjointness of Theorem 4.1, to

idSj(U) ∈ Cl(A)(Sj(U),Sj(U)) ∼= (Cat,A )(U,MjSj(U)),

i.e., is the front adjunction for the operational structure-semantics adjointness.
8. When j is the inclusion Sℵ //S , Theorem 4.1 is the adjointness implicit in the

first paragraph of [Linton (1966a), Section 6].

6. Two constructions in algebras over a clone.

Proposition 6.1. (Mj(V ) creates (inverse) limits.) Let V : A ?
0

// C be a clone over
A0, and let j : A0

//A be a functor. Given a functor X : ∆ //Pj
V , whose values at

objects and morphisms of ∆ are written Xδ = (Aδ,Aδ) and X(i) = (gi, ϕi), respectively,
and given an object A ∈ |A | and A -morphisms pδ : A // Aδ (δ ∈ |∆|) making

A = limoo Mj(V ) ◦X : ∆ //Pj
V

//A ,

there are an object Q of Pj
V and maps qδ : Q //Xδ (δ ∈ |∆|), uniquely determined by

the requirements

Mj(V )(qδ) = pδ; (6.1)

moreover, via the projections qδ, Q = limoo X.

Proof. If Q = (B,B) and qδ = (gδ, ϕδ) satisfy (6.1), we must have B = A and gδ = pδ.
Remark 5.2 then identifies ϕδ. This it need only be seen that there is precisely one functor
B : C //S such that, in the notation of (5.3),

pδ ◦(ϑ ? a) = ϑ ? (pδ ◦ a) (ϑ ∈ C (n, k), a ∈ Aj(n)). (6.2)
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But that’s an obvious consequence of the limit property of A. That (A,B) is then
an object of Pj

V is, again using the limit property of A and Remark 5.1, an auto-
matic verification, and (6.2), using Remark 5.2, bespeaks the fact that pδ “is” a Pj

V -
morphism from (A,B) to (Aδ,Aδ). Finally, given a compatible system of Pj

V -morphisms
(K,K) // (Aδ,Aδ), the A -morphism components determine a unique A -morphism
K // A, which, using (6.2) and Remark 5.2, it is not hard to see “is” a Pj

V -morphism
(K,K) // (A,B). This completes the proof.

Proposition 6.2. Mj(V ) creates Mj(V )-split coequalizers.) Let V : A ?
0

// C be a
clone over A0, let j : A0

// A be a functor, let (A,A) and (B,B) be two V -algebras,
let K ∈ |A |, and let

(A,A)
(f,ψ) //

(g,ϕ)
// (B,B)

and

A oo
d1

B
p //oo
d0

K

be two Pj
V -morphisms and three A -morphisms satisfying

pf = pg,
pd0 = idK ,
d0p = gd1,
idB = fd1.

(6.3)

Then there is a Pj
V -morphism (q, ρ) : (B,B) // (C,K) uniquely determined by the

requirement that Mj(V )(q, ρ) = p; moreover, (q, ρ) is then a coequalizer of the pair
((f, ψ), (g, ϕ)).

Proof. Clearly C = K and q = p, so ρ will be forced; we must see there is a unique
functor K : C // S making (K,K) a V -algebra and p a Pj

V -morphism. Now, since
p : B // K is a split epimorphism, each function pj(n) : Bj(n) // Kj(n) is onto. This
fact ensures the uniqueness of any function K(ϑ) (ϑ ∈ C (n, k)) making the diagram

Bj(k) Cj(k)

pj(k)
//

Bj(n)

Bj(k)

B(ϑ)

��

Bj(n) Cj(n)pj(n) // Cj(n)

Cj(k)

K(ϑ)

��

commute. Their existence is ensured, using the section d0, by the formula

K(ϑ) = pj(k) ◦B(ϑ) ◦ d
j(n)
0 (i.e., ϑ ? a = p ◦(ϑ ? (d0

◦ a))),
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as the following calculations relying on (6.3) show:

K(ϑ) ◦ pj(n) = pj(k) ◦B(ϑ) ◦ d
j(n)
0

◦ pj(n) = pj(k) ◦B(ϑ) ◦ gj(n) ◦ d
j(n)
1

= pj(k) ◦ gj(k) ◦A(ϑ) ◦ d
j(n)
1 = pj(k) ◦ f j(k) ◦A(ϑ) ◦ d

j(n)
1

= pj(k) ◦B(ϑ) ◦ f j(n) ◦ d
j(n)
1 = pj(k) ◦B(ϑ).

That the resulting (K,K) is in Pj
V easy to see, using only the fact that each pj(n) is

surjective. Finally, to see that p : (B,B) // (K,K) is the coequalizer of (f, ψ) and
(g, ϕ), note that the A -morphism component of any Pj

V -morphism from (B,B) having
equal compositions with f and g factors uniquely through K (via its composition with
d0); but this factorization is a Pj

V -morphism from (K,K) (in the sense of Remark 5.2)
by virtue simply of the surjectivity of each pj(n). This completes the description of the
proof.

7. Constructions involving triples.

We recall [Eilenberg & Moore (1965a)] that a triple T on a category A is a system
T = (T, η, µ) consisting of a functor

T : A //A

and natural transformations

η : idA
// T, µ : TT // T

satisfying the relations

µ ◦Tη = idT , (7.1)

µ ◦ ηT = idT , (7.2)

µ ◦µT = µ ◦Tµ. (7.3)

It is often possible to associate a triple on A to an A -valued functor U : X //A . For
example, whenever U has a left adjoint F : A //X with front and back adjunctions
η : idA

// UF , β : FU // idX , it is well known (cf. [Eilenberg & Moore (1965a),
Prop. 2.1] or [Huber (1961), Th. 4.2*]) that

(UF, η, UβF ) (7.4)

is a triple on A . More general situations in which a triple can be associated to U are
discussed in Section 8. In any event, it will turn out (in Section 9) that, when T is a triple
on A suitably associated to an A -valued functor U : X //A , the category U -Alg of
Section 1 is canonically isomorphic with the category A T (constructed in [Eilenberg &
Moore (1965a), Th. 2.2], for example) of T-algebras and T-homomorphisms. For the
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reader’s convenience, the definition of A T will be reviewed. Since Kleisli’s construction
[Linton (1966)] of (what we shall call) the Kleisli category associated to a triple is needed in
Section 8, enters into one proof of the isomorphism theorem of Section 9, and is relatively
unfamiliar, we shall review it, here, too. Thereafter, we pave the way for Section 10 with
some trivial observations.

Given the triple T = (T, η, µ) on the category A , a T-algebra in A is a pair (A,α),
where

α : TA // A (7.5)

is an A -morphism satisfying the relations

α ◦ ηA = idA, (7.6)

α ◦µA = α ◦Tα. (7.7)

For example, equations (7.2) and (7.3) bespeak the fact that

FT(A) = (TA, µA)

is a T-algebra, whatever A ∈ |A |.
The category A T of T-algebras has as objects all T-algebras in A and as morphisms

from (A,α) to (B, β) all A -morphisms g : A //B satisfying

g ◦α = β ◦Tg; (7.8)

the composition rule is that induced by composition of A -morphisms. It follows that the
passages

(A,α) � // A,

g � // g

define a functor UT : A T //A , the underlying A -object functor for T-algebras.
On the other hand, it is easy to see that Tf : TA // TB is an A T-morphism from

FT(A) to FT(B) (f ∈ A (A,B)), and it readily follows that the passages

A � // FT(A) = (TA, µA),

f � // Tf

define a functor FT : A //A T. Finally, it can be shown that FT is left adjoint to UT with
front adjunction idA

//UTFT = T given by η and back adjunction β : FTUT // idA T

given by
β(A,α) = α : (TA, µA) = FTUT(A,α) // (A,α).

Consequently, the triple (7.4) arising from this adjunction is precisely the original triple
T = (T, η, µ) itself.
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The Kleisli category associated to the triple T = (T, η, µ) is the category K T whose
objects and maps are given by

|K T| = |A |,
K T(k, n) = A (k, Tn);

the composition rule sends the pair

(s, t) ∈ K T(m, k)×K T(k, n) = A (m,Tk)×A (k, Tn)

to the element
t ◦ s = µn ◦Tt ◦ s ∈ A (m,Tn) = K T(m,n),

the composition symbol on the right denoting composition in A .
Functors fT : A //K T, uT : K T //A are defined by

fT(n) = n, fT(f) = ηn ◦ f (n ∈ A , f ∈ A (k, n)),

uT(n) = Tn, uT(t) = µn ◦Tt (n ∈ A , t ∈ K T(k, n)),

where, again, the composition symbols on the right denote the composition in A . One
observes that the equalities

K T(fTk, n) = K T(k, n) = A (k, Tn) = A (k, uTn)

are A -natural in k and K T-natural in n, hence bespeak the adjointness of uT to fT.
Moreover, the triple (7.4) arising from this adjointness turns out, once again, to be just
T.

Linking A T with K T is the observation that the passages

n � // (Tn, µn) (n ∈ |A |),
t � // µn ◦Tt (t ∈ K T(k, n) = A (k, Tn))

set up a full and faithful functor K T //A T making the diagram

A

K T
fT %%LLLLLLLLL

A T

A

99
FT

rrrrrrrrrr
A T

K T

OO

A

K T

99

uTrrrrrrrrr

A T

A

UT

%%LLLLLLLLLLA T

K T

OO

commute. This observation is based on the identifications

K T(k, n) = A (k, Tn) ∼= A T(FTk, FTn),

and results in an isomorphism (in (A ,Cat)) between fT and the full image of FT.
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8. Codensity triples.

Given a functor U : X //A , there may be a triple T on A whose Kleisli category K T

is isomorphic to (TU)∗ in such a way—say by an isomorphism y : TU // (K T)∗—that
the triangle

A ∗

TU

expU %%LLLLLLLLL

(K T)∗

A ∗

99
(fT)∗

rrrrrrrr
(K T)∗

TU

OO

∼=y

commutes. In that event, the diagram

A (A ∗,S )
Y

//

U -Alg

A

| |U

��

U -Alg ((K T)∗,S )((K T)∗,S )

(A ∗,S )

((fT)∗,S )

��

U -Alg (TU ,S )// (TU ,S ) ((K T)∗,S )
(y−1,S ) //(TU ,S )

(A ∗,S )

(expU ,S )

&&MMMMMMMMMMMMMMMMM

(8.0)

commutes, and its vertices form a pullback diagram

A (A ∗,S )
Y

//

U -Alg

A

| |U

��

U -Alg ((K T)∗,S )// ((K T)∗,S )

(A ∗,S )

((fT)∗,S )

��

(8.1)

Since this pullback representation of U -Alg is more convenient, for the purposes of Section
9, than that (established in Section 5) of Observation 1.1, the present section is devoted
to the establishment of necessary and sufficient conditions for, and the interpretation of,
the availability, given U , of such a triple and such an isomorphism.

In the ensuing discussion, we therefore fix an A -valued functor U : X // A . We
will need the comma categories (n, U) = ({pt.}, Un) constructed (see [Lawvere (1963)]
for related generalities) as follows for each n ∈ |A |. The objects of (n, U) are all pairs
(f,X) with X ∈ |X | and f ∈ UnX = A (n, UX). As morphisms from (f,X) to (f ′, X ′)
are admitted all X -morphisms ξ : X //X ′ satisfying U(ξ) ◦ f = f ′. They are composed
using the composition rule in X , so that the passages

(f,X) � //X

ξ � // ξ

constitute a functor from (n, U) to X , to be denoted

Cn : (n, U) //X
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Now assume, for this paragraph only, that the functor U has a left adjoint. Then
it is known (cf., e.g., [Bénabou (1965)] for details, including the converse) that U must
preserve inverse limits and that the values of the left adjoint F serve as inverse limits for
the functors Cn. (Indeed, the (f,X)th projection from Fn (to X) can be chosen to be the
X -morphism Fn //X corresponding by the adjointness to f : n // UX.) It follows
that UFn serves as inverse limit of the composite

(n, U)
Cn

//X
U
//A (8.2)

Definition [Cf. [Appelgate (1965), Kock (1966), Tierney (1969)]]. U admits
a codensity triple if limoo UCn exists for each n ∈ |A |. A functor T : |A | // |A | will be

said to be a codensity triple for U if each Tn (n ∈ |A |) is accompanied with a system of
maps

{〈f,X〉n : Tn // UX | (f,X) ∈ |(n, U)|} (8.3)

by virtue of which Tn = limoo UCn.

The reader who is disturbed by the fact that a codensity triple for U seems not to
be a triple may use the maps 〈f,X〉n (which we shall often abbreviate to 〈f〉n or even
〈f〉) to define A -morphisms Tg : Tk // Tn (g ∈ A (k, n)), ηn : n // Tn (n ∈ |A |),
and µn : TTn // Tn (n ∈ |A |) by requiring their compositions with the projections
〈f〉 = 〈f〉n to be

〈f〉 ◦Tg = 〈f ◦ g〉, (8.4)

〈f〉 ◦ ηn = f, and (8.5)

〈f〉 ◦µn = 〈〈f〉〉 (= 〈〈f〉n〉Tn), (8.6)

respectively. He may then verify that T becomes a functor, that η and µ are natural
transformations, and that (T, η, µ) is thus a triple (the same triple as (7.4) if U has a left
adjoint F and T is obtained by the prescription in the discussion preceding (8.2)). Finally,
he can prove that TU is isomorphic with the dual (K T)∗ of the Kleisli category K T of
T in the manner described at the head of this section. Since we are after somewhat more
information, including a converse to the emphasized statement above, we prefer what may
seem a more roundabout approach.

A functor U : X //A and a functor T : |A | //|A |may be related in five apparently
different ways, if certain additional information is specified; that T be a codensity triple
for U is one of these ways. The five kinds of information we have in mind are:

I. maps 〈f〉 : Tn // UX (one for each f : n // UX and X ∈ |X |), making T a
codensity triple for U ;

II. functions y (= yn,k) : TU(n, k) // A (k, Tn) making Tn represent the functor
TU(n, expU(−));
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III. a left adjoint to expU : A ∗ //TU , with specified front and back adjunctions, such
that T is the object function of the composition A ∗ // TU

//A ∗;

IV. a triple T whose functor component has object function T , and an isomorphism
y : TU // (K T)∗ satisfying y ◦ expU = (fT)∗;

V. a triple T whose functor component has object function T and functions y =
yn,k : TU(n, k) //A (k, Tn) fulfilling the four conditions:

o) each yn,k is a one-one correspondence,

i) yn,m(ϑ′ ◦ϑ) = µn ◦T (yn,k(ϑ)) ◦ yk,m(ϑ′),

ii) Uηn ◦ y−1
n,Tn(idTn) = U idn ,

iii) yn,k(U
f ) = ηn ◦ f .

The theorem coming up asserts that if U and T are related in any one of these five
ways, they are related in all of them. Section 11 exploits the computational accessibility
of the fifth way; the other ways are more satisfactory from a conceptual point of view.

Theorem 8.1. There are canonical one-one correspondences, given T : |A | // |A | and
U : X // A , among the five specified classes of information relating U and T . In
particular, each codensity triple for U “is”, in one and only one way, a triple T the dual
(K T)∗ of whose Kleisli category is isomorphic to TU in a manner compatible with the
injections (fT)∗ and expU of A ∗. Moreover, this triple structure on T is the one described
above in the formulas (8.4), (8.5) and (8.6)

Proof. What is completely obvious is the one-one correspondence between information
of type II and of type III: all that is being used is the fact (cf. [Mac Lane (1965), Prop.
8.3]) that left adjoints are defined pointwise. To go from information of type IV to that of
type III, observe simply that (y∗)−1 ◦ fT serves as left adjoint to expU in the desired way;
that this sets up a one-one correspondence between these kinds of information is due to
the universal property (described in in [Maranda (1966), Th. 1]) of the Kleisli category.
The major portion of the proof therefore consists in showing that information of types I
and II (resp., of type IV and V) are in one-one correspondence with each other.

For types I and II, we have to recourse to the

Lemma 8.1. Let U : X // A be a functor, let n and k be objects of A and let
k̄ : (n, U) // A be the constant functor with value k. Then there are canonical one-
one correspondences, A -natural in k, among n.t.(k̄, UCn), n.t.(Un, Uk), and the class of
all functors ϑ : (n, U) // (k, U) satisfying Ck ◦ϑ = Cn. Indeed, the information needed
to specify a member of any of these classes is the same.
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Proof. An element ϑ of any of these classes involves a function assigning to each object
X ∈ |X | and each map f : n // UX a new map ϑ(f,X) = ϑX(f) : k // UX, subject
to side conditions. In the first instance, the side conditions are

Uξ ◦ϑ(f,X) = ϑ(Uξ ◦ f,X) (f : n // UX, ξ : X //X ′)

In the second instance, the side conditions are the commutativity of all the squares

UnX ′ UkX ′
ϑX′

//

UnX

UnX ′

Unξ

��

UnX UkX
ϑX // UkX

UkX ′

Ukξ

��

(ξ:X //X ′).

In the third instance, the side conditions, in view of the requirement Ck ◦ϑ = Cn and
the faithfulness of Ck and Cn, are the same as in the first instance. It now takes but a
moment’s reflection to see that the side conditions in the first two instances are also the
same. The naturality in k will be left to the reader.

Continuing with the proof of Theorem 8.1, information of type I results in one-

one correspondences A (k, Tn)
∼= // n.t.(k̄, UCn), natural in k, obtained by composing

with the 〈f〉’s. Information of type II results in one-one correspondences, natural in k,
n.t.(Un, Uk) ∼= A (k, Tn).

The free passage, natural in k, allowed by Lemma 8.1, between n.t.(k̄, UCn) and
n.t.(Un, Uk) thus takes ample care of the I ks +3 II relation.

[For later use, we remark that the resulting functions

y−1
n,k : A (k, Tn) // n.t.(Un, Uk)

send t : k // Tn to the natural transformation y−1
n,k(t) given by

{y−1
n,k(t)}X(a) = 〈idUX〉 ◦Ta ◦ t (X ∈ |X |, a ∈ UnX)] (8.7)

At this point, the reader can easily verify for himself that, in the passage (via II and
III) from I to IV, the codensity triple

T, {{〈f〉 | f ∈ |(n, U)|} | n ∈ |A |}

inherits the triple structure described in (8.4), (8.5) and (8.6): he need only use the
fact that the triple T appearing in IV is the interpretation in A of the co-triple in A ∗

arising (by [Eilenberg & Moore (1965a), Prop. 2.1.*] or [Huber (1961), Th.4.2]) from the
adjoint pair expU : A ∗ // TU , TU //A ∗ resulting in III from the reinterpretation of
the codensity triple as information of type II.

The relation between information of types IV and V is taken care of by another lemma.
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Lemma 8.2. Let U : X //A be a functor, and let T = (T, η, µ) be a triple on A . A
one-one correspondence between the class of all systems of functions

yn,k : n.t.(Un, Uk) //A (k, Tn) (n, k ∈ |A |)

fulfilling the four requirements in V above, and the class of all functors y : TU // (K T)∗

satisfying the two conditions

iv) y ◦ expU = (fT)∗

v) y is an isomorphism of categories

is induced by the passage from the functor y to the system {yn,k} in which yn,k is the effect
of the functor y on the TU -morphisms from n to k.

Proof. Given an isomorphism y : TU // (K T)∗ satisfying iv), and given n and k in
|A |, define yn,k : n.t.(Un, Uk) //A (k, Tn) to be the composition of the sequence

n.t.(Un, Uk) = TU(n, k)
∼=
y
// (K T)∗(n, k) = K T(k, n) = A (k, Tn)

Condition V.o) follows from condition v). Condition V.i) follows immediately from the
functoriality of y, once composition in TU and in K T are recalled. Condition V.iii) follows
from iv). To establish V.ii), apply the isomorphism y to both sides. The right side is
y(U idn) = y(expU(idn)) = (fT)∗(idn), which, viewed as an A -morphism, is just ηn. In
view of the validity of V.i), V.iii) and a triple identity, the left side is

y(Uηn ◦ y−1(idTn)) = µn ◦Tyy
−1idTn ◦ y(Uηn) =

= µn ◦T idTn ◦ ηTn ◦ ηn = µn ◦ ηTn ◦ ηn = ηn.

Since this is what the right side of V.ii) is, after applying y, half the lemma is proved.
For the converse, take a system of functions as envisioned in the lemma, and attempt

to define a functor y : TU // (K T)∗ by setting y(n) = n and, for ϑ : Un // Uk,

y(ϑ) = yn,k(ϑ) ∈ A (k, Tn) = K T(k, n) = (K T)∗(n, k)

This attempt is successful because V.i) and the definition of composition in K T show
that y preserves composition, while V.iii) (with f = idn) and the functoriality of fT show
that y preserves identity maps. Finally, V.iii) yields iv), using nothing but the definitions
of expU and fT, and V.o) yields v), which completes the proof of the lemma, and hence
of the theorem, too.
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One last comment. If T is a codensity triple for U (made into a triple T = (T, η, µ)
by the procedure of (8.4), (8.5) and (8.6), say), define ΦU,T : X //A T by

ΦU,T (X) = (UX, 〈idUX〉), (8.8)

ΦU,T (ξ) = Uξ,

where 〈idUX〉 : TUX // UX is the idUX
th projection. There is no trouble in checking

that ΦU,T is well defined, is a functor, and satisfies UT ◦ΦU,T = U . This functor will turn
out to be the front adjunction for the structure-semantics adjointness in the context of
triples. If T arises as the adjunction triple (UF, η, UβF ) resulting from a left adjoint F
for U , with front and back adjunctions η, β, then the effect of ΦU,T on objects is given
equivalently by

ΦU,T (X) = (UX,UβX).

9. The isomorphism theorem

In this and the following section, we shall write M = MidA and PV = P idA
V .

Theorem 9.1. If T is a codensity triple for the A -valued functor U : X //A , there
is a canonical isomorphism Ψ: U-Alg //A T making the triangle

U-Alg

A

| |U
��????????????

U-Alg A TΨ // A T

A

UT

���������������

commute.

Proof. Step 1. | |U : U -Alg //A is isomorphic to the A -valued functor in the pullback
diagram

A (A ∗,S )//

P(fT)∗

A
��

P(fT)∗ ((K T)∗,S )// ((K T)∗,S )

(A ∗,S )

((fT)∗,S )

��

because of the isomorphism TU
∼=
y
// (K T)∗ provided in Section 8.

Step 2. P(fT)∗
//A has a left adjoint. Indeed, the commutativity of the diagram

A (A ∗,S )
Y

//

K T

A

uT

��

K T ((K T)∗,S )Y // ((K T)∗,S )

(A ∗,S )

((fT)∗,S )

��
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provides a functor Γ: K T //P(fT)∗ .

Lemma 9.1. Γ: K T //P(fT)∗ is full and faithful, Γ ◦ fT : A //P(fT)∗ serves as left

adjoint to M((fT)∗), and the resulting adjunction triple is T.

Proof. Since the diagram

K T

P(fT)∗

Γ

��?????????????K T ((K T)∗,S )Y // ((K T)∗,S )

P(fT)∗

??

������������

commutes, and both the Yoneda functor and

P(fT)∗
// ((K T)∗,S ) (9.1)

are full and faithful (see Remarks 5.2 and 5.3), Γ is full and faithful, too. For the adjoint-
ness statement, the Yoneda Lemma and the fullness and faithfulness of (9.1) deliver

P(fT)∗(Γ ◦ f
Tk, (A,A)) ∼= n.t.(Y fTk,A) ∼= A(fT(k)) =

= A (k,A) = A (k,M((fT)∗)(A,A)),

whose naturality in k ∈ |A | and (A,A) ∈ |P(fT)∗| is left to the reader’s verification.

To compute the adjunction triple, note that M((fT)∗) ◦Γ ◦ fT = uT ◦ fT = T , and that,
when (A,A) = Γ ◦ fTk, the front adjunction, which is whatever A -morphism k // Tk
arises from the identity on ΓfTk, is the A -morphism serving as the identity, in K T, on
k, namely ηk. It follows that, whatever n, k ∈ |A |, the diagram

A (k, uTfTn) A (k, ((fT)∗)fTn)

K T(fTk, fTn)

A (k, uTfTn)

=

��

K T(fTk, fTn) P(fT)∗(Γf
Tk,ΓfTn)

∼= //P(fT)∗(Γf
Tk,ΓfTn)

A (k, ((fT)∗)fTn)

∼=

��

Γ
K T(fTk, fTn)

A (Tk, Tn)

uT &&NNNNNNNNNNNNN
P(fT)∗(Γf

Tk,ΓfTn)

A (Tk, Tn)

M((fT)∗)xxpppppppppppp

A (k, uTfTn) A (k, Tn)=
// A (k, Tn) A (k, ((fT)∗)fTn)=

//

A (Tk, Tn)

A (k, Tn)
��

commutes, since uT = M((fT)∗) ◦Γ and the front adjunctions are the same. But then it
follows that those back adjunctions that are obtained when k = uTfTn (by reversing the
vertical arrows and chasing the identity maps in A upwards) correspond to each other
under Γ. This completes the proof of the lemma.
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Step 3. Apply the most precise tripleableness theorem (e.g., [Manes (1967), Th.
1.2.9])—it asserts that if the functor U : X // A has a left adjoint and creates U -
split coequalizers, the canonical functor ΦU,T : X //A T (defined in (8.8), where T is
the adjunction triple) is an isomorphism—using Lemma 9.1 and Proposition 6.2, to the

functor M((fT)∗) : P(fT)∗
// A to get an isomorphism M((fT)∗)

∼= // UT. Finally,

combine this isomorphism with the isomorphism | |U
∼= //M((fT)∗) of Step 1, to obtain

the desired isomorphism Ψ.

Because this proof is (relatively) short and conceptual, it is somewhat uninformative.
We collect the missing information in

Theorem 9.2. If T is a codensity triple for U : X //A , with associated isomorphism
y : TU // (K T)∗, the isomorphism Ψ: U-Alg //A T provided by the proof of Theorem
9.1 has the following properties.

1. Ψ((A,A)) = (A,α(A)), where α(A) = y−1(idTA) ∗A idA.

2. ΦU,T = Ψ ◦ΦU : X // U-Alg //A T.

3. Ψ−1((A,α)) = (A,A(α)), where ϑ ∗A(α) a = α ◦Ta ◦ y(ϑ);

furthermore, Ψ−1 is the functor portion Φ: A T // U-Alg of the (Cat,A )-morphism
UT //M(expU) corresponding by structure-semantics adjointness to the isomorphism
expU // expUT arising from the identifications

TU(n, k) ∼= A (k, Tn) = (UT)k(FT(n)) ∼= n.t.((UT)n, (UT)k) = TUT(n, k)

Proof. For the first assertion, we calculate the back adjunction for the adjointness of
M((fT)∗) to Γ ◦ fT, and then modify the result appropriately by y. Given the P(fT)∗-
object (A,A), we chase idA ∈ A (A,A) through the adjunction identification to the natural
transformation

K T(−, fTA) // A (9.2)

sending t ∈ K T(k, fTA) to {A(t)}(a) ∈ A(k) = Ak. To find the A -morphism component
of the P(fT)∗-morphism having (9.2) as its natural transformation component, we must

apply the Yoneda Lemma to its value under ((fT)∗,S ). The resulting functors are

K T(fT(−), fTA) = A (−, TA)

and
A ◦ fT = A (−, A);

the natural transformation still has the same components; so the Yoneda Lemma produces
A(idTA)(idA). Hence ΦU,T ((A,A)) = (A,A(idTA)(idA)), and the effect of Ψ is therefore as
asserted.
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For point 2, it suffices to observe that α(AU(X)) = 〈idUX〉 (see (1.5) and (8.8)). But,
in fact, using (8.7),

α(AU(X)) = y−1(idTUX) ∗AU (X) idUX = {y−1(idTUX)}X(idUX)

= 〈idUX〉 ◦T (idUX) ◦ idTUX = 〈idUX〉.

To settle point 3, it is enough to show, where Φ: A T // U -Alg is obtained by the
indicated adjointness, that Φ(A,α) = (A,A(α)) and that Ψ ◦Φ = idA T . Now Φ is the
composition

A T
Φ
UT // UT-Alg

∼= // U -Alg, (9.3)

ΦUT((A,α)) = (A,AUT(A,α)), and, since α : (TA, µA) // (A,α) is the back adjunction
FTUT(A,α) // (A,α), it follows from (1.5) that

ϑ′ ∗A
UT (A,α) a = α ◦Ta ◦ϑ′.

Applying the isomorphism, therefore, Φ(A,α) = (A,A(α)). That Ψ ◦Φ = idA T now
follows immediately from the computation

α(A(α)) = y−1idTA ∗A(α) idA = α ◦T idA ◦ y(y−1idTA) (9.4)

= α ◦ idTA ◦ idTA = α

Theorems 9.1 and 9.2 conspire jointly to prove Theorem 9.3 below, a more elementary,
though less conceptual, proof of which appears in Section 11. To set up Theorem 9.3, we
place ourselves (at first) in a more general setting, letting U : X //A and T = (T, η, µ)
be an arbitrary A -valued functor and a possibly unrelated triple on A . Then, given
functions

yn,k : n.t.(Un, Uk) //A (k, Tn) (n, k ∈ |A |)

and an A -morphism α : TA // A, define a system Ay(α) = {(Ay(α))n,k|n, k ∈ |A |} of
functions

(Ay(α))n,k : n.t.(Un, Uk) //S (An, Ak)

by setting
{(Ay(α))n,k(ϑ)}(a)(= ϑ ∗ a) = α ◦Ta ◦ yn,k(ϑ) (9.5)

whenever ϑ : Un // Uk and a ∈ An. Conversely, given functions

zn,k : A (k, Tn) // n.t.(Un, Uk) (n, k ∈ |A |)

and a U -algebra (A,A), define an A -morphism

αz(A) : TA // A

by posing
αz(A) = zA,TA(idTA) ∗A idA = {AA,TA(zA,TA(idTA))}(idA). (9.6)
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Before stating Theorem 9.3, which closes the section, we use the formalism above to
suggest another proof, not using the tripleableness argument we have employed, of the
core of Theorems 9.1 and 9.2. Where T is a codensity triple for U , functions y as above are
provided in Section 8. Let zn,k = (yn,k)

−1. The left adjoint Γ ◦ fT to | |U provided by steps
1 and 2 in the proof of Theorem 9.1 permits construction of Ψ = Φ| |U ,T : U -Alg //A T

and one can prove Ψ(A,A) = (A,αz(A)). Explicit analysis shows the back adjunction
Γ ◦ fT ◦ | |U // idU-Alg at (A,A) is just αz(A), mapping (TA,Ay(µA)) to (A,A). With
this, one proves

Ay(αz(A)) = A (9.7)

just as in Lemma 11.6. Since there is a functor Φ: A T // U -Alg (defined as in the
proof of assertion 3 of Theorem 9.2) sending (A,α) to (A,Ay(α)), it follows from (9.4),
(9.7), and the fact that Φ and Ψ are compatible with the underlying A -object functors
that Φ = Ψ−1.

Theorem 9.3. If T is a codensity triple for U : X //A , if y : TU // (K T)∗ is the
resulting isomorphism, and if z = y−1, then

(A,α) � // (A,Ay(α)), (A,A) � // (A,αz(A))

are the (bijective) object functions of a mutually inverse pair

Φ: A T // U-Alg, Ψ: U-Alg //A T

of isomorphisms making commutative the diagram

X

U-Alg
ΦU **UUUUUUUUUUUUUUUUUUU

A T

X

44
ΦU,T

iiiiiiiiiiiiiiiiiiii A T

U-Alg

Φ

��

A

U-Alg

ee
| |U

LLLLLLLLL

A T

A
UTyyrrrrrrrrrr

A T

U-Alg

OO

Ψ

10. Structure and semantics in the presence of a triple.

In this section, we use the isomorphism of Section 9 to compare the structure-semantics
adjointness of Section 4, when j = idA , with that of Appelgate-Barr-Beck-Eilenberg-
Huber-Kleisli-Maranda-Moore-Tierney in the context of triples. For notational conve-
nience, we shall write T = TidA , and, as earlier, M = MidA , PV = P idA

V . It will be used
to take terminological and notational account of the canonical isomorphism

(A ∗,Cat) = (A ,Cat)

obtained by reinterpreting V : A ∗ //C as V ∗ : A //C ∗, by speaking of V ∗ as a theory
over A if V is a clone over A ; by referring to

T∗(U) = (T(U))∗ = (expU)∗
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as the theory of U : X //A ; and by speaking of

M∗(ϕ) = M(ϕ∗) : Pϕ∗
//A

as (the underlying A -object functor on) the category of ϕ-algebras in A , where ϕ is a
theory over A . It is clear that a clone has a left adjoint iff the corresponding theory has
a right adjoint. By the same argument as was used in Section 8, one can prove the first
part of

Lemma 10.1. To give a right adjoint u, with front and back adjunctions η, β for a theory
ϕ on A is the same as to give an isomorphism ϕ ∼= fT, where T is the triple (uϕ, η, uβϕ)
on A . Moreover, given a triple T, Θ = K T, ϕ = fT, u = uT provide the only theory
ϕ : A //Θ with left adjoint u satisfying
1) the adjunction equivalences

A (k, un)
∼= //Θ(ϕk, n)

are identity maps, and
2) the adjunction triple is T.

Proof. We skip the proof of the first assertion, it being just like the proof of III ks +3 IV
in Theorem 8.1. For the second assertion, it is clear that the objects of Θ must be those of
A . Then Θ-morphisms k //n must be A -morphisms k //Tn, the identity in Θ(n, n)
must be ηn ∈ A (n, Tn), and, finally, for the identity functions to be natural, as required
by 1), it is forced that the composition rule of Θ is that of K T.

We introduce the categories Ad(Cat,A ) (resp. Tr(Cat,A )) of A -valued functors
having specified left adjoints (resp. specified codensity triples), and AdTheo(A ) (resp.
AdCl(A )) of theories (resp. clones) over A having specified right (resp. left) adjoints.
These are so constructed, per definitionem, as to make the obvious forgetful functors to
the similarly named categories, with the prefix Ad or Tr omitted, full and faithful. We
shall also need the category Trip(A ) whose objects are triples on A : a triple morphism
from T = (T, η, µ) to T′ = (T ′, η′, µ′) will be any natural transformation τ : T // T ′ for
which

τ ◦ η = η′, and (10.1)

τ ◦µ = µ′ ◦ ττ (10.2)

(where ττ denotes either of the compositions

TT T ′T ′//_________________

T ′T

TT

55
τT

kkkkkkkkkkkkkkk T
′T

T ′T ′

T ′τ

))SSSSSSSSSSSSSSS

TT

TT ′
Tτ ))SSSSSSSSSSSSSSSTT T ′T ′ττ T ′T ′

TT ′

55

τT ′kkkkkkkkkkkkkkk

which are equal because τ is natural).
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Lemma 10.2. The attempts to define functors

AdTheo(A ) t // Trip(A ) : ϕ, u, η, β � // (uϕ, η, uβϕ),

Trip(A ) k // AdTheo(A ) : T � //Kleisli cat. w/fT, uT,

are successful and represent Trip(A ) isomorphically as the full subcategory of AdTheo(A ),
equivalent to AdTheo(A ), consisting of those adjointed theories for which condition 1) of
Lemma 10.1 is valid.

Proof. Elementary. For related information, see [Barr (1965)] or [Maranda (1966)].

Theorem 8.1 shows that Tr(Cat,A ) is the pullback of the pullback diagram

(Cat,A ) (Theo(A ))∗
S∗

//

Tr(Cat,A )

(Cat,A )
��

Tr(Cat,A ) (AdTheo(A ))∗
St // (AdTheo(A ))∗

(Theo(A ))∗
��

and arguments like those for Lemma 9.1 provide a lifting Mt

(Theo(A ))∗ (Cat,A )
M∗

//

(AdTheo(A ))∗

(Theo(A ))∗
��

(AdTheo(A ))∗ Ad(Cat,A )
Mt // Ad(Cat,A )

(Cat,A )
��

of M∗.

Theorem 10.1. Let I : Ad(Cat,A ) // Tr(Cat,A ) be the obvious functor (sending
(U ;F, η, β) to (U ; (UF, η, UβF ))), and let M′ : (Trip(A ))∗ //Ad(Cat,A ) be the functor
sending T to (UT;FT, η, β) (where β(A,α) = α). Then:

1. St
◦ I (resp. St) is adjoint to Mt (resp. I ◦Mt),

2. M′ ◦ t (resp. Mt
◦ k) is equivalent to Mt (resp. M′),

3. t ◦St
◦ I (resp. t ◦St) is adjoint to M′ (resp. I ◦M′).

The proof, which is easy, uses Theorem 4.1, the above lemmas, and the isomorphisms
produced in Section 9. t ◦St

◦ I and M′ are the most familiar structure and semantics
functors in the context of triples and adjoint pairs; t ◦St and M′ are those needed in the
work of Appelgate and Tierney [Appelgate (1965)], [Tierney (1969)].

Motivating the presentation of [Eilenberg & Wright (1967)] is the realization that the
Kleisli category arising from the adjunction triple of an adjoint pair U, F is isomorphic
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with the full image of F . This makes “free algebras” more amenable, and encourages
yet another (equivalent) structure functor in the setting of adjointed theories and adjoint
A -valued functors.

A pleasant exercise (for private execution) is to tabulate all the isomorphisms and
equivalences that have arisen in this work and will arise from them by composition with
an S or an M.

11. Another proof of the isomorphism theorem

This section is devoted to a straightforward computational proof of Theorem 9.3. The
proof itself follows a sequence of lemmas; these lemmas depend only on the “information
of type V” arising from the assumption that T is a codensity triple for U (see Section 8).
For convenience of reference, we recall the equations

y(ϑ′ ◦ϑ) = µn ◦T (yϑ) ◦ yϑ′, (V.i)

Uηn ◦ y−1(idTn) = U idn , (V.ii)

y(U f ) = ηn ◦ f, (V.iii)

imposed on the one-one correspondences

y = yn,k : n.t.(Un, Uk) //A (k, Tn) (n, k ∈ |A |),
the diagrams

A A
idA

//

TA

A

77

ηA

ooooooooooooooooo TA

A

α

''OOOOOOOOOOOOOOOOO

(7.6)

TA Aα
//

TTA

TA

Tα

��

TTA TA
µA // TA

A

α

��

(7.7)

whose commutativity betokens the assertion that α : TA // A is a T-algebra, and the
diagram

A Bg
//

TA

A

α

��

TA TB
Tg // TB

B

β

��

(7.8)

on the basis of whose commutativity g : A // B is an A T-morphism from (A,α) to
(B, β).

We begin to chip away at Theorem 9.3 by proving
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Lemma 11.1. Suppose (A,α) is a T-algebra. Then (A,A(α)) is a U-algebra (here A(α) =
Ay(α) is defined by (9.5)).

Proof. The definition of A(α), (V.iii), naturality of η, and (7.6) allow us to verify ALG
1:

U f ∗ a = α ◦Ta ◦ y(U f ) = α ◦Ta ◦ ηn ◦ f = α ◦ ηA ◦ a ◦ f = a ◦ f.

Similarly, (9.5), (V.i), naturality of µ, (7.7), functoriality of T , and (twice more) (9.5)
again, deliver ALG 2:

(ϑ′ ◦ϑ) ∗ a = α ◦Ta ◦ y(ϑ′ ◦ϑ) = α ◦Ta ◦µn ◦T (yϑ) ◦ yϑ′

= α ◦µa ◦TTa ◦T (yϑ) ◦ yϑ′ = α ◦Tα ◦TTa ◦T (yϑ) ◦ yϑ′

= α ◦T (α ◦Ta ◦ yϑ) ◦ yϑ′ = α ◦T (ϑ ∗ a) ◦ yϑ′

= ϑ′ ∗ (ϑ ∗ a)

As a start in going the other way, we offer

Lemma 11.2. Suppose (A,A) is a U-algebra. Then

α(A) ◦ ηA = idA.

Proof. Using ALG 1, (9.6), (V.ii), and ALG 1 again, we see

α(A) ◦ ηA = UηA ∗ α(A) = UηA ∗ (y−1(idTA) ∗ idA)

= (UηA ◦ y−1(idTA)) ∗ idA = U idA ∗ idA

= idA ◦ idA = idA

To know that α(A) is a T-algebra, there remains the identity α(A) ◦µA = α(A) ◦Tα(A).
This identity, as well as the fact that each U -homomorphism (A,A) // (B,B) is also
a T-homomorphism (A,α(A)) // (B,α(B)), will result from the fact (Lemma 11.8)
that each such U -homomorphism g makes diagram (7.8) (with α = α(A), β = α(B))
commute, and the fact (Lemma 11.5) that α(A) : TA //A is a U -homomorphism. The
next two lemmas pave the way for a proof of Lemma 11.5.

Lemma 11.3. For any U-algebra (A,A) and any A -morphism f : k // n, the diagram
with solid arrows

A (k, TA) n.t.(UA, Uk)
y−1

//

A (n, TA)

A (k, TA)

A (f,TA)

��

A (n, TA) n.t.(UA, Un)
y−1

// n.t.(UA, Un)

n.t.(UA, Uk)n.t.(UA, Uk) S (AA, Ak)
AA,k

//

n.t.(UA, Un)

n.t.(UA, Uk)
���
�
�
�

n.t.(UA, Un) S (AA, An)
AA,n //S (AA, An)

S (AA, Ak)
���
�
�
�

S (AA, Ak) AkevidA

//

S (AA, An)

S (AA, Ak)

S (AA, An) An
evidA // An

Ak

Af

��
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commutes. Moreover, starting with n = TA, the effect of the top row on idTA ∈ A (n, TA)
is α(A) ∈ A (TA,A) = An. Hence the diagram

A (n, TA) A (n,A) = An
A (n,α(A))

//

n.t.(UA, Un)

A (n, TA)

y

��

n.t.(UA, Un) S (AA, An)
AA,n //S (AA, An)

A (n,A) = An

evidA

��

commutes, for each n ∈ |A |.
Proof. For the dotted arrows use “composition with U f” and “composition with Af”,
respectively. That the right hand square then commutes follows from the naturality of
evidA

. The central square commutes because

(ϑ ∗ a) ◦ f = U f ∗ (ϑ ∗ a) = (U f ◦ϑ) ∗ a,

using ALG 1 and ALG 2. The left hand square commutes because (V.i), (V.iii), naturality
of η, and one of the triple identities deliver the chain of equalities

y(U f ◦ϑ) = µA ◦T (yϑ) ◦ y(U f ) = µA ◦T (yϑ) ◦ ηn ◦ f =

= µA ◦ ηTA ◦ yϑ ◦ f = yϑ ◦ f ;

setting ϑ = y−1(t) and applying y−1 to both ends of this chain provides the identity
expressing commutativity of the left hand square. The assertion regarding α(A) is just
the definition of α(A). The Yoneda Lemma then applies: the given natural transformation
A (−, TA) //A (−, A) is of the form A (−, α(A)). This proves the last assertion.

Lemma 11.4. For any U-algebra (A,A) and any natural transformation ϑ : Un // Uk,
the diagram

A (k, TA) n.t.(UA, Uk)
y−1

//

A (n, TA)

A (k, TA)

A(µA)n,k(ϑ)

��

A (n, TA) n.t.(UA, Un)
y−1

// n.t.(UA, Un)

n.t.(UA, Uk)

compose
with ϑ

n.t.(UA, Uk) S (AA, Ak)
AA,k

//

n.t.(UA, Un)

n.t.(UA, Uk)
���
�
�
�

n.t.(UA, Un) S (AA, An)
AA,n //S (AA, An)

S (AA, Ak)S (AA, Ak) AkevidA

//

S (AA, An)

S (AA, Ak)

S (AA, An) An
evidA // An

Ak

An,k(ϑ)

��

commutes.

Proof. The commutativity of the large right hand square is guaranteed by ALG 2. To
deal with the small left hand square, note that (9.5) and (V.i) yield

{A(µA)n,k(ϑ)}(a) = µA ◦Ta ◦ yϑ = y(ϑ ◦ y−1(a)).

Apply y−1 to this equation to obtain the equation expressing the commutativity of the
left hand square.
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We can now prove that α(A) is a U -homomorphism.

Lemma 11.5. For every U-algebra (A,A), the A -morphism α(A) : TA // A is a U-
algebra morphism from (TA,A(µA)) to (A,A).

Proof. Given a : n //TA and ϑ : Un //Uk, the clockwise composition in the diagram
of Lemma 11.4 sends a, according to the last assertion of Lemma 11.3, to ϑ ∗ (α(A) ◦ a).
The counterclockwise composition, for the same reason, sends a to α(A) ◦(ϑ ∗ a). Hence
α(A) ◦(ϑ ∗ a) = ϑ ∗ (α(A) ◦ a), and the lemma is proved.

The only thing standing in the way of Lemma 11.8 is

Lemma 11.6. Whenever (A,A) is a U-algebra, a : n // A is an A -morphism, and
ϑ : Un // Uk is a natural transformation, then {An,k(ϑ)}(a) = α(A) ◦Ta ◦ yϑ.

Proof. Lemmas 11.2 and 11.5 allow us to write

ϑ ∗ a = ϑ ∗ (α(A) ◦ ηA ◦ a) = α(A) ◦(ϑ ∗ (ηA ◦ a)).

But, by (9.5), the definition of A(µA), we have

ϑ ∗ (ηA ◦ a) = µA ◦T (ηA ◦ a) ◦ yϑ.

Combining these equations, using the functoriality of T , and applying one of the triple
identities, we obtain

ϑ ∗ a = α(A) ◦µA ◦TηA ◦Ta ◦ yϑ = α(A) ◦Ta ◦ yϑ,

which proves the lemma.

Because it has to be proved sometime, we postpone the dénoument by means of

Lemma 11.7. Whenever (A,α) is a T-algebra and A = A(α), then α = α(A).

Proof. Repeat the computation (9.4).

Lemma 11.8. Let (A,A) and (B,B) be U-algebras. For each U-algebra morphism
f : A //B between them, the diagram

A B
f

//

TA

A

α(A)

��

TA TB
Tf // TB

B

α(B)

��

commutes.

Proof. Using (9.6), the hypothesis, and Lemma 11.6, we see

f ◦α(A) = f ◦(y−1(idTA) ∗ idA) = y−1(idTA) ∗ f

= α(B) ◦Tf ◦ yy−1(idTA) = α(B) ◦Tf

It is time to reap our corollaries.
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Corollary 1. If (A,A) is a U-algebra, (A,α(A)) is a T-algebra.

Proof. One of the necessary identities was proved as Lemma 11.2. The other is given by
Lemma 11.8, applied (by virtue of Lemma 11.5) to f = α(A) : (TA,A(µA)) // (A,A),
and modified by taking into account Lemma 11.7:

α(A) ◦Tα(A) = α(A) ◦α(A(µA)) = α(A) ◦µA.

Corollary 2. If f : A // B is a U-algebra homomorphism from (A,A) to (B,B), it
is also a T-morphism from (A,α(A)) to (B,α(B)).

Proof. This follows immediately from the diagram of Lemma 11.8 and from Corollary
1.

Corollary 3. If f : A //B is a T-algebra homomorphism from (A,α) to (B, β), it is
also a U-algebra map from (A,A(α)) to (B,A(β)).

Proof. Let a : n //A, ϑ : Un //Uk. By (9.5), the hypothesis, functoriality of T , and
(9.5) again, we have

f ◦(ϑ ∗ a) = f ◦α ◦Ta ◦ yϑ = β ◦Tf ◦Ta ◦ yϑ

= β ◦T (f ◦ a) ◦ yϑ = ϑ ∗ (f ◦ a)

Proof of Theorem 9.3. Lemma 11.1, Corollary 1, and Lemmas 11.6 and 11.7 set up
the desired isomorphism |U -Alg| ks +3 |A T|. Corollaries 2 and 3, taken together with
Lemmas 11.6 and 11.7, extend this to an isomorphism of categories U -Alg ks +3A T. It is
clear from the constructions and from Corollaries 2 and 3 that the underlying A -object
functors are respected. The relation with the Φ’s is settled by the proof of point 2) of
Theorem 9.2.
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F. E. J. Linton 1

Introduction.

In this note, we derive from Jon Beck’s precise triple-ableness theorem (stated as Theorem
1—for proof see [Beck (1967)]) a variant (appearing as Theorem 3) which resembles the
characterization theorem for varietal categories (see [Linton (1966a), Prop. 3]—in the
light of [Linton (1969)], varietal categories are just categories tripleable over S ). It turns
out that this variant not only specializes to the theorem it resembles, but lies at the heart
of a short proof of M. Bunge’s theorem [Bunge (1966)] (known also to P. Gabriel [Gabriel
(unpublished)]) characterizing functor categories S C = (C,S ) of all set-valued functors
on a small category C.

1. The precise tripleableness theorem.

Our starting point is the assumption of familiarity with the precise tripleableness theorem
[Beck (1967), Theorem 1] and its proof. This is summarized below as Theorem 1. The
basic situation is a functor U :C // A having a left adjoint F :A // C with front and
back adjunctions η: idA

// UF , β:FU // idC. In this situation, one obtains a triple
T = (UF, η, UβF ) on A and a functor Φ:C // AT (satisfying UT ◦Φ = U), defined by

ΦX = (UX,UβX)

Φξ = Uξ

The concern of all tripleableness theorems is whether Φ is an equivalence.
We will have repeated occasion to consider so-called U -split coequalizer systems. These

consist of a pair

(1.1) X
f //
g
// Y

of C-morphisms and three A-morphisms

(1.2) UX oo
d1

UY
p //oo
d0

Z

1The research embodied here was supported by an N.A.S.-N.R.C. Postdoctoral Research Fellowship;
carried out at the Forschungsinstitut für Mathematik, E.T.H., Zürich, while the author was on leave
from Wesleyan University, Middletown, Conn.; presented to the E.T.H. triples seminar; and improved,
in Section 5, by gratefully received remarks of Jon Beck.
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for which the four identities

(1.3)


pUf = pUg
pd0 = idZ
d0p = Ugd1

idUY = Ufd1

are valid. An idA-split coequalizer system will be called simply a split coequalizer system.

Lemma 1. If

(1.4) A oo d1

f //

g
//B

p //oo
d0

C

is a split coequalizer system in A, then p = coeq(f, g). Conversely, if B
p // C is a split

epimorphism, with section d0:C //B, and A
f //
g
//B is its kernel pair, defining d1:B //A

by the requirements fd1 = idB, gd1 = d0p provides a split coequalizer diagram (1.4).

Proof. Let x:B // ? be any map. Then if xf = xg, x = xfd1 = xgd1 = xd0p.
Conversely, if x = xd0p, then

xf = xd0pf = xd0pg = xg.

Consequently, xf = xg iff x factors through p by xd0. That settles the first statement.
The second is even more trivial.

The class of all pairs of C-morphisms arising as (1.1) in a U -split coequalizer system
(1.1), (1.2) will be denoted P. PF will denote those pairs in P whose domain and
codomain are values of F . Since we shall have to deal with yet other subclasses of P,
we formulate the next three definitions in terms of an arbitrary class G of pairs (1.1) of
C-morphisms.

Definition. C has G-coequalizers if each pair (f, g) ∈ G has a coequalizer in C; U
reflects G-coequalizers if, given a diagram

(1.5) X
f //
g
// Y

p // Z

in C, with (f, g) ∈ G and Up = coeq(Uf, Ug), it follows that p = coeq(f, g); U preserves
G-coequalizers if, given a diagram (1.5) with (f, g) ∈ G and p = coeq(f, g), it follows
that Up = coeq(Uf, Ug).

Theorem 1. [Beck (1967), Theorem 1]. If U, F,T and Φ:C // AT are as in the basic
situation above, then Φ is an equivalence if and only if C has and U preserves and reflects
P-coequalizers. More precisely, we have the following implications, some accompanied by
their reasons.
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for each T-algebra (A,α) ∈ AT,

coeq(FUFA
βFA //
Fα

// FA) exists

C has PF -coequalizers

;C

����������������������

����������������������

Φ has a left adjoint Φ̌

Φ̌(A,α) is that coequal-
izer and Φ̌ ◦F T = F

FFFFFFFF

FFFFFFFF

�'FFFFFFFF

FFFFFFFF

C has PF -coequalizers Φ has a left adjoint Φ̌ks
Φ ◦F=FT

C has PF -coequalizers Φ has a left adjoint Φ̌+3C has PF -coequalizers

C has P-coequalizers

ck

OOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOO

Φ has a left adjoint Φ̌ and the back
adjunction Φ̌Φ // idC is ∼=

C has P-coequalizers
ck OOOOOOOOOOOO

OOOOOOOOOOOO

C has and U reflects
PF -coequalizers

Φ has a left adjoint Φ̌ and the back
adjunction Φ̌Φ // idC is ∼=
+3

C has and U reflects P-
coequalizers

C has and U reflects
PF -coequalizers

ai LLLLLLLLLLLL

LLLLLLLLLLLL

Φ has a left adjoint Φ̌ and the back
adjunction Φ̌Φ // idC is ∼=

C has and U reflects P-
coequalizers

u} rrrrrrrrrrrr

rrrrrrrrrrrr

C has and U preserves
PF -coequalizers

Φ has a left adjoint Φ̌ and the front
adjunction idC

// Φ̌Φ is ∼=
+3

C has and U preserves and
reflects PF -coequalizers

Φ and its left adjoint Φ̌ set up
an equivalence of categories
+3C has and U preserves and

reflects PF -coequalizers

C has and U preserves and
reflects P-coequalizers

ai

LLLLLLLLLLLL

LLLLLLLLLLLL

Φ and its left adjoint Φ̌ set up
an equivalence of categories

C has and U preserves and
reflects P-coequalizers

u} rrrrrrrrrrrr

rrrrrrrrrrrr

Remark. Φ will be an isomorphism if and only if it is an equivalence and U creates
isomorphisms, in the sense: given X in C and an isomorphism

f :A // UX
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in A, there is one and only one C-morphism g:X ′ //X satisfying the single requirement

Ug = f

(which, of course, entails UX ′ = A), and that C-morphism is an isomorphism. For details
on this fact, which will enter tangentially in Section 5, consult [Manes (1967), Section 0.8
and (1.2.9)].

2. When A has enough kernel pairs.

For the first variation on the theme of Theorem 1, we introduce the class Pc of all pairs
of C-morphisms

(2.1) FE
f //
g
//X

arising as follows:

i) there is a split epimorphism p:UX //B in A;

ii) E
f0 //
g0
// UX is its kernel pair;

iii) f = βX ◦Ff0, g = βX ◦Fg0;

iv) pUf = pUg.

It follows that p = coeq(Uf, Ug) and that

E ηE
// UFE

Uf //
Ug

// UX

is p’s kernel pair (for iv) +3 ∃!ε:UFE // E with f0ε = Uf , g0ε = Ug, whence

f0
◦ ε ◦ ηE = Uf ◦ ηE = f0

g0
◦ ε ◦ ηE = Ug ◦ ηE = g0

whence ε ◦ ηE = idE; hence qUf = qUg iff qf0 = qg0, and p = coeq(f0, g0) = coeq(Uf, Ug);
the second assertion is obvious).

Conversely, if (2.1) is a pair of C-morphisms for which (Uf, Ug) has a coequalizer p,
if p is a split epimorphism, and if

(2.2) E ηE
// UFE

Uf //
Ug

// UX

is a kernel pair for p, then where f0 = Uf ◦ ηE, g0 = UG ◦ ηE, (2.1) arises from p and f0,
g0 through steps i) . . . iv).

We use these remarks to prove
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Lemma 2. Pc ⊆ P. Moreover, if (2.1)∈ Pc and ξ:X //X ′, then ξf = ξg iff U(ξf) =
U(ξg) (f0 = Uf ◦ ηE, g0 = Ug ◦ ηE).

Proof. If (2.1) depicts a pair in Pc, (Uf, Ug) has as coequalizer a split epimorphism
p:UX //B in A, with section d0:B // UX, whose kernel pair is (2.2). By Lemma 1,
there is a map d1:UX // E making

E oo d1

Uf ◦ ηE //

Ug ◦ ηE
// UX

p //oo
d0

B

a split coequalizer diagram. Then so is

UFE oo ηE ◦ d1
Uf //

Ug
// UX

p //oo
d0

B

whence Pc ⊆ P. For the second assertion, the adjointness results in the equivalence of
ξf = ξg with Uξf0 = Uξg0. But the relation coeq(Uf, Ug) = p = coeq(f0, g0) shows that
Uξf0 = Uξg0 iff UξUf = UξUg, which completes the proof.

Write PFc = Pc ∩PF .

Lemma 3. Assume A has kernel pairs of split epimorphisms. Whenever FX
f //
g
// FY is

a pair in PF , there is a pair FE
f ′ //

g′
// FY in PFc satisfying qf = qg iff qf ′ = qg′, for

every C-morphism q:FY // ?.

Proof. Since (f, g) ∈ PF , there are A-morphisms

UFX oo
d1

UFY
p //oo
d0

B

which, with (Uf, Ug), make a split coequalizer diagram in A. Since Uf = UTΦf , Ug =
UTΦg, we see that Φf,Φg: ΦFX // //ΦFY and d1, p, d0 make a UT-split coequalizer system
in AT. Hence there is a T-algebra structure TB // B on B making p:UFY // B a
T-homomorphism; letting (E, ε) be its kernel pair (possible because the kernel pair exists
in A by hypothesis and lifts to AT by a property (cf. [Eilenberg & Moore (1965a), Prop.
5.1], [Linton (1969), Section 6], or [Manes (1967), (1.2.1)]) of UT), we obtain an A-object
E, a pair of maps

E
f ′0 //

g′0

// UFY

serving as a kernel pair of p, and a map ε:UFE // E satisfying (at least)

(2.3) ε ◦ ηE = idE
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and making the squares

E UFY
f ′0 //

UFE

E

ε

��

UFE UFUFY
UFf ′0 //

UFUFY

UFY

UβFY

��
E UFY

g′0

//

UFE

E

UFE UFUFY
UFg′0

// UFUFY

UFY

serially commute. Let f ′ = βFY ◦Ff
′
0, g′ = βFY ◦Fg

′
0. Then Uf ′ ◦ ηE = f ′0, Ug′ ◦ ηE = g′0

(by adjointness) and, since p = coeq(f ′0, g
′
0), (2.3) shows p = coeq(Uf ′, Ug′), and

E // UFE //// UFY

is its kernel pair. Thus (f ′, g′) ∈ PFc; finally, ξf = ξg iff Uξf0 = Uξg0 iff Uξ factors
through p iff Uξf ′0 = Uξg′0 iff ξf ′ = ξg′ (by adjointness, constructions, and Lemma 2.)

Corollary. Assume A has kernel pairs of split epimorphisms. Then C has PF -
coequalizers iff it has PFc-coequalizers, U preserves PF -coequalizers iff it preserves
PFc-coequalizers, and U reflects PF -coequalizers iff it reflects PFc-coequalizers.

Proof. The inclusion PFc ⊆ PF guarantees three of the implications. For the other
three, we rely on Lemma 3: given a pair (f, g) ∈ PF , let (f ′, g′) be a pair in PFc

having the property ξf = ξg ks +3 ξf ′ = ξg′. Then any coequalizer for (f ′, g′) must be
a coequalizer for (f, g), and conversely. Hence, if C has PFc-coequalizers, (f ′, g′), and
consequently (f, g), has a coequalizer. Similarly, if p is a coequalizer for (f, g) and U
preserves PFc-coequalizers, Up is a coequalizer for (Uf ′, Ug′), hence a coequalizer for the
kernel pair of the coequalizer of (Uf, Ug), hence a coequalizer of (Uf, Ug). Finally, if p
is a map with Up a coequalizer of (Uf, Ug), Up is also a coequalizer for the kernel pair
of p, hence p is a coequalizer of (f ′, g′), hence of (f, g).

From this corollary and Theorem 1 follows

Theorem 2. Let A be a category having kernel pairs of split epimorphisms, and let
U, F, T,Φ:C //AT be as in the basic situation. Then the following statements are equiv-
alent:

1) Φ is an equivalence

2) C has and U preserves and reflects Pc-coequalizers

3) C has and U preserves and reflects PFc-coequalizers

Indeed, the statements

4) Φ has a left adjoint

5) C has PF -coequalizers
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6) C has PFc-coequalizers

are mutually equivalent, as are

7) Φ has a left adjoint and Φ̌Φ // idC is an equivalence

8) C has and U reflects Pc-coequalizers

9) C has and U reflects PFc-coequalizers

Proof. Apply the Corollary to Lemma 3, and the inclusions

PFc P

PF

PFc

99

rrrrrrrr
PF

P
%%LLLLLLLLLL

PFc

Pc

%%LLLLLLLLLPFc PP

Pc

99

rrrrrrrrrr

to Theorem 1, to prove 3n− 2 +3 3n− 1 +3 3n +3 3n− 2 (n = 1, 2, 3).

3. When A is very like {sets}.
The second variation on Theorem 1 will eventually require more stringent restrictions on
A. As in Section 2, we do the hypothesis juggling first, imposing the restrictions on A as
required. We stay in the basic situation of an A-valued functor U :C // A having a left
adjoint F :A //C. T is the resulting triple, and Φ:C //AT the semantical comparison
functor for U , as before.

Lemma 4. Assume A has kernel pairs of split epimorphisms and that U reflects Pc-
coequalizers. Let p:X // Y be a C-morphism with Up a split epimorphism. Then p is a
coequalizer.

Proof. Let E
f0 //
g0
// UX be a kernel pair of Up. Then there is a map ε:UFE // E

making

(E, ε)
f0 //
g0
// ΦX

a kernel pair of Φp. As in the proof of Lemma 3

FE
f //
g
//X

(where f = βX ◦Ff0, g = βX ◦Fg0), is in Pc, and so, since Up = coeq(Uf, Ug), p =
coeq(f, g).
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Lemma 5. Assume nothing about A, but only that Up epi +3 p is a coequalizer. Then
U is faithful, reflects monomorphisms, and reflects isomorphisms, and βX :FUX //X
is a coequalizer.

Proof. For a functor U with left adjoint, the implication Up epi +3 p epi guarantees
(see [Eilenberg & Moore (1965), Prop. II.1.5]) U to be faithful. A faithful functor obvi-
ously reflects monomorphisms. Finally, if U(p) is an isomorphism, p is a coequalizer and
a monomorphism, hence an isomorphism.

Lemma 6. Assume C has kernel pairs, A has coequalizers, and every epimorphism in A
splits. Suppose U is faithful and preserves Pc-coequalizers. Then, if the C-morphism p is
a coequalizer, Up is (split) epi.

Proof. Let p:X // Y be a coequalizer, let E
f0 //
g0
//X be its kernel pair. Then p is a

coequalizer of (f0, g0). Now (Uf0, Ug0) is a kernel pair of Up (since U has a left adjoint)
and hence fits in a split coequalizer diagram

UE oo
//
// UX

//oo B

Let f, g:FUE //X correspond by adjointness to Uf0, Ug0. Then (f, g) ∈ Pc (roughly
because UE // UFUE // UE = idUE) and, for any map q:E // ?, qf0 = qg0 iff
UqUf0 = UqUg0 iff qf = qg (using faithfulness of U and the adjointness naturality). So p
is a coequalizer of (f, g) ∈ Pc, and since U preserves Pc-coequalizers, Up is a coequalizer,
too (of Uf, Ug), hence is (split) epi.
(Remark: need only suppose A has coeq of kernel pairs, not of everything.)

Lemma 7. Assume C has kernel pairs and Pc-coequalizers, A has coequalizers, and every
epimorphism in A splits. Suppose U is faithful, reflects isomorphisms, and preserves
Pc-coequalizers. Then a pair of C-morphisms

E
f //
g
//X

is a kernel pair if (and, in view of U ’s left adjoint, only if)

UE
Uf //
Ug

// UX

is a kernel pair.

Proof. Assume (Uf, Ug) is a kernel pair. Let p:UX // Z be its coequalizer: then,
since p is split epi and (Uf, Ug) is a kernel pair for p, we obtain a split coequalizer diagram

UE //// UX
p // Z

Now FUE //E
f //
g
//X is therefore a Pc-pair (since UE //UFUE //UE = idUE),

has a coequalizer q:X //Y in C, which, because of the faithfulness of U , is a coequalizer
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for (f, g) too. Let E ′
f ′ //

g′
//X be a kernel pair for q. We shall prove E ′

f ′ //

g′
//X is isomorphic

to E
f //
g
//X by using the hypothesis that U reflects isomorphisms. We have, in any case,

a C-morphism E
e // E ′ with f ′e = f , g′e = g, and the knowledge that (Uf ′, Ug′) =

ker pair (Uq), (Uf, Ug) = ker pair (p). Since U preserves Pc-coequalizers, however,
Uq = coeq(Uf, Ug). Thus p is isomorphic with Uq, whence Ue:UE // UE ′ is an
isomorphism, whence e is an isomorphism, and (f, g) is a kernel pair.

We can now prove one half of

Theorem 3. Let A be a category in which every epimorphism splits, and in which kernel
pairs and difference cokernels are available. Let U :C //A, F , T, Φ:C //AT be as in
the basic situation. Then Φ is an equivalence of categories if and only if

1) C has kernel pairs and Pc-coequalizers

2) Up epi ks +3 p is a coequalizer

3) (f, g) is a kernel pair if (and only if) (Uf, Ug) is a kernel pair.

Proof. If Φ is an equivalence, Theorem 2 guarantees the Pc-coequalizers, and general
principles guarantee the kernel pairs. Theorem 2 and Lemma 4 guarantee the implication
Up epi +3 p a coequalizer. Lemma 5 applied to this implication, Theorem 2, and
Lemma 6 then provide the converse implication. Statement 3 follows from Lemma 7. The
converse argument is outlined in statement 1 and the parenthetical remarks in statements
2 and 3 of the following theorem, whose proof, outlined below, is entirely contained in the
three lemmas in Section 4.

Theorem 4. With the situation as in Theorem 3, suppose throughout that C has Pc-
coequalizers and kernel pairs. Then

1) Φ has a left adjoint.

2) If condition 2 of Theorem 3 holds, then U reflects Pc-coequalizers (whence the back
adjunction Φ̌Φ // idC is an equivalence) and any T-algebra (A,α) admitting a
jointly monomorphic family of maps to values of Φ is itself (isomorphic to) a value
of Φ, namely ΦΦ̌(A,α).

3) If conditions 2 and 3 of Theorem 3 hold, then U preserves (and reflects) Pc-
coequalizers (whence the front adjunction idAT

//ΦΦ̌ is an equivalence too, and Φ
and Φ̌ set up an equivalence of categories).

Outline of proof. Theorem 2 proves 1). Lemma 8, Theorem 2, and Lemma 9
prove 2). 2), Lemma 9, Lemma 10, and Theorem 2 prove 3). Theorem 3 obviously
follows. Lemmas 8, 9, 10 are proved in Section 4.
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4. Proof of Theorem 4.

Lemma 8. With the situation as in Theorem 3, conditions 1 and 2 of Theorem 3 imply
that U reflects Pc-coequalizers.

Proof. Let FE
f //
g
//X be in Pc and suppose ξ:X //X ′ is a C-morphism for which

(4.1) Uξ = coeq(Uf, Ug)

From condition 2 of Theorem 3, it follows that ξ is itself a coequalizer of something.
Next, the equality UξUf = UξUg (consequence of (4.1)), taken with the faithfulness of
U (consequence of Lemma 5), shows

(4.2) ξf = ξg.

Condition 1 of Theorem 3 permits us to take a coequalizer p:X // Z of the pair (f, g).
Equation (4.2) then entails a unique C-morphism z:Z //X ′ satisfying

(4.3) z ◦ p = ξ.

Since pf = pg, (4.1) affords a unique A-morphism z′:UX ′ // UZ satisfying

(4.4) z′ ◦Uξ = Up.

Combining (4.3) and (4.4), we obtain the equations

(4.5) Up = z′ ◦Uξ = z′ ◦Uz ◦Up

(4.6) Uξ = Uz ◦Up = Uz ◦ z′ ◦Uξ

But Up is epi, since p is a coequalizer (using condition 2 of Theorem 3) and Uξ is epi,
being itself a coequalizer, so from (4.5) and (4.6) it follows that

z′ ◦Uz = id, Uz ◦ z′ = id

whence Uz is an isomorphism. Another appeal to Lemma 5 demonstrates that z is an
isomorphism, from p = coeq(f, g) to ξ, whence ξ is a coequalizer of (f, g), as needed to
be shown.

Lemma 9. With the situation as in Theorem 3, conditions 1 and 2 of Theorem 3 imply
any object X ∈ AT admitting a jointly monomorphic family of maps to values of Φ is
itself (isomorphic to) a value of Φ, namely ΦΦ̌X.
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Proof. Condition 1 of Theorem 3 and Theorem 2 guarantee a left adjoint Φ̌ for Φ. Now,
given a family of AT-morphisms

fi:X // ΦYi (Yi ∈ |C|, X = (A,α), i ∈ I)

for which the implication fi ◦ a = fi ◦ b, ∀i +3a = b holds for all AT-morphisms a, b with
codomain X, form the maps

f̂i: Φ̌X // Yi

resulting by adjointness, and, applying Φ to them, consider the diagrams

ΦYi

ΦΦ̌X

99

Φf̂irrrrrrr

X

ΦYi

fi

%%LLLLLLLLLX

ΦΦ̌X

ηX

��

where ηX is the front adjunction for the adjointness of Φ to Φ̌. If η ◦ a = η ◦ b, then
fi ◦ a = Φfi ◦ η ◦ a = Φfi ◦ η ◦ b = fi ◦ b, whence η is a monomorphism. It is a matter
of indifference whether this statement is understood in A or in AT, for, being faithful
and having a left adjoint, UT preserves and reflects monomorphisms. To show η is an
isomorphism, as required, it thus suffices to prove UTη is (split) epi, since UT certainly
reflects isomorphisms.

To do this, we must recall the construction of Φ̌X. Φ̌X is the coequalizer, via some
projection p:FA //Φ̌X, of the Pc-pair FE ////FA arising by adjointness from the kernel
pair of α:UFA //A. Now the coequalizer of ΦFE ////ΦFA (which is FTE ////FTA)
is just α:FTA //X = (A,α) itself, hence there is a unique map X = (A,α) // ΦΦ̌X
making the diagram

FTA

ΦΦ̌X
Φp %%LLLLLLLL

X

FTA

99
α

rrrrrrrrr X

ΦΦ̌X
��

commute: that map is ηX . Since p is a coequalizer, Up = UTΦp is epi; hence UTη is
(split) epi. This completes the proof.

Lemma 10. With the situation as in Theorem 3, U preserves Pc-coequalizers if

i) C has Pc-coequalizers (all that’s really needed is a left adjoint Φ̌ for Φ)

ii) Up is epi if p is a coequalizer

iii) (f, g) is a kernel pair if (Uf, Ug) is a kernel pair, and

iv) the conclusion of Lemma 9 holds.
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Proof. Given a pair FE
f //
g
//X in Pc, and a map p:X // Z, coequalizer of f, g, we

must show
Up = coeq(Uf, Ug).

Since E ηE
// UFE

Uf //
Ug

//X is the kernel pair of (Uf, Ug)’s coequalizer in A, there is a

unique A-morphism ε:UFE // E making the diagrams

E UFEηE
//

UFE

E

ε

��

UFE UX
Uf // UX

UFE

OO

Uf

E UFEηE
//

UFE

E

ε

��

UFE UX
Ug // UX

UFE

OO

Ug

commute. It is left as an easy exercise to prove that (E, ε) is then a T-algebra and that

(4.7) (E, ε)
Uf ◦ ηE //
Ug ◦ ηE

// ΦX

is a jointly monomorphic pair of T-homomorphisms. By iv), (E, ε) ∼= ΦΦ̌(E, ε); and there
are maps

(4.8) Φ̌(E, ε)
f̂ //
ĝ
//X

corresponding, by the adjointness of Φ to Φ̌, to (4.7). Using the adjointness relations
and the definition of Φ, a C-morphism q:X // Z satisfies qf = qg iff Uq(Uf ◦ ηE) =
Uq(Ug ◦ ηE) iff Φq ◦(Uf ◦ ηE) = Φq ◦(Ug ◦ ηE) iff q ◦ f̂ = q ◦ ĝ. Consequently, p = coeq(f, g) =
coeq(f̂ , ĝ). Next, since

(4.9) (Uf̂, Uĝ) = (UTΦf̂ , UTΦĝ) ∼= (Uf ◦ ηE, Ug ◦ ηE)

and the latter is a kernel pair (since f, g ∈ Pc), (Uf̂, Uĝ) is a kernel pair, too, whence,
by iii), (4.8) is a kernel pair. Since p is its coequalizer, (4.8) is a kernel pair for p. It
follows, since U has a left adjoint, that (Uf̂, Uĝ) is a kernel pair for Up. Then (4.9) shows
(4.7) is a kernel pair for Up, too. On the other hand, Up is (split) epi, by ii), since p
is a coequalizer. Consequently, Up is the coequalizer of its kernel pair, namely of (4.7).
Finally, since (4.7) has the same coequalizer as (Uf, Ug), Up = coeq(Uf, Ug), as had to
be shown.
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Schematically, the proof of Theorem 4 and the rest of Theorem 3 follows the following
pattern: if A has kernel pairs and coequalizers and every A-epimorphism splits, and if C
has kernel pairs and Pc-coequalizers, then Φ has a left adjoint Φ̌ (by Theorem 2) and:

p coeq +3 Up epi
Up epi +3 p coeq
(Uf,Ug) k.p. +3 (f, g) k.p.

Up epi +3 p coeq
(Uf,Ug)k.p. +3 (f, g) k.p.

trivial +3

p coeq +3 Up epi
Up epi +3 p coeq

trivial
��

p coeq +3 Up epi
Up epi +3 p coeq

A T-algebra having a jointly
monomorphic family of maps
to values of Φ is itself (iso-
morhic to) a value of Φ

Lemma 9
+3

��

A T-algebra having a jointly
monomorphic family of maps
to values of Φ is itself (iso-
morhic to) a value of Φ

Lemma 10
+3p coeq +3 Up epi

Up epi +3 p coeq

Lemma 8
��

Theorem 2
��

p coeq +3 Up epi
Up epi +3 p coeq

U reflects PC-coeqU reflects PC-coeq

Φ̌Φ // idC is ∼=

A T-algebra having a jointly
monomorphic family of maps
to values of Φ is itself (iso-
morhic to) a value of Φ

U preserves PC-coeq

Theorem 2
��

U preserves PC-coeq

idAT
// ΦΦ̌ is ∼=

5. Applications.

For the first application of Theorem 3, we take A = S = {sets}. Then, modulo the
easily supplied information that any category tripleable over sets has all small limits
and colimits, this instance of Theorem 3 is just the characterization theorem of [Linton
(1966a)] for varietal categories, since, by [Linton (1969)], varietal and tripleable over S
mean the same thing. For the second application of Theorem 3, which will also be the
last to be presented here, we prove the theorem of Bunge–Gabriel.

Theorem 5. [Bunge (1966), Gabriel (unpublished)]. A category B is equivalent to the
functor category S C = (C,S ) of all set valued functors on a small category C if and only
if

1. B has kernel pairs and coequalizers

2. there is a set X and a function ψ:X // |B|:

a. B contains all small coproducts of images of ψ

b. p:B //B′ is a coequalizer if and only if B(ψx, p):B(ψx,B) //B(ψx,B′)
is onto, ∀x ∈ X

c. E
f //
g
// B is a kernel pair if and only if B(ψx,E)

B(ψx,f) //

B(ψx,g)
// B(ψx,B) is a

kernel pair, ∀x ∈ X
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d. x ∈ X +3B(ψx,−) preserves coproducts.

Indeed, if B ≈ S C, ψ:X //|B| may be taken as the object function of C∗ //S C ≈ //B,
while if ψ:X // |B| is given, C may be taken as the full image of X // |B| //B∗.

Proof. We dispense with the easy part of the proof first. To begin with, suppose
B = S C. Then surely condition 1. is valid. To check condition 2. where X = |C| and
ψ(x) = C(x,−), note that

S C(ψ(x),−) = evx: S
C //S

and so conditions 2b, 2c, 2d are automatic. So far as condition 2a is concerned, S C has
all small coproducts. These, however, are all properties preserved under equivalence of
categories, and that finishes the “only if” part of the proof.

For the converse, view the set X as a discrete category and let

X
ϕ // C

ϕ
//B∗

be the full image factorization of the composition

ϕ:X
ψ // |B| incl. //B∗

of the function ψ given by condition 2. with the inclusion of (the discrete category) |B|
as the class of objects of B∗. Here is an outline of the argument that

S ϕ ◦Y :B //S (B∗) //S C

is an equivalence.

Step 1. The S X-valued functors

U = S ϕ ◦Y :B //S (B∗) //S X

U1 = S ϕ: S (B∗) //S X

U2 = S ϕ: S C //S X

all have left adjoints.

Step 2. If T,T1,T2 are the triples on S X and

Φ:B // (S X)T

Φ1:B // (S X)T1

Φ2:B // (S X)T2

are the semantical comparison functors arising from U,U1 and U2, respectively, then
Φ and Φ2 are equivalences (in fact, Φ2 is an isomorphism!)
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Step 3. The commutativity of the lower triangles in the diagram

B S (B∗)Y //B

S X

U

$$HHHHHHHHHHHHHHH S (B∗) S CS ϕ
//S (B∗)

S X

U1

��

S C

S X

U2

zzvvvvvvvvvvvvvvv
B S (B∗)

(S X)T

B

OO

Φ

(S X)T (S X)T1
Ψ1 // (S X)T1

S (B∗)

OO

B S (B∗)

(S X)T

B

≈

(S X)T (S X)T1∼=
(S X)T1

S (B∗)S (B∗) S C

(S X)T1

S (B∗)

Φ1

(S X)T1 (S X)T2
Ψ2 // (S X)T2

S C

OO

Φ2

S (B∗) S C

(S X)T1

S (B∗)

(S X)T1 (S X)T2∼=
(S X)T2

S C

∼=

gives triple maps T1

τ1 // T, T2

τ2 // T1, whose semantical interpretations Ψ1,Ψ2

on the categories of algebras make the upper squares commute; both τ1 and τ2 will
be shown to be isomorphisms.

It follows that Ψ1 and Ψ2 are isomorphisms and that

S ϕ ◦Y = Φ−1 ◦Ψ2
◦Ψ1

◦Φ:B //S C

is an equivalence (indeed, an isomorphism if (and only if) Φ:B // (S X)T is an
isomorphism, a condition which can be expressed as an additional requirement on
ψ:

2.e Given b ∈ B, sets Ax (x ∈ X) and one-one correspondences fx:Ax
∼= //B(x, b),

there is a B-morphism f : b′ // b uniquely determined by the single require-
ment

B(x, f) = fx

moreover, this f is an isomorphism.

The details regarding this refinement will be omitted, bring easy, and of little inter-
est. See the remark following Theorem 1.)

Step 1. Using condition 2a, we produce a left adjoint F to U = S ϕ ◦Y :B //S X

F (G) =
⊕
x∈X

Gx · ψx (G ∈ S X)

The identifications

B(F (G), b) ∼= B

(⊕
x∈X

Gx · ψx, b

)
∼= ×

x∈X
B(Gx · ψx, b)

∼= ×
x∈X

(B(ψx, b))Gx

= ×
x∈X

S (Gx,U(b)(x))

= S X(G,U(b))
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show that this works. In the same way, the fact that S (B∗) and S C have all small
coproducts allows us to define

F1(G) =
⊕
x∈X

(Gx · Y (ψx))

F2(G) =
⊕
x∈X

Gx · (S ϕY (ψx))

and to prove, by much the same calculations, that F1 and F2 serve as left adjoints
to U1 and U2.

Step 2. Conditions 1), 2), and 3) of Theorem 3 are provided precisely by conditions 1,
2b, and 2c of Theorem 5. Since A = S X obviously has the properties envisioned of
it in Theorem 3, the functor

Φ:B // (S X)T

is an equivalence. In the same way, it is obvious that U2: S C //S X fulfills the
hypotheses of Theorems 1 and 3 (whichever the reader prefers to think of), and so
Φ2: S C // (S X)T2 is an equivalence (in fact, an isomorphism, since U2 creates
isomorphisms).

Step 3. To see that τ2:T2
// T1 is an isomorphism, refer back to step 1, and observe

that F2 = S ϕF1. Indeed,

S ϕF1(G) = S ϕ
⊕
x∈X

Gx · Y (ψx) =
⊕
x∈X

Gx ·S ϕY (ψx) = F2(G)

since S ϕ preserves coproducts. Thus

U2F2 = U2S
ϕF1 = U1F1

and this identity is the triple map τ2.

To see that τ1:T1
//T is an isomorphism, we need to invoke condition 2d, which

bespeaks the fact that U = S ϕ ◦Y preserves coproducts. Now

U1F1(G) = U1

⊕
x∈X

Gx · Y (ψx)

= S ϕ

(⊕
x∈X

Gx · Y (ψx)

)
=

⊕
x∈X

Gx ·S ϕY (ψx)
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and

UF (G) = U

(⊕
x∈X

Gx · ψx

)
=

⊕
x∈X

Gx · Uψx

=
⊕
x∈X

Gx ·S ϕY (ψx)

and it is clear that τ1:U1F1
// UF is this isomorphism.

This completes the proof.



Coequalizers in Categories of Algebras

F. E. J. Linton 1

Introduction

It is well known [Linton (1969), Section 6] that (inverse) limits in a category of algebras
over A —in particular, in the category A T of algebras over a triple T = (T, η, µ) on
A —can be calculated in A . Despite the fact that such a statement is, in general, false
for colimits (direct limits), a number of colimit constructions can be carried out in A T

provided they can be carried out in A and A T has enough coequalizers.
The coequalizers A T should have, at a minimum, are, as we shall see in Section 1,

those of reflexive pairs: a pair

X
f //
g
// Y

of maps f , g in a category X is reflexive if there is an X -morphism

∆:Y //X

satisfying the identities
f ◦∆ = idY = g ◦∆.

(This terminology arises form the fact that, when X = S = {sets}, (f, g) is reflexive if
and only if the image of the induced function

X
f, g

// Y × Y

contains the diagonal of Y × Y .)
In Section 2 we give two criteria for A T to have coequalizers of reflexive pairs, neither

of them necessary, of course. In Section 1, it will turn out, so long as A T has such
coequalizers, that each functor

A τ : A T //A S,

induced by a map of triples τ :S //T, has a left adjoint, that A T has coproducts if A
does, indeed, has all small colimits if A has coproducts, and that A T has tensor products
if A does. These are, of course, known facts when A = S = {sets}; however, at the
time of this writing, it is unknown, for example, whether the category of contramodules
over an associative coalgebra, presented (in [Eilenberg & Moore (1965a)]) as A T with
A = {ab. groups}, has coequalizers of reflexive pairs.

1Research supported by an N.A.S.-N.R.C. Postdoctoral Research Grant while the author was at E. T.
H. Zürich, on leave from Wesleyan University.
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1. Constructions using coequalizers of reflexive pairs.

We begin with a lemma that will have repeated use. It concerns the following definition,
which clarifies what would otherwise be a recurrent conceptual obscurity in the proofs of
this section.

Let U : X // A be a functor, let X ∈ |X |, and let (f, g) = {(fi, gi)|i ∈ I} be a
family of A -morphisms

(1.1) Ai
fi //
gi
// UX (i ∈ I).

An X -morphism p:X // P is a coequalizer (rel. U) of the family of pairs (1.1) if

1) ∀i ∈ I, Up ◦ fi = Up ◦ gi, and

2) if q:X // Y satisfies Uq ◦ fi = Uq ◦ gi (∀i ∈ I), then ∃!x:P // Y with q = x ◦ p.

If U = idX : X //X , a coequalizer (rel. U) of the family (1.1) will be called simply
a coequalizer of (1.1).

Lemma 1. If U has a left adjoint F : A // X and f̄i, ḡi:FAi // X are the X -
morphisms corresponding to fi, gi by adjointness, then p:X // P is a coequalizer (rel.
U) of (f, g) if and only if it is a coequalizer of (f̄ , ḡ). If U is faithful and f̄i, ḡi:Xi

//X
are X -morphisms with Uf̄i = fi, Uḡi = gi, then p:X // P is a coequalizer (rel. U) of
(f, g) if and only if it is a coequalizer of (f̄ , ḡ).

Proof. In the first case, the naturality of the adjunction isomorphisms yields

q · f̄i = q · ḡi ⇔ Uq · fi = Uq · gi

for every X -morphism q defined on X. In the second case, that relation follows from the
faithfulness of U . Clearly, that relation is all the proof required.

Proposition 1. Let S = (S, η′, µ′) and T = (T, η, µ) be triples on A , suppose the
natural transformation τ :S // T is a map of triples from S to T, and let (A,α) be an
S-algebra, (B, β) a T-algebra, p:TA //B a T-homomorphism from (TA, µA) to (B, β),
and ι = p ◦ ηA:A //B. Then the following statements are equivalent.

1) p is a coequalizer of the pair

(TSA, µSA) (TTA, µTA)
T (τA) // (TTA, µTA) (TA, µA)

µA //(TSA, µSA) (TA, µA)

T (α)

33

2) p is a coequalizer (rel. UT) of the pair

SA TA
τA //SA
Aα .. A

TA
ηA

44
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3) ι is an S-homomorphism (A,α) // (B, β · τB) making the composition

A T((B, β), X)

A S(A τ (B, β),A τX)
��

A S(A τ (B, β),A τX)

A S((B, β · τB),A τX)

=

��
A S((B, β · τB),A τX)

A S((A,α),A τX)

ι

��

a one-one correspondence, ∀X ∈ |A T|.

Proof. The equivalence of statements 1) and 2) follows from Lemma 1, since µA ·T (τA)
is the A T-morphism corresponding to τA by adjointness and ηA · α = T (α) · ηSA is the
A -morphism corresponding to T (α) by adjointness.

Next, if g:TA // X is a T-homomorphism from (TA, µA) to a T-algebra (X, ξ),
having equal compositions with τA and ηA · α, we show that g · ηA:A // X is an S-
morphism from (A,α) to A τ (X, ξ) = (X, ξ · τX), i.e., that

g · ηA · α = ξ · τX · S(g · ηA).

Clearly this requires only the proof of

g · τA = ξ · τX · Sg · SηA,

for which, consider the diagram

TA TTATA

X

g

��3
333333333333333333 TTA TXTTA

X

TX

X

ξ

���������������������
TA TTA

TηA

//

SA

TA

τA

��

SA STA
SηA // STA

TTA

τTA

��
TTA TX

Tg
//

STA

TTA
��

STA SX
Sg // SX

TX

τX

��
TTA

TA

µA

��
TA

X

g

��

The upper squares commute because τ is natural, the left hand triangle, because µA·TηA =
idTA, the right hand triangle, because g is a T-homomorphism.
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Finally, given an S-homomorphism f :A //X from (A,α) to A τ (X, ξ) = (X, ξ ·τX), it
turns out that ξ ·Tf is a T-homomorphism (TA, µA) //(X, ξ) having equal compositions
with τA and η · α. For, the diagram

SA A
α // A TA

ηA //SA

TA

τA

����������
SA

SX

Sf

��/
/////// A

X

f

��

TA

TX

Tf

��

TA

TX

Tf

��/
/////// SX

TX

τX

����������
X

X

id

��

X

TX

ηX

""EEEEEEEEEEE

TX X
ξ

// TXX
ξ

oo

commutes, since τ is natural, f is an S-homomorphism, η is natural, and ξ · ηX = idX .
These arguments form the core of a proof of Proposition 1.

Corollary 1. If A T has coequalizers of reflexive pairs, then each functor A τ : A T //A S,
induced by a triple map τ :S // T, has a left adjoint τ̂ .

Proof. For each (A,α) ∈ |A S|, the pair

FTSA FTTA
FT(τA) // FTTA FTA

µA //FTSA FTA

FT(α)

44

whose coequalizer, if any, is (by Proposition 1) the value τ̂(A,α) of τ̂ at (A,α), is reflexive
by virtue of

∆ = FT(η′A).

Proposition 2. Let (Ai, αi) (i ∈ I) be a family of T-algebras, and assume the coproduct
⊕i∈IAi exists in A , say with injections ji:Ai // ⊕Ai. Let p:T (⊕Ai) // P be a T-
homomorphism. Then the following statements are equivalent.

1) p is a coequalizer (rel. UT) of the family of pairs

TAi T (⊕Ai)
T (ji) //TAi

Aiαi
.. Ai ⊕Aiji

// ⊕Ai
T (⊕Ai)

η⊕Ai

33 (i ∈ I)

2) each map hi = p · η⊕Ai · ji:Ai // P is a T-homomorphism and the family (hi)i∈I
serves to make P the coproduct in A T of (Ai)i∈I .

Moreover, if ⊕TAi is available in A , statements 1) and 2) are equivalent to each of
the following statements about p:
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3) p is a coequalizer (rel. UT) of the pair

⊕TAi T (⊕Ai)
(···T (ji)··· ) //⊕TAi
⊕Ai⊕αi
.. ⊕Ai

T (⊕Ai)
η⊕Ai

33

4) p is a coequalizer of the pair

(T (⊕TAi), µ) (TT (⊕Ai), µ)
T (···T (ji)··· ) // (TT (⊕Ai), µ) (T (⊕Ai), µ)

µ //(T (⊕TAi), µ) (T (⊕Ai), µ)

T (⊕αi)

22

Proof. The equivalence of statements 1) and 3) is obvious. The equivalence of 3) with 4)
is due to Lemma 1, since the top (bottom) maps correspond to each other by adjointness.

Next, let g:T (⊕Ai) // X be a T-homomorphism from FT(⊕Ai) to (X, ξ), having
equal compositions with both components of all the pairs in 1). Then g ·η⊕Ai ·ji:Ai //X
is a T-homomorphism (Ai, αi) // (X, ξ), for all i, as is shown by the commutativity of
the diagrams

TAi T (⊕Ai)
T (ji) // T (⊕Ai) TT (⊕Ai)

Tη // TT (⊕Ai) TX
Tg //TAi

Ai

αi

��

T (⊕Ai)

T (⊕Ai)
id ((QQQQQQQQQ

TT (⊕Ai)

T (⊕Ai)
µ
��

TX

X

ξ

��

T (⊕Ai)

X

g

((QQQQQQQQQQQQ

Ai ⊕Aiji

// ⊕Ai T (⊕Ai)η⊕Ai

// T (⊕Ai) Xg
//

(i ∈ I)

Finally, if fi:Ai //X is a family of T-homomorphisms (Ai, αi) // (X, ξ), then the
map

g = ξ · T (· · · fi · · · ):T (⊕Ai) // TX
ξ //X

is a T-homomorphism (the only one) having g · η⊕Ai · ji = fi, and, as the diagram below
shows, has equal compositions with both members of all of the pairs in 1).

T (⊕Ai)

TAi

<<
Tji

yyyyyyyyyy
T (⊕Ai)

TX

T (···fi··· )

""EEEEEEEEEE

TAi TX
Tfi // TX X

ξ //TAi

Ai

αi

��
Ai

Ai

id

BB��������������
Ai

TAi
ηAi

55lllllllllllllllllllll

TAi

Ai
αi

iiRRRRRRRR

Ai

X

fi

11cccccccccccccccccccccccccccccccc

TAi

T (⊕Ai)

T (ji)
��/

//////
TAi

TX

Tfi
))RRRRRRRRRRRRRRRRRRRR

Ai ⊕Aiji

// ⊕Ai T (⊕Ai)η⊕Ai

// T (⊕Ai) TX
T (···fi··· )

// TX

X

ξ

OO

(i ∈ I)

This essentially concludes the proof of Proposition 2.
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Corollary 2. If A T has coequalizers of reflexive pairs, and if A has all small coprod-
ucts, then A T has all small colimits (direct limits).

Proof. In the first place, A T has small coproducts, because, given (Ai, αi) ∈ |A T|
(i ∈ I), the pair

FT(⊕TAi) FTT (⊕Ai)
FT(···T (ji)··· ) // FTT (⊕Ai) FT(⊕Ai)

µ //FT(⊕TAi) FT(⊕Ai)

FT(⊕αi)

22

whose coequalizer, according to Proposition 2, serves as coproduct in A T of the family
{(Ai, αi)|i ∈ I}, is reflexive by virtue of

∆ = FT(⊕ηAi).

But then, having coproducts and coequalizers of reflexive pairs, A T has all small
colimits. Indeed, the pair

⊕
δ∈|D2|

Ddom δ

(···jcod δ·Dδ··· )δ∈|D2| //

(···jdom δ··· )
//
⊕
i∈|D |

Di,

whose coequalizer is well known to serve as colimit of the functor D: D // ?, is reflexive
by virtue of

∆ = (· · · jidi
· · · )i∈|D |.

Remark. If A is a monoidal category [Eilenberg & Kelly (1966)] and T = (T, η, µ) is
a suitable triple (meaning at least that T : A //A is a monoidal functor [Eilenberg &

Kelly (1966)], so that there are maps T̃ :TA⊗TB //T (A⊗B) subject to conditions, and
η is a monoidal natural transformation, as should probably be µ), then, given T-algebras
(A,α), (B, β), a coequalizer (rel. UT) of the pair

T (TA⊗ TB) TT (A⊗B)
T (T̃ ) // TT (A⊗B) T (A⊗B)

µ //T (TA⊗ TB) T (A⊗B)

T (α⊗β)

22

which is reflexive by virtue of
∆ = T (ηA ⊗ ηB) ,

serves equally well as a coequalizer (rel. UT) of the pair

TA⊗ TB T (A⊗B)T̃ //TA⊗ TB
A⊗Bα⊗β
.. A⊗B

T (A⊗B)
η
22

and, if A is closed monoidal [Eilenberg & Kelly (1966)], can be interpreted (in terms of
“bilinear maps”) as a tensor product, in A T, of (A,α) and (B, β). Such phenomena hope
to be treated in detail elsewhere.
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2. Criteria for the existence of such coequalizers.

In view of Section 1, it behooves us to find workable sufficient conditions, on A , on T, or
on both, that A T have coequalizers of reflexive pairs. The first such condition, though
rather special, depends on knowing when coequalizers in A T can be calculated in A .

Proposition 3. Let T = (T, η, µ) be a triple in A , and let

(A,α)
f //
g
// (B, β)

be a pair of A T-morphisms. Assume

1) There is an A -morphism p:B // C which is a coequalizer (in A ) of A
f //
g
//B;

2) Tp is a coequalizer of (Tf, Tg);

3) TTp is epic.

Then: there is a map γ:TC // C, uniquely determined by the single requirement that

B Cp
//

TB

B

β

��

TB TC
Tp // TC

C

γ

��

commute; (C, γ) is a T-algebra; and p: (B, β) // (C, γ) is a coequalizer in A T of (f, g).

Proof. The equations p ◦ β ◦Tf = p ◦ f ◦α = p ◦ g ◦α = p ◦ β ◦Tg, occurring because of
assumption 1, force, because of assumption 2, a unique γ:TC // C with γTp = pβ.
Then γ ◦ ηC ◦ p = γ ◦Tp ◦ ηB = p ◦ β ◦ ηB = p, but p is epic (by 1) and so γ ◦ ηC = idC .
Similarly, using assumption 3, the equation γ ◦Tγ = γ ◦µC follows from the calculation

γ ◦Tγ ◦TTp = γ ◦Tp ◦Tβ = p ◦ β ◦Tβ

= p ◦ β ◦µB = γ ◦Tp ◦µB
= γ ◦µC ◦TTp .

Finally, if q:B //X is an A T morphism from (B, β) to (X, ξ) factoring through C,
the factorization must be an A T-morphism, because the diagram

B X//

TB

B
��

TB TX// TX

X
��

TB

TC
Tp ''OOOOOO

TC

TX77oooooo

B

C
''OOOOOOOO

C

X77ooooooo

TC

C
��

commutes everywhere else, and Tp is epic, by assumption 2.
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Corollary 3. If A has and T preserves coequalizers of reflexive pairs, then A T has
coequalizers of reflexive pairs, and Corollaries 1 and 2 apply.

Examples.

1. If T is an adjoint triple, then T preserves all coequalizers (and all colimits, in fact).
Samples of such triples:

a) T = (- ⊗ Λ, id ⊗ u, id ⊗m) where the ground category A is {k-modules} (k
comm.) and Λ is an associative k-algebra with unit u: k // Λ and multipli-
cation m: Λ⊗ Λ // Λ (⊗ = ⊗k). A T = Λ-modules.

b) T = (-×2, id×(1 0 //2), id×(2×2 max //2)), where the ground category A is
Cat and 2 is the p.o. set 0 //1. CatT = {categories with idempotent triples}.
Where S is constructed like T, replacing 2 by the category ∆ given by

|∆| = {0, 1, 2, . . . , n, . . .}
∆(n, k) = order preserving maps {0 . . . n− 1} // {0 . . . k − 1}

with the obvious composition, 0: 1 //∆ the inclusion of the object 0, m: ∆×
∆ //∆ the functor given by

n, n′ n+ n′� //

n k,
f // n′ k′

f ′ // 0� //

n− 1 k − 1

0

n− 1

�
�
�0 0

f //
0

k − 1

�
�
�

n+ n′ − 1 n+ k′ − 1 ,

n

n+ n′ − 1

�
�
�n k

k+f ′(-−n) //
k

n+ k′ − 1 ,

�
�
�

CatS is {categories equipped with a triple}. Define τ :S // T by cross-
ing with the only functor ∆ // 2 sending n 6= 0 to 1 and 0 to 0. Then
Catτ : CatT // CatS is the functor interpreting an idempotent triple as a
triple on the same category. These constructions and observations are all due
to Lawvere. Since Cat has coequalizers and T is an adjoint triple, Catτ has
a left adjoint, by Corollary 1; roughly speaking, it assigns to a triple in a
category, a best idempotent triple on an as closely related other category as
possible.

2. Let A be an additive category, let m:G×G //G be an A -morphism satisfying
m(m × G) = m(G × m), m(id, 0) = id = m(0, id). Define a triple T = (- ×
G, (id, 0), (id×m)) on A . Then T preserves all coequalizers because A×G = A⊕G.
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3. Any functor preserves split coequalizer systems [Linton (1969a)]. In particular every
triple does, and so Proposition 3 guarantees that coequalizers of UT-split pairs of
A T-morphisms can be computed in A , as was stated in greater generality in [Linton
(1969), Section 6].

The other criterion involves images. We treat images axiomatically, in a manner
suggestive of (and perhaps equivalent to) bicategories. Recall that 1, 2 and 3 are the
categories depicted as the partially ordered sets

1 = {0},
2 = {0 // 1},

3 =

{
0 2

c=b ◦ a
//

1
0

55a
llll 1

2
b
))RRRR
}
.

We will need the functors 2 c // 3 and 1 1 // 3 (whose values serve as their names).
These induce functors A c: A 3 //A 2 and A 1: A 3 //A 1 ∼= A , for any category A .

By an image factorization functor for the category A , we mean a functor

I : A 2 //A 3,

having the property

1) A 2 I //A 3 A c
//A 2 = identity on A 2, and three more properties which we state

using the notations

A 1(I (f)) = If

I f = ◦
fa // If

fb // ◦:

2) f ∈ |A 2| +3 fa is an epimorphism,

3) f ∈ |A 2| +3 fb is an monomorphism,

4) f ∈ |A 2| +3 (fb)a and (fa)b are isomorphisms.

A functor T preserves I -images if there is a natural equivalence, whose composition
with A c is the identity, between T 3 ◦I and I ◦T 2. This entails, for each f ∈ A (A,B),
an isomorphism ιf :T (If ) // ITf making the triangle

TA

T (If )
T (fa) %%LLLLLLLL

ITF

TA

99
(Tf)a

rrrrrrrrr
ITF

T (If )

OO

TB

T (If )

99

T (fb)rrrrrrrr

ITF

TB

(Tf)b

%%LLLLLLLLLITF

T (If )

commute.
A triple T = (T, η, µ) on A preserves I -images if the functor T does.
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Lemma 2. If I : A 2 //A 3 is an image factorization functor for A and T is a triple
that preserves I -images, then there is one and only one image factorization functor I T

for A T with the property
(UT)3 ◦I T = I .

Proof. Given f :A // B, an A T-morphism from (A,α) to (B, β), the commutativity
of the square

A B
f

//

TA

A

α

��

TA TB
Tf // TB

B

β

��

yields a commutative diagram

A Iffa

//

TA

A

α

��

TA ITf
(Tf)a // ITf

If

I (α,β)

��
If B

fb

//

ITf

If

ITf TB
(Tf)b // TB

B

β

��

Combining this with the commutative diagram arising from the definition of “T preserves
I -images”, we obtain a map γ = I (α, β) ◦ ιf :T (If ) // If making the diagram

A Iffa

//

TA

A

α

��

TA T (If )
T (fa) // T (If )

If

γ

��
If B

fb

//

T (If )

If

T (If ) TB
T (fb) // TB

B

β

��

commute. There is only one such map γ because T (fa) is epic and fb is monic. We
show that (If , γ) is a T-algebra. Write simply I = If . γ ◦ ηI = idI follows from the
commutativity of

I B
fb

//

TI

I

γ

��

TI TBTB

B

β

��

TI TBTfb //

I

TI

ηI

��

I B
fb // B

TB

ηB

��

B

B

idB

��
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and the fact that fb is monic. γ ◦Tγ = γ ◦µI follows from the commutativity of

TTI TTB
TTfb // TTITTB

TTfbooTTI

TI

Tγ

��

TTB

TB

Tβ

������������
TTB

TB

µB

��/
///////// TTI

TI

µI

��
TI TB

Tfb // TITB
TfbooTI

I

γ

��

TB

B

β

��/
///////// TB

B

β

������������
TI

I

γ

��
I B

fb

// IB
fb

oo

and the fact that fb is monic. Since (UT)3 ◦I T = I , the axioms I T must satisfy,
to be an image factorization functor, are easily verified. The uniqueness is taken care
of, essentially, by the obvious uniqueness of γ:TI // I, subject to the commutativity
relations expressed in the diagram

A I//

TA

A
��

TA TI// TI

I
��
I B//

TI

I

TI TB// TB

B
��

Proposition 4. Let I be an image factorization functor for A , and let T be a triple
on A preserving I -images. Assume A has small products and is co-well-powered (or
even just that the isomorphism classes of each class

I -epi(A) = {f |f :A //B, fb: If
∼= //B,B ∈ |A |}

constitute a set (isomorphisms that are the identity on A , of course)). Then A T has all
coequalizers.

Proof. Given a pair (E, ε)
f //
g
// (A,α) of A T-morphisms, let

Ef,g = {h|h ∈ |A 2|, h: (A,α) // (X, ξ), hf = hg, h = ha}.

Observe that an isomorphism class of Ef,g in the sense of A T or in the sense of A is
the same thing, because T preserves I -images, and the maps h, Th are epic. Pick
representatives of the isomorphism classes of Ef,g, say

hi: (A,α) // (Xi, ξi) (i ∈ I)

and form the induced map (an A T-morphism by [Linton (1969), Section 6])

k = 〈· · ·hi · · · 〉: (A,α) // (ΠiXi,Πiξi).
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Then ka is a coequalizer of (f, g) in A T. Indeed, given h: (A,α) // (Z, ζ) with hf = hg,
we have ha ∈ Ef,g and so ∃i0 ∈ I with ha ' hi0 . Then the composition

(IT)k
kb // (ΠiXi,Πiξi)

pri0 // (Xi0
, ξi0)

∼= // (IT)h
hb // (Z, ζ)

makes the triangle

(A,α) (IT)k
ka //(A,α)

(Z, ζ)

h
$$JJJJJJJJJJJ
(IT)k

(Z, ζ)
��

commute, and since ka is epic, it is the only such map. That ka ∈ Ef,g is obvious, and
completes the proof of the existence of coequalizers.

Remark. Much the same arguments prove, under the same hypotheses, that A T has
coequalizers of families of pairs of maps.

Example. A = S , I = usual epic-monic factorization. Then any triple preserves I -
images (proof below), and consequently S T has coequalizers, and, by virtue of Corollary
2, all colimits. That A T has all limits if A has is well known, and this then takes care of
the completeness properties of varietal categories.

To see that every triple in S preserves images, it suffices to see that every triple in
S preserves monomorphisms since the usual epic-monic factorization is determined to
within isomorphism by the requirement that it be an epic-monic factorization, and every
functor preserves epimorphisms, since they split. So let T = (T, η, µ) be a triple in S .
The only monomorphisms f that T has a chance of not preserving are those that are not
split, i.e., those with empty domain. Now if T (∅) is ∅, Tf is surely monic. But if T∅
has at least one element, Tf , which may be thought of as a T-morphism from FT(∅) to
FT(n), admits a retraction, namely the extension to a T-homomorphismof any function

n // UTFT∅ = T∅.

That the composition on FT(∅) is the identity is due to the fact that FT(∅) is a left zero
(is initial, is a copoint) in S T.



A Triple Theoretic Construction of Compact Algebras

Ernest Manes 1

Let T be a triple in the category of sets. Using the Yoneda Lemma, it is possible to
reinterpret T-algebras in the classical way as sets with (not necessarily finitary) opera-
tions; (the “equations” are built into T and need not be mentioned). The objects in the
category of compact T-algebras are defined to be sets provided with T-algebra structure
and compact T2 topology in such a way that T-operations are continuous, whereas the
morphisms are defined to be continuous T-homomorphisms. The end result of this paper
is the proof that “compact T-algebras” is itself the category of algebras over a triple in the
category of sets; that is, a compact T-algebra—a compact T2 space in particular—is an
example of a set with algebraic structure. When T-algebras = G-sets, compact T-algebras
= compact topological dynamics with discrete phase group G. The general case of com-
pact topological dynamics, when G is a (not necessarily compact) topological group, is
also algebraic, indeed is a Birkhoff subcategory (= variety) of the discrete case. (For more
on the interplay between compact topological dynamics and universal algebra see [Manes
(1967), Sections 2.4, 2.5]). This motivates our general study of Birkhoff subcategories in
Section 3. Otherwise, the paper pursues a suitably geodesic course to our main result 7.1,
so long as “suitable” means “intended to convince the reader with little background in
triple theoretic methods”.

1. Preliminaries.

We assume the reader is conversant with elementary category theory at the level of, say,
the first five chapters of [Mitchell (1965)]. Most of the main prerequisites are listed in
this section.

1.1 Miscellaneous preliminaries. If f, g are morphisms in a category we compose

first on the left so that fg (which we also write f · g) =
f // g // . We use “=df” for

“is defined to be” and “=dn” for “is denoted to be”. We write “ // f // ” (resp. “
f // // ”) to

assert that the morphism f is mono (resp., epi); “mono” and “epi” are defined below in
1.2. A function f is bijective =df f is 1-to-1 and onto. If f is a function and if x is an
element of the domain of f, we write “xf” or “〈x, f〉” for the element of Y that f assigns
to x. “End of proof” =dn .

Let K be a category. |K | or objK =dn the class of K -objects. For X ∈ objK , 1X

or X 1 //X =dn the identity morphism of X. S =df the category of sets and functions.
K is legitimate =df for all X, Y ∈ objK the class (X, Y )K of K -morphisms from X
to Y is a set. A class F of K -morphisms has a representative set =df there exists a set

1Virtually all of this paper appears in the author’s thesis [Manes (1967)]. Many of the ideas were
developed in conversations with Jon Beck and F. E. J. Linton to whom the author is grateful.
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R of K -morphisms such that for every X
f // X ∈ F there exists A r // B ∈ R and

K -isomorphisms X a // A, Y
β //B such that fβ = ar.

1.2 Monos and epis.

Definition 1.2.1. Let A
f // B ∈ K . f is a split epi if there exists B

f̃ // A ∈ K
with f̃f = 1B. f is a coequalizer if there exist g, h ∈ K with f = coeq(g, h). Define

reg(f) =df {A
g // Y ∈ K : for every (a, b):X // A, af = bf implies ag = bg}

Then f is a regular epi if for every g ∈ reg(f) there exists a unique g̃ ∈ K with fg̃ = g.
f is epi if for every (a, b):B //X in K , fa = fb implies a = b.a Dually, we have split
mono, equalizer, regular mono, mono.

Proposition 1.2.2. Let A
f // B ∈ K . Then f split epi implies f coequalizer implies

f regular epi implies f epi.

Proof. If f̃f = 1B, f = coeq(1A, f f̃). If f = coeq(a, b) then for every g ∈ reg(f) we
have ag = bg so that the coequalizer property induces unique g̃ with fg̃ = g. Finally,
suppose f is regular epi and that fa = fb. Defining g =df fa, g ∈ reg(f) so there exists
unique g̃ with fg̃ = g, and a = g̃ = b.

Proposition 1.2.3. In S the following notions are equivalent: split epi, coequalizer,
regular epi, epi, onto function.

Proof. To see that epis are onto, consider functions to a two-element set. The axiom of
choice implies that onto functions are split epi (and conversely, by the way).

Proposition 1.2.4. Let A
f // B

g // C ∈ K . Then f (split) epi and g (split) epi
implies fg (split) epi. fg (split) epi implies g (split) epi.

Proposition 1.2.5. Let A
f //B ∈ K . Then f iso iff f regular epi and mono.

Proof. [iso] implies [split epi and mono] implies [regular epi and mono]. Conversely, if

f is regular epi and mono, 1A ∈ reg(f) and so induces f̃ with ff̃ = 1A. As ff̃f = f and

f is epi, f̃f = 1B.

Definition 1.2.6. Let A
f // B ∈ K . A regular coimage factorization of f is a fac-

torization f = A
p // // Q // i // B with p regular epi and i mono. K has regular coimage

factorizations if every K -morphism admits a regular coimage factorization.

Proposition 1.2.7. Regular coimage factorizations are unique within isomorphism.

Proof. Suppose p, p′ are regular epis and i, i′ are monos with pi = p′i′. p′ is in reg(p) as
i′ is mono, so h is uniquely induced with ph = p′. hi′ = i because p is epi. h−1 is induced
similarly.

aEditor’s footnote: Note that reg(f) is a proper class in general. This definition—which could be
reworded to avoid the proper class—defines “regular epi” without requiring that it be a coequalizer of
any single map.
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Proposition 1.2.8. Assume that K has regular coimage factorizations. Let

A
f //B

g // C ∈ K

Then f, g regular epi implies fg regular epi. fg regular epi implies g regular epi. The
hypothesis on K is necessary in both cases.

Proof. Suppose fg is regular epi. Consider the diagram

A B
f // B C

g //A

J
����

B

I

p

�� ��/
/////////

J I//
j

// I

C

GG
i

GG���������

where pi is the regular coimage factorization of g and then J is the regular coimage
factorization of fp. By 1.2.7, ji is an isomorphism. But then i is mono and split epic,
hence an isomorphism, by 1.2.5; and then g is regular epi because p is.

Now suppose that f, g are regular epi and let fg = pi be a regular coimage factorization
of fg. As i is mono, p is in reg(f) inducing p̃ such that fp̃ = p. As just proved, i is
regular epi (noting that p̃i = g because f is epi). As i is also mono, i is iso and hence fg
is regular epi because p is.

The third assertion is left to the reader with the hint to look at some simple finite
categories.

1.3 Limits. If D is a K -valued functor, the inverse limit of D (determined only within
isomorphism if it exists at all) is denoted “ limoo D”, or more precisely “ limoo D // D”;

similarly, we use “D // lim// D” for direct limits. The ith projection of a product

=dn ΠXi

pri //Xi. The coequalizer of (f, g):X // Y =dn coeq(f, g). If (Aa //
ia //X: a ∈

I) is a family of monomorphisms, their inverse limit =dn

⋂
Aa //

i // X (i is, in fact, a

monomorphism). The class of monomorphisms into X is partially ordered by A // i //X ≤
B // j //X =df there exists A k // B such that kj = i (in which case k is unique and is a
monomorphism); ∩Aa = infAa with respect to this ordering.

1.4 Godemont’s cinq règles; see [Godement (1958)]. Suppose that W , X, Y , Z
are functors and that a is a natural transformation from X to Y . Natural transformations
WX

Wa // WY and XZ
aZ // Y Z are induced by defining K(Wa) =df (KW )a and

K(aZ) =df (Ka)Z for every object K. The five rules concerning these operations are as
follows.

(WX)a = W (Xa):WXY //WXZ;

a(Y Z) = (aY )Z:WY Z //XY Z;
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WaZ =df (Wa)Z = W (aZ):WXZ //WY Z;

V (a · b)Z = V aZ · V bZ:VWZ // V Y Z;

ab =df aY ·Xb = Wb · aZ:WY //XZ.

1.5 The Yoneda Lemma. Let K H // S be a set-valued functor, and let X be a
K -object such that (X, -)K is set-valued. Then the passages

((X, -)K , H)n.t. // XH, XH // ((X, -)K , H)n.t.

a � // 〈1A, Xa〉 x � // (X, -)K a // H

(X, Y )K Y a // Y H

X
f // Y � // 〈x, fH〉

(where “n.t.” means natural transformations) are mutually inverse. In particular,
((X, -)K , H)n.t. is a set. For a proof see [Mitchell (1965), pp. 97–99].

1.6 Adjoint functors. Let L i //K be a (not necessarily full) subcategory of K ,

and let X be a K -object. A reflection of X in L =df a K -morphism X
Xη //XL such

that XL ∈ objL and such that whenever X
f // L ∈ K with L ∈ objL there exists

a unique XL

f̃ // L ∈ L such that Xη · f̃ = f . If every K -object has a reflection in

L then L is a reflective sub category of K and there is a reflector functor K R //L

defined so as to make 1
η //Ri natural. R is determined within natural equivalence. L

is full iff R may be chosen with iR = 1L ; (however, the definition of reflectors requires a
suitable axiom of choice).

A left adjointness consists of functors K F // A , A U //K and natural transfor-

mations UF ε // 1, 1
η // FU (called adjunctions) subject to the adjointness axioms

F
ηF // FUF Fε // F = 1F , U

Uη // UFU εU // U = 1U . We donote this by F a U ,
read “F is left adjoint to U” and let η, ε be understood. U has a left adjoint =df there
exists F a U . If A and K are legitimate, then a left adjointness may be expressed in

terms of a natural equivalence ((-)F, -)A α // (-, (-)U)K where 〈f, (X,A)α〉 = Xη · fU ,
〈f, (X,A)α−1〉 = gF ·Aε and conversely Xη = 〈1XF , (X,XF )α〉, Aε = 〈1AU , (AU,A)α−1〉.

If f a U and F̃ a U then F and F̃ are naturally equivalent. A subcategory is reflective
iff its inclusion functor has a left adjoint. Notice that a subcategory inclusion i is a full

reflective subcategory iff there exists R a i with iR
ε // 1 a natural equivalence.

Finally, we state the adjoint functor theorem first proved by Freyd. Let A U //K
be a functor. U satisfies the solusion set condition =df for every K ∈ objK there exists

a set, RK , of A -objects such that whenever A ∈ A and K
f // AU ∈ K , there exist

R ∈ RK , K a //RU ∈ K , R b //A ∈ A with f = a · bU ; (such a set is called a solution
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set for K ). Let A ,K be legitimate and assume further that A has limsoo . The adjoint

functor theorem says: there exists F a U iff U preserves limsoo and satisfies the solution

set condition.

1.7 Regular categories. The category K is regular if it satisfies the following four
axioms.

REG 1. K has regular coimage factorizations.

REG 2. K has limsoo .

REG 3. K is legitimate.

REG 4. For every X in objK the class of regular epimorphisms with domain X has a
representative set.

Contractible pairs (Jon Beck).

Definition 1.8.1. Let (f, g):X //Y be K -morphisms. (f, g) is contractible =df there

exists Y d //X such that df = 1Y and fdg = gdg.

Proposition 1.8.2. A coequalizer of a contractible pair is a split epi.

Proof. If (f, g) is contractible and q = coeq(f, g) then as fdg = gdg there exists Q h //Y
with qh = dg. As q is epi and qhq = dgq = dfq = q, hq = 1Q.

For more on the theory of contractible pairs see [Manes (1967), Section 0.7]

Creation of constructions. Let A U //K be a functor. U creates limsoo =df for

each functor ∆ H //A and for each model X α //HU for limoo HU there exists a unique

natural transformation A α̃ // H with codomain H such that α̃U = α; and moreover
α̃ = limoo H.

U creates regular coimage factorizations =df for each A -morphism A
f̃ // B and for

each regular coimage factorization AU
p // I

i //BU of f̃U there exists unique p̃, ĩ ∈ A
with p̃U = p and ĩU = i; and moreover, p̃, ĩ is a regular coimage factorization of f̃ .

U creates coequalizers of U -contractible pairs =df for each pair of A -morphisms

(f̃ , g̃):A // B such that (f̃U, g̃U) is contractible and for each model BU
q // Q of

coeq(f̃U, g̃U) in K , there exists unique B
q̃ //Q with domain B such that q̃U = q; and

moreover, q̃ = coeq(f̃ , g̃).

2. Algebras over a triple.

In this section we study just enough about the category of algebras over a triple to suit
our later needs. See [Manes (1967), Chapter 1] for more results in a similar vein.
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Definition 2.1. Let K be a category. T = (T, η, µ) is a triple in K with unit η

and multiplication µ if K T //K is a functor and if 1
η // T , TT

µ // T are natural
transformations subject to the three axioms:

T TT
Tη //T

T

1

��999999999999 TT Too ηTTT

T

µ

��

T

T

1

��������������

TT Tµ
//

TTT

TT

Tµ

��

TTT TT
µT // TT

T

µ

��

T-unitary axioms T-associativity axiom

Let T = (T, η, µ) be a triple in K . A T-algebra =df a pair (X, ξ) with X ∈ |K | and

XT
ξ //X a K -morphism subject to the two axioms

X XT
Xη //X

X

1

��

XT

X

ξ

���������������

XT X
ξ

//

XTT

XT

Xµ

��

XTT XT
ξT // XT

X

ξ

��

ξ-unitary axiom ξ-associativity axiom

X is the underlying K -object of (X, ξ) and ξ is the structure map of (X, ξ). If (X, ξ)
and (Y, ϑ) are T-algebras, a T-homomorphism f : (X, ξ) // (Y, ϑ) from (X, ξ) to (Y, ϑ)
is a K -morphism f :X // Y subject to the

X Y
f

//

XT

X

ξ

��

XT Y T
fT // Y T

Y

ϑ

��

T-homomorphism axiom

K T =dn the resulting category of T-algebras. UT =dn the faithful underlying K -object
functor.

A functor U : A //K is tripleable if there exists a triple T in K and an isomorphism

of categories A Φ //K T such that ΦUT = U . b

bEditor’s footnote: This definition is non-standard. What is usually required is categorical equivalence,
not isomorphism. Moreover, from the use the author makes of tripleability, it seems likely that the
standard definition is what he really wants.
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2.2 Heuristics in K T. Categories of algebras in the classical sense are tripleable (see
[Linton (1969), Section 9]; also [Manes (1967), 1.1.7]). We observe now that there are
always free T-algebras for T = (T, η, µ) a triple in K . If X is a K -object, then (XT,Xµ)
is a T-algebra (as is immediate from the triple axioms). Observe that if (X, ξ) is a T-
algebra, then ξ: (XT,Xµ) // (X, ξ) is a T-homomorphism by the ξ-associativity axiom.
Since µ is natural,for each K -morphism f :X //Y , fT : (XT,Xµ) //(Y T, Y µ) is a T-
homomorphism. We wish to think of (XT,Xµ) as the “free T-algebra on X generators”
with Xη:X // XT as “inclusion of the generators”. Indeed, if (Y, ϑ) is a T-algebra
and if f :X // Y is a K -morphism, then it is easy to check that there exists a unique
T-homomorphism f̃ : (XT,Xµ) // (Y, ϑ) such that Xη.f̃ = f , namely f̃ =df fT.ϑ. Note
that a T-algebra is characterized by the unique extension of the identity map on generators
to (XT,Xµ).

2.3 Example: the triple associated with a monoid. Let G be a monoid. “Carte-
sian product with the underlying set of G” is a functor

S
-×G //S

Define Xη =df (1, e):X //X ×G and Xµ =df 1×m:X ×G×G //X × C, where e
is the monoid unit and m is the monoid multiplication. Then G = (-×G, η, µ) is a triple
in S . G-algebras are right G-sets. G is called the triple associated with G.

Proposition 2.4. UT creates limsoo .

Proof. Suppose D: ∆ //K T is a functor and Γi:L //Xi is a model for limoo DUT.

For every δ: i // j ∈ ∆, we have

LT

XjT
ΓjT ''OOOOOOOO

XiT

LT

77ΓiT

oooooooo
XiT

XjT

fδT

��
XjT Xjξj

//

XiT

XjT
��

XiT Xi

ξi // Xi

Xj

fδ

��

which induces a unique K -morphism ξ such that ΓiT.ξi = ξ.Γi for all i. It is routine to
check that Γi: (L, ξ) // (Xi, ξi) is the created limoo of D.

2.5 Subalgebras. Let (X, ξ) be a T-algebra and let i:A // //X be a K -monomorphism.
Say that i (or by abuse of language A) is a subalgebra of (X, ξ) if there exists a K -
morphism ξ0:AT // A such that ξ0.i = iT.ξ. It is easy to check that, indeed, (A, ξ0) is
a T-algebra. To denote that (A, ξ0) is a subalgebra of (X, ξ), we write “(A, ξ0) ≤ (X, ξ)”.

Proposition 2.6. Let T preserve regular coimage factorizations. Then UT creates reg-
ular coimage factorizations.
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Proof. Let f : (X, ξ) // (Y, ϑ) be a T-homomorphism and suppose f has regular coim-

age factorization f = X
p // // I //

i //X in K . By hypothesis, fT = XT
pT // // IT // iT //Y T

is a regular coimage factorization in K . Since ξ.f = fT.ϑ and i is mono, ξ.p ∈
reg(pT ) which induces unique ϑ0 with pT.ϑ0 = ϑ.p. ϑ0.i = iT.ϑ as pT is epi. We

have (X, ξ)
p // (I, ϑ0) i // (Y, ϑ) and that ϑ0 is unique with this property. To complete

the proof, we have only to show that p: (X, ξ) // (I, ϑ0) is regular epi in K T. Let
a: (X, ξ) // (A, κ) ∈ regT(p). Suppose ζ, χ:B //X are K -morphisms with ζ.p = χ.p.

Let ζ̃ , χ̃ be the induced homomorphic extensions. Since ζ̃ .p, χ̃.p are homomorphisms
agreeing on generators, ζ̃ .p = χ̃.p. This proves that a ∈ regK (p). As p:X // I is
a regular epi in K , there exists a unique K -morphism ã with p.ã = a. Since a is a
T-homomorphism and pT is epi, ã is forced to be a T-homomorphism.

Definition 2.7. T is a regular triple in K if K is a regular category and if T preserves
regular coimage factorizations.

Proposition 2.8. If T is a regular triple, then K T is a regular category.

Proof. REG 1, REG 2, REG 3 follow respectively from 2.6, 2.4 and the fact that UT

is faithful. Now let p: (X, ξ) // (Y, ϑ) be a regular epi in K T. Combining the way the
regular coimage factorization of p was created at the level K in 2.6 with 1.2.7, we see
that p:X // Y is regular epi in K . But then REG 4 is clear.

Proposition 2.9 The precise tripleability theorem (Jon Beck). Let U : A //K
be a functor. Then U is tripleable iff U has a left adjoint and U creates coequalizers of
U-contractible pairs.

Proof. See [Manes (1967), 1.2.9].c

Definition 2.10. Let (X, ξ) be a T-algebra and let i:A // //X. The subalgebra of (X, ξ)
generated by A =dn 〈A〉 =df the intersection⋂

{(D,α) ≤ (X, ξ) | A ⊆ D} // // (X, ξ)

When 〈A〉 exists it is in fact the smallest subobject of (X, ξ) containing A. If f :X //Y

is a K -morphism and if f = X
p // // I // j // Y is a regular coimage factorization of

f , im f =dn j: I // // Y . If A // i // X
f // Y we also denote im i.f by “Af // // Y ”. If

X
f //Y oo

k oo B, we denote the pullback of k along f by “Bf−1 // //X. (That Bf−1 // //X
is a monomorphism is easily verified.)

Proposition 2.11. Let f : (Xξ) //(Y, ϑ) be a T-homomorphism and let A // //X, B // //Y .
The following statements are valid

a. 〈A〉 = im iT.ξ, provided both exist and T preserves coimage factorization.

cEditor’s footnote: See also p. 8ff. of the TAC reprint of [Beck (1967)].



A Triple Theoretic Construction of Compact Algebras 81

b. 〈A〉f = 〈Af〉 provided both exist and T preserves coimage factorization.

c. Bf−1, if it exists, is a subalgebra of (X, ξ).

Proof.

a. The diagram

A AT
Aη // AT im iT.ξ// //A

X

��

i

��

AT

XT

iT

��

im iT.ξ

X

��

���������������������

X XT
Xη //X

X

1
$$JJJJJJJJJJJJJ XT

X

ξ

��

proves that A ⊆ im iT.ξ. But by 2.6, im iT ≤ (X, ξ). Therefore 〈A〉 ⊆ im iT.ξ.
Conversely, consider the diagram

AT 〈A〉TaT // 〈A〉T XTbT //AT

im iT.ξ

p

��

〈A〉T

〈A〉

ξ0

��

XT

X

ξ

��

im iT.ξ

X

**
TTTTTTTTTT

**TTTTTTTTTTTTT

im iT.ξ

〈A〉
$$J

J
J

J
J

J

A 〈A〉//
a

// 〈A〉 X//
b

//A X%%

i

88

aT.ξ0 ∈ reg(p) because b is mono. Therefore, im iT.ξ ⊆ 〈A〉.

b. Suppose A
p // // Af // c // Y is a regular coimage factorization. By hypothesis, pT

is a regular epimorphism. We have 〈Af〉 = im cT.ϑ = im pT.cT.ϑ (by 1.2.7) =
im iT.ξ.f = 〈A〉f .

c. Bf−1 // (X, ξ) is a monomorphism in K T. But by 2.4, it is clear that the
underlying K -morphism of Bf−1 //(X, ξ) is a monomorphism, and hence Bf−1 ≤
(X, ξ).

Alternate proof: since U preserves kernel pairs it preserves monos.

3. Birkhoff subcategories

Definition 3.1. Let K be a category and let B be a full subcategory of K . B is closed
under products if every model for a product in K of a set of B-objects lies in B. B is
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closed under subobjects if every monomorphism in K with range in B lies in B. Let
C be any subcategory of K . Define �C =df the intersection of all full subcategories of K
containing C and closed under products and subobjects.

Evidently “� ” is a closure operator on the (large) lattice of subcategories of K and

C = �C iff C is closed under products and subobjects.

Proposition 3.2. Let K be a regular category and let i: B //K be a full subcategory.
The following statements are equivalent.

a. B = �B

b. B is a reflective subcategory of K in such a way that for every K -object X the
reflection Xη:X //XB of X in B is a regular epimorphism; also |B| is a union
of K -isomorphism classes.

Proof.

a +3 b. Viewing an isomorphism as a unary product, |B| is a union of K -isomorphism
classes. B has limsoo and i preserves them. i satisfies the solution set condition by

REG 1 and REG 4. By the adjoint functor theorem it follows that B is a reflective
subcategory. Let X be a K -object with reflection Xη:X //XB. Factor Xη = p.k
through its regular coimage. As k is mono, x is induced with Xη.x = p. By the
uniqueness of reflection-induced maps, x.k = 1. Therefore x is epi and split mono,
hence iso, and Xη is regular epi because p is.

b +3 a. Let X be a product in K of a set of B-objects. Each projection factors
through Xη inducing a map a:XB

// X such that Xη.a = 1X . Hence Xη is a
split mono. Since we assume Xη is epi, Xη is an isomorphism. Now suppose X
is a K -object admitting a monomorphism j to some object in B. Then j factors
through Xη, and hence Xη is mono. But then Xη is mono and regular epi and
hence iso.

For the balance of this section, let T = (T, η, µ) be a regular triple in K .

Proposition 3.3. Let λ:T // T̃ be a pointwise regular epi natural transformation,
and suppose further that for every K -object X there exists a K -morphism Xµ̃ such
that Xλλ.Xµ̃ = Xµ.Xλ. Then T̃ =df (T̃ , η̃, µ̃) (where η̃ = η.λ) is a triple in K and
λλ.µ̃ = µ.λ.

Proof. The fact that Xλ is epi yields the unitary axioms. It is also true that Xλλ and
Xλλλ are epi, i.e., Xλλλ = XλTT.XT̃λT.XT̃ T̃λ so use 1.2.8 and the fact that T pre-
serves regular epis. Xλλ epi implies µ̃ is natural, and Xλλλ epi implies the associativity
axiom. The reader may provide the requisite diagrams.
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3.4. The regular triple induced by a � -closed subcategory.. Let B ⊆ K
be a subcategory such that B = �B. By 2.8 K T is a regular category, so that by 3.2
B is a full coreflective subcategory with regular epi reflections. In particular, for each
K -object X let Xλ: (XT,Xµ) // (XT̃ , ξX) be a regular epi reflection of (XT,Xµ) in

B. By the reflection property, each K -morphism f :X // Y induces unique fT̃ such
that Xλ.fT̃ = fT.Y λ which establishes a functor T̃ : K //K and a pointwise regular
epi natural transformation λ:T // T̃ . For ever K -object X, the fact that ξX is a
T-homomorphism and the reflection property induce unique Xµ̃:

XT XT̃
Xλ

//

XTT

XT

Xµ

��

XTT XT̃T
XλT // XT̃T

XT̃

ξX

��

XT̃T XT̃ T̃
XT̃λ //XT̃T

XT̃

XT̃ T̃

XT̃

Xµ̃

zzv
v

v
v

v
v

v
v

By 3.3, T̃ = (T̃ , ηλ, µ̃) is a triple in K and λλ.µ̃ = µ.λ. T̃ is called the regular triple
induced by B.

Definition 3.5. A full subcategory B of K T is closed under UT-split epis =df whenever
q: (X, ξ) //(Q,α) ∈ K T with q:X //Q split epi in K and (X, ξ) ∈ |B| then (Q,α) ∈
|B|. For each subcategory C of K T define

��C =df the intersection of all full subcategories
of K T closed under products, subalgebras (=df subobjects of K T) and UT-split epis. A
�� -closed subcategory of K T is called a Birkhoff subcategory of K T (because the following
theorem is a triple-theoretic version of [Birkhoff (1935)]).

Proposition 3.6. Let B be a Birkhoff subcategory of K T and U =df the restriction of
UT to B. Then U is tripleable.

Proof. Let T̃ = (T̃ , η̃, µ̃), λ be as in 3.4. We will construct an isomorphism Φ: K T̃ //B

such that ΦU = U T̃. If (X, ξ̃) is a T̃-algebra, (X, ξ̃)Φ =df (X,XT Xλ // XT̃
ξ̃ // X).

η̃ = ηλ implies Xη.Xλ.ξ̃ = 1X and λλ.µ̃ = µ.λ implies Xµ.Xλ.ξ̃ = XλT.ξ̃T.Xλ.ξ̃. If

f : (X, ξ̃) // (Y, ϑ̃) is a T̃-homomorphism, the naturality of λ guarantees that

f : (X,Xλ.ξ̃) // (Y, Y λ, ϑ̃)

is a T-homomorphism. Hence Φ: K T̃ // K T is a well-defined functor with ΦUT =

U T̃. Because λ is pointwise epic, Φ is 1-to-1 on objects. If (X, ξ̃), (Y, ϑ̃) are T̃ objects

and if f : (X,Xλ.ξ̃) // (Y, Y λ.ϑ̃) is a T-homomorphism, f : (X, ξ̃) // (Y, ϑ̃) is a T̃-
homomorphism because Xλ is epi. Hence Φ is an isomorphism onto the full subcategory
im Φ. We must show im Φ = B on objects. If (X,Xλ.Φ̃) ∈ im ξ then (XT,XT̃λ.Xµ̃) ∈
|B| by definition of µ̃ and Xη̃:X // XT is a K -splitting of the T-homomorphism

ξ̃: (XT̃ ,XT̃λ.Xµ̃) // (X,Xλ.ξ̃), so that (X,Xλ.ξ̃) ∈ |B|. Conversely, let (X, ξ) ∈ |B|.
By the reflection property there exists a unique T-homomorphism ξ̃:XT̃ // X with
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Xλ.ξ̃ = ξ. Using the fact that Xλλ is epi, it is easy to check that (X, ξ̃) is a T̃-algebra.
The proof is complete.

4. The category K (T,T̃)

For this section, let T, T̃ be regular triples in K .

Definition 4.1. Define a new category K (T,T̃) with objects (X, ξ, ξ̃) such that (X, ξ) ∈
|K T| and (X, ξ̃) ∈ |K T̃| and morphisms f : (X, ξ, ξ̃) //(Y, ϑ, ϑ̃) such that f : (X, ξ) //(Y, ϑ)

∈ K t and f : (X, ξ̃) // (Y, ϑ̃) ∈ K T̃ with identities and compositions defined at the level

K . U (T,T̃) =df the obvious underlying K -object functor.

Proposition 4.2. K (T,T̃) is a regular category and U (T,T̃) creates limsoo and regular coim-

age factorizations.

Proof. That U (T,T̃) creates limsoo follows easily from 2.4; in particular we have REG 2.

REG 3 is clear as U (T,T̃) is faithful.
Now suppose that f : (X, ξ, ξ̃) // (Y, ϑ, ϑ̃) ∈ K (T,T̃) is such that f is regular epi in

K T and K T̃. Then f is regular epi in K (T,T̃). To prove it, it is enough to to let g
be in reg(T,T̃)(f) and show that g is in regT(f). Let a, b: (A,α) // (X, ξ) in K T such

that af = bf . Let (t, u):P // X be a pullback of f with itself in K . Since U (T,T̃)

creates limsoo , t, u lift to K (T,T̃)-morphisms (P, γ, γ̃) // (X, ξ, ξ̃). Since UT creates limsoo ,

(t, u): (P, γ) // (X, ξ) is the pullback of f : (X, ξ) // (Y, ϑ) with itself, which induces
h: (A,α) // (P, γ) such that ht = a, hu = b. Since g is in reg(T,T̃)(f) and tf = uf we
have tg = ug. Therefore ag = htg = hug = bg.

That U (T,T̃) creates regular coimage factorizations now follows easily from 2.6; in

particular, REG 1 is established. Let f : (X, ξ, ξ̃) // (Y, ϑ, ϑ̃) be regular epi in K (T,T̃).
REG 4 will be clear from 2.8 if we show f is regular epi in K T. This is immediate from

1.2.7 and the way the regular coimage factorization of f in K (T,T̃) was constructed.

Definition 4.3. Let B be a full subcategory of K (T,T̃). B is a Birkhoff subcategory if

B is closed under products, subobjects and U (T,T̃)-split epis (the meaning of “closed under

U (T,T̃)-split epis” is clear).

Proposition 4.4. Let B be a Birkhoff subcategory of K (T,T̃) and let U =df the restric-

tion of U (T,T̃) to B. Then U is tripleable iff U satisfies the solution set condition.

Proof. We use 2.9. It is trivial to check that U (T,T̃) creates coequalizers of U (T,T̃)

contractible pairs. Now suppose (X, ξ, ξ̃)
f //
g
// (Y, ϑ, ϑ̃) with X

f //
g
// Y contractible and

q:Y //Q = coeq(f, g) in K . Since q is a split epimorphism in K , by 1.8.2, the created

coequalizer q: (Y, ϑ, ϑ̃) // (Q,α, α̃) is, in fact, in B. Therefore U creates coequalizers of
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U -contractible pairs. B is closed under the K (T,T̃)- limsoo so that B has and U preserves

limsoo . By the adjoint functor theorem, the proof is complete.

Definition 4.5. Let (X, ξ, ξ̃) ∈ |K (T,T̃)|. (X, ξ, ξ̃) is a T-T̃ quasicomposite algebra

=df for every K-monomorphism i:A // // X, the K(T,T̃)- subalgebra generated by A is
〈〈A〉T〉T̃. (What we mean by “subalgebra generated by” is clear.) Equivalently, if A is a

T̃-subalgebra, so is 〈A〉T̃.d

Proposition 4.6. Let B be a Birkhoff subcategory of K (T,T̃) and let U =df U (T,T̃)

restricted to B. If every B-object is a T-T̃ quasicomposite algebra then U is tripleable.

Proof. By 4.4 we have only to show that U satisfies the solution set condition. Let K
be a K -object. Let S1 be a representative set of regular epis with domain K. Let S2 be
a representative set of split epis with domain of the form LT for some L which is in the
range of some element of S1. Let S3 be a representative set of split epis with domain

of the form LT̃ for some L which is in the range of some element of S2. Now suppose

(X, ξ, ξ̃) is an object of B and that f :K // X is a K -morphism. There exists p in

S1 with f = K
p // // L // i // X. There exists a model for 〈L〉T such that the canonical

split epi ϑ:LT // // 〈L〉T is in S2 (as we can always transport a structure map through a

K -isomorphism). Similarly there exists a split epi 〈L〉tT̃ // // 〈〈L〉T〉T̃ in S3. Hence the
diagram

〈L〉T 〈〈L〉T〉T̃// //

L

〈L〉T
??

??�����

K

L
p ?? ??������

〈〈L〉T〉T̃

X

��

��
K X

f
//

proves that f factors through a set of objects {〈〈L〉T〉T̃}. The crucial point is our hypoth-
esis that each 〈〈L〉T〉T̃ is in |B|.

5. Compact spaces

Definition 5.1. Let X be a set, F ⊂ 2X . F c =df [A ⊂ X: there exists F ∈ F with
F ⊂ A]. F is a filter on X if F 6= ∅, ∅ /∈ F , A,B ∈ F implies A ∩ B ∈ F and
F = F c. An ultrafilter on X is an inclusion maximal filter on X. Xβ =df [U : U is
an ultrafilter on X]. If A ⊂ X, F ∧ A =df [F ∩ A:F ∈ F ]. If F is a filter on X, it is
easy to verify that A /∈ F iff F ∧A is a filter on A′ iff (F ∧A′)c is a filter on X (where
A′ =dn complement of A in X.)

dEditor’s footnote: The notation is not defined but it seems from the context and 〈A〉T̃ is meant to

denote the T̃-subalgebra generated by A and similarly for 〈〈A〉T〉T̃. This concept seems to be awfully
close to distributive laws, [Beck (1969)].



Ernest Manes 86

Lemma 5.2. The following statements are valid.

a. For every filter, F , on X, F ∈ Xβ iff for every subset A of X either A ∈ F or
A′ ∈ F .

b. For every filter, F , on X, F =
⋂

[U ∈ Xβ: F ⊂ U ].

Proof. a. If A /∈ F , (F ∧ A′)c is a filter finer than, hence equal to, F . Therefore
A′ ∈ F . Conversely, let G be a filter containing F . If G ∈ G , G′ /∈ F so that G ∈ F .

b. Let A ⊆ X, A /∈ F . (F ∧ A′)c is a filter on X. By Zorn’s lemma (a nested union
of filters is a filter) every filter is contained in an ultrafilter. Hence there exists U ∈ Xβ
with (F ∧ A′)c ⊆ U . We have F ⊆ U , A /∈ U proving A /∈

⋂
[V ∈ Xβ: F ⊆ V ].

Definition 5.3. Let (X,S) be a topological space, let F ⊆ 2X and let x ∈ X. Recall
that F converges to x =df F c ⊃ Nx, (where Nx =df the neighborhood filter of x),
=dn F // x. More generally, if A ⊆ X,F // A =dn there exists x ∈ A with F // x. If
f :X // Y is a function, Ff =df the filter [Ff :F ∈ F ]c ⊆ 2Y .

Lemma 5.4. The following statements are valid.

a. (Due to [Ellis & Gottschalk (1960), Lemma 7]). Let (X,S), (X ′,S′) be topological
spaces, let f :X //X ′ be a function and let x ∈ X. Then f is continuous at x iff
for every U ∈ Xβ, U // x implies U f // xf .

b. Let (X,S) be a topological space, and let A ⊆ X. Then A is open iff for every
U ∈ Xβ, U // A implies A ∈ U .

c. Let (X,S) be a topological space, and let f :X // X ′ be an onto function. Let
S′ be the quotient topology induced by f . Then if (X,S) is compact T2 and if
f : (X,S) // (X ′,S′) is closed (i.e. maps closed sets to closed sets) then (X ′,S′)
is compact T2.

Proof. a. Let U ∈ Xβ, U // x. Let V ∈ Nxf . There exists W ∈ Nx with Wf ⊆ V .
As W ∈ U , V ∈ U f . Now the converse. For every U // x we have U f ⊃ Nxf .
U ⊃ U ff−1 ⊃ Nxff

−1. By 5.2b, Nx =
⋂

[U : U // x] ⊃ Nxff
−1.

b. A is open iff A ∈
⋂
x∈A Nx =

⋂
x∈A

⋂
U // x U =

⋂
U // A U .

c. This is standard. See [Kelley (1955), Chapter 5, Theorem 20, p. 148].

Proposition 5.5. Let C be the category of compact T2 spaces with underlying set functor
U : C //S . Then U is tripleable.

Proof. A fairly short proof could be given using 2.9. Instead, we offer an independent
definition of “compact T2 space” by making the triple explicit. If X is a set with x ∈ X,
A ⊆ X, define ẋ =df {B ⊆ X:x ∈ B} and Ȧ =df {U ∈ Xβ:A ∈ U }. The following five

statements are trivial to verify:e ẋ ∈ Xβ,
˙

(x) = (ẋ), Ȧ ∩ Ḃ = ˙A∩B, Ȧ′ = (Ȧ)
′
, ∅̇ = ∅.

eEditor’s footnote: In the original, the scope of the dots is not clear and the statement as a whole is
hard to parse. We use the overline here in its old sense as a kind of horizontal parenthesis.
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Define βββ = (β, η, µ) by

S S
β //

X Y
f // Xβ Y β,

fβ // X Xβ
Xη //

U U f� // x ẋ� //

Xββ Xβ
Xµ //

H [A ⊂ X: Ȧ ∈H ]� //

The proof that βββ is a triple on S will be left to the reader; the details are routine
providing one remembers that two ultrafilters are equal if one is contained in the other.
(The details are written out in [Manes (1967), 2.3.3]). We will construct an isomorphism
of categories Φ: C // S βββ such that ΦUβββ = U . Let (X,S) be a compact T2 space.
ξS:Xβ // X =df the function sending an ultrafilter to the unique point to which it
converges. Xη.ξ = 1 because ẋ // x in all topologies. Now let H ∈ Xββ. x =df

〈H , ξSβ.ξS〉 = [A ⊆ X: Ȧ ∈ H ]cξS. To verify the ξS-associativity axiom we must show
that 〈H , Xµ〉 = [A ⊆ X: Ȧ ∈ H ] // x. So let Bopen ∈ Nx. There exists L ∈ H such
that [U ξS: U ∈ L ] ⊆ B. Therefore U ∈ L implies U ξS ∈ B implies there exists b ∈ B
such that U // b. As B ∈ Nb, B ∈ U , so U ∈ Ḃ. Therefore Ḃ ⊃ L ∈H and Ḃ ∈H ,
as we wished to show. This defines Φ on objets. Now let (X,S), (X ′,S′) be compact T2
spaces and let f :X // X ′ be a function. f is a βββ-homomorphism iff fβ.ξS′ = ξS.f iff
for every U ∈ Xβ and for every x ∈ X,U // x implies U f // xf iff f is continuous.
Summing up, Φ is a well-defined full and faithful functor such that ΦUβββ = U and such
that Φ is 1-to-1 on objects (using 5.4b for the last statement). To complete the proof we
show that Φ is onto on objects.

Let X be a set, and define a topology, SX , on Xβ by taking [Ȧ:A ∈ X] as a base,
which we may do since the Ȧ’s are closed under finite intersections: explicitly, every
open set is a union of Ȧ’s and conversely. Let H ∈ Xββ. H // H Xµ, because
if H Xµ = [A ⊆ X: Ȧ ∈ H ] ∈ Ḃ then B ∈ [A ⊆ X: Ȧ ∈ H ], that is Ḃ ∈ H .
Moreover if U ∈ Xβ is such that H // U it follows that U = H Xµ, for if A ∈ U ,
then U ∈ Ȧ ∈ H and hence A ∈ [B ⊆ X: Ḃ ∈ H ] = H Xµ. This proves that
(Xβ,SX) ∈ obj C and (Xβ,SX)Φ = (Xβ,Xµ).

Let i: L // //Xβ, and consider the diagram

L Xβ//
i

//

L β

L
���
�
�
�
�

L β Xββ
iβ // Xββ

Xβ

Xµ

��
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One sees immediately that L is a subalgebra of (Xβ,Xµ) iff every ultrafilter on L
converges in L iff (applying a well-known theorem of topology) L is closed.

Now let (X, ξ) be any βββ-algebra. ξ: (Xβ,Xµ) // (X, ξ) is a βββ-homomorphism onto.
Let S be the quotient topology induced by ξ on X. Let L ⊆ Xβ. L is closed iff L ≤
(Xβ,Xµ) implies (by 2.11b) L ξ ≤ (X, ξ) implies (by 2.11c) (L ξ)ξ−1 ≤ (Xβ,Xµ) iff
(L ξ)ξ−1 is closed in (Xβ,SX) iff L is closed in (X,S). Therefore ξ is a closed mapping.
By 5.4c, (X,S) ∈ obj C . Finally, for U ∈ Xβ we show U //

SU ξ. Let U ξ ∈ A ∈ S.
There exists B ⊆ X with U ∈ Ḃ ⊆ Aξ−1. For all b ∈ B, b = ḃξ ∈ Aξ−1ξ = A. Therefore
A ⊃ B ∈ U and A ∈ U .

Remarks. 5.6

a. Let (X, ξ) be a βββ-algebra and let A ⊆ X. Then A is a subalgebra iff A is closed.

b. Free βββ-algebras are totally disconnected.

c. We can easily prove the Tychonoff theorem in the weak form “the cartesian product
of compact T2 spaces is compact”

Proof. To prove (a), use the argument given for free algebras in the proof of 5.5. (b)
is easy using the properties of “.”: notice that the class of clopen subsets of (Xβ,Xµ) is
precisely [Ȧ:A ⊆ X]. For the third statement, construct the product in S βββ:

∏
Xi Xipri

//

(
∏
Xi)β

∏
Xi

ξ

���
�
�
�
�

(
∏
Xi)β Xiβ

pri // Xiβ

Xi

ξi

��

Now observe that the diagram says that an ultrafilter on the product converges iff it
converges pointwise, a characterization of the cartesian product topology of any family of
topological spaces.

6. Operations

For this section fix a triple T = (T, η, µ) in S .

Proposition 6.1. T is a regular triple.

Proof. That S is a regular category is well known: ordinary image factorizations pro-
vide the regular coimage factorizations. T preserves all epimorphisms and all monomor-
phisms with non-empty domain since these are split. To complete the proof we must
show that for each set X, (i: ∅ // // X)T is mono. This is clear if ∅T = ∅. Otherwise
there exists a function f :X // ∅T . By freeness, T-homomorphisms from (∅T, ∅µ) to
any T-algebra (A,α) are in bijective correspondence with functions from ∅ to A. Hence

∅T iT //XT
fT // ∅TT ∅µ // ∅T is the identity map and iT is (split) mono.
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Definition 6.2. Let n be a set. “Raising to the nth power” is a functor:

1n: S // S

f :X // Y � // fn:Xn // Y n

Definef

OT(n) =df {g: g is a natural transformation from 1n to T}

For (X, ξ) a T-algebra and g ∈ OT(n), ξg =df the function Xn XG // XT
ξ // X. ξg is

called an n-ary operation of (X, ξ) and the set of all such =dn On(X, ξ).

6.3 and 6.4 below are indications that T-algebras are characterized by their operations.
See [Manes (1967), Section 2.2] for further details.

Proposition 6.3. Let (X, ξ), (Y, ϑ) be T-algebras, and let f :X // Y be a function.
The following statements are pairwise equivalent.

a. f is a T-morphism.

b. For every set n and for every g ∈ OT(n) the diagram

X Y
f

//

Xn

X

ξg

��

Xn Y nfn // Y n

Y

ϑg

��

(∗)g

commutes.

c. (∗)g commutes for every g ∈ OT(X).

Proof. a. implies b.

Y n Y T
Y g

//

Xn

Y n

fn

��

Xn XT
Xg // XT

Y T

fT

��
Y T Y

ϑ
//

XT

Y T

XT X
ξ // X

Y

f

��

b. implies c. This is obvious.
c. implies a. Consider the diagram of “a implies b” with n = X. Let x ∈ XT .

By the Yoneda Lemma there exists g ∈ OT(X) with 〈1X , Xg〉 = x. We have 〈x, ξ.f〉 =
〈1X , ξg.f〉 = 〈1X , Xg.fT.ϑ〉 = 〈x, fT.ϑ〉.

fEditor’s footnote: We have changed the original—rather ghastly—notation in which T denoted both
the triple and what we have called OT.
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Proposition 6.4. Let (X, ξ) be a T-algebra and let i:A // // X be a subset. Then

A = 〈A〉 iff for every g ∈ OT(A), AA iA //XA ξg //X factors through A.

Proof. If (A, ξ0) ≤ (X, ξ), ξg0 is the desired factorization. Conversely, consider the
diagram:

A X
i

//

AT

A

AT XTXT

X

ξ

��

AT XT
iT //

AA

AT

Ag

��

AA XAiA // XA

XT

Xg

��

Let x ∈ AT . By the Yoneda Lemma there exists g ∈ OT(A) with 〈1X , Ag〉 = x. Hence as
im iA.ξg ⊆ A by hypothesis, 〈x, iT.ξ〉 = 〈1A, iA.ξg〉 ∈ A. Therefore iT.ξ factors through i
and A = 〈A〉.

Lemma 6.6. Let n,m be sets, g ∈ OT(n), (X, ξ) ∈ |S T|, (Xm, ξ̇) =df (X, ξ)m and let
χ: (Xn)m // (Xm)n be the canonical bijection. Then

(Xn)m (Xm)n
χ //(Xn)m

Xm

(ξg)m

��????????????
(Xm)n

Xm

ξg

��

commutes.

Proof.

(Xn)m (Xm)n
χ // (Xm)n XmT

Xmg
// XmT Xm

ξ̇

//(Xn)m

Xn
pri //

(Xm)n

Xn

prni

��

XmT

XT

priT

��

Xm

X

pri

��
Xn XT

Xg // XT X
ξ //

(Xm)n Xm

ξ̇g

&&

Xn X

ξg

88

Defn. χ

For the balance of this section fix another triple T̃ = (T̃ , η̃, µ̃) in S .
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Proposition 6.6. Let (X, ξ, ξ̃) ∈ |S (T,T̃)|. The following statements are equivalent.

a. For all sets n, for all g ∈ OT(n), ξg is a T̃-homomorphism.

b. for all sets m, for all h ∈ T̃(m), ξ̃ h is a T-homomorphism.

Proof. Use 6.3, 6.5 and the symmetry of the diagram

(Xm)n

Xn(ξ̃h)n ''OOOOOOO

(Xn)m

(Xm)n

77 77χ
77ooooo

(Xn)m

XnXn X
ξg

//

(Xn)m

Xn

(Xn)m Xm(ξg)m // Xm

X

ξ̃h

��

Definition 6.7. (X, ξ, ξ̃) ∈ |S (T,T̃)| is a T-T̃-bialgebra if it satisfies either of the equiv-

alent conditions of 6.6. The full subcategory of T-T̃-bialgebras =dn S [T,T̃] and the restric-

tion of U (T,T̃) to S [T,T̃] =dn U
[T,T̃]. If U [T,T̃] is tripleable, the resulting triple, =dn T⊗ T̃,

=df the tensor product of T and T̃. It is an open question whether or not T ⊗ T̃ always

exists. A constructive proof can be given if both T and T̃ have a rank (in the sense of
[Manes (1967), 2.2.6]) by generalizing Freyd’s proof in [Freyd (1966)]. By 4.4 and 6.8

below the problem reduces to showing that U [T,T̃] satisfies the solution set condition.

Proposition 6.8. S [T,T̃] is a Birkhoff subcategory of S (T,T̃).

Proof. The diagram of 6.5 shows “closed under products”. Now consider the diagram:

X Y
f

//

Xn

X

ξg

��

Xn Y nfn // Y n

Y

ϑg

��

XT̃ Y T̃
fT̃

//

XnT̃

XT̃

ξgT̃

��

XnT̃ Y nT̃
fnT̃ // Y nT̃

Y T̃

ϑgT̃

��

Y n

Y nT̃

��
ϑ̃(n)

����������
Xn

XnT̃

��
ξ̃(n)

����������

X

XT̃

��
ξ̃

����������
Y

Y T̃

��
ϑ̃

����������

If f : (X, ξ, ξ̃) //(Y, ϑ, ϑ̃) ∈ S (T,T̃), all commutes except possibly the left and right faces.

Hence if f is mono then right implies left; if f is epi then so is fnT̃ so left implies right.
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Definition 6.9. Let (X, ξ) be a T-algebra, let A be a subset of X and let n be a set.

Consider the factorization A // i // 〈A〉 // j // X. Because 〈A〉n // j
n
// Xn ≤ Xn we have a

factorization

An 〈An〉k // 〈An〉 〈A〉nm // 〈A〉n Xnjn //An 〈A〉n

in

99

Say that subalgebras commute with powers in S T if m is always an isomorphism for all
(X, ξ), A, n.

Proposition 6.10. Suppose that subalgebras commute with powers in S T̃. Then every
T-T̃-bialgebra is a T-T̃ quasicomposite algebra, and hence T⊗ T̃ exists.

Proof. Let (X, ξ, ξ̃) be a T-T̃-bialgebra and let (A, ξ0) ≤ (X, ξ). For each g ∈ OT(〈A〉T̃)
consider the diagram

A 〈A〉T̃// //

A〈A〉T̃

A

ξg0

��

A〈A〉T̃ 〈A〈A〉T̃〉 = 〈A〉〈A〉T̃
T̃

// // 〈A〈A〉T̃〉 = 〈A〉〈A〉T̃
T̃

〈A〉T̃〈A〉T̃ X// //

〈A〈A〉T̃〉 = 〈A〉〈A〉T̃
T̃

〈A〉T̃

〈A〈A〉T̃〉 = 〈A〉〈A〉T̃
T̃

X〈A〉T̃// // X〈A〉T̃

X

ξg

��

Since ξg is aT̃-homomorphism it follows from 2.11b that ξg maps 〈A〈A〉T̃〉 into 〈A〉T̃. Since

〈A〈A〉T̃〉 = 〈A〉〈A〉T̃
T̃

, ξg maps 〈A〉〈A〉T̃
T̃

into 〈A〉T̃. It follows from 6.4 that 〈A〉T̃ is a T-algebra.
The last statement is immediate from 6.8 and 4.6.

7. Compact algebras

Proposition 7.1. For every triple, T, in S , every T-βββ bialgebra is a T-βββ quasicom-
posite algebra. In particular T⊗ βββ always exists.

Proof. A well-known theorem of topology is: “the product of the closures is the closure
of the product.” Using the Tychonoff theorem and 5.6a we have that subalgebras commute
with powers in S βββ. Now use 6.10.

A T⊗βββ-algebra is, by definition, a T-algebra whose underlying set is provided with a
compact T2 topology in such a way that T-operators are continuous. Hence T⊗βββ-algebras
deserve to be —and are— called compact T-algebras.

7.2 Example: discrete actions with compact phase space. Let G be a discrete
monoid with associated triple G. If g ∈ G(n) it is easy to check, using the Yoneda Lemma,
that for each G-set (X,α), αg factors as a projection map followed by the “transition”
map induced from X to X by the action of some element of G. Hence S G⊗βββ is the
category of compact T2 transformation semigroups with phase semigroup G, that is since
G is discrete α:X ×G //G is continuous iff each transition αg:X //X is continuous.
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Proposition 7.3. Compact topological dynamics is tripleable. More precisely, let G be
a monoid with associated triple G. Let S be any topology whatever on the underlying
set of G. B =df the full subcategory of S G⊗βββ generated by objects (X, ξ, α) such that
α: (X, ξ)× (G,S) // (X, ξ) is continuous. Then B is a Birkhoff subcategory of S G⊗βββ,
and in particular B is tripleable. (Compact topological dynamics is recovered by insisting
that S be compatible with G.)

Proof. Consider a product of B-objects, (X,α, ξ) =
∏

(Xi, αi, ξi). At the level of sets
we have

Xi ×G Xiαi
//

X ×G

Xi ×G

pri×1

��

X ×G X
α // X

Xi

pri

��

(X, ξ) =
∏

(Xi, ξi) in S βββ by 4.2, and hence in the category of all topological spaces by
the Tychonoff theorem. Therefore α is continuous because each α.pri is.

Next, let i: (A,α0, ξ0) // //(X,α, ξ) be a G⊗βββ-subalgebra with (X,α, ξ) ∈ |B|. We have
α0.i = (i× 1).α. Now all monomorphisms in S βββ become relative subspaces when viewed
in the category of all spaces because every algebraic monomorphism is an isomorphism
into. Therefore α0 is continuous because α0.i is.

To show that B is closed under quotients it suffices to prove the following topological
lemma: Consider the situation

Y ×H Y
b

//

X ×H

Y ×H

f×1

��

X ×H X
a // X

Y

f

��

where X,H, Y are topological spaces with X compact and Y T2 and where a is continuous
and f is continuous onto. Then b is continuous. To prove it we use 5.4a. Let U be
an ultrafilter on Y × H such that U // (y, h) ∈ Y × H. Because f is onto, U(f ×
1)−1 6= ∅ for all U ∈ U . Hence there exists an ultrafilter V on X × H with V ⊃
U (f × 1)−1. U ⊃ U(f × 1)−1(f × 1) proves U = V (f × 1). Since X is compact
there exists x ∈ X such that V prX // x. V prH = V (f × 1)prH = U prH // h. If
N ∈ Nx, M ∈ Nh there exist V,W ∈ V with N ⊃ V prX , M ⊃ WprH and then
N ×M ⊃ (V ∩W )prX × (V ∩W )prH ⊃ V ∩W ∈ V proves that V // (x, h). Since
U prY = V (f × 1)prY = V prXf // (x, h)prXf = xf and Y is T2, xf = y. Therefore
U b = V (f × 1)b = V af // (x, h)af = (x, h)(f × 1)b = (y, h)b as desired.

Proposition 7.3 says that a compact T2 topological transformation group may equally
well be viewed as a set with algebraic structure. Certain results of [Ellis (1960a)], [Ellis
(1960)] can be conveniently proved by this approach, and certain questions originating
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in topological dynamics may be asked in S T. See [Manes (1967), Sections 2.4,2.5] for
further details.



Distributive Laws

Jon Beck

The usual distributive law of multiplication over addition, (x0 +x1)(y0 +y1) //x0y0 +
x0y1 + x1y0 + x1y1, combines mathematical structures of abelian groups and monoids to
produce the more interesting and complex structure of rings. From the point of view of
“triples”, a distributive law provides a way of interchanging two types of operations and
making the functorial composition of two triples into a more complex triple.

The main formal properties and different ways of looking at distributive laws are given
in Section 1. Section 2 is about algebras over composite triples. These are found to be
objects with two structures, and the distributive law or interchange of operations appears
in its usual form as an equation which the two types of operations must obey. Section 3 is
about some frequently-occurring diagrams of adjoint functors which are connected with
distributive laws. Section 4 is devoted to Examples. There is an Appendix on composi-
tions of adjoint functors.

I should mention that many properties of distributive laws, some of them beyond the
scope of this paper, have also been developed by Barr, Linton and Manes. In particular,
one can refer to Barr’s paper Composite cotriples in this volume. Since Barr’s paper is
available, I omitted almost all references to cotriples.

I would like to acknowledge the support of an NAS-NRC (AFOSR) Postdoctoral
Fellowship at the E.T.H., Zürich, while this paper was being prepared, as well as the
hospitality of the Mathematics Institute of the University of Rome, where some of the
commutative diagrams were found.

One general fact about triples will be used. If ϕ:S // T is a map of triples in A,
the functor Aϕ: AS oo AT usually has a left adjoint, for which there is a coequalizer
formula:

ASF T AF T
σFT //ASF T AF T

Aϕ
// AF T (A, σ)⊗S F

T .//

Here (A, σ) is an S-algebra and the coequalizer is calculated in AT. The natural operation
ϕ of S on F T is the composition

(AST,ASµT ) (ATT,ATµT )
ϕT // (ATT,ATµT ) (AT,AµT )

µT //

The notation ( ) ⊗S F
T for the left adjoint is justifiable. Later on the symbol Aϕ is

replaced by a Hom notation. The adjoint pair ( )⊗S F
T ,Aϕ is always tripleable.
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1. Distributive laws, composite and lifted triples

A distributive law of S over T is a natural transformation `:TS // ST such that

TS ST
`
//

T

TS

TηS

����������
T

ST

ηST

��3
3333333

TS ST
`
//

S

TS

ηTS

����������
S

ST

SηT

��3
3333333

TS

TSS

TS

TµS

��

TSS STS
` S // STS

ST

STSSTS SST
S ` // SST

ST

µST

��
TS ST

`
//

TS

TTS

TS

µTS

��

TTS TST
T ` // TST

ST

TSTTST STT` T // STT

ST

SµT

��
TS ST

`
//

commute.
The composite triple defined by ` is ST = (ST, ηSηT , S ` T · µSµT ). That is, the

composite functor ST : A //A, with unit and multiplication

A ST//

S

A

??
ηS

������
S

ST

SηT

��??????

A

T
ηT ��???????A STST

T

??

ηST�������
STST SSTT

S ` T // SSTT ST//

STT

SSTT

??
µSTT

������
STT

ST

SµT

��??????

SSTT

SST
SSµT ��??????SSTT STST

SST

??

µST������

is a triple in A. The units of S and T give triple maps

SηT :S // ST

ηST :T // ST

The proofs of these facts are just long naturality calculations. Note that the composite
triple should be written (ST)` to show its dependence on `, but that is not usually
observed.

In addition to the composite triple, ` defines a lifting of the triple T into the category
of S-algebras. This is the triple T̃ in AS defined by

T̃ =


T̃ : (A, σ)T̃ = (AT,A ` ·σT ),

η̃: (A, σ)η̃ = Aη: (A, σ) // (A, σ)T̃ ,

µ̃: (A, σ)µ̃ = Aµ: (A, σ)T̃ T̃ // (A, σ)T̃ .
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It follows from compatibility of ` with S that A` ·σT is an S-algebra structure, and from
compatibility of ` with T that η̃, µ̃ are maps of S-algebras.

That T̃ is a lifting of T is expressed by the commutativity relations

T̃US = UST, η̃US = USη, µ̃US = USµ

A A
T

//

AS

A

US

��

AS AST̃ //AS

A

US

��

Proposition. Not only do distributive laws give rise to composite triples and liftings,
but in fact these three concepts are equivalent:

(1) distributive laws `:TS // ST ,

(2) multiplications m:STST // ST with the properties: (ST)m = (ST, ηSηT ,m) is a
triple in A, the natural transformations

S ST
SηT // TST

ηSToo

are triple maps, and the middle unitary law

STST STm
//

ST

STST

SηT ηST

���������������
ST

ST

=

��?????????????

holds,

(3) liftings T̃ of the triple T into AS.

Proof. Maps (1) // (2) and (1) // (3) have been constructed above. It remains to
construct their inverses and prove that they are equivalences.

(2) // (1). Given m, define ` as the composition

TS STST
ηSTSηT // STST STm //

Compatibility of ` with the units of S and T is trivial. As to compatibility with the
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multiplication in T,

TTS STST

TST

TTS

77

T `

ooooooooooooooooooooo
TST

STST

ηSTST

''OOOOOOOOOOOOOOOOOOOO

TS STST
ηSTSηT //

TTS

TS

µTS

��

TTS STSTST
ηSTηSTSηT

// STSTST

STST

mST

��
STST ST

m //

STSTST

STST

STSTST STST
STm

// STST

ST

m

��
TS ST

`

22

STSTT STST
STSµT

//

TST

STSTT

ηSTSηTT

��

TST

STST

ηSTST

''OOOOOOOOOOOOOOOOOOOO

STT ST
SµT

//

STSTT

STT

mT

��

STSTT STST// STST

ST

m

��

TST

STT

` T

  

commute, the second because T // (ST)m is a triple mapa. This reduces the problem
to showing that an associative law holds between µT and m:

STT ST
SµT

//

STSTT

STT

mT

��

STSTT STST
STSµT // STST

ST

m

��

STSTT

STSTST

STSTηST
&&NNNNNNNNNNNNNNSTSTT STSTSTST

STSTST

88

STm
pppppppppppppp

STSTST

STST

mST

��
STST

ST

m

&&NNNNNNNNNNNNNNN

This commutes since SµT = STηST ·m, as follows from the fact that T // (ST)m is a

aEditor’s footnote: The material in the next two diagrams is needed to prove the assertion that the
second diagram commutes. We are indebted to Gavin Seal, assisted by Francisco Marmalejo and Christof
Schubert for supplying this information.
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triple map, and also the middle unitary law:

STST STm
//

STSTST

STST

mST

��

STSTST STSTSTST

ST

m

��

STSTST STSTSTm //

STT

STSTST

SηT ηSTηST

��

STT ST
SµT // ST

STST

SηT ηST

��

STT

STST

STηST

  

ST

ST

ST

~~

The proof that ` is compatible with multiplication in S is similar; it uses the associative
law

STST STm
//

SSTST

STST

µSTST

��

SSTST SSTSm // SST

ST

µSST

��

The composition (1) // (2) // (1) is clearly the identity. (2) // (1) // (2) is the
identity because of

STST STm
//

SSTSTT

STST

µSTSµT

��

SSTSTT SSTT
SmT

// SSTT

ST

µSµT

��

SSTSTT SSTT//

STST

SSTSTT

SηSTSηTT

��

STST

SSTT

S ` T

$$HHHHHHHHHHHHHHHH

(3) // (1). If T̃ is a lifting of T define ` as the composition

TS STS = F SUSTS = F ST̃US(FU)S
ηSTS // STS = F SUSTS = F ST̃US(FU)S F ST̃US = (FU)ST = ST,

FS T̃ (εU)S //

where the abbreviation (FU)S stands for F SUS, . . ..
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(1) // (3) // (1) is the identity. If we write ` // T̃ // `′, then `′ = `:

ATS ASTS = (AS,AµS)T̃ (UFU)S

= (AST,AS ` ·AµST )(UF )SUS

= (ASTS,ASTµS)US

AηSTS //ATS

AST = (AST,AS ` ·AµST )US

A `

&&MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM ASTS = (AS,AµS)T̃ (UFU)S

= (AST,AS ` ·AµST )(UF )SUS

= (ASTS,ASTµS)US

AST = (AST,AS ` ·AµST )US

AS ` ·AµST=AFS T̃ (εU)S

��

ATS

ATSS

ATS

ATµS

��

ATSS ASTS
A`S

// ASTS

AST

ASTSASTS ASST
AS `

// ASST

AST

AµST

��

ATSS ASTS//

ATS

ATSS

ATηSS

||zzzzzzzzzzzzzz
ATS

ASTS

AηSTS

��

ATS AST
A`=A`′

//

(3) // (1) // (3) is the identity. Let us write T̃ // ` // ˜̃T and prove T̃ =
˜̃
T.

Any lifting T̃ of T can be written (A, σ)T̃ = (AT, (A, σ)σ̃), where σ̃:USTS // UST

is a natural S-structure on UST . Restricting the lifting to free S-algebras, AF ST̃ =
(AST,Aσ0), where σ0 = F Sσ̃:STS // ST is a natural S-structure on ST , which in
addition satisfies an internal associativity relation involving µS:

STS STσ0
//

SSTS

STS

µSTS

��

SSTS SST
Sσ0 // SST

ST

µST

��

This follows from the fact that AµS:ASF S // AF S is an S-algebra map.

Similarly, write (A, σ)
˜̃
T = (AT, (A, σ)˜̃σ), AF S ˜̃T = (AST,Aσ1).

We must show that σ̃ = ˜̃σ. This is done first for free S-algebras, i.e. σ0 = σ1,
and then the result is deduced for all S-algebras by means of the canonical epimorphism
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σ:AF S // (A, σ). If T̃ // ` then ` is the composition

ATS ASTS = AF ST̃USF SUS

= (AST,Aσ0)USF SUS

= (ASTS,ASTµS)US

ηSTS //ATS

AST = (AST,Aσ0)US

`

&&MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM ASTS = AF ST̃USF SUS

= (AST,Aσ0)USF SUS

= (ASTS,ASTµS)US

AST = (AST,Aσ0)US

σ0

��

Now, (AS,AµS)
˜̃
T = (AST,Aσ1). But since ` // ˜̃T,

(AS,AµS)
˜̃
T = (AST,AS ` ·AµST )

= (AST,ASηSTS · ASσ0 · AµST )

= (AST,Aσ0).

Thus σ1 = σ0. Applying
˜̃
T and T̃ to the canonical epimorphism of the free algebra,

AF ST̃ (AST,Aσ0)

AF S ˜̃T
AF ST̃

AF S ˜̃T (AST,Aσ1)(AST,Aσ1)

(AST,Aσ0)(AST,Aσ0) (AT, (A, σ)σ̃) = (A, σ)T̃
σT

//

(AST,Aσ1)

(AST,Aσ0)

(AST,Aσ1) (AT, (A, σ)˜̃σ) = (A, σ)
˜̃
T

σT // (AT, (A, σ)˜̃σ) = (A, σ)
˜̃
T

(AT, (A, σ)σ̃) = (A, σ)T̃

ButAηST ·σT = AT . A general fact in any tripleable category is that if f : (A, σ) //(A′, σ′),

f : (A, σ) // (A′, σ′′), and f is a split epimorphism in A, then σ′ = σ′′. Thus σ̃ = ˜̃σ.

Of course, ˜̃η = η̃, ˜̃µ = µ̃, since these are just the unique liftings of η, µ into AS and do

not depend on `. Thus T̃ =
˜̃
T.

2. Algebras over the composite triple

Let `:TS //ST be a distributive law, and ST, T̃ the corresponding composite and lifted
triples.

Proposition. Let (A, ξ) be an ST-algebra. Since S,T // ST are triple maps, the
compositions

AS AST
ASηT //AS

A

σ

��????????????? AST AToo Aη
ST

AST

A

ξ

��

AT

A

τ

���������������
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are S- and T-structures on A, and it turns out that σ is “`-distributive” over τ :

AS AT

ATS

AS

τS

��

ATS AST` // AST

AT

σT

��
AS

A

σ

��777777777AS ATAT

A

τ

�����������

A T̃-algebra in AS consists of an S-algebra (A, σ) with a T̃-structure τ : (A, σ)T̃ //(A, σ).
Thus τ must be both a T-structure AT //A and an S-algebra map. The latter condition
is equivalent to `-distributivity of σ over τ . The above therefore defines a functor

AST(AS)T̃ Φ−1
oo

Finally, the triple induced in A by the composite adjoint pair below is exactly the `-
composite ST. The “semantical comparison functor” Φ is an isomorphism of categories,
with the above Φ−1 as inverse.

(AS)T̃ ASTΦ //(AS)T̃

A

AST

A

UST

}}{{{{{{{{{{{{{{{{{{{{{{{{{==

FST

{{{{{{{{{{{{{{{{{{{{{{{{{

A

AS

FS

OO

A

AS

��
US

AS

(AS)T̃

F T̃

OO

AS

(AS)T̃

��
U T̃

The formula for Φ is (A, σ, τ)Φ = (A, σT · τ) in this context.

Proof. First, distributivity holds between σ, τ .

ATS

ASTS

ηSTS

zzvvvvvvvvvvvvvvvv
ATS

ASTST

ηSTSηT

��

ATS

AST

`

))TTTTTTTTTTTTTTTTTTTTTTTTTTTTT

ASTS ASTST
STSηT

// ASTST ASSTT
S ` T

// ASSTT AST
µSµT

//ASTS

AS

ξS

��

ASTST

AST

ξST

��

AST

A

ξ

��
AS AST

SηT
// AST A

ξ
//
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commutes, so we only need to show that ξ = σT · τ . (This is also the essential part in
proving that ΦΦ−1 = Φ−1Φ = id.)

AST

ASTT

SηST

zzvvvvvvvvvvvvvvvv
AST

ASTST

SηT ηST

��

AST

ASSTT

SηSηTT

$$HHHHHHHHHHHHHHHHAST

AST

=

��
ASTT ASTST

STηST
// ASTST ASSTT

S ` T
// ASSTT AST

µSµT
//ASTT

AT

ξT

��

ASTST

AST

ξST

��

AST

A

ξ

��
AT AST

ηST
// AST A

ξ
//

Now compute the composite adjointness. The formula for F T̃ is

(A, σ) // (AT,A ` ·σT,AµT )

Thus F SF T̃U T̃US = ST . Clearly the composite unit is ηSηT . As for the counit, that is
the contraction

(AST,AS ` ·AµST,AµT ) (AT,A ` ·σT,AµT )
σT

//

(A, σ, τ)U T̃USF SF T̃

(AST,AS ` ·AµST,AµT )

=

��

(A, σ, τ)U T̃USF SF T̃ (A, σ, τ)U T̃F T̃// (A, σ, τ)U T̃F T̃

(AT,A ` ·σT,AµT )

=

��
(AT,A ` ·σT,AµT ) (A, σ, τ)τ

//

(A, σ, τ)U T̃F T̃

(AT,A ` ·σT,AµT )

(A, σ, τ)U T̃F T̃ (A, σ, τ)// (A, σ, τ)

(A, σ, τ)

=

��

The multiplication in a triple induced by an adjoint pair is always the value of the counit
on free objects, here objects of the form AF SF T̃ = (AST,AS ` ·AµST,ASµT ). Thus the
multiplication in the induced triple is

ASTST ASTT
AS `T ·AµSTT // ASTT AST

ASµT //

which is exactly that defined by the given distributive law `. The composite adjointness

A // (AS)T̃ //A therefore induces the `-composite triple ST.
By the universal formula for Φ and the above counit formula,

(A, σ, τ)Φ = (A, (A, σ, τ)((U T̃ εSF T̃ )ε̃T )U T̃US)

= (A, σT · τ).



Jon Beck 104

3. Distributive laws and adjoint functors

A distributive law enables four pairs of adjoint functors to exist, all of which are tripleable.

AS AT

AST

AS

AST

ATAS

A

AS ATAT

A

::

F̃T

vvvvvvvvvvvvvvvv dd

( )⊗TF
ST

HHHHHHHHHHHHHHHH

dd

FS

HHHHHHHHHHHHHHHHH ::

FT

vvvvvvvvvvvvvvvvv

ŨT

zzvvvvvvvvvvvvvvvv

HomT(FST , )

$$HHHHHHHHHHHHHHHH

US

$$HHHHHHHHHHHHHHHHH

UT

zzvvvvvvvvvvvvvvvvv

Here F̃ T = F̃ TΦ, ŨT = Φ−1U T̃ are the liftings of F T , UT into AS given by the Proposition
of Section 2. ( ) ⊗T F

ST and its adjoint are induced by the triple map ηST :T // ST

as described in the Introduction. F̃ T could be written ( )⊗S F
ST , of course.

Since the composite underlying A-object functors AST //A are equal, the natural
map e described in the Appendix is induced. It is a functorial equality

USF T F̃ T · HomT(F ST , ).= //

The above functorial equality, or isomorphism in general, will be referred to as “dis-
tributivity”. I now want to demonstrate a converse, to the effect that if an adjoint
square is commutative and distributive, then distributive laws hold between the triples
and cotriples that are present.

Proposition. Let

B0 B1

B̃

B0

B̃

B1

??

F̃1

������������� __

F̃0
?????????????

Ũ1

���������������

Ũ0

��?????????????

B0

A

B0 B1B1

A

__

F0
???????????? ??

F1

������������
U0

��????????????

U1

��������������

be an adjoint square and assume it commutes by virtue of adjoint natural isomorphisms
u: Ũ1U0̃

// Ũ0U1, f :F1F̃0
∼ //F0F̃1. Let T0, T1, G̃1, G̃0 be the triples in A and cotriples

in B which are induced. Let e:U0F1
// F̃1Ũ0, e′:U1F0

// F̃0Ũ1 be defined as in the
Appendix. The adjoint square is distributive (in an asymmetrical sense, 0 over 1) if e
is an isomorphism. Assume this. Then with ϕ, ψ the isomorphisms defined in the proof
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(and induced by e), we have that

F1U1F0U0 F1F̃0Ũ1U0F1e
′U0

//

T1T0

F1U1F0U0

=

��

T1T0

F1F̃0Ũ1U0F1F̃0Ũ1U0 F0F̃1Ũ1U0
fŨ1U0

//F1F̃0Ũ1U0

T0T1T0T1

F0F̃1Ũ1U0

OO

ϕ−1

T1T0 T0T1
` //

Ũ1U0F0F̃1 Ũ0U1F0F̃1
uF0F̃1

//

G̃1G̃0

Ũ1U0F0F̃1

OO

ψ−1

G̃1G̃0

Ũ0U1F0F̃1Ũ0U1F0F̃1 Ũ0F̃0Ũ1F̃1
Ũ0e
′F1

//Ũ0U1F0F̃1

G̃0G̃1G̃0G̃1

Ũ0F̃0Ũ1F̃1

=

��

G̃1G̃0 G̃0G̃1
λ //

are distributive laws of T0 over T1, G̃1 over G̃0.
If the adjoint square is produced by a distributive law TS // ST as described at the

start of Section 3, so that S corresponds to T0 and T to T1, then the distributive law given
by the above formula is the original one.

Proof. Let

T =


T = F0F̃1Ũ1U0: A //A
η = η0(F0η̃1U0): A // T

µ = F0F̃1((Ũ1ε0F̃1)ε̃1)Ũ1U0:TT // T

be the total triple induced by the left hand composite adjointness. e, u induce a natural
isomorphism

F0U0F1U1 F0F̃1Ũ0U1F0eU1

//

T0T1

F0U0F1U1

=

��

T0T1

F0F̃1Ũ0U1F0F̃1Ũ0U1 F0F̃1Ũ1U0
F0F̃1u

−1

//F0F̃1Ũ0U1

TT

F0F̃1Ũ1U0

=

��

T0T1 T
ϕ //

By transfer of structure, any functor isomorphic to a triple also has a triple structure.
Thus we have an isomorphism of triples ϕ: (T0T1)m = (T0T1, η0η1,m) // T. Actually,
the diagrams in the Appendix show that ϕ transfers units as indicated, and m is the
quantity that is defined via the isomorphism. A short calculation also shows that m is
middle-unitary. By (1) oo // (2), Proposition of Section 1, m is induced by the distributive
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law (η0T1T0η1)m:T1T0
// T0T1. Now, consider the diagram

F1U1F0U0 F1F̃0Ũ1U0

F1e
′U0 //F1U1F0U0

T1T0

=

��

F1F̃0Ũ1U0

F0F̃1Ũ1U0 = T

fŨ1U0

��

T1T0 T0T1T0

η0T1T0 // T0T1T0 TT0 = F0F̃1Ũ1U0F0U0

ϕT0 // TT0 = F0F̃1Ũ1U0F0U0 F0F̃1Ũ1U0 = T
F0F̃1Ũ1ε0U0 //T1T0

T0T1T0T1

��2
222222222

T0T1T0

T0T1T0T1

T0T1T0η1

������������
TT0 = F0F̃1Ũ1U0F0U0

TT = F0F̃1Ũ1U0F0F̃1Ũ1U0

TF0η̃1U0

��

F0F̃1Ũ1U0 = T

F0F̃1Ũ1U0

=

��

T0T1T0T1 TT = F0F̃1Ũ1U0F0F̃1Ũ1U0ϕϕ
// TT = F0F̃1Ũ1U0F0F̃1Ũ1U0 F0F̃1Ũ1U0µ

//

The upper figure commutes, by expanding ϕ, and naturality. Its top line is ` ϕ. Thus

` = (η0T1T0η1)(ϕϕ)µϕ−1 = (η0T1T0µ1)m is a distributive law.
The proof that λ is a distributive law is dual. One defines the total cotriple

G =


G̃ = Ũ1U0F0F̃1: B̃ // B̃

ε̃ = (Ũ1ε0F̃1)ε̃1: G̃ // B̃

δ̃ = Ũ1U0(η0(F0η̃1U0))F0F̃1: G̃ // G̃G̃

and uses the isomorphism

Ũ1F̃1Ũ0F̃0 Ũ1U0F1Ũ1
oo

Ũ1eF̃0

G̃1G̃0

Ũ1F̃1Ũ0F̃0

=

��

G̃1G̃0

Ũ1U0F1Ũ1Ũ1U0F1Ũ1 Ũ1U0F0F̃1
oo
Ũ1U0f

−1
Ũ1U0F1Ũ1

G̃̃G

Ũ1U0F0F̃1

=

��

G̃G̃1G̃0

ψoo

to induce a similar isomorphism of cotriples ψ:G // (G1G0)d. Finally, if the original
adjoint square is produced by a distributive law `:TS //ST , the Proposition of Section 2
shows that the total triple is the `-composite ST, and ϕ is an identity map.

One can easily obtain distributive laws of mixed type, for example T̃1G0
// G0T̃1.

Remark on structure-semantics of distributive laws.. Triples in A give rise to
adjoint pairs over A, A //AT //A, and adjoint pairs A //B //A give rise to
triples in A. This yields the structures-semantics adjoint pair for triples:

Ad A (Trip A)∗.
σ̆ // (Trip A)∗.Ad A
σ

oo

This adjoint pair is a reflection (σσ̆ = id) and the comparison functor Φ: id // σ̆σ is the
unit.
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Something similar can be done for distributive adjoint situations over A and distribu-
tive laws.

Define a distributive law in A to be a triple (S,T, `) where S, T are triples and

`:TS //ST is a distributive law. A map (ϕ, ψ): (S,T `) // (S′,T′, `′) is a pair of triple
maps S // S′,T // T′ which is compatible with `, `′. Let Dist(A) be this category.

A distributive adjoint situation over A means a diagram

B0 B1

B̃

B0

B̃

B1

Ũ0

��???????????????

F̃1

�������������

Ũ1

���������������

B0

A

B0 B1B1

A

__

F0
???????????? ??

F1

������������
U0

��????????????

U1

��������������

where (F0, U0), (F̃1, Ũ1), (F1, U1) are adjoint pairs, Ũ1Ũ0 = U0U1, and the natural map

U0F1
// F̃1Ũ0 is an isomorphism. A map of such adjoint situations consists of functors

B0
// B′0, B1

// B′1, B̃ // B̃′ commuting with the underlying object functors Ũ1,

U0, Ũ0, U1, . . .
Distributive laws give rise to distributive adjoint situations over A, and vice versa

(note that ` = (η0T1T0η1)m and m does not involve F̃0). Thus we have an adjoint pair

Distributive Adj A (Dist A)∗.
σ̆ // (Dist A)∗.Distributive Adj A
σ

oo

The structure functor σ̆ is left adjoint to the semantics functor σ, σσ̆ = id, and the unit
is a combination of Φ’s. This is the correct formulation of the above Proposition.

4. Examples

(1) Multiplication and addition. Let A be the category of sets, let S be the free
monoid triple in A, and T the free abelian group triple. The AS is the category of
monoids and AT is the category of abelian groups. For every set X the usual interchange
of addition and multiplication

m∏
i=0

ni∑
ji=0

xiji
//
n0∑
j0=0

. . .

nm∑
jm

m∏
i=0

xiji

can be interpreted as a natural transformation XTS
` //XST and is a distributive law

of multiplication over addition, that is, of S over T, in the formal sense.
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The composite ST is the free ring triple. XST is the polynomial ring Z[X] with the
elements of X as noncommuting indeterminates.

The canonical diagram of adjoint functors is:

AS = Monoids AT = Abelian groups

AST = Rings

AS = Monoids

AST = Rings

AT = Abelian groups

77

F̃T

ooooooooooooooooooo gg

( )⊗TF
ST

OOOOOOOOOOOOOOOOOOO

ŨT

wwooooooooooooooooooo

HomT(FST , )

''OOOOOOOOOOOOOOOOOOO

AS = Monoids

A = Sets

AS = Monoids AT = Abelian groupsAT = Abelian groups

A = Sets

gg

FS

OOOOOOOOOOOOOOOOOOOO 77

FT

ooooooooooooooooooo

US

''OOOOOOOOOOOOOOOOOOOO

UT

wwooooooooooooooooooo

F̃ T is the free abelian group functor lifted into the category of monoids, and is known
as the “monoid ring” functor. HomT(F ST , ) is the forgetful functor. If A is an abelian
group, the value of the left adjoint, A⊗TF

ST , is the Z-tensor ring generated by A, namely

Z +A+A⊗A+ . . .. The natural map USF T // F̃ T ·HomT(F ST, ) is the identity, that
is distributivity holds. Both compositions give the free abelian groups generated by the
elements of monoids.

The scheme is: the distributive law `:TS //ST produces the adjoint square, which,
being distributive (Section 3), induces a distributive law λ:GAbGMon

// GMonGAb,

where GMon = ŨT F̃ T , GAb = HomT(F ST , )⊗T F
ST . This λ is that employed by Barr in

his Composite cotriples, this volume (Theorem 4.6).
A distributive law ST //TS would have the air of a universal solution to the problem

of factoring polynomials into linear factors. This suggests that the composite TS has little
chance of being a triple.

(2) Constants. Any set C can be interpreted as a triple in the category of sets, A, via
the coproduct injection and folding map X // C +X,C + C +X // C +X. AC+( )

is the category of sets with C as constants. For example, if C = 1, A1+( ) is the category
of pointed sets.

Let T be any triple in A. A natural map `:C + XT // (C + X)T is defined in an
obvious way, using Cη. ` is a distributive law of C + ( ) over T. The composite triple
C + T has as algebras T-algebras furnished with the set C as constants.

(3) Group actions. Let π be a monoid or group. π can be interpreted as a triple in
A, the category of sets, via cartesian product:

X X × π,(x,1) // X × π × π X × π.(X,σ1σ2) //

Aπ is the category of π-sets. If T is any functor A //A, there is a natural map

XT × π (X × π)T` //
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Viewing XT × π as a π-fold coproduct of XT with itself, ` has the value

XT (X × π)T
(X,σ)T //

on the σ-th cofactor, if (X, σ) is the map X // (X, σ). If T = (T, η, µ) is a triple in
A, ` is a distributive law of π over T. The algebras over the composite triple πT are
T-algebras equipped with π-operations. The elements of π act as T-homomorphisms.

Example (3) can be combined with (2) to show that any triple S generated by constants
and unary operations has a canonical distributive law over any triple T in A. The ST-
algebras are T-linear automata.

(4) No new equations in the composite triple. It is known that if T is a consistent
triple in sets, then the unit XηT :X //XT is a monomorphism for every X. And every
triple in sets, as a functor, preservers monomorphisms. Thus if S, T are consistent
triples, and `:TS // ST is a distributive law, then the triple maps S,T // ST are
monomorphisms of functors.

This means that the operations of S and of T are mapped injectively into operations
of ST, and no new equations hold among them in the composite.

The triples excluded as “inconsistent” are the terminal triple and one other:

(a) XT = 1 for all X,

(b) 0T = 0, XT = 1 for all X 6= 0.

(5) Distributive laws on rings as triples in the category of abelian groups.
Let S and T be rings. S and T can be interpreted as triples S and T in the category of
abelian groups, A, via tensor product:

A A⊗ S,a⊗1 // A⊗ S ⊗ S A⊗ S.a⊗s0s1 //

AS and AT are the categories of S- and T -modules. The usual interchange map of the
tensor product, `:T ⊗S //S⊗T , gives a distributive law of S over T. This is just what
is needed to make the composite S ⊗ T into a ring:

S ⊗ T ⊗ S ⊗ T S ⊗ S ⊗ T ⊗ TS⊗`⊗T // S ⊗ S ⊗ T ⊗ T S ⊗ T.mult.⊗mult. //

This ring multiplication is the multiplication in the composite triple ST.
The interchange map is adjoint to a distributive law between the adjoint cotriples

Hom(S, ),Hom(T, ). This is a general fact about adjoint triples.
The identities for a distributive law are especially easy to check in this example, as

are certain conjectures about distributive laws.
Let A be the category of graded abelian groups, and let S and T be graded rings.

Then two obvious transpositions of the graded tensor product, T ⊗ S // S ⊗ T , exist:

t⊗ s // s⊗ t,
t⊗ s // (−1)dim s·dim ts⊗ t.
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Both are distributive laws of the triple S = ( )⊗ S over T = ( )⊗ T . They give different
graded ring structures on S ⊗ T and different composite triples ST.

Finally, note the following ring multiplication in S ⊗ T :

(s0 ⊗ t0)(s1 ⊗ t1) = (−1)dim s0·dim t1s0s1 ⊗ t0t1
The maps

S S ⊗ Ts⊗1 // TS ⊗ T 1⊗too

are still ring homomorphisms, but the “middle unitary” law described in Section 1 does
not hold.

A number of problems are open, in such areas as homology, the relation of composites
to tensor products of triples, and possible extension of the distributive law formalism to
non-tripleable situations, for example, the following, suggested by Knus-Stammbach:

Groups Coalgebras/K

Hopf algebras/K

Groups

Hopf algebras/K

Coalgebras/K

??

F̃1

������������ __

????????????

��������������

��????????????

Groups

Sets

Groups Coalgebras/KCoalgebras/K

Sets

__

???????????? ??

F1

������������

��????????????

U1

��������������

(XF1 = K(X), CU1 = all c ∈ C such that ∆(c) = c⊗ c, and πF̃1 = the group algebra K(π).)

5. Appendix

If there are adjoint pairs of functors

A B
F // B B̃

F̃ // B̃B
Ũ

ooBA
U

oo

with
η: A // FU, η̃: B // F̃ Ũ

ε:UF //B, ε̃: Ũ F̃ // B̃

then there is a composite adjoint pair

A B̃
FF̃ // B̃A
ŨU

oo

whose unit and counit are

A FF̃ ŨU,
η(F η̃U) // ŨUF F̃ B̃.

(ŨεF̃ )ε̃ //
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Given adjoint functors

A B,
F // B,A
U

oo A B
F ′ // BA
U ′

oo

then the diagrams

FUF ′ FU ′F ′
FuF ′

//

F ′

FUF ′

ηF ′

��

F ′ F
f // F

FU ′F ′

OO

Fε′

UF ′U ′ UFU ′
UfU ′

//

U

UF ′U ′

Uη′

��

U U ′
u // U ′

UFU ′

OO

εU ′

establish a 1-1 correspondence between morphisms u:U //U ′, f :F ′ //F . Correspond-
ing morphisms are called adjoint.

Let

B0 B1

B̃

B0

B̃

B1

??

F̃1

������������� __

F̃0
?????????????

Ũ1

���������������

Ũ0

��?????????????

B0

A

B0 B1B1

A

__

F0
???????????? ??

F1

������������
U0

��????????????

U1

��������������

be adjoint pairs of functors, and let u: Ũ1U0
//Ũ0U1, f :F1F̃0

//F0F̃1 be adjoint natural
transformations. Then u, f induce a natural transformation e which plays a large role in
Section 3:

F̃1Ũ1U0F1 F̃1Ũ0U1F1
F̃1uF1

//

U0F1

F̃1Ũ1U0F1

η̃1U0F1

��

U0F1 F̃1Ũ0F̃1Ũ0

F̃1Ũ0U1F1

OO

F̃1Ũ0ε1

U0F1 F̃1Ũ0
e //

U0F1F̃0Ũ0

U0F1

OO

U0F1η̃0

U0F1F̃0Ũ0 U0F0F̃1Ũ0

U0fŨ0 // U0F0F̃1Ũ0

F̃1Ũ0

ε0F̃1Ũ0

��
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The following diagrams commute:

U0F1U1 F̃1Ũ0U1eU1

// F̃1Ũ0U1 F̃1Ũ1U0
oo

F̃1u

U0

U0F1U1

U0η1

zzvvvvvvvvvvvvvvvv
U0

F̃1Ũ0U1

U0

F̃1Ũ1U0

η̃1U0

$$HHHHHHHHHHHHHH

U0F0F̃1 U0F1F̃0
oo U0f

U0F0F̃1

F̃1

ε0F̃1

$$HHHHHHHHHHHHHHH
U0F1F̃0 F̃1Ũ0F̃0

eF̃0 //U0F1F̃0

F̃1

F̃1Ũ0F̃0

F̃1

F̃1ε̃0
zzvvvvvvvvvvvvvvv

If in addition adjoint maps u−1: Ũ0U1
//Ũ1U0, f

−1:F0F̃1
//F1F̃0 are available, they

induce a natural map e′ with similar unit and counit properties:

F̃0Ũ0U1F0 F̃0Ũ1U0F0
F̃0u
−1F0

//

U1F0

F̃0Ũ0U1F0

η̃0U1F0

��

U1F0 F̃0Ũ1F̃0Ũ1

F̃0Ũ1U0F0

OO

F̃0Ũ1ε0

U1F0 F̃0Ũ1e′ //

U1F0F̃1Ũ1

U1F0

OO

U1F0η̃1

U1F0F̃1Ũ1 U1F1F̃0Ũ1

U1f
−1Ũ1 // U1F1F̃0Ũ1

F̃0Ũ1

ε1F̃0Ũ1

��



Ordinal Sums and Equational Doctrines

F. William Lawvere

Our purpose is to describe some examples and to suggest some directions for the study
of categories with equational structure. To equip a category A with such a structure means
roughly to give certain “C-tuples of D-ary operations”

AD ϑ //AC

for various categories D and C, in other words, “operations” in general operate (func-
torially or naturally) on diagrams in A, not only on n-tuples, and may be subjected to
equations involving both composition of natural transformations and Godement multipli-
cation of natural transformations and functors. By an equational doctrine we mean an
invariant form of a system of indices and conditions which specifies a particular species of
structure of the general type just described. Thus equational doctrines bear roughly the
same relation to the category of categories which algebraic theories bear to the category
of sets. Further development will no doubt require contravariant operations (to account
for closed categories) and “weak algebras” (to allow for even the basic triple axioms
holding “up to isomorphism”), but in this article we limit ourselves to strong standard
constructions in the category of categories.

Thus, for us an equational doctrine will consist of the following data:

1) a rule D which assigns to every category B another category BD and to every pair
of categories B and A, a functor

AB D // (AD)(BD)

2) a rule η which assigns to every category B a functor

B
Bη //BD

3) a rule µ which assigns to every category B a functor

(BD)D
Bµ //BD

These data are subject to seven axioms, expressing that D is strongly functorial, η,
µ strongly natural, and that together they form a standard construction (= monad =
triple). For example, part of the functoriality of D is expressed by the commutativity of

AC (AD)(CD)
D

//

BC ×AB

AC

compn.

��

BC ×AB (BD)(CD) × (AD)(BD)D×D // (BD)(CD) × (AD)(BD)

(AD)(CD)

compn.

��
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while the naturality of µ is expressed by the commutativity of

(AD)(BD) (AD)(BDD)

(AD)(Bµ)
//

AB

(AD)(BD)

D

��

AB (ADD)(BDD)D2
// (ADD)(BDD)

(AD)(BDD)

(Aµ)(BDD)

��

and the associativity of µ by the commutativity of

(BD)D BD
Bµ

//

BDDD

(BD)D

p qBµ D

��

BDDD (BD)D
(BD)µ // (BD)D

BD

Bµ

��

In the last diagram the left column denotes the value of the functor

(BD)(BDD) D // (BD)D (BDD)D

at the object p qBµ of its domain which corresponds to the functor Bµ.
An algebra (sometimes called a “theory”) over the given doctrine means a category A

with a functor AD α //A subject to the usual two conditions. Homomorphisms between
algebras are also defined as usual, although probably “weak” homomorphisms will have
to be considered later too.

For examples of doctrines, consider any category D and let D : B � // BD with η, µ
defined diagonally. Or let D : B � //D(DB) with obvious (though complicated) η, µ. Clearly
a strongly adjoint equational doctrine is determined by a category M = 1D equipped
with a strictly associative functorial multiplication M×M //M with unit.

One of several important operations on doctrines is the formation of the opposite
doctrine

D∗: B � // ((Bop)D)op

(Note that ( )op, while covariant, is not a strong endofunctor of Cat; however it operates
on the strong endofunctors in the manner indicated.)

Denoting by CatD the category of algebras (or theories) over the doctrine D , we define

HomD : (CatD)op ×CatD //Cat

by the equalizer

HomD(B,A) AB//AB AD (BD)
D

//AD (BD) A(BD)

α(B,D)
//AB A(BD)

Aβ

**
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where β, α denote the algebra structures on B, A respectively. That is if B
f //
g
//A are two

algebra homomorphisms and if ϕ: f //g is a natural transformation, then ϕ is considered
to belong to the category Hom iff it also satisfies under Godement multiplication the same
equation which defines the notion of homomorphism:

(pqϕ D)α = βϕ

B A

f

((

BD

B

β

��

BD AD

pqf D

))
AD

A

α

��
B A

g

66

BD

B
��

BD AD

pqg D

55AD

A
��

pqϕ D��

ϕ
��

HomD(B,A) may or may not be a full subcategory of AB, depending on D .
In particular

HomD(1D ,−): CatD //Cat

is the underlying functor, which has a strong left adjoint together with which it resolves
D .

For a given D-algebra 〈A, α〉 the functor

HomD(−,A): (CatD)op //Cat

might be called “D-semantics with values in A”. It has a strong left adjoint, given by
C � //AC. (That AC is a D-algebra for an abstract category C and D-algebra A is seen
by noting that

C ev //A(AC) // (AD)(AC)D

corresponds by symmetry to a functor

(AC)D // (AD)C

which when followed by αC gives the required D-structure on AC). We thus obtain by
composition a new doctrine DA, the “dual doctrine of D in the D-algebra A”. Explicitly,

DA: C � // HomD(AC,A)

The comparison functor Φ in

(CatD)op

Cat

HomD(−,A)

��????????????
(CatD)op CatDAΦ // CatDA

Cat
���������������

DAcc
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then has a left adjoint given by

Φ∨: C � // HomDA
(C,1DΦ)

Actually 1DΦ = A as a category, but with the induced DA-structure, rather than the
given D-structure.

For a trivial example, note that if 1 denotes the identity doctrine, then Hom1(B,A) =
AB and 1A: C � //A(AC). The dual 1A of the identity doctrine in A thus might be called
the full 2-clone of A; it takes on a somewhat less trivial aspect if we note that giving A
a structure α over any doctrine D induces a morphism

D α̃ // 1A

of doctrines, since

AC D //ADCD

yields by symmetry a functor which can be composed with α(AC). The image D/〈A, α〉
of α̃, if it could be defined in general, would then be the doctrine of “D-algebras in which
hold all equations valid in 〈A, α〉”. In a particular case Kock has succeeded in defining
such an image doctrine, and put it to good use in the construction of the doctrine of
colimits (see below).

For a more problematic example of the dual of a doctrine, let S0 denote the skeletal
category of finite sets, and let [S0, pqB ] denote the category whose objects are arbitrary

n
B //B, n ∈ S0

and whose morphisms are given by pairs,

n
σ // n′, B

b // σB′

Then B � // [S0, pqB ] becomes a doctrine by choosing a strictly associative sum operation in
S0 with help of which to define µ. The algebras over the resulting doctrine are arbitrary
categories equipped with strictly associative finite coproducts. Algebras over the opposite
doctrine D are then categories equipped with strictly associative finite products. By
choosing a suitable version(not skeletal) of the category S of small sets, it can be made
into a particular algebra 〈A,α〉 = 〈S,×〉 over D . Then HomD(−,S) is seen to include
by restriction the usual functorial semantics of algebraic theories. Thus in particular
every algebraic category C has canonically the structure of a DS-algebra, DS denoting the
dual doctrine C � //Homprod(SC,S). The latter doctrine is very rich, having as operations
arbitrary limoo , directed lim// and probably more (?). Thus if C is the category of algebras

over a small theory, CΦ∨ = HomDS
(C,S) must consist of functors which are representable

by finitely generated algebras. Thus if one could further see that a sufficient number
of coequalizers were among the DS operations (meaning that the representing algebras
would have to be projective) we would have a highly natural method of obtaining all the
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information about an algebraic theory which could possibly be recovered from its category
of algebras alone, namely the method of the dual doctrine (which goes back to at least
M. H. Stone in the case of sets).

Another construction possible for any doctrine D is that of BD , the category of all
possible D-structures on the category B. It is defined as the limoo of the following finite

diagram in Cat:
1

BB

p qB

++WWWWWWWWWWWWWWWW

B(BD)

BB

B(Bη)

77ooooooooooooooo
B(BD)

B(BDD)

B(Bµ)

,,ZZZZZZZZZZZZZZZZZZZZZB(BD)

(BD)(BDD) ×B(BD)

〈D ,id〉

��4444444444444

(BD)(BDD) ×B(BD)

B(BDD)

compn.

77oooooooooooooo

Thus the notion of morphism between different D-structures on the same category B is
defined by imposing the same equations on natural transformations which are imposed
on functors in defining the individual structures. For example, with the appropriate D =
( )×∆ defined below, BD = Trip(B) = the usual category of all standard constructions in
B. Incidentally, we might call a doctrine D categorical if for any B, any two objects in BD

are uniquely isomorphic; this would not hold for the doctrine of standard constructions,
but would for various doctrines of limits or colimits, such as those whose development has
been begun by Kock [Kock (1967/68)] (BD will of course be 0 for many B).

By the ordinal sum of two categories we mean the pushout

A + B A +O B//

A× |2| ×B

A + B
��

A× |2| ×B A× 2×B//A× 2×B

A +O B
��

in which the left vertical arrow takes 〈a, i, b〉 � //a if i = 0, � // b if i = 1. Thus A +O B may
be visualized as A + B with exactly one morphism A // B adjoined for every A ∈ A,
B ∈ B. Actually what we have just defined is the ordinal sum over 2; we could also
consider the ordinal sum over any category C of any family {AC} of categories indexed
by the objects of C. For example, with the help of the ordinal sum over 3 we see that +O

is an associative bifunctor on Cat; it has the empty category 0 as neutral object. Also
1+O 1 = 2, 1+O 2 = 3, etc. One has 1+O ω

∼= ω but ω+O 1 6∼= ω, showing that +O is not
commutative; it is not even commutative when applied to finite ordinals, if we consider
what it does to morphisms.
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Now B � //1+O B may be seen to be the doctrine whose algebras are categories equipped
with an initial object, while its opposite doctrine B � //B +O 1 is the doctrine of terminal
objects.

Consider the category-with-a-strictly-associative-multiplication (denoted by juxtapo-
sition) generated as such by an object T and two morphisms

T 2 µ // T oo
η

1

subject to the three laws familiar from the definition of standard construction. Denote this
(finitely-presented!) category with multiplication by ∆. Clearly then ( )×∆ is a doctrine
whose algebras are precisely standard constructions. To obtain a concrete representation
of ∆, define a functor

∆ //Cat

by sending 1 � //0, T � //1, T 2 � //2, and noting that since all diagrams ending in 1 commute
there is a unique extension to a functor which takes juxtaposition in ∆ into ordinal sum
in Cat. For example, Tη, ηT � // ∂0, ∂1. Clearly the categories which are values of our
functor are just all the finite ordinal numbers (including 0): we claim that the functor is
actually full and faithful. For suppose

n σ //m

is any functor (order-preserving map) between finite ordinals. Then

m =
∑
i∈m

O
1

and denoting by ni the inverse image of i by σ, we actually have that σ itself is an ordinal
sum

σ =
∑
i∈m

O
σi

where σi: ni // 1. Since such σi is unique we need only show that n // 1 can be
somehow expressed using composition and juxtaposition in terms of T, η, µ. For this
define µn:T n // T by

µ0 = η (corresponding to an empty fiber ni)

µ1 = T (corresponding to a singleton fiber ni)

µ2 = µ (corresponding to a two-point fiber ni)

µn+2 = µn+1T.µ

Thus µn+2 = µT n.µT n−1 . . . µT.µ and every map is a juxtaposition (ordinal sum) of the
µ’s. Furthermore any calculation involving the order-preserving maps can be carried out
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using only the triple laws. Thus ∆ could also be given the usual (infinite) presentation
as a pure category with generators

di = T iηT n−i:T n // T n+1, i = 0, . . . , n

si = T iµT n−i:T n+2 // T n+1, i = 0, . . . , n

if desired, although the finite presentation using ordinal sums and the triple laws seems
much simpler.

It results in particular that the category ∆ of finite ordinals (including 0) and order-
preserving maps carries a canonical standard construction n � //1+O n (just the restriction
of the doctrine of initial objects from Cat to ∆). Denote by A∆ the category of algebras
for this standard construction, which is easily seen to have as objects all non-zero ordinals
and as morphisms the order-preserving maps which preserve first element. By construction
A∆ carries a standard co-construction. But it also has a ∆-structure because it is a self-
dual category. Namely, since a finite ordinal is a complete category, and since on such a
functor preserving initial objects preserves all colimits, we have the isomorphism “taking
right adjoints”:

(A∆)op adj.

∼=
//∆A

where ∆A denotes the category of maps preserving last element. But now the covariant
operation ( )op on Cat restricts to ∆ and takes ∆A into A∆. Thus composing these two
processes we obtain the claimed isomorphism

(A∆)op ∼= // A∆

and hence a standard construction on A∆.
Now let A be any category equipped with a standard construction T, which we inter-

pret as a category with a given action of ∆. Then

Hom∆(A∆,A) ∼= AT

the Eilenberg–Moore category of 〈A,T〉. Since the latter carries canonically an action of
∆∗, we see that A∆ has in another sense the co-structure of a standard co-construction,
and get an adjoint pair

Cat∆
Hom∆(A∆,−) //oo
(−)⊗∆∗A∆

Cat∆∗

in which the lower assigns to every standard co-construction the associated Kleisli category
of free coalgebras. For ease in dealing with these relationships it may be useful to use the
following notation for A∆, in which A is just a symbol:

1 + 3 1 + 2 1 + 1 1 + 0

. . . AT 3 // //// AT 2
ξT //
Aµ

// AT
ξ //oo
Aη

A
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Clearly one can also obtain the doctrine of adjoint triples, describing a simultaneous
action of ∆ and ∆∗ related by given adjunction maps. The writer does not know of a
simple concrete representation of the resulting category ∆̃ with strictly associative multi-
plication. The same could be asked for the doctrine of Frobenius standard constructions,
determined by the monoid in Cat presented as follows

1
η //oo
ε

T
δ //oo
µ

T 2

Triple laws for η, µ and cotriple laws for ε, δ are required to hold, as are the following
four equations:

δT.Tµ.Tε = µ

Tδ.µT.εT = µ

ηT.δT.Tµ = δ

Tη.Tδ.µT = δ

An algebra over this doctrine has an underlying triple and an underlying cotriple whose
associated free and cofree functors are the same. For example, if G is a finite group,
then in any abelian category A, AT =

⊕
GA has such a structure. The characteristic

property from group representation theory actually carries over to the general case: there
is a “quadratic form” β = µ.ε:T 2 // 1 which is “associative” Tµ.β = µT.β and “non-
singular” i. e. there is α = η.δ: 1 // T 2 quasi-inverse to β (i. e. they are adjunctions for
T a T .)

In order to construct doctrines whose algebras are categories associatively equipped
with colimits, Kock [Kock (1966)] considers categories Cat0 of categories and functors
which are “regular” in the sense that the total category of a fibration belongs to Cat0

whenever the base and every fiber belong to Cat0. In order to make B � // [Cat0, pqB ] =
DirCat0

(B) into a strict standard construction in Cat, Kock found it necessary to construe
Cat0 as having for each of its objects C a given well ordering on the set of objects of C
and on each hom set of C. Then with considerable effort he is able to choose a version of
the Grothendieck process (taking C R //Cat0 for C ∈ Cat0 to the associated op-fibration
over C in Cat0) which gives rise to a strictly-associative

DirCat0
(DirCat0

(B))
Bµ //DirCat0

(B)

One then defines the colimits-over-indexcategories-in-Cat0 doctrine R by

R = DirCat0
(−)/〈S, lim// 〉

showing first, also with some effort, that there does exist an equivalent version S of the
category of small (relative to Cat0) sets which can be equipped with a strictly associative
lim// i. e. a colimit assignment which is also an algebra structure

DirCat0
(S)

lim//
// S
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for the “precolimit” doctrine DirCat0
.

By choosing the appropriate Cat0 and by making use of the “opposite” doctrine
construction, one then sees that the notions of a category equipped with small lim// , finite

limoo , or countable products, etc, etc, are all essentially doctrinal. Hence presumably, given

an understanding of free products, quotients, Kronecker products, distributive laws, etc
for doctrines, so are the notions of abelian category, S -topos, ab-topos (the latter two
without the usual “small generating set” axiom) also doctrinal. (In order to view, for
example, the distributive axiom for topos as a distributive law in the Barr–Beck sense, it
may be necessary to generalize the notion of equational doctrine to allow the associative
law for µ or α to hold up to isomorphism (?).)

The value of knowing that a notion of category-with-structure is equationally doctrinal
should be at least as great as knowing that a category is tripleable over sets. We have
at the moment however no intrinsic characterization of those categories enriched over
Cat which are of the form CatD for some equational doctrine D . However the Freyd
Hom-Tensor Calculus [Freyd (1966)] would seem to extend easily from theories over sets
to doctrines over Cat to give the theorem: any strongly left adjoint functor

CatD1 //CatD2

is given by (−)⊗D1
A where A is a fixed category equipped with a D2-structure and a D1-

costructure. For example, consider the (doctrinal) notion of 2-Topos, meaning a partially
ordered set with small sups and finite infs which distribute over the sups (morphisms to
preserve just the mentioned structure). Then of course the Sierpinski space represents
the “open sets” functor

Topop // 2-Topos

Consider on the other hand the functor

S -Topos // 2-Topos

which assigns to every S -topos the set of all subobjects of the terminal object; this is

represented by the S -topos E with one generator X subject to X
∼= //X ×X, hence has

a strong left adjoint −⊗E which, when restricted to Topop is just the assignment of the
category of sheaves to each space. Or again consider the functor “taking abelian group
objects”

S -Topos // ab-Topos

Since this is F � // Homfinprod(Z,FU) where Z is the category of finitely generated free
abelian groups and FU denotes the category with finite products underlying the topos F,
we see that our functor is represented by A = the relatively free topos over the category
Z with finite products. Hence there is a strong left adjoint (−) ⊗ A which should be
useful in studying the extent to which an arbitrary Grothendieck category differs from
the abelian sheaves on some S -site.



Categories with Models

H. Appelgate and M. Tierney 1

1. Introduction

General remarks. A familiar process in mathematics is the creation of “global” objects
from given “local” ones. The “local” objects may be called “models” for the process, and
one usually says that the “global” objects are formed by “pasting together” the models.
The most immediate example is perhaps given by manifolds. Here the “local” objects
are open subsets of Euclidean space, and as one “pastes together” by homeomorphisms,
diffeomorphisms, etc., one obtains respectively topological, differentiable, etc., manifolds.
Our object in this paper is to present a coherent, categorical treatment of this “pasting”
process.

The general plan of the paper is the following. In Section 2, we consider the notion
of a category A with models I: M //A, and give a definition of what we mean by an
“M-object of A”. Our principal tool for the study of M-objects is the theory of cotriples,
and its connection with M-objects is developed in Section 3. There we show that the
M-objects of A can be identified with certain coalgebras over a “model-induced” cotriple.
Section 4 exploits this identification by using it to prove equivalence theorems relating
the category of M-objects to categories of set-valued functors. Section 5 consists of a
detailed study of several important examples, and Section 6 is concerned with the special
case where the model-induced cotriple is idempotent.

In subsequent papers, we will consider model-induced adjoint functors, and models in
closed (autonomous) categories.

It is a pleasure to record here our indebtedness to Jon Beck for numerous instruc-
tive conversations and many useful suggestions. Thanks are also due F.W. Lawvere for
suggesting the example of G-spaces, and, in general, for being a patient listener.

Notation. Let A be a category. If A1 and A2 are objects of A, the set of morphisms
f :A1

//A2 will be denoted by (A1, A2). If there is a possibility of confusion, we will use
A(A1, A2) to emphasize A. Similarly, if A and B are categories and F1, F2: A //B are
functors, (F1, F2) denotes the class of natural transformations η:F1

// F2. The value
of η at A ∈ A will be written ηA:F1A // F2A unless the situation is complicated, in
which case we write η · A:F1 · A // F2 · A. Composition of morphisms will be denoted
by juxtaposition (usual order). Diagram means commutative diagram unless otherwise
specified, and all functors are covariant.

Let

A F //B
G1 //
G2

//C H //D

1The second named author was partially supported by the NSF under Grant GP 6783.
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be a collection of categories and functors, and let η:G1
//G2 be a natural transformation.

Then
HηF :HG1F //HG2F

is the natural transformation given by

HηF · A = H(η(FA))

for A ∈ A. When A = B and F = 1A (C = D and H = 1C) we write Hη (ηF ).
Godement’s 5 rules of functorial calculus for this situation are used without comment.

The category of sets will be denoted by S , and we say a category A is small, if |A|
(the class of objects of A) is a set.

Aop isa the dual of A.
We shall use primarily the following criterion for adjoint functors. Namely, given

functors

A
L //oo
R

C

L is coadjoint to R (or R is adjoint to L) iff there are natural transformations

η: 1A
//RL

called the unit, and
ε:LR // 1C

called the counit, such that

L
Lη // LRL εL // L

and

R
ηR //RLR

Rε //R

are the respective identities 1L and 1R. We abbreviate this in the notation

(ε, η):L a R.

Let
D: J //A

be a functor. Any A ∈ A defines an obvious constant functor

A: J //A.

A pair (C, γ) consisting of an object C ∈ A and a natural transformation

γ:D // C

aEditor’s footnote: The authors used A∗ rather than Aop, but for this Reprints version we have
changed it to the current standard notation.
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will be called a colimit of D iff for each A ∈ A, composition with γ induces a 1–1
correspondence between A-morphisms C // A, and natural transformations D // A.
In other words, C is an object of A, and γ is a universal family of morphisms

γj:Dj // C for j ∈ J

such that if α: j // j′ is in J, then

C

Dj′

99

γj′rrrrrrrrrr

Dj

C

γj

%%LLLLLLLLLLDj

Dj′

Dα

��

commutes. Universal means that if

γ′j:Dj // C ′ j ∈ J

is any such family, then there is a unique morphism f :C // C ′ in A such that

Dj

C ′
γ′j %%LLLLLLLLLL

C

Dj

99
γj

rrrrrrrrrr C

C ′

f

��

commutes for all j ∈ J. Clearly any two colimits of D are isomorphic in the obvious
sense. A choice of colimit, when it exists, will be denoted by lim// D, and the natural

transformation will be understood. The limit of D is defined dually, and denoted by
inj limD. We say A has small colimits if for every functor

D: J //A

with J small, there exists a colimit of D in A.

2. Categories with models

Singular and realization functors. A category A together with a functor

I: M //A

where M is small, is called a category with models. M will be called the model
category, and A is sometimes called the ambient category.
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Given a category A with models, I defines a singular functor

s: A // (Mop,S )

as follows: for A ∈ A,
sA: Mop //S

is the functor given by

sA ·M = (IM,A)

sA · α = (Iα,A)

for M an object and α a morphism in M. If f :A // A′ is a morphism in A, then

sf : sA // sA′

is the obvious natural transformation induced by composition with f .
The following example, to be discussed later in greater detail, may help to motivate

the terminology and future definitions. Let A = Top, the category of topological spaces
and continuous maps, and let ∆ be the standard simplicial category. Let

I: ∆ //Top

be the functor which assigns to each simplex [n] the standard geometric simplex ∆n,
and to each simplicial morphism α: [m] // [n] the uniquely determined affine map
∆α: ∆m

//∆n. Then, (∆op,S ) is the category of simplicial sets, and

s: Top // (∆op,S )

is the usual singular functor of homology theory.
Let us assume now that A, our category with models, has small colimits. Then we

can construct a coadjoint
r: (Mop,S ) //A

to s as follows. (This construction, when M is ∆, seems to be due originally to Kan [Kan
(1958a)].) Let F : Mop //S and consider the category (Y, F ) whose objects are pairs
(M,x) where M ∈ M and x ∈ FM , and whose morphisms (M,x) // (M ′, x′) are
morphisms α:M //M ′ in M such that Fα(x′) = x. (As the notation indicates, this is
Lawvere’s comma category where Y : M // (Mop,S ) is the Yoneda embedding.) There
is an obvious functor

∂0: (Y, F ) //M

given by ∂0(M,x) = M , ∂0α = α. Consider the composite of ∂0 with I,

M AI //M

(Y, F )

OO

∂0

A

(Y, F )

??

I·∂0
�������������
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and put
rF = lim// I · ∂0.

Let us denote the components of the universal natural transformation i: I · ∂0
// rF by

i(M,x): IM // rF.

(In what follows, we will often omit the M and write simply ix: IM // rF where x ∈
FM .) The functoriality of r is determined, for γ:F // F ′ a natural transformation, by
the diagram

rF rF ′rγ
//

IM

rF

ix

��

IM

rF ′

iγM(x)

��?????????????

The unit η: 1 // sr is given by

(ηF ·M)(x) = i(M,x)

for F ∈ (Mop,S ), M ∈ M, and x ∈ FM . The counit ε: rs // 1 is determined by the
diagram

rsA A
εA

//

IM

rsA

iϕ

��

IM

A

ϕ

��?????????????

for A ∈ A, M ∈M, and ϕ ∈ sA ·M . It is now trivial to verify that η and ε are natural,
and that the composites

s
ηs // srs sε // s

r
rη // rsr

εr // r

are the respective identities 1s and 1r. Thus, we have (ε, η): r a s. We shall call r
a realization functor, since in the previous example r is the geometric realization of
Milnor [Milnor (1957)].

Often, the categories that we work with come equipped with a colimit preserving
underlying set functor

U : A //S .

In this case, the underlying set of rF admits an easy description; that is, one can describe
easily the colimit of the composite functor

(Y, F )
I·∂0 //A U //S ,
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which is, by assumption, the underlying set of rF . Namely, consider the set F of all
triples (M,x,m) where (M,x) ∈ (Y, F ) and m ∈ UIM . Let ≡ be the equivalence relation
on F generated by the relation: (M,x,m) ∼ (M ′, x′,m′) iff there is α: (M,x) //(M ′, x′)
in (Y, F ) such that UIα(m) = m′ (i.e. (M,Fα(x′),m) ∼ (M ′, x′, UIα(m))). Let |M,x,m|
denote the equivalence class containing (M,x,m). (Again, we will often drop the M ,

writing simply |x,m|.) It is easy to see that the set F̃ of equivalence classes, together
with the family of functions

i′(M,x):UIM // F̃

given by i′(M,x)(m) = |M,x,m|, is a colimit of UIF · ∂0.

Atlases. Let A be a category with models

I: M //A,

and let A ∈ A. A subfunctor G �
� // sA of the singular functor sA will be called an

M-preatlas for A, and ϕ: IM // A is said to be a G -morphism if ϕ ∈ GM .
Let A be a set of A-morphisms of the form ϕ: IM // A for M ∈M and A a fixed

object of A. If G �
� // sA is an M-preatlas for A, we say G contains A if each ϕ ∈ A is

a G -morphism. Since there is at least one preatlas containing A —namely sA itself—and
since the intersection of any family of preatlases containing A is a preatlas containing A ,
we can define the M-preatlas generated by A to be the smallest preatlas containing
A . Clearly, this consists of all morphisms ψ: IM ′ // A such that ψ can be factored as

IM ′ A
ψ //IM ′

IM

Iα

��

A

IM

??

ϕ

�������������

where α is a morphism in M and ϕ ∈ A .
Assuming A has small colimits, we have the realization

r: (Mop,S ) //A

with (ε, η): r a s. Let G be an M-preatlas for A, and let

j: G // sA

be the inclusion. Let e: rG // A be the composite of

rG
rj // rsA εA // A.

e can be characterized as that A-morphism rG // A such that

rG Ae
//

IM

rG

i(M,ϕ)

��

IM

A

ϕ

��?????????????
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commutes for M ∈M, and ϕ ∈ GM .
An object A ∈ A having a preatlas G // sA for which e is an isomorphism will be

called an M-object with atlas G . Intuitively, e epic means the G -morphisms ϕ cover A,
e monic means they are compatible, and the full isomorphism condition means that, in
addition, the A-structure (e.g. the topology) of A is determined by the ϕ’s.

An M-object A is thus isomorphic to a small colimit of models, i.e. a colimit of a
functor with small domain that factors through I. Namely,

lim// I · ∂0 = rG e
∼
// A.

This suggests that all such colimits are M-objects, and this is confirmed in

Proposition 2.1. Let I ′ be a functor with small domain that factors through I:

M AI //M

M′

OO

J

A

M′

??

I′

�������������

Let A = lim// I
′ with universal family

γM ′: I ′M ′ // A.

Let G �
� // sA be the M-preatlas for A generated by the set

A = {γM ′: IJM ′ = I ′M ′ // A}.

Then A is an M-object with atlas G : i.e. e: rG // A is an isomorphism.

Proof. Let e′:A // rG be the A-morphism determined by

A rG
e′

//

I ′M ′

A

γM ′

��

I ′M ′

rG

i(JM ′,γM ′)

��?????????????

This makes sense, since A is contained in G . But then

ee′γM ′ = ei(JM ′, γM ′) = γM ′

so ee′ = 1A. On the other hand, for any ϕ ∈ GM we have

e′ei(M,ϕ) = e′ϕ.

But ϕ = γM ′ · Iα for some α:M // JM ′ in M. Therefore,

e′ϕ = e′γM ′ · Iα = i(JM ′, γM ′)Iα = i(M,γM ′ · Iα) = i(M,ϕ),

and e′e = 1rG .



Categories with Models 129

By 2.1 then, the M-objects of A are exactly those objects of A that are “pasted
together” from models; i.e. that are colimits of models. These are the “global” objects
referred to in the introduction.

The remainder of this section is devoted to a technical condition on M-objects and a
lemma on pullbacks. These will be needed in the section on examples (Section 5).

Regular M-objects. Let G �
� // sA be an M-preatlas for A with generating set A .

Then A is said to be a regular generating set iff for each pair

ϕ1: IM1
// A

ϕ2: IM2
// A

of morphisms in A , there are morphisms

α1:M //M1

α2:M //M2

in M such that

IM2 Aϕ2

//

IM

IM2

Iα2

��

IM IM1

Iα1 // IM1

A

ϕ1

��

is a pullback diagram in A. An M-object A is called regular if it has an atlas G // sA
with a regular generating set.

Lemma 2.2. Let f :A // A′ be a morphism in A, and

A A′
f

//

P

A

k2

��

P A
k1 // A

A′

f

��

a pullback diagram. Then f is monic iff at least one of k1, k2 is monic.

Proof. If f is monic, then k1 = k2, and P being a pullback says their common value
is monic. Suppose, say, k1 is monic. Then ∃!ϕ:P // P such that k1ϕ = k1 and k2ϕ =
k1. But k1ϕ = k1 = k11P , so ϕ = 1P , k2 = k1, and f is monic. We are grateful to
H.B. Brinkmann for pointing out this short proof to us.
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Note that if A is a regular M-object, and all Iα: IM // IM ′ are monic in A, 2.2 im-
plies that all ϕ: IM // A in a regular generating set for an atlas for A are monic.

3. The model induced cotriple

Here we shall first briefly recall some facts from the theory of cotriples and coalge-
bras [Eilenberg & Moore (1965a)]. We then show how I: M // A induces a cotriple
G in a category A with models, and discuss the relation of G to the singular and real-
ization functors of Section 2. Finally, we identify M-objects with certain coalgebras over
G.

So, recall that in a category A, a cotriple G = (G, ε, δ) consists of a functor G: A //A
together with natural transformations ε:G //1A and δ:G //G2 satisfying the following
diagrams:

G G2δ //G

G

1G

��????????????? G2

G

εG

��

G G2δ //G

G

1G

��????????????? G2

G

Gε

��

and

G2 G3
Gδ

//

G

G2

δ

��

G G2δ // G2

G3

δG

��

Given any adjoint pair of functors

A
U //oo
F

B with (ε, η):F a U,

it is easy to see that G = (FU, ε, FηU) defines a cotriple in A. Furthermore, as shown
in [Eilenberg & Moore (1965a)], any cotriple G = (G, ε, δ) in A arises in this way by
considering the category of G-coalgebras AG. An object of AG is a pair (A, ϑ) where
A ∈ A, and ϑ:A //GA is a morphism in A satisfying the following two diagrams:

A GAϑ //A

A

1A

��????????????? GA

A

εA

��
GA G2A

δA
//

A

GA

ϑ

��

A GAϑ // GA

G2A

Gϑ

��
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A morphism f : (A′, ϑ′) // (A, ϑ) in AG is a morphism f :A′ // A in A such that

GA′ GA
Gf

//

A′

GA′

ϑ′

��

A′ A
f // A

GA

ϑ

��

commutes. Now one defines functors L: AG
// A and R: A // AG by L(A, ϑ) = A,

RA = (GA, δA). Then, we have ε:LR // 1, and we obtain β: 1 //RL by setting

β(A, ϑ) = ϑ: (A, ϑ) // (GA, δA).

It is immediate that these definitions give (ε, β):L a R and G = (G, ε, δ) = (LR, ε, LβR).
Now let A be a category with models

I: M //A.

(For the moment, let us not require M small.) If A has sufficient colimits, I defines a
cotriple in A as follows. Let A ∈ A, and consider the comma category (I, A). Thus, an
object in (I, A) is a pair (M,ϕ) where M ∈M and ϕ: IM //A is a morphism in A. A
morphism α: (M ′, ϕ′) // (M,ϕ) is a morphism α:M ′ //M in M such that

IM ′

A

ϕ′

��?????????????IM ′ IMIα // IM

A

ϕ

���������������

commutes. We have the obvious functor

I · ∂0: (I, A) //A

as in Section 2. Assuming it exists, we set

GA = lim// I · ∂0,

and denote the (M,ϕ)-th component of the universal family by

iϕ: IM //GA.

G is a functor if we give, for f :A′ // A in A, Gf :GA′ //GA by requiring

GA′ GA
Gf

//

IM

GA′

iϕ

��

IM

GA

if ·ϕ

��?????????????



H. Appelgate and M. Tierney 132

for each ϕ: IM // A′. The morphism εA:GA // A is determined by

GA A
εA

//

IM

GA

iϕ

��

IM

A

ϕ

��?????????????

for each ϕ: IM // A, and δA:GA //G2A by

GA G2A
δA

//

IM

GA

iϕ

��

IM

G2A

iiϕ

��?????????????

It is easy to check that ε and δ are natural, and that G = (G, ε, δ) is a cotriple on A. We
call G the model induced cotriple.

Having G, we can form the category AG of G-coalgebras, and we obtain a diagram

M A
I

//

AG

M

AG

A

L

��
M A//

AG

M

AG

A

OO

R

We show first that there is a functor Ī: M //AG such that LĪ = I. That is, we exhibit
a coalgebra structure on each IM , which is functorial with respect to morphisms in M.
So, let

ϑM : IM //GIM

be the morphism i1IM . By definition of ε, we have

IM GIM
ϑM //IM

IM

1IM

��????????????? GIM

IM

εIM

��

In the diagram

GIM G2IM
δIM

//

IM

GIM

ϑM

��

IM GIM
ϑM // GIM

G2IM

GϑM

��
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the common diagonal is iϑM . Thus ϑM is a coalgebra structure for IM . Suppose
α:M ′ //M is a morphism in M. Then, in the diagram

GIM ′ GIM
GIα

//

IM ′

GIM ′

ϑM′

��

IM ′ IM
Iα // IM

GIM

ϑM

��

the common diagonal is iIα, and ϑM is functorial in M . Thus, if we set

ĪM = (IM, ϑM)

Īα = Iα

for M ∈M and α:M ′ //M , we obtain the required functor Ī.
Let us now suppose that we are in a models situation

I: M //A

where M is small, and A has small colimits. Then, as in Section 2, we have the adjoint
pair

A
s //oo
r

(Mop,S ) with (ε, η): r a s.

Moreover, examining the definition of r, one sees immediately that

G = (rs, ε, rηs).

(We gave a direct definition of G since it may occur that G exists, although rF does not
for arbitrary F . This can happen, for example, when M is not small or A does not have
all small colimits.) Thus, in the terminology of [Eilenberg & Moore (1965a)], the above
adjointness generates the cotriple G. Therefore, again by [Eilenberg & Moore (1965a)],
there is a canonical functor

r̄: (Mop,S ) //AG

given by r̄F = (rF, rηF ) and r̄γ = rγ for F ∈ (Mop,S ) and γ:F ′ // F a natural
transformation. We have, of course, also the lifted singular functor

s̄: AG
// (Mop,S )

associated with the lifted models

Ī: M //AG.

That is, s̄ is the functor defined by

s̄(A, ϑ) ·M = AG((IM, ϑM), (A, ϑ))

for (A, ϑ) ∈ AG and M ∈M. Since each AG-morphism is also an A-morphism, we have
an inclusion of functors

j: s̄ // sL.
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Proposition 3.1. For each (A, ϑ) ∈ AG,

s̄(A, ϑ)
j(A,ϑ) // sL(A, ϑ)

sLϑ //

ηsL(A,ϑ)
// srsL(A, ϑ)

is an equalizer diagram.

Proof. We remark first that for any A ∈ A and ϕ: IM // A, we have the diagram

GIM GA
Gϕ

//

IM

GIM

ϑM

��

IM

GA

iϕ

��?????????????

Thus, if (A, ϑ) ∈ AG such a ϕ is a coalgebra morphism iff ϑ · ϕ = iϕ.
Now suppose we have a natural transformation ψ:F // sA such that in the diagram

sA srsA
sϑ //

F

sA

ψ

��

F

srsAsA srsA
ηsA

//

F

sA
��

F

srsA

sϑ · ψ = ηsA · ψ. That is, for M ∈M and x ∈ FM

ψM(x): IM // A

satisfies
ϑ · ψM(x) = (ηsA ·M)(ψM(x)) = iψM(x).

By the above remark, each ψM(x) is thus a morphism of coalgebras. But then by defi-
nition ψ factors through j(A, ϑ)—uniquely, since j(A, ϑ) is monic. Of course, also by the
above remark, j(A, ϑ) itself equalizes.

Proposition 3.2. r̄ a s̄.
Proof. For (A, ϑ) ∈ AG, let ε̄(A, ϑ): r̄s̄(A, ϑ) // (A, ϑ) be the composite

rs̄(A, ϑ)
rj(A,ϑ) // rsA

εA // A.

This is the unique A-morphism such that for any coalgebra morphism ϕ: IM //A, the
diagram

rs(A, ϑ) A
ε(A,ϑ)

//

IM

rs(A, ϑ)

iϕ

��

IM

A

ϕ

""DDDDDDDDDDDDDDD
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commutes. Using this, a simple calculation shows that ε̄(A, ϑ) is a morphism of coalgebras.
It is clearly natural.

For F ∈ (Mop,S ), naturality of η gives the diagram

srF srsrF
srηF

//

F

srF

ηF

��

F srF
ηF // srF

srsrF

ηsrF

��

Then, by 3.1 there is a unique η̄F :F // s̄r̄F making

s̄r̄F srF
jrF

//

F

s̄r̄F

ηF

���������������
F

srF

ηF

��
srF srsrF

srηF //
srF srsrF

ηsrF
//

commute—i.e. for M ∈ M and x ∈ FM , each ix: IM // rF is a coalgebra morphism.
η̄F is trivially natural in F .

Now consider the two composites

s̄
η̄s̄ // s̄r̄s̄

s̄ε̄ // s̄

and

r̄
r̄η̄ // r̄s̄r̄

ε̄r̄ // r̄.

Suppose M ∈ M, (A, ϑ) ∈ AG, and ϕ: IM // A is a morphism of coalgebras. Then
(η̄s̄(A, ϑ) ·M)(ϕ) = iϕ, and (s̄ε̄(A, ϑ) ·M)(iϕ) = ε̄(A, ϑ) · iϕ = ϕ. Thus, s̄ε̄ · η̄s̄ = 1s̄. Also,
if F ∈ (Mop,S ) and x ∈ FM , then r̄η̄F · ix = iix , and ε̄r̄F · iix = ix. Hence ε̄r̄ · r̄η̄ = 1r̄,
and we have (ε̄, η̄): r̄ a s̄.

Having (ε̄, η̄): r̄ a s̄ gives a cotriple Ḡ = (r̄s̄, ε̄, r̄η̄s̄) on AG. We call Ḡ the lifted
cotriple.

In what follows, we shall be interested in those (A, ϑ) ∈ AG for which

ε̄(A, ϑ): Ḡ(A, ϑ) ∼
// (A, ϑ).

In fact, these (A, ϑ) will turn out to be precisely the M-objects of Section 2. Thus, we
prove a theorem giving necessary and sufficient conditions for this to happen. A more
general form of this has been proved by Jon Beck (unpublished).
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Theorem 3.3. For (A, ϑ) ∈ AG,

ε̄(A, ϑ): Ḡ(A, ϑ) ∼
// (A, ϑ)

iff

rs̄(A, ϑ)
rj(A,ϑ) //GA

Gϑ //
δA
//G2A

is an equalizer diagram.

Proof. We remark first that for any (A, ϑ),

A ϑ //GA
Gϑ //
δA
//G2A

is an equalizer diagram. In fact, ϑ equalizes by definition, and if we have any f :A′ //GA
that equalizes, then εA ·f :A′ //A and the following diagram shows that ϑ · (εA ·f) = f .

A GA
ϑ

//

GA

A

εA

��

GA G2A
Gϑ // G2A

GA

εGA

��
A GA//

GA

A
��

GA G2A
δA

// G2A

GA
��

A′ GA
f //

εA·f is unique, since ϑ is monic. By this remark, and the fact that Lε̄(A, ϑ) = εA·rj(A, ϑ),
we see that we have

A GA
ϑ

//

r · s(A, ϑ)

A

Lε(A,ϑ)

��������������
r · s(A, ϑ)

GA

rj(A,ϑ)

��

Thus,

rs̄(A, ϑ)
rj(A,ϑ) //GA

Gϑ //
δA
//G2A

is an equalizer diagram (in A) iff Lε̄(A, ϑ) is an isomorphism, iff ε̄(A, ϑ) is an isomorphism,
since L clearly reflects isomorphisms.

Note that in 3.3 we have shown that the adjointness (ε̄, η̄): r̄ a s̄ exhibits AG as a
coretract of (Mop,S ) iff for all (A, ϑ), r preserves the equalizer

s̄(A, ϑ)
j(A,ϑ) // sA

sϑ //
ηsA

// srsA.

In the next section we shall give an additional condition that is necessary and sufficient
for the adjointness to be an equivalence of categories. Note also that to verify that

rs̄(A, ϑ)
rj(A,ϑ) //GA

Gϑ //
sA
//G2A
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is an equalizer diagram, it suffices to show that rj(A, ϑ) is monic, and there is a factor-
ization

rs(A, ϑ) GA
rj(A,ϑ)

//

A

rs(A, ϑ)

ϑ

||zzzzzzzzzzzzzz
A

GA

ϑ

��

of ϑ in A. In the presence of a good underlying set functor U : A //S , we shall give a
simple sufficient condition for this in Section 4.

Now we proceed to explain the connection between these distinguished coalgebras and
the M-objects of Section 2. It is clear that if (A, ϑ) is a G-coalgebra for which

ε̄(A, ϑ): Ḡ(A, ϑ) ∼
// (A, ϑ),

then A is an M-object by means of the atlas

s̄(A, ϑ)
j(A,ϑ) // sA.

Conversely, let A be an M-object with atlas

G
j // sA,

and define ϑ:A //GA to be the composite

A
e−1

// rG
rj // rsA.

Proposition 3.4. ϑ is a coalgebra structure for A.

Proof. The diagram

A GAϑ //A

A

1A

��????????????? GA

A

εA

��

commutes trivially, since the composite

rG
rj // rsA

εA // A

is e. Consider the diagram

GA G2A
δA

//

A

GA

ϑ

��

A GA
ϑ // GA

G2A

Gϑ

��
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That is, the diagram

A rGe−1
// rG rsA

rj //A

rG

e−1

��

rsA

rsrG

rse−1

��
rG

rsA

rj

��

rsrG

rsrsA

rsrj

��
rsA rsrsA

rηsA
//

Now for any M ∈M and ϕ ∈ GM , we have the diagram

rG rsA
rj

// rsA rsrsA
rηsA

//

IM

rG

iϕ

���������������
IM

rsA

iϕ

��

IM

rsrsA

iiϕ

��?????????????

and
IM

rG

iϕ

zzttttttttttttttttt
IM

rsA

iϕ
����

������

IM

rsrG

ie−1·ϕ

////

��/
///

IM

rsrsA

irj·e−1ϕ

$$JJJJJJJJJJJJJJJJ

rG rsA
rj

// rsA rsrG
rse−1

// rsrG rsrsA
rsrj

//

Thus, to complete the proof, it is enough to show that for any ϕ ∈ GM

iϕ = rj · e−1 · ϕ = ϑ · ϕ

For this, consider the diagram

rG Ae
// A rG

e−1
//

IM

rG

iϕ

���������������
IM

A

ϕ

��

IM

rG

e−1·ϕ

��?????????????

Thus, iϕ = e−1 · ϕ and hence

iϕ = rj · iϕ = rj · e−1 · ϕ = ϑ · ϕ

Note that in 3.4 we have not only shown that ϑ is a coalgebra structure, but also
that with respect to this ϑ, each ϕ ∈ GM is a coalgebra morphism. That is, there is a
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factorization

s(A, ϑ) sA
j(A,ϑ)

//

G

s(A, ϑ)

j

||zzzzzzzzzzzzzz
G

sA

j

��

But now, if we apply r to this diagram and compose with e−1 we obtain

rs(A, ϑ) rsA
rj(A,ϑ)

//

rG

rs(A, ϑ)

rj

||zzzzzzzzzzzzzz
rG

rsA

rj

��

A

rG

e−1

��

Hence, ϑ factors through rj(A, ϑ), so that if rj(A, ϑ) is monic it follows by the remark
made after 3.3 that

ε(A, ϑ):G(A, ϑ) ∼ // (A, ϑ)

Therefore, under the assumption that rj(A, ϑ) is monic for all (A, ϑ), the M-objects are
precisely these distinguished coalgebras. We shall see in the examples that this is a very
mild assumption in general. In fact, we will usually have ε(A, ϑ):G(A, ϑ) ∼ // (A, ϑ) for
all (A, ϑ), so that the class of M-objects is the class of A ∈ A admitting a G-coalgebra
structure ϑ:A //GA. When this is the case, we define a morphism of M-objects to be
a coalgebra morphism with respect to the induced coalgebra structures.

Remark. Given an M-object A ∈ A with atlas G , s(A, ϑ) is a maximal atlas for A
consisting of all A-morphisms compatible with the morphisms of G . To see this intuitively,
suppose A has a faithful underlying set functor that preserves colimits - i.e., we shall act
as if the objects of A have elements, and the elements of a colimit are equivalence classes
as in Section 2. Then for ψ: IM // A to be a coalgebra morphism with respect to the
above ϑ, we must have the diagram

A rG
e−1

// rG GA
rj

//

IM

A

ψ

���������������
IM

rG

IM

GA

iψ

��?????????????
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The effect of e−1 is the following: for a ∈ A, pick M ′ ∈ M and ϕ ∈ GM ′ so that there
exists m′ ∈ IM ′ with ϕm′ = a. This can be done since e is epic. Then,

e−1a = |ϕ,m′| ∈ rG

Thus, s(A, ϑ)M consists of all morphisms ψ: IM //A with the property that if ϕ ∈ GM ′,
and there is m′ ∈ IM ′ and m ∈ IM with ψm = ϕm′, then

|ψ,m| = |ϕ,m′|

in GA; i.e., all ψ: IM // A compatible with the morphisms from G . (Here, this is the
definition of compatibility. For the connection with the usual definition, see 4.1.)

4. The equivalence theorem

In Section 3, we gave necessary and sufficient conditions for

ε(A, ϑ):G(A, ϑ) ∼ // (A, ϑ)

in terms of the preservation of a certain equalizer. Here, we will first investigate this
more closely in the presence of an underlying set functor on A, and then complete the
equivalence theorem by giving necessary and sufficient conditions for

η: 1 ∼
// sr

So assume we have a functor U : A //S , and consider the following condition: given a
pair of morphisms

IM2 IM
Iα2

//

IM1

IM2

IM1

IM

Iα1

��

in A and elements mi ∈ UIMi, i = 1, 2, such that

UIα1(m1) = UIα2(m2)

then there are morphisms βi:M0
//Mi, i = 1, 2 in M, and m0 ∈ UIM0, satisfying

M2 Mα2

//

M0

M2

β2

��

M0 M1

β1 //M1

M

α1

��

and UIβi(m0) = mi, i = 1, 2. We call this condition (a).
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Lemma 4.1. Assume U : A //S is colimit preserving, and I: M //A satisfies (a).
Let F ∈ (Mop,S ), and suppose that in UrF

|M1, x1,m1| = |M2, x2,m2|

Then there are morphisms αi:M //Mi, i = 1, 2, in M and m ∈ UIM such that

UIαi(m) = mi, i = 1, 2 and Fα1(x1) = Fα2(x2)

Proof. Recall from Section 2 that UrF can be represented as the set of equivalence
classes of triples (M,x,m) for (M,x) ∈ (Y, F ) and m ∈ UIM under the equivalence
relation generated by the relation

(M,x,m) ∼ (M ′, x′,m′)

iff there is α: (M,x) // (M ′, x′) in (Y, F ) such that UIα(m) = m′.
Let ≡0 be the relation given by the conclusion of the lemma. That is,

(M1, x1,m1) ≡0 (M2, x2,m2)

iff there is (M,x,m) such that

(M,x,m) ∼ (M1, x1,m1)

and
(M,x,m) ∼ (M2, x2,m2)

Now if we show ≡0 is an equivalence relation containing ∼ we are done, since clearly
any equivalence relation containing ∼ contains ≡0. Obviously, ≡0 is reflexive, symmetric,
and contains ∼. We are left with transitivity, so assume

(M1, x1,m1) ≡0 (M2, x2,m2) ≡0 (M3, x3,m3)

Then we have
(M ′, x′,m′) ∼ (M1, x1,m1)

(M ′, x′,m′) ∼ (M2, x2,m2)

and
(M ′′, x′′,m′′) ∼ (M2, x2,m2)

(M ′′, x′′,m′′) ∼ (M3, x3,m3)

so there is a string of morphisms

IM1 IM2

IM ′

IM1

Iβ′

���������������
IM ′

IM2

Iα′

��?????????????

IM2 IM3

IM ′′

IM2

Iα′′

���������������
IM ′′

IM3

Iβ′′

��?????????????
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such that
Fβ′(x1) = x′ = Fα′(x2)

Fα′′(x2) = x′′ = Fβ′′(x3)

and
UIβ′(m′) = m1

UIα′(m′) = m2

UIα′′(m′′) = m2

UIβ′′(m′′) = m3

By (a) we can find a diagram

IM ′ IM ′′

IM

IM ′

Iγ′

���������������
IM

IM ′′

Iγ′′

��?????????????

IM ′

IM2

Iα′

��?????????????IM ′ IM ′′IM ′′

IM2

Iα′′

���������������

and an m ∈ UIM such that UIγ′(m) = m′, UIγ′′(m) = m′′.
Let x = Fγ′(x′) = Fγ′′(x′′). Then

(M,x,m) ∼ (M1, x1,m1)

(M,x,m) ∼ (M3, x3,m3)

so
(M1, x1,m1) ≡0 (M3, x3,m3)

Corollary 4.2. If U is faithful and colimit preserving, and I: M //A satisfies (a),
then r: (Mop,S ) //A preserves monomorphisms.

Proof. Let F ′, F ∈ (Mop,S ) and let

j:F ′ // F

be a monomorphism. Since U is faithful, it reflects monomorphisms, so it is only necessary
to check that

Urj:UrF ′ // UrF

is monic. So suppose |x,m| and |x′,m′| are elements of UrF ′ such that

Urj(|x,m|) = Urj(|x′,m′|)
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i.e.,
|jM(x),m| = |jM ′(x′),m′)|

(Note that we have dropped the model in the notation.) By 4.1 we have

IM
Iαoo − IM0

Iβ // IM ′

with m0 ∈ UIM0 such that Fα(jM(x)) = Fβ(jM ′(x′)) and UIα(m0) = m, UIβ(m0) =
m′. By naturality we have the diagram

FM FM0Fα
//

F ′M

FM

jM

��

F ′M F ′M0
F ′α // F ′M0

FM0

jM0

��
FM0 FM ′oo

Fβ

F ′M0

FM0

F ′M0 F ′M ′oo F ′β
F ′M ′

FM ′

jM ′

��

and jM0 monic gives F ′α(x) = F ′β(x′). But then |x,m| = |x′,m′| in UrF ′, so Urj is
monic.

Corollary 4.3. If U reflects equalizers and preserves colimits, and I: M //A satisfies
(a), then

ε(A, ϑ):G(A, ϑ) ∼
// (A, ϑ)

for all (A, ϑ) ∈ AG.

Proof. We have to show, by 3.3, that for each (A, ϑ), the diagram

rs(A, ϑ)
rj(A,ϑ) // rsA

rsϑ //
rηsA

// (rs)sA

is an equalizer diagram. Since U reflects equalizers, it is enough to show that after
applying U we obtain an equalizer diagram in S . Using (a) as in 4.2, Urj(A, ϑ) is monic.
Therefore we must show that its image—the set of all |ϕ,m| such that (ϕ,m) ≡ (ψ,m′)
for some coalgebra morphism ψ—is exactly the set on which rsϑ and rηsA agree. The
image is clearly contained in this set, so suppose |ϕ,m| is an element of rsA such that

rsϑ(|ϕ,m|) = rηsA(|ϕ,m|)

i.e.,
|ϑ · ϕ,m| = |iϕ,m|
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where ϕ: IM // A and m ∈ UIM . Then by 4.1 we have a diagram

IM

GA

ϑ·ϕ

��?????????????

IM ′

IM

Iα

���������������
IM ′

GA

ψ

��

IM

GA

iϕ

���������������

IM ′

IM

Iβ

��?????????????IM ′

GA

and an element m′ ∈ UIM ′ such that UIα(m′) = m = UIβ(m′). Composing with
εA:GA // A, we obtain ϕ · Iα = ϕ · Iβ. Call the common value ϕ′: IM ′ // A.
Recalling that iϕ · Iβ = iϕ·Iβ, the above diagram gives

A GA
ϑ

//

IM ′

A

ϕ′

���������������
IM ′

GA

iϕ′

��

so that ϕ′ is a morphism of coalgebras. Furthermore,

|ϕ′,m′| = |ϕ · Iα,m′| = |ϕ,UIα(m′)| = |ϕ,m|

and hence |ϕ,m| is in the image of Urj(A, ϑ).

Remark. There is a condition (b) on I: M //A, similar in nature to (a), which together
with the assumption of 4.3 implies that r preserves all equalizers. We do not need this
stronger result in what follows, however, and hence we omit a discussion of it here.

Also, some remarks are in order concerning the use of 4.2 and 4.3. In practice, 4.2
is useful and 4.3 is not. That is, our underlying functors are often faithful and colimit
preserving, but then rarely satisfy the stronger property of reflecting equalizers. If they
reflect equalizers, they usually do not preserve colimits. For example, the category A
occurring most often in the examples is Top—the category of topological spaces and
continuous maps. Here the obvious underlying set functor preserves colimits since it has
an adjoint (the indiscrete topology) and is certainly faithful. It does not, however, reflect
equalizers. What one gets from (a) here is that in the diagram

rs(A, ϑ)
rj(A,ϑ) // rsA

rsϑ //
rηsA

// (rs)2A

rj(A, ϑ) is monic, and the underlying set of rs(A, ϑ) is that of the equalizer of rsϑ and
rηsA. One must still check that rs(A, ϑ) has the subspace topology from rsA. Even
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though some such modification is generally necessary in practice, it seemed worthwhile to
present the result in a form that would not overly obscure the basic idea involved—hence
the assumption of reflecting equalizers in 4.3.

We return now to the general situation and complete the picture by giving necessary
and sufficient conditions for

AG

s //oo
r

(Mop,S )

to be an equivalence of categories.

Theorem 4.4. Suppose ε: rs ∼
// 1. Then η: 1 ∼

// sr iff r reflects isomorphisms.

Proof. Consider the diagram

AG

A

L

��????????????AG (Mop,S )
s // (Mop,S )

A

r

��������������
AG

A

__

R
????????????

AG (Mop,S )oo
r

(Mop,S )

A

??

s

������������

Here r a s, r a s, and L a R. Furthermore, Lr = r. (Note that this makes sR naturally

equivalent to s.) So, if ε: rs ∼ // 1 and η: 1 ∼ // sr, the top two categories are equivalent.
Therefore, since L reflects isomorphisms, so does r.

On the other hand, suppose r reflects isomorphisms. Let F ∈ (Mop,S ) and consider
the diagram

srF srF
jrF //srF

F

__

ηF

????????????? srF

F

OO

ηF

srF srsrF
srηF //srF srsrF
ηsrF

//

The top row is an equalizer by 3.1, and since ε: rs ∼ // 1, r preserves it by 3.3. But rηF
is a coalgebra structure, so that the diagram

F
ηF // srF

srηF //
ηsrF

// srsrF

also becomes an equalizer on application of r. But then rηF is an isomorphism, and hence
so is ηF since r reflects isomorphisms.

Proposition 4.5. If ε: rs ∼ // 1, then r reflects isomorphisms iff r is faithful.

Proof. If r reflects isomorphisms, then

AG

s //oo
r

(Mop,S )
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is an equivalence of categories by 4.4; so r is faithful since L is. On the other hand, suppose
r is faithful and γ:F ′ //F is a natural transformation such that rγ: rF ′ ∼ // rF . Then
rγ is epic and monic, and hence so is γ since r is faithful. But then γ is an isomorphism.
This direction, of course, is independent of ε: rs ∼ // 1, and uses only the fact that the
domain of r is a category of set valued functors.

We shall apply these theorems now to some particular examples of categories with
models.

5. Some examples and applications

(1) Simplicial spaces. Let ∆ be the simplicial category. That is, the objects of ∆
are sequences [n] = (0, . . . , n) for n ≥ 0 an integer, and a morphism α: [m] // [n] is a
monotone map. Define

I: ∆ //Top

as follows: I[n] = ∆n, the standard n-simplex, and if α: [m] // [n] then Iα =
∆α: ∆m

// ∆n is the affine map determined by ∆α(ei) = eα(i) where the ei are the
vertices of ∆m. Then in the standard, by now, diagram

>G

>

L

��????????????>G (∆op,S )
s // (∆op,S )

>

r

��������������
>G

>

__

R
????????????

>G (∆op,S )oo
r

(∆op,S )

>

??

s

������������

∆ >
I

//

>G

∆

??

I

������������
>G

>

(∆op,S ) is the category of simplicial sets, s is the usual singular functor, and r is the
geometric realization of Milnor [Milnor (1957)]. The underlying set functor of Top is the
usual one, and we omit it from the notation. We will call a ∆-object a simplicial space,
and we will show that the category of simplicial spaces is equivalent to the category of
simplicial sets. We first verify condition (a) of section 4.

Let, for 0 ≤ i ≤ n,
εi: [n− 1] // [n]

be the morphism defined by

εi(j) = j for j < i
εi(j) = j + 1 for j ≥ i ,

and
ηi: [n+ 1] // [n]

be the morphism defined by

ηi(j) = j for j ≤ i
ηi(j) = j − 1 for j > i .
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These morphisms satisfy the following well-known system of identities:

εjεi = εiεj−1 i < j
ηjηi = ηiηj+1 i ≤ j

ηjεi =


εiηj−1 i < j
1 i = j, j + 1
εi−1ηj i > j + 1 .

As a result of these, any morphism α: [m] // [n] in ∆ may be written uniquely in the
form

α = εisεis−i · · · εi1ηjtηjt−1 · · · ηji

where
n ≥ is > is−1 > · · · > i1 ≥ 0

and
m > j1 > j2 > · · · > jt ≥ 0

The j’s are those j ∈ [m] such that α(j) = α(j + 1), and the i’s are those i ∈ [n] such
that i 6∈ image α.

To establish (a), we first settle various special cases involving the εi and ηj, and then
use the above factorization. We express points s ∈ ∆n by their barycentric coordinates—
i.e., s = (s0, . . . , sn) where 0 ≤ si ≤ 1 and

∑
si = 1.

Case (i.) Consider

∆n−1 ∆n∆
εj

//∆n−1

∆n−1∆n−1

∆n

∆εi

��

together with s, t ∈ ∆n−1 such that ∆εi(s) = ∆εj(t). i = j is trivial, since ∆εi is monic,
so suppose, say, i < j. Then, if s = (s0, . . . , sn) and t = (t0, . . . , tn) we have

∆εi(s) = (s0, . . . , si−1, 0, si, . . . , sn−1)

∆εj(t) = (t0, . . . , tj−1, 0, tj, . . . , tn−1)

Since i < j, ti = 0, sj−1=0, and the remaining coordinates are equal - with the appropriate
shift in indexing unless i = j − 1. We have εjεi = εiεj−1, hence

∆n−1 ∆n∆
εj

//

∆n−2

∆n−1

∆εi

��

∆n−2 ∆n−1

∆
εj−1 // ∆n−1

∆n

∆εi

��
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and the point of ∆n−2 with the common coordinates hits both s and t.
Case (ii.) Consider

∆n−1 ∆n∆εi

//∆n−1

∆n+1∆n+1

∆n

∆
ηj

��

together with t ∈ ∆n+1 and s ∈ ∆n−1 such that ∆ηj(t) = ∆εi(s) . If t = (t0, . . . , tn+1) and
s = (s0, . . . , sn−1) then

∆ηj(t) = (t0, . . . , tj−1, tj + tj+1, tj+2, . . . , tn+1)

∆εi(s) = (s0, . . . , si−1, 0, si, . . . , sn−1)

If i < j, we have ti = 0, sj−1 = tj + tj+1, ηjεi = εiηj−1, and in

∆n−1 ∆n∆εi

//

∆n

∆n−1

∆
ηj−1

��

∆n ∆n+1

∆εi // ∆n+1

∆n

∆
ηj

��

the point (s0, . . . , , sj−2, tj, tj+1, sj, . . . , sn−1) of ∆n hits both s and t. If i = j, we have
tj = tj+1 = 0 and

∆n−1 ∆n∆εi

//

∆n−1

∆n−1

1

��

∆n−1 ∆n+1

∆εi+1εi // ∆n+1

∆n

∆ηi

��

works (since ηiεi+1 = 1). If i > j + 1, we use the relation ηjεi+1 = εiηj.
Case (iii.) Consider

∆n+1 ∆n∆
ηj

//∆n+1

∆n+1∆n+1

∆n

∆ηi

��

together with s, t ∈ ∆n+1 such that ∆ηi(s) = ∆ηj(t). Thus

∆ηi(s) = (s0, . . . , si−1, si + si+1, sj+2, . . . , sn+1)
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∆ηj(t) = (t0, . . . , tj−1, tj + tj+1, tj+2, . . . , tn+1)

If i < j, use ηjηi = ηiηj+1. If i = j, we have ti + ti+1 = si + si+1 and all other coordinates
are equal. Suppose, say, ti < si. Thus ηiηi = ηiηi+1 so

∆n+1 ∆n∆ηi

//

∆n+2

∆n+1

∆ηi+1

��

∆n+2 ∆n+1

∆ηi // ∆n+1

∆n

∆ηi

��

works with (s0, . . . , si−1, ti, si − ti, si+1, . . . , sn+1) hitting s and t.
For the general case

∆m2
∆m∆α2

//∆m2

∆m1
∆m1

∆m

∆α1

��

with s ∈ ∆m1
, t ∈ ∆m2

such that ∆α1
(s) = ∆α2

(t), simply write α1 and α2 as composites

of εi’s and ηj’s, and use (i)-(iii) repeatedly. Except for the case i = j of (ii.), one obtains
only blocks involving a single εi or ηj. This case cannot cause any trouble however, since
the factorizations of α1 and α2 are finite. Thus I: ∆ //Top satisfies (a).

Lemma 5.1. Let j:K // K ′ be a monomorphism of simplicial sets. If σ ∈ Kn is
non-degenerate, then so is jσ ∈ K ′n.

Proof. Suppose jσ = sτ , where s is an iterated degeneracy operator and τ ∈ Km for
m < n. Then there is an iterated face operator d:Ln // Lm such that ds = identity.
Therefore

jdσ = djσ = dsτ = τ

and hence jsdσ = jσ so that σ = sdσ is degenerate.

In the next lemma we reprove, since condition (a) makes it so easy, a basic lemma of
Milnor [Milnor (1957)].

Lemma 5.2. If L is a simplicial set, then every element x ∈ rL has a unique represen-
tation of the form

x = |σ, t|

where σ ∈ Ln is non-degenerate and t ∈ int∆n.
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Proof. For existence, let x ∈ rL. Then x ∈ |σ, t| for some σ ∈ Lm and t ∈ ∆m. t lies in
the interior of some face of ∆m, so there is an injection ε: [m′] // [m] such that t = ∆ε(t

′)
with t′ ∈ int∆m′ . Hence

|σ, t| = |σ,∆ε(t
′)| = |Lεσ, t′|

As is well known, [Eilenberg & Zilber (1950)], any τ ∈ L can be represented uniquely in
the form τ = Lητ

′ where η is a surjection in ∆ and τ ′ is non-degenerate. Hence we can
write

Lεσ = Lησ
′′

where η: [m′] // [m′′] is a surjection and σ′′ ∈ Lm′′ is non-degenerate. Then,

|Lεσ, t′| = |Lησ′′, t′| = |σ′′,∆η(t
′)|

Since t′ ∈ int∆m′ , t
′′ = ∆η(t

′) ∈ int∆m′′ . Thus,

x = |σ′′, t′′|

provides such a representation.
For uniqueness, suppose

|σ, t| = |σ′, t′|

in rL, where σ ∈ Ln and σ′ ∈ Ln′ are non-degenerate, and t ∈ int∆n, t′ ∈ int∆n′ . By
4.1 there are morphisms α: [m] // [n] and α′: [m′] // [n′] in ∆ together with a point
t0 ∈ ∆m such that

Lασ = Lα′σ
′ and t = ∆α(t0), t′ = ∆α′(t0)

Since t and t′ are interior points, α and α′ must be surjections. But then by the above-
mentioned uniqueness of the representation of Lασ = Lα′σ

′ we must have α = α′ and
σ = σ′ and hence the result.

Lemma 5.3. If j:K //K ′ is a morphism of simplicial sets, then

rj: rK // rK ′

is closed.

Proof. Let L be an arbitrary simplicial set. By 5.2, each x ∈ rL can be written uniquely
in the form

x = |σ, t|

for σ ∈ Ln non-degenerate and t ∈ int∆n. For non-degenerate σ, let

◦
eσ = {|σ, t|: t ∈ int∆n}

and
eσ = {|σ, t|: t ∈ ∆n}
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Then the eσ (
◦
eσ) are the closed (open) cells for a CW-decomposition of rL. In particular,

C ⊂ rL is closed iff C ∩ eσ is closed in eσ for all non-degenerate σ ∈ L.
Now consider

rj: rK // rK ′

and let C ∈ rK be closed (assume C 6= ∅). Put C ′ = rj(C). If σ′ ∈ K ′ is nondegenerate
and

C ′ ∩
◦
eσ′ 6= ∅

we claim σ′ = jσ for σ ∈ K. In fact, let x ∈ C ′ ∩
◦
eσ′ . Then x = |jσ, s| for σ ∈ Km non-

degenerate and s ∈ int∆m. Also, x ∈ |σ′, t| for t ∈ int∆n. By 5.1 jσ is non-degenerate, so
by uniqueness, σ′ = jσ. In this case, we have

C ′ ∩ eσ′ = C ′ ∩ ejσ = rj(C) ∩ rj(eσ) = rj(C ∩ eσ)

(The last inequality since rj is monic, which follows form 4.2, or easily directly from 5.1).
But C is closed in rK, so C ∩ eσ is closed, and hence compact, in eσ. Thus, C ′ ∩ eσ′
is a compact subset of e′σ, and therefore closed. Let σ′ be an arbitrary non-degenerate

element of K ′, and let T be the set of faces τ ′ of σ′ such that C ′ ∩
◦
eτ ′ 6= ∅. Then

C ′ ∩ eσ′ = C ′ ∩
( ⋃
τ ′∈T

eτ ′
)

=
⋃
τ ′∈T

(C ′ ∩ eτ ′)

By the above, C ′ ∩ eτ ′ is closed in eτ ′ , which is closed in eσ. But T is finite, so C ′ ∩ eσ′
is closed in eσ′ , and C ′ is closed in rK ′.

Summing up, we have the following for any (X,ϑ) ∈ TopG. By (a), the underlying
set of

rs(Xϑ)
rj(X,ϑ) // rsX

rsϑ //
rηsX

// (rs)2X

is that of the equalizer of rsϑ and rηsX. That is, rj(X,ϑ) is monic, and its image is
the set of points of rsX on which rsϑ and rηsX agree. Furthermore, by 5.3 rj(X,ϑ) is
closed. Thus, if we identify rs(X,ϑ) with a subset of rsX by means of rj(X,ϑ), then the
given topology of rs(X,ϑ) is the induced topology as a closed subspace of rsX. Thus the
above is an equalizer diagram in Top, so by 3.3

ε(X,ϑ):G(X,ϑ) ∼ // (X,ϑ)

The desired equivalence of categories follows now from 4.4, 4.5, and the following propo-
sition.

Proposition 5.4. r is faithful.
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Proof. Suppose

K
γ1 //
γ2
// L

are morphisms of simplicial sets, and

rγ1 = rγ2: rK // rL

Let σ ∈ Kn, and write
γ1σ = s1τ1

γ2σ = s2τ2

where τi ∈ Lmi , mi ≤ n, is non-degenerate for i = 1, 2, and si = Lηi for ηi: [n] // [mi]
an epimorphism in ∆, i = 1, 2. Since rγ1 = rγ2, if t ∈ int∆n we have

|γ1σ, t| = |γ2σ, t|

or
|Lη1(τ1), t| = |Lη2(τ2), t|

or
|τ1,∆η1

(t)| = |τ2,∆η2
(t)|

But then, since ∆η1
(t) and ∆η2

(t) are interior points,

τ1 = τ2 and ∆η1
(t) = ∆η2

(t)

∆η1
(t) and ∆η2

(t) are simplicial, and hence agree on the carrier of t, which is ∆n.
Thus ∆η1

= ∆η2
, and hence η1 = η2 (I is faithful), which gives γ1σ = γ2σ.

We describe now in more detail what it means to be a simplicial space. Namely, we
claim tha an X in Top is a simplicial space iff there exists a family F of continuous maps
ϕ: ∆n

//X (n variable) with the following properties:
(i) F covers X. That is, for each x ∈ X there exists ϕ: ∆n

//X in F , and t ∈ ∆n such
that ϕt = x.
(ii) The ϕ’s in F are compatible. That is, if (ϕ, ψ) is a pair of morphisms ϕ: ∆n

//X
and ψ: ∆m

//X in F , and ϕt = ψt′ for t ∈ ∆n and t′ ∈ ∆m, then there is a commutative
diagram

∆n ∆m

∆q

∆n

∆α

��������������
∆q

∆m

∆β

��????????????

∆n

X

ϕ

��????????????
∆n ∆m∆m

X

ψ

��������������
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together with t′′ ∈ ∆q such that t = ∆α(t′′), t′ = ∆β(t′′).
(iii) X has the weak topology with respect to F . That is, U ⊂ X is open iff for each
ϕ: ∆n

//X in F , ϕ−1U is open in ∆n.
Well, if X is a simplicial space with atlas

G �
� // sX

then we claim that any generating set F of G provides a family satisfying (i)-(iii). In
fact,

e: rG ∼
//X

and is given by e|ϕ, t| = ϕt for ϕ: ∆n
// X in Gn and t ∈ ∆n. Let F be a generating

set for G . Since e is surjective, if x ∈ X there is ϕ: ∆n
// X in G and t ∈ ∆n such

that x = e|ϕ, t| = ϕt. But ϕ = ψ∆̇α for some α: [n] // [m] in ∆ and ψ in F . Thus,
x = ψ(∆α(t)) and F satisfies (i). (ii) follows from the injectivity of e and condition (a).
For (iii), e is a homeomorphism, rG has the weak topology with respect to the canonical
maps

iϕ: ∆n
// rG

for ϕ ∈ Gn, and eiϕ = ϕ. Thus, X has the weak topology with respect to the family of
all maps ϕ in G . Now, suppose U ⊂ X has the property that for all ψ: ∆m

// X in
F , ψ−1U is open in ∆m. Then if ϕ is any map in G , we can write ϕ = ψ∆α as above,
so that ϕ−1U = ∆−1

α (ψ−1U) is open in ∆n. Thus, U is open in X, and F satisfies (iii).,
The most interesting generating family in G consists of the non-degenerate elements of
G . Namely, we know then that every point in rG has a unique representation of the form
|ϕ, t| for ϕ a non-degenerate element of Gn, and t ∈ int∆n. Thus, this F satisfies the
stronger condition:
(i′) For each x ∈ X there is a unique ϕ: ∆n

// X and a unique t ∈ int∆n such that
x = ϕt.

Therefore, F provides a family of characteristic maps for a CW-decomposition of X.
On the other hand, suppose for X ∈ Top that there exists a family F satisfying

(i)-(iii). Let F generate a pre-atlas, and conmsider

e: rG //X

By (i), e is surjective. Suppose
ψ1: ∆n1

//X

and
ψ2: ∆n2

//X

are in G , ti ∈ ∆ni
, i = 1, 2, and

e|ψ1, t1| = e|ψ2, t2|
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i.e. ψ1t1 = ψ2t2. Then,
ψ1 = ϕ1 ·∆α1

ψ2 = ϕ2 ·∆α2

for ϕ1, ϕ2 in F , and
|ψ1, t1| = |ϕ1,∆α1

(t1)|
|ψ2, t2| = |ϕ2,∆α2

(t2)|.

By (ii), however,
|ϕ1,∆α1

(t1)| = |ϕ2,∆α2
(t2)|

so e is injective. Let U ⊂ rG be open, and consider eU ⊂ X. Let ϕ ∈ F . Then

rG Xe //rG

∆n

OO

iϕ

X

∆n

??

ϕ

�������������

commutes, so ϕ−1(eU) = (i−1
ϕ e−1)(eU) = i−1

ϕ U , which is open in ∆n. Thus, by (iii), eU
is open in X, and e is a homeomorphism. By taking the non-degenerate elements of G ,
which are composites of ϕ’s in F with injections ∆ε: ∆m

//∆n, we can again modify
F to obtain a family F ′ satisfying the stronger condition (i′).

We determine now the regular ∆-objects. Recall from Section 2, that X is a regular
∆-object iff X has an atlas with a regular generating set F , where regularity for F is
the condition:

(ii′) If for ϕ: ∆n
//X and ψ: ∆m

//X in F we have ϕt = ψt′ for t ∈ ∆n and t′ ∈ ∆m,
then there is a pullback diagram in > of the form:

(∗) ∆n ∆m

∆q

∆n

∆α

{{wwwwwww
∆q

∆m

∆β

##GGGGGGG

∆n

X
ϕ ##GGGGGGG∆n ∆m∆m

X
ψ{{wwwwwww

In particular, this is true for the pair (ϕ, ϕ), where ϕ: ∆n
//X is any element of F , i.e.

there is a pullback diagram of the form:

∆n ∆n

∆m

∆n

∆α

{{wwwwwww
∆m

∆n

∆β

##GGGGGGG

∆n

X
ϕ ##GGGGGGG∆n ∆n∆n

X
ϕ{{wwwwwww
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We will show that α = β, which implies ϕ is a monomorphism. From this it follows that X
is a classical (ordered) simplicial complex, since if each ϕ ∈ F is a monomorphism, then
the α’s and β’s appearing in pullbacks of pairs (ϕ, ψ) in (∗) must all be injections. On
the other hand, any simplicial complex clearly has an atlas with such a regular generating
set.

To prove that α = β, consider the above pullback diagram for the pair (ϕ, ϕ). ∆α and
∆β give a map

∆m

∆α×∆β //∆n ×∆n,

and the image of ∆α × ∆β is the set of pairs (t, t′) in ∆n × ∆n such that ϕt = ϕt′. In
particular, it is symmetric i.e. if (t, t′) is a member, so is (t′, t). Now if we give ∆n ×∆n

the standard triangulation as the realization of the product of two standard n-simplices
in the category of simplicial sets, then ∆α×∆β is simplicial, and the vertices of the image
m-simplex are

(eα(0), eβ(0)), (eα(1), eβ(1)), . . . , (eα(m), eβ(m)).

Suppose α 6= β, and let 0 ≤ l ≤ m be the first integer for which α(l) 6= β(l). By symmetry,
the vertex (eβ(l), eα(l)) must also occur in the image, and must be the image of a vertex
of ∆m, since ∆α ×∆β is simplicial. Thus, there is q > 1 such that

α(q) = β(l) and β(q) = α(l).

However, if α(l) < β(l) then β(q) < β(l) contradicting the monotonicity of β, and if
α(l) > β(l), thus α(q) < α(l) contradicting the monotonicity of α. Thus, α = β. In fact,
although we do not need this, an easy further argument shows that m = n and both α
and β are the identity.

Thus, the classical objects of study are the regular ∆-objects, and the others are
generalizations of these. This will be a feature of most of the examples. The generalized
objects are of interest, among other reasons, because they will almost always be at least
a coreflective subcategory of the functor category, even if not fully equivalent to it as in
this case. Thus, they can be treated as functors or objects of the ambient category A,
and automatically have good limit properties, etc.

(2) Simplicial modules. As in (1), let ∆ be the simplicial category. Let Λ be a
commutative ring with unit, and denote the category of Λ-modules by Mod(Λ). Define

I: ∆ //Mod(Λ)

by setting I[n] = free Λ-module on the injections ε: [q] // [n]. If α: [n] // [m] define
Iα: I[n] // I[m] by putting

Iα(ε) =

{
α · ε if this is monic,

0 otherwise.
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Clearly, I1[n] = 1I[n]. Suppose β: [m] // [l]. If ε: [q] // [n] is an injection, let α ·ε = ε′ ·η′
and β ·ε = ε′′ ·η′′. Then, (β ·α) ·ε = ε′′ ·η′′ ·η′, from which it follows that I(β ·α) = Iβ ·Iα.
Thus, I is a functor and we have the, by now, standard diagram:

Mod(Λ)G

Mod(ΛG)

L

��????????????Mod(Λ)G (∆op,S )
s // (∆op,S )

Mod(ΛG)

r

��������������
Mod(Λ)G

Mod(ΛG)

__

R
????????????

Mod(Λ)G (∆op,S )oo
r

(∆op,S )

Mod(ΛG)

??

s

������������

∆ Mod(ΛG)
I

//

Mod(Λ)G

∆

??

I

������������
Mod(Λ)G

Mod(ΛG)

where (∆op,S ) is again the category of simplicial sets, and s is given by

(sM)n = Mod(Λ)(I[n],M)

for M ∈Mod(Λ) and n ≥ 0.
Here the usual underlying set functor of Mod(Λ) is not colimit preserving, so we must

identify r directly. For this we have

Proposition 5.5. Let K ∈ (∆op,S ). Then

rK ≈ free Λ-module on the non-degenerate elements of K.

Proof. Let r′K denote the above free Λ-module, and if σ ∈ Kn denote by σ the element
of r′K that is σ if σ is non-degenerate and 0 otherwise. If γ:K // L is a morphism of
simplicial sets, define

r′γ: r′K // r′L

by setting, for σ a non-degenerate element of K,

r′γ(σ) = γσ.

It is easy to check that this makes r′ a functor.
If K ∈ (∆op,S ), let

ηK:K // sr′K

be given as follows: for σ ∈ Kn

ηK.σ: I[n] // r′K

is the Λ-morphism determined by

(ηK.σ)(ε) = Kεσ

for ε: [q] // [n] an injection. It is then easy to verify that ηK is a morphism of simplicial
sets, which is natural in K.

For M ∈Mod(Λ), define
εM : r′sM //M
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by εϕ = ϕ(1[n]), where ϕ: I[n] //M is a non-degenerate element of (sM)n. Again, it is
easy to see that ε is natural in M . Now, a simple computation shows that both composites

sM
ηsM // sr′sM

sεM // sM

and

r′K
r′ηK // r′sr′K

εr′K // r′K

are the respective identities. In all of these verifications, one should note that a necessary
condition for an element

ϕ: I[n] //M

of (sM)n to be degenerate is that ϕ(1[n]) = 0. Thus, for example, ηK takes non-degenerate
elements to non-degenerate elements etc. In any case, the above shows that

(ε, η): r′ a s,

and hence, for K ∈ (∆op,S ), there is a natural isomorphism

rK ≈ r′K.

We will drop the prime notation, and identify rK and r′K by means of this isomorphism.

In this setting, we shall call an ∆-object a simplicial module, and we will show that
these are again equivalent to the category of simplicial sets. First of all, if j:K //L is a
monomorphism of simplicial sets, then j takes non-degenerate elements to non degenerate
elements by Lemma 5.1, so that rj: rK // rL is also monic. Let (M,ϑ) ∈Mod(Λ)G be
a coalgebra for the model induced cotriple G, and consider the diagram

(∗) rs(M,ϑ)
rj(M,ϑ) // rsM

rsϑ //
rηsM

// (rs)2M.

Both sϑ and ηsM are monic, so that the same is true of rsϑ and rηsM . Let λ1ϕ1 + · · ·+
λnϕn (λi 6= 0) be an element of rsM for which

rsϑ(λ1ϕ1 + · · ·+ λnϕn) = rηsM(λ1ϕ1 + · · ·+ λnϕn)

i.e.
λ1ϑ · ϕ1 + · · ·+ λnϑ · ϕn = λ1ηsM(ϕ1) + · · ·+ λnηsM(ϕn).

Thus, there is a permutation π of {1, . . . , n} such that

λi = λπ(i) and ϑ · ϕi = ηsM(ϕπ(i)).

But then
sεM(ϑ · ϕi) = sεM(ηsM(ϕπ(i)))

or
ϕi = ϕπ(i).
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Thus, for each i, we have
ϑ · ϕi = ηsM(ϕi).

Therefore, each ϕi is a morphism of coalgebras, and is in the image of rj(M,ϑ). Hence,
(∗) is an equalizer diagram for each (M,ϑ), so by 3.2 we have

ε: r s ∼
// 1.

The equivalence of categories is established now by 4.3 and the following proposition.

Proposition 5.6. r reflects isomorphisms.

Proof. Suppose γ:K //L is a morphism of simplicial sets such that rγ: rK // rL is
an isomorphism. Then, γ takes non-degenerate elements to non-degenerate elements, and
must be monic on these. Moreover, it must be epic on these, for if τ ∈ L is non-degenerate,
then since rγ is epic we have

rγ(λ1σ1 + · · ·+ λnσn) = τ

for some element λ1σ1 + · · ·+ λnσn in rK. But then

λ1γσ1 + · · ·+ λnγσn = τ

so that, for some i, τ = λiγσi with λi = 1, and the other λ’s are 0. Thus, γ maps the
non-degenerate elements of K bijectively on the non-degenerate elements of L. But this
implies γ is bijective everywhere. In fact, let σ1, σ2 ∈ K such that γσ1 = γσ2. Write

σi = Kηi
σ′i, i = 1, 2

where ηi is a surjection, and σ′i is non-degenerate for i = 1, 2. Then

Lη1γσ
′
1 = Lη2γσ

′
2

By uniqueness, since γσ′1 and γσ′2 are non-degenerate,

η1 = η2 and γσ′1 = γσ′2

But then σ′1 = σ′2, so σ1 = σ2, and γ is monic. Also, let τ ∈ L, and write

τ = Lητ
′

for η a surjection, and τ ′ non-degenerate. Then τ ′ = γσ′ for σ′ ∈ K non-degenerate. Thus

γ(Kησ
′) = Lηγσ

′ = Lητ
′ = τ

and γ is epic, which proves the proposition.
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We will now characterize those modules in Mod(Λ) that are simplicial, but before
doing this we need a lemma. Let n ≥ 1, 0 ≤ j ≤ n− 1 and consider the morphism

Iηj: I[n] // I[n− 1]

Lemma 5.7. A basis for ker Iηj is given by those ε: [q] // [n] that hit both j and j + 1,
together with all elements of the form εj+1ε′−εjε′, where ε′: [q] // [n−1] is any injection
that hits j.

Proof. Since ηjεj = 1, we have a split exact sequence

0 // ker Iηj // I[n]
Iηj //oo
Iεj

I[n− 1] // 0,

and f = 1− I(εjηj) gives an isomorphism

f : I[n]/Iεj(I[n− 1]) // ker Iηj.

A basis for Iεj(I[n − 1]) consists of injections ε: [q] // [n] that can be factored in the
form

[q] ε′ // [n− 1] εj // [n]

for arbitrary ε′, and using the first simplicial identity, it is easy to see that these are
exactly those ε that miss j. Thus, I[n]/Iεj(I[n− 1]) is isomorphic to the free Λ-module
on the injections ε: [q] // [n] that hit j, and f applied to these gives a basis for ker Iηj.
For such an ε,

fε =

{
ε− εjηjε if ηjε is monic,

ε otherwise.

Among the ε hitting j, the ones for which ηjε is not monic are precisely those that also
hit j + 1, so these form part of a basis for ker Iηj. Those ε that hit j, but miss j + 1, are
of the form

ε = εj+1 · ε′,

where ε′: [q] // [n− 1] is any injection hitting j. For these,

fε = ε(j + 1) · ε′ − εj · ε′

which proves the lemma.

We claim now that if M ∈Mod(Λ), then M is simplicial iff M is positively graded and
has a homogeneous basis B with the following structure: if ε: [q] // [n] is an injection,
then there is a function

Bn
//Bq ∪ {0},
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which we write as b � // bε. For this operation we have b1[n]
= b, and if bε 6= 0, then

(bε)ε′ = bεε′ . If bε = 0, then there is 0 ≤ j ≤ q− 1 such that for any ε′: [m] // [q] hitting
both j and j + 1, bεε′ = 0, and for any ε′′: [m] // [q − 1] hitting j,

bε(εj+1ε′′) = bε(εjε′′).

Well, suppose M has an atlas G ∼
// sM . Thus

e: rG ∼
//M,

where rG is the free Λ-module on the non-degenerate ϕ: I[n] //M in Gn, and eϕ = ϕ1[n].
Thus M is graded in the obvious way, and these ϕ1[n] provide such a basis B for M by
setting, for b = ϕ1[n] and ε: [q] // [n], bε = ϕε = (ϕ · Iε)(1[q]). Then bε is either 0 or a
basis element of dimension q, depending on whether ϕ · Iε is degenerate or not. If ϕ · Iε
is non-degenerate and ε′: [m] // [q], then

(bε)ε′ = (ϕ · Iε)(ε′) = ϕ(εε′) = bεε′ .

If bε = 0, then ϕ · Iε is degenerate, so there is a factorization

I[q]

I[q − 1]

Iηj

��????????????
I[q] M

ϕ·Iε //M

I[q − 1]

??

ϕ′

�������������

for some 0 ≤ j ≤ q − 1. Thus, ϕ · Iε vanishes on ker Iηj, so by Lemma 5.7 we have

(ϕ · Iε)(ε′) = bεε′ = 0

for any ε′: [m] // [q] hitting j and j + 1, and

ϕ · Iε(εj+1 · ε′′ − εj · ε′′) = bε(εj+1ε′′) − bε(εjε′′) = 0

for any ε′′: [m] // [q − 1] hitting j.
On the other hand, suppose M has such a basis B. For b ∈ Bn, define

ϕb: I[n] //M

by ϕbε = bε, and let G be the atlas generated by the ϕb for b ∈ B. Let Φ denote the set
of non-degenerate elements of G , and consider

e: rG //M.

We claim, e: Φ //B. Well, a ϕ ∈ Φ is of the form

ϕ = ϕb · Iα
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for some b ∈ B and α in ∆. Since ϕ is non-degenerate, α = ε, an injection, and

ϕ = ϕb · Iε: I[q] //M

has the property that eϕ = ϕ1[q] = bε 6= 0. (If bε = 0, then ϕ vanishes on ker Iηj for some
j, making η degenerate in sM , and hence in G , since j: G // sM takes non-degenerate
elements to non-degenerate elements.) Thus, eϕ ∈ B.

Define
f :B // Φ

by fb = ϕb. Clearly, ef · b = b, so ef = 1. fe · ϕ = fbε = ϕbε , where ϕ = ϕb · Iε is as
above. However, if ε′: [m] // [q] is an injection, then

ϕbε(ε
′) = (bε)ε′ = bεε′ = (ϕb · Iε)(ε′).

Thus, ϕbε = ϕ, so fe = 1, and
e: rG //M

is an isomorphism.

Remarks

(i) If we combine the equivalences of (1) and (2), we find that the category of simplicial
spaces is equivalent to the category of simplicial Λ-modules for any Λ. Furthermore,
it is easy to see that the composite equivalence is simply the functor that assigns to
a simplicial space its cellular chain complex over Λ.

(ii) Since there are no well-known classical objets among the simplicial modules, we
omit the calculation of the regular objects. On can show, however, that if M is a
regular ∆-object, then the elements ϕ: I[n] //M in the regular generating set are
monic. This in turn, gives a graded basis B for M with the property that if b ∈ Bn

and ε: [q] // [n], then bε ∈ Bq (i.e. bε 6= 0). If X is a classical ordered simplicial
complex, then, of course, its chain complex is of this form.

(iii) Consider the functor
I: ∆ //Mod(Λ),

and the resulting singular functor

s: Mod(Λ) // (∆op,S ).

For M ∈Mod(Λ) we have

(sM)n = Mod(Λ)(I[n],M).

Since Λ is commutative, this set has a canonical Λ-module structure, and we can
consider s as a functor

s: Mod(Λ) // (∆op,Mod(Λ)).
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A coadjoint to s still exists in this situation, and the equivalence theorem applied
here gives the theorem of Dold and Kan, which asserts that the category of FD-
Modules over Λ is equivalent to the category of positive Λ-chain complexes. All of
this results from the fact that Mod(Λ) is a “closed” category in, say, the sense of
Eilenberg and Kelly. We will discuss this situation in detail in a later paper.

(3) Manifolds. Let Γ be a pseudogroup of transformations defined on open subsets
of n-dimensional Euclidean space En for some fixed n. That is, elements g ∈ Γ are
homeomorphisms into

g:U // V

where U and V are open in En, such that

(i) If g1, g1 ∈ Γ and g1g2 is defined, then g1g2 ∈ Γ.

(ii) If g ∈ Γ, then g−1 ∈ Γ.

(iii) If i:U // V is an inclusion, then i ∈ Γ.

(iv) Γ is local. That is, if g:U // V is a homeomorphism into, and each x ∈ U has a
neighborhood U(x) such that g|U(x) ∈ Γ, then g ∈ Γ.

The kinds of examples of Γ the we have in mind are the following (there are, of course,
others).

Γ =



all homeomorphisms into,

orientation preserving homeomorphisms into, defined on oriented open
subsets of En,

PL homeomorphisms into,

diffeomorphisms into, g:U // V , whose Jacobian Jg is an element of a
subgroup G ⊂ GL(n,R),

real or complex (n = 2m) analytic isomorphisms into.

Let EΓ be the category whose objects are domains of elements of Γ, and whose mor-
phisms are the elements of Γ. Let

I: EΓ
//>

be the obvious embedding, which we will henceforth omit from the notation. > has again
its standard underlying set functor, which we also omit.

In this example, condition (a) is trivially satisfied. Namely, consider a pair of mor-
phisms

U2 Ug2
//

U1

U2

U1

U

g1

��
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in Γ, together with xi ∈ Ui, i = 1, 2 such that g1(x1) = g2(x2). Then the diagram

U2 Ug2
//

g1U1 ∩ g2U2

U2

g−1
2

��

g1U1 ∩ g2U2 U1

g−1
1 // U1

U

g1

��

is a pullback diagram in >, and we have (a). Thus, by 4.2, in the diagram

>G

>

L

��????????????>G (EΓ
op,S )

s // (EΓ
op,S )

>

r

��������������
>G

>

__

R
????????????

>G (EΓ
op,S )oo

r
(EΓ

op,S )

>

??

s

������������

EΓ >
I

//

>G

EΓ

??

I

������������
>G

>

r preserves monomorphisms.
Now, for F ∈ (EΓ

op,S ) we investigate in detail the structure of rF . As a set, rF
consists of equivalence classes |U, x, u| where U ∈ EΓ, x ∈ FU , and u ∈ U . We abbreviate
these as |x, u|. Since (a) is satisfied, |x1, u1| = |x2, u2| iff there is a pair of morphisms

U1
oo g1 U

g2 // U2

in EΓ, and a u ∈ U such that Fg1(x1) = Fg2(x2) and g1u = u1, g2u = u2. As a topological
space, rF has the quotient topology with respect to the universal morphisms

ix:U // rF

given by ix(u) = |x, u| for U ∈ EΓ, x ∈ FU , and u ∈ U . In fact, we have the general
result:

Proposition 5.8. Let M be small, and suppose

I: M //>

satisfies condition (a). Then if Iα: IM1
// IM2 is open for each α:M1

//M2 in M,
we have

i(M,x): IM // rF

open for all F ∈ (Mop,S ) and (M,x) ∈ (Y, F ). Furthermore, a basis for the topology of
rF is given by the collection of all open sets of the form

i(M,x)(U),

where (M,x) ∈ (Y, F ), and U ⊂ IM is open.
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Proof. Let (M,x) ∈ (Y, F ), and let U ⊂ IM be open. Then i(M,x)(U) is open in rF
iff for each (M ′, x′) ∈ (Y, F ) we have

i(M ′, x′)−1i(M,x)(U)

open in IM ′. If this set is empty we are done, and if not let

m′ ∈ i(M ′, x′)−1i(M,x)(U).

Then there is m ∈ U such that
|x′,m′| = |x,m|

in rF . Since (a) is satisfied, we obtain a pair of maps

M ′ oo α
′
M0

α //M

in M, together with an m0 ∈ IM0, such that Fα(x) = Fα′(x′) and Iα(m0) = m,
Iα′(m0) = m′. Let U0 = Iα−1(U), and U ′ = Iα′(U0). U ′ is open in IM ′ by assumption.
Let m′ ∈ U ′, say m′ = Iα′(m0). Then,

|x′,m′| = |Fα′(x′),m0| = |Fα(x),m0| = |x, Iα(m0)|.

Thus, m′ ∈ U ′ ⊂ i(M ′, x′)−1i(M,x)(U) and the latter set is open in IM ′. To conclude
the proof, let V ⊂ rF be any open set. By the preceding,

i(M,x)(i(M,x)−1V ) ⊂ V

is open for any (M,x) ∈ (Y, F ). Thus

V =
⋃

(M,x)∈(Y,F )

i(M,x)(i(M,x)−1V ).

Still in the situation of 5.8, let γ:F // F ′ be a morphism in (Mop,S ). Then we claim
rγ: rF //rF ′ is open. It is enough to show this on the basis given by 5.8, but if x ∈ FM
for M ∈M then we have

rF rF ′rγ
//

IM

rF

i(M,x)

��

IM

rF ′

iγM(x)

��?????????????

so if U ⊂ IM is open,
rγ{i(M,x)(U)} = iγM(x)(U),

which is open in rF ′.
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Now let G = (G, ε, δ) be the cotriple in > induced by I: M // >, and consider
(X,ϑ) ∈ >G. By condition (a), the underlying set of

rs(X,ϑ)
rj(X,ϑ) //GX

Gϑ //
δX

//G2X

is that of the equalizer of Gϑ and δX. Furthermore, by the above remark rj(X,ϑ) is
open. Therefore, the above is an equalizer at the level of spaces, and hence

ε: r s ∼
// 1

in the adjoint pair

>G

s //oo
r

(Mop,S ).

From this it follows that the M-objects in > are spaces X admitting a G-coalgebra
structure ϑ:X //GX. In particular, this is all true for M = EΓ.

In terms of atlases, we can say the following. X ∈ > is an EΓ-object iff there is a
family F of morphisms ϕ:U //X with the following properties.

(i) F covers X. That is, for x ∈ X there exists ϕ:U // X in F and u ∈ U , such
that ϕu = x.

(ii) F is a compatible family. That is, if ϕ:U // X and ψ:V // X are a pair of
morphisms from F , and ϕu = ψv for u ∈ U , v ∈ V , then there is a diagram

V U

W

V

g

{{wwwwwwww
W

U

h

##GGGGGGGG

V

X
ψ ##GGGGGGGGV UU

X
ϕ{{wwwwwwww

with g, h ∈ Γ, and w ∈ W such that gw = v, hw = u.

(iii) F is open, i.e. each ϕ:U //X in F is open.

The proof of this is very much like the corresponding statement for simplicial spaces, so
we only give a sketch. If X has an EΓ-atlas

G �
� // sX

then e: rG ∼
// X, and any generating family F of G satisfies (i)-(iii). (i) since e is

surjective, (ii) since e is injective and condition (a) is satisfied, and (iii) since e is open,
as is each iϕ:U // rG . On the other hand, if F is a family satisfying (i)-(iii) and G is
the preatlas generated by F , then it is easy to see that

e: rG ∼
//X.
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We claim that the classical EΓ-objects, namely the Γ-manifolds, are precisely the
regular EΓ-objects defined in Section 2. To see this, recall that a regular EΓ-object is an
EΓ-object X with an atlas G having a generating set F of morphisms ϕ:U //X with
the property that for any pair (ϕ, ψ) of morphisms in F the pullback of

V X
ψ

//

U

V

U

X

ϕ

��

in > is of the form

V X
ψ

//

W

V

h

��

W U
g // U

X

ϕ

��

where g, h ∈ Γ. Since elements of Γ are monomorphisms in >, if we apply this to the
pair (ϕ, ϕ) for ϕ ∈ F , we see by 2.2 that each ϕ is monic, and hence a homeomorphism
into. Thus, X is a manifold of the appropriate type. Conversely, if X is a Γ-manifold its
charts generate a regular EΓ-atlas for X. Note that we do not require a Γ-manifold to be
Hausdorff.

We give briefly some examples of the kind of objects that can appear as non-regular
EΓ-objects. For simplicity of statement, we restrict to the topological case—i.e. Γ = all
homeomorphisms into. The necessary modifications for other Γ will be obvious.

(i) Let X be an m-dimensional manifold where m < n. Then X has a system of charts

ϕi:U
m
i

//X,

for Um
i open in Em which is compatible, open, and covers X. Let ϕ′i be the composite of

Um
i × En−m // Um

i

ϕi //X

where the first morphism is projection on the first factor. Then each ϕ′i is open, and they
cover X. Furthermore, they are compatible. For, suppose

ϕ′i(ui, ti) = ϕ′j(uj, tj)

where ti, tj ∈ En−m, ui ∈ Um
i , uj ∈ Um

j . Then ϕi(ui) = ϕj(uj) so we have a diagram

Ui Uj

V

Ui

hi

{{wwwwwwww
V

Uj

hj

##GGGGGGGG

Ui

X
ϕi ##GGGGGGGGUi UjUj

X
ϕj{{wwwwwwww
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and v ∈ V with hiv = ui, hjv = uj. Crossing with En−m gives a diagram

V × En−m

Ui × En−m

hi×Tti

wwoooooooooooooo
V × En−m

V
��

V × En−m

Uj × En−m

hj×Ttj

''OOOOOOOOOOOOOO

Ui × En−m

Ui
��?????????

V

Ui

hi

������������
V

Uj

hj

��?????????? Uj × En−m

Uj
����������

Ui

X

ϕi
��?????????

Uj

X

ϕj
�����������

where Tt denotes the translation by t ∈ En−m. Also

(hi × Tti)(v, 0) = (ui, ti)

(hj × Ttj)(v, 0) = (uj, tj).

Thus, the ϕ′i generate an atlas making X an n-dimensional EΓ-object. Of course, the
same argument shows that any m-dimensional object for m < n appears also as an n-
dimensional object.

(ii) Let X be an n-dimensional manifold with boundary. Then every point of X has an
open neighborhood homeomorphic to either an open disc

Dn(a, ε) = {t ∈ En: ||t− a|| < ε}

or to a 1
2
-open disc

Dn
+(a, ε) = {t ∈ En: ||t− a|| < ε, tn ≥ 0}

where for a = (a1, . . . , an−1, an) in Dn
+(a, ε) we have an = 0. Then the folding map

f :Dn(a, ε) //Dn
+(a, ε)

given by f(t1, . . . , tn−1, tn) = (t1, . . . , tn−1, |tn|) is obviously open and surjective. Consider
the following system of morphisms. For points of X having neighborhoods homeomorphic
to Dn(a, ε)’s, take the given morphism

ϕ′ = ϕ:Dn(a, ε) //X.

For points of X having neighborhoods homeomorphic to Dn
+(a, ε)’s, take the composites

ϕ′ = ϕ · f :Dn(a, ε) //Dn
+(a, ε) //X
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where ϕ is the given homeomorphism. This is an open system, and it covers X. For com-
patibility, there are various special cases to check. These are either completely obvious,
since the charts on X are compatible, or they follow from the observation that if

h:Dn
+(a1, ε1) //Dn

+(a2, ε2)

is a homeomorphism into, i.e. injective and open, then we can reflect h to obtain a diagram

Dn(a2, ε2) Dn
+(a2, ε2)

f2

//

Dn(a1, ε1)

Dn(a2, ε2)

h′

��

Dn(a1, ε1) Dn
+(a1, ε1)

f1 // Dn
+(a1, ε1)

Dn
+(a2, ε2)

h

��

where the fi are folding maps, i = 1, 2, and h′ is a homeomorphism into. Thus, the ϕ′ ’s
generate an atlas for X.

Remarks

(1) By mapping EΓ into the category of topological spaces and local homeomorphisms,
instead of into >, one can arrange matters so that the EΓ-objects are exactly the Γ-
manifolds. In addition to being somewhat artificial, this has several other drawbacks.
For one thing, since topological spaces and local homeomorphisms do not have
arbitrary small colimits, the realization functor does not exist in general, although
the model induced cotriple does. Also, by doing this one excludes from consideration
many interesting examples of non-regular EΓ-objects such as the previous two.

(2) Since we have presented Γ-manifolds as coalgebras over the model induces cotriple,
the morphisms that we obtain are morphisms of coalgebras—i.e. morphisms that
preserve the structure. It is easy to see that these are maps which are locally like
elements of Γ. These are useful for some purposes, e.g. for the existence of certain
adjoint functors that we will discuss in a separate paper. However, it is clear that
this is not a wide enough class for the general study of manifolds. One can obtain
the proper notion of morphism by considering subdivisions of atlases, which we will
do elsewhere.

(4) G-bundles. For the moment, let A be an arbitrary category and B ∈ A. Consider
the comma category (A, B), i.e. the category of objects over B. As the terminology
indicates, an object of (A, B) is an A-morphism

p:A //B
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and a morphism f : p1
// p2 is a commutative triangle

A1

B

p1

��????????????
A1 A2

f // A2

B

p2

��������������

in A. There is the obvious (faithful) functor

∂0: (A, B) //A

given by ∂0(p:A // B) = A, ∂0f = f . This functor has the important property that it
creates colimits. That is, let

D: J // (A, B)

be a functor, and suppose
γ: ∂0D

// A

is a colimit of ∂0D in A. There is a natural transformation

d: ∂0D
//B

given by dj = Dj: ∂0Dj // B for j ∈ J. Hence there exists a unique A-morphism
p:A //B such that

∂0D

B

d

��????????????
∂0D A

γ // A

B

b

���������������

Thus, γ:D //p in (A, B), and it is trivial to verify that (p, γ) is a colimit of D in (A, B).
In particular, if A has small colimits so does (A, B) for any B ∈ A, and ∂0 preserves
them. If A has a colimit preserving underlying set functor U : A //S , so does (A, B),
namely U∂0. Note also, for what follows, that ∂0 reflects equalizers.

Now let B be a fixed space in Top. By the above discussion, (Top, B) has small col-
imits and a faithful colimit preserving underlying set functor. Let G be a fixed topological
group, and let Y be a fixed left G-space on which G operates effectively. That is, there is
an action ξ:G× Y // Y , written ξ(g, y) = g · y, for which e · y = y (e is the identity of
G), (g1g2) · y = g1 · (g2 · y), and g · y = y for all y ∈ Y implies g = e.

Define a model category M as follows: an object of M is an open set U of B. If
V ⊂ U , then a morphism V // U in M is a triple (V, α, U) where α:V // G is a
continuous map. There are no morphisms V // U if V 6⊂ U . If (V, α, U):V // U and
(U, β,W ):U //W , then let

(U, β,W ) · (V, α, U) = (V, βα,W )
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where βα:V // G is the map (βα)(b) = β(b)α(b) for b ∈ V . Identities U // U for
this composition are given by (U, e, U) where e:U // G is the constant map e(b) = e
for all b ∈ U . M is clearly a category (and small). In the notation (V, α, U), V and U
serve to fix domain and codomain. When these are evident, we will denote the morphism
(V, α, U) by α alone.

We define a functor
I: M // (Top, B)

by setting
IU = U × Y //B

(projection onto U followed by inclusion into B). If (V, α, U):V // U , then in

V × Y

B
��?????????????V × Y U × YIα // U × Y

B
���������������

we let Iα be the map Iα(b, y) = (b, α(b) · y) for (b, y) ∈ V × Y . I is clearly a functor, and
each Iα is open (being the composite of a homeomorphism V × Y // V × Y and the
inclusion V × Y // U × Y ). Note that since G acts effectively on Y , I is faithful. Let
us verify condition (a) for I: M // (Top, B). So, suppose we have a diagram

IU2 IU
Iα2

//

IU1

IU2

IU1

IU

Iα1

��

in (Top, B) together with points (bi, yi) ∈ Ui × Y for i = 1, 2 such that Iα1(b1, y1) =
Iα2(b2, y2), i. e. (b1, α1(b1) · y1) = (b2, α2(b2) · y2). Then b1 = b2 (let b ∈ U1 ∩ U2 denote
the common value) and α1(b) · y1 = α2(b) · y2. Thus we have, say, y1 = (α1(b)−1α2(b)) · y2.
Now α−1

1 α2:U1 ∩ U2
// G is continuous, so (U1 ∩ U2, α

−1
1 α2, U1):U1 ∩ U2

// U1 is a
morphism of M. Clearly,

U2 Uα2

//

U1 ∩ U2

U2

e

��

U1 ∩ U2 U1

α−1
1 α2 // U1

U

α1

��
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commutes in M, so we have

IU2 IU
Iα2

//

I(U1 ∩ U2)

IU2

Ie

��

I(U1 ∩ U2) IU1

I(α−1
1 α2)

// IU1

IU

Iα1

��

in (Top, B). By the above, I(α−1
1 α2)(b, y2) = (b, y1) and Ie(b, y2) = (b, y2). Since

(Top, B) has small colimits, we have the realization

r: (Mop,S ) // (Top, B)

We write, for F : Mop //S ,

rF = (EF
πF //B)

Since colimits in (Top, B) are computed in Top, EF consists of equivalence classes
|U, x, (b, y)| where U ⊂ B is open, x ∈ FU , and (b, y) ∈ U × Y . The equivalence re-
lation is the obvious one since I satisfies (a). πF is given by πF (|U, x, (b, y)|) = b. For
x ∈ FU , we have

U × Y

B
��?????????????U × Y EF
ix // EF

B

πF

��������������

given by ix(b, y) = |U, x, (b, y)|. Furthermore, by 5.8, each ix is open and a basis for the
topology of EF is given by the collection of all images of open sets under these maps.

Let G = (rs, ε, rηs) be, as usual, the model induced cotriple. Let (p, ϑ) be a G-
coalgebra, and consider

rj(p, ϑ): rs̄(p, ϑ) // rsp

For U ∈M and

U × Y

B
��?????????????U × Y X
ϕ // X

B

p

���������������

a morphism of coalgebras, we have

Es̄(p,ϑ) Esprj(p,ϑ)
//

U × Y

Es̄(p,ϑ)

iϕ

��

U × Y

Esp

iϕ

��?????????????
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and hence rj(p, ϑ) is open. Condition (a) shows that the underlying set of

Es̄(p,ϑ)

rj(p,ϑ) // Esp
rs ϑ //
δp

// Esπsp

is an equalizer, and this together with rj(p, ϑ) open makes it an equalizer in Top. ∂0

reflects equalizers, so

rs̄(p, ϑ)
rj(p,ϑ) // rsp

rs ϑ //
δp

// (rs)2p

is an equalizer in (Top, B) for all G-coalgebras (p, ϑ). By 3.3 then,

ε̄: r̄s̄ ∼
// 1

and the M-objects of (Top, B) are exactly those X
p // B admitting a G-coalgebra

structure

X

B
��?????????????X Esp
ϑ // Esp

B

πsp

��������������

In terms of atlases, the M-objects of (Top, B) are characterized as follows. X
p // B is

an M-object iff there is a family F of morphisms ϕ in (Top, B) where

U × Y

B
��?????????????U × Y X
ϕ // X

B

p

���������������

such that

(i) F covers X. That is, if x ∈ X then there is a ϕ ∈ F and a point (b, y) ∈ U × Y
such that ϕ(b, y) = x.

(ii) F is a compatible family. That is, if

V × Y X
ψ
//

U × Y

V × Y

U × Y

X

ϕ

��
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is a pair of morphisms in F (where we have omitted the components over B for
simplicity of notation), and ϕ(b, y) = ψ(b′, y′) for some (b, y) ∈ U × Y and (b′, y′) ∈
V × Y , then there is a diagram

V × Y X
ψ

//

W × Y

V × Y

Iβ

��

W × Y U × YIα // U × Y

X

ϕ

��

in (Top, B), and a point (b0, y0) ∈ W×Y such that Iβ(b0, y0) = (b′, y′), Iα(b0, y0) =
(b, y).

(iii) F is open, i. e. each ϕ ∈ F is an open map.

The proof that these are indeed the M-objects is essentially the same as that for simplicial
spaces and manifolds, and hence details will be left to the reader. We remark only that

the correspondence between M-objects and X
p //B possessing such a family F is given

as follows. If G // sp is an M-atlas for X
p // B, then any generating family for G

satisfies (i)–(iii). On the other hand, if there is such a family F for X
p // B, and if G

is the preatlas generated by F , then it is easy to see that (i)–(iii) for F imply

EG

B

π

��????????????
EG X

e // X

B

p

���������������
EG X∼

//

Given this description of M-objects, it follows that regular M-objects are X
p // B

in (Top, B) possessing a family F satisfying (i), (iii), and

(ii′) For any pair

V × Y X
ψ
//

U × Y

V × Y

U × Y

X

ϕ

��

in F there is a pullback diagram in (Top, B) of the form

V × Y X
ψ

//

W × Y

V × Y

Iβ

��

W × Y U × YIα // U × Y

X

ϕ

��
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By 2.2 each ϕ ∈ F is injective, and hence a homeomorphism into.
We show that fibre bundles are regular M-objects. Recall that a fibre bundle with

base B, fibre Y , and structure group G, is an object X
p //B in (Top, B) for which there

exists an open covering {Ui} of B with the following properties. For each Ui there is a
homeomorphism

Ui × Y

Ui
��????????????

Ui × Y p−1(Ui)
Φi // p−1(Ui)

Ui

p

��������������
Ui × Y p−1(Ui)∼

//

where the unnamed map is projection onto Ui. Furthermore, the Φi are required to be
compatible in the following sense. Namely, if Uj is another element of the covering, then
we have a diagram

(Ui ∩ Uj)× Y p−1(Ui ∩ Uj)
Φi //(Ui ∩ Uj)× Y

Ui ∩ Uj
&&MMMMMMMMMMMMMMMMM

p−1(Ui ∩ Uj) (Ui ∩ Uj)× Y
Φ−1
j //p−1(Ui ∩ Uj)

Ui ∩ Uj

p

��

(Ui ∩ Uj)× Y

Ui ∩ Uj
xxqqqqqqqqqqqqqqqqq

(Ui ∩ Uj)× Y p−1(Ui ∩ Uj)∼
// p−1(Ui ∩ Uj) (Ui ∩ Uj)× Y∼

//

And we require that there exist an αij:Ui ∩ Uj //G (necessarily unique) such that

Φ−1
j Φi = Iαij

Now if X
p //B is such a fibre bundle, choose a covering {Ui} as above, and let F consist

of all

Ui × Y

B
��????????????

Ui × Y X
Φi // X

B

p

���������������

in the chosen system. (We use the same letter Φi to denote also the composite Ui ×
Y

Φi // p−1(Ui) //X.) Clearly, F satisfies (i) and (iii). For any pair Φi, Φj in F , we
have the diagram

Ui × Y X
Φi

//

(Ui ∩ Uj)× Y

Ui × Y

Ie

��

(Ui ∩ Uj)× Y Uj × Y
Iαij // Uj × Y

X

Φj

��
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in (Top, B) (αij as above), and it is trivial to verify that this is a pullback. (If Ui∩Uj = ∅,
the obvious modifications are to be made in all the preceding.) Thus, F satisfies (ii′),

making X
p //B a regular M-object. Note, however, that the converse is not true here.

That is, not every regular M-object is a fibre bundle. In fact, the fibre bundles can be
characterized as those M-objects having an atlas with regular generating set F such that
for each ϕ ∈ F ,

U B� � //

U × Y

U
��

U × Y X
ϕ // X

B

p

��

is a pullback diagram in Top. The regular M-objects are a common generalization of
sheaves and fibre bundles. Sheaves are obtained by choosing Y = point, G = (e). We
shall give a separate treatment of these in Section 6, since the model induced cotriple is
idempotent in this case.

(5) G-spaces. Let G be a topological group, and denote by G the category with one
object G and morphisms the elements g ∈ G. Define

I: G //Top

by IG = G, and Ig:G //G is left translation by g ∈ G. Consider a pair of maps

G G
Ig2

//

G

G

G

G

Ig1

��

and elements g′1, g
′
2 ∈ G such that Ig1(g′1) = Ig2(g′2) i. e. g1g

′
1 = g2g

′
2. Then

G G
Ig2

//

G

G

Ig−1
2

��

G G
Ig−1

1 // G

G

Ig1

��

commutes trivially, and g = g1g
′
1 = g2g

′
2 provides the element necessary for condition (a).

In the adjointness

Top
s //oo
r

(Gop,S )

we can identify (Gop,S ) as the category of right G-sets and equivariant functions. For a
functor F : Gop //S is determined by the set FG = X and the operations Fg:X //X



H. Appelgate and M. Tierney 176

for g ∈ G. Writing these as Fg(x) = x · g, functoriality is simply x · 1 = x and (x · g1) ·
g2 = x · (g1g2). A natural transformation F1

// F2 is simply a G-equivariant function
X1

// X2. If F : Gop // S is a functor (or G-set), then rF consists of equivalence
classes |x, g| where x ∈ FG = X, and g ∈ G. The equivalence relation is determined by
|x · g1, g2| = |x, g1 · g2|. If g2 = 1 we have |x · g, 1| = |x, g|, so the functions rF // X
by |x, g| � // x · g and X // rF by x � // |x, 1| provide a bijection of sets. Under this
identification the canonical maps

ix:G //X

for x ∈ X become simply ix(g) = x · g. By 5.8, these maps are open, and a basis for the
topology on X (or rF ) is given by all images of open sets under these maps. The image
of ix is just x ·G = the orbit of x. For x ∈ X, let Gx = {g ∈ G | x ·g = x} be the isotropy
subgroup of x. ix induces a map īx:G/Gx

// x ·G so that

G/Gx x ·G
īx

//

G

G/Gx

px

��

G

x ·G

ix

��?????????????

commutes, with px the natural projection. Since ix is open and px is onto, īx is open,
and hence a homeomorphism. Thus, the topology of rF (or X) is completely deter-
mined. Furthermore, if γ:F1

// F2 is a natural transformation (equivariant function)
then rγ: rF1

// rF2 is open. This follows, since for x1 ∈ F1G = X1, the diagram

X1 X2rγ
//

G

X1

ix1

��

G

X2

iγ(x1)

��?????????????

commutes. This remark together with condition (a) gives ε̄: r̄s̄ ∼
// 1 in

TopG

s̄ //oo
r̄

(Gop,S )

G, of course, is the model induced cotriple G = (G, ε, δ). Here, if X ∈ Top then
sX: Gop // S is the G-set sX(G) = (G,X) with G-action ϕ · g = ϕ · Ig. Thus,
GX = (G,X) as a set, with the above described topology.

Finally, it is obvious that r reflects isomorphisms. Namely, suppose γ:F1
// F2

is a natural transformation. Then rγ: rF1
// rF2 is just the G-equivariant function

γG:F1G = X1
//X2 = F2G which is continuous in the above topology. It is a homeomor-

phism iff γG is injective and surjective, iff γ is an equivalence. Thus, by 4.4, (ε̄, η̄): r̄ // s̄
is an equivalence of categories.

In a subsequent paper, we will show that one obtains all G-spaces as coalgebras if one
considers the singular functor as taking values in (Gop,Top).
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6. Idempotent cotriples

Let G = (G, ε, δ) be a cotriple in a category A. We say G is idempotent, if δ:G ∼
// G2.

Later in this section, we consider categories with models for which the model induced
cotriple is idempotent. As will be seen from the remarks below, much of the analysis of
Section 3 and Section 4 becomes trivial in this case. For now, however, let G denote an
arbitrary cotriple in A.

Proposition 6.1. G is idempotent iff

Gε = εG:G2 //G

Proof. Suppose G is idempotent. Since δ:G // G2 is an equivalence, and Gε · δ =
εG · δ = 1G, we get Gε = δ−1 = εG. On the other hand, assume Gε = εG. By naturality
of ε, we have a diagram

G G2
δ

//

G2

G

εG

��

G2 G3Gδ // G3

G2

εG2

��

Now Gε = εG gives GεG = εG2, so that

δ · εG = εG2 ·Gδ = GεG ·Gδ = G(εG · δ) = 1G2

and δ is an equivalence, since εG · δ = 1G always.

Proposition 6.2. G is idempotent iff for all (A, ϑ) ∈ AG, εA:GA //A is a monomor-
phism.

Proof. Suppose εA is a monomorphism for all coalgebras (A, ϑ). Since εA · ϑ = 1A, εA
is also a split epimorphism. But then εA is an isomorphism with inverse ϑ. In particular,
(GA, δA) is always a coalgebra, so εGA is an isomorphism with inverse δA, and G is
idempotent. Suppose G is idempotent. Naturality of ε gives for each (A, ϑ) ∈ AG,

A GA
ϑ

//

GA

A

εA

��

GA G2AGϑ // G2A

GA

εGA

��

By 6.1, εGA = GεA. Thus,

ϑ · εA = εGA ·Gϑ = GεA ·Gϑ = G(εA · ϑ) = 1GA,

and εA is an isomorphism.
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Remark. Equivalent to 6.2 is: G is idempotent iff ϑ:A //GA is epic for all (A, ϑ) ∈ AG.

Proposition 6.3. G is idempotent iff

L: AG
//A

is full.

Proof. Suppose L is full, then for each (A, ϑ) ∈ AG, εA:GA // A is a morphism of
coalgebras i. e.

G2A GA
GεA

//

GA

G2A

δA

��

GA AεA // A

GA

ϑ

��

commutes. But then εA is an isomorphism, and G is idempotent by 6.2. For the other
direction, suppose G is idempotent, (A, ϑ) and (A′, ϑ′) are coalgebras, and f :A //A′ is
an arbitrary A-morphism. Consider the diagram

A A′
f

//

GA

A

εA

��

GA GA′GA′

A′

εA′

��

GA GA′Gf //

A

GA

ϑ

��

A A′
f // A′

GA′

ϑ′

��

The whole diagram (without the arrow Gf) clearly commutes, as does the bottom by
naturality of ε. But by 6.2, εA′ is monic, so the top commutes also, and f is a morphism
of coalgebras. Since f was arbitrary, L is full.

Putting 6.2 and 6.3 together it follows that G is idempotent iff

L: AG
//A

provides an equivalence between AG and the full subcategory of A consisting of objects
A ∈ A such that εA:GA ∼

// A.

Proposition 6.4. G is idempotent iff for all (A, ϑ) ∈ AG,

Gϑ = δA:GA //G2A
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Proof. We know that for any cotriple G, and for any coalgebra (A, ϑ),

A ϑ //GA
Gϑ //
δA
//G2A

is an equalizer diagram. Now if G is idempotent, then ϑ is an isomorphism and it follows
that Gϑ = δA. On the other hand, if Gϑ = δA then the equalizer condition provides a
morphism f :GA //A such that ϑ · f = 1GA. Obviously, f = εA, so εA is monic and G
is idempotent by 6.2.

Suppose now that A is a category with models I: M //A. If A has enough colimits,
let G = (G, ε, δ) be the model induced cotriple.

Proposition 6.5. G is idempotent iff for all (A, ϑ) ∈ AG,

rj(A, ϑ): rs̄(A, ϑ) ∼
//GA

Proof. Consider in (Aop,S ) the monomorphism

j(A, ϑ): s̄(A, ϑ) // sA

for (A, ϑ) ∈ AG. If G is idempotent, then by 6.3 j(A, ϑ) is also epic, and hence an
equivalence, making rj(A, ϑ) an isomorphism. On the other hand, rj(A, ϑ) equalizes the
pair

GA
Gϑ //
δA

//G2A

Thus, if rj(A, ϑ) is an isomorphism, we have Gϑ = δA and G idempotent by 6.4.

Summarizing, if the model induced cotriple G is idempotent, then for all (A, ϑ) ∈ AG,
we have Gϑ = δA, and rj(A, ϑ) an isomorphism. But then, it is trivial to verify that

rs̄(A, ϑ)
rj(A,ϑ) //GA

Gϑ //
δA

//G2A

is an equalizer diagram. Thus, by 3.3, ε̄: r̄s̄ ∼
// 1 in the adjoint pair

AG

s̄ //oo
r̄

(Mop,S )

This in turn shows, as we have seen in Section 3, that the class of M-objects of A is exactly
the class of objects A ∈ A admitting a G-coalgebra structure. This, by the above, is the
class of those A ∈ A such that εA:GA ∼

// A. Morphisms of M-objects are arbitrary
A-morphisms by 6.3.
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Examples

(1.). Let C be the category of compact Hausdorff spaces and continuous maps. Let
I: C // Top be the inclusion. C is not small, so (Cop,S ) is an illegitimate category.
Therefore, since Top has only set indexed colimits, we must be careful about constructing

r: (Cop,S ) //Top

i. e. we cannot simply write down the usual colimit expression for rF in Top. What we
shall do is to construct r legally by another method, and then show r a s. Thus, in fact,
the requisite colimits will exist in Top.

To construct r, let ∗ be a fixed choice of a one point space. Clearly ∗ ∈ C. (We drop
I from the notation.) Let

e: (∗, X) ∼
//X

be the evaluation map onto the underlying set of X. If x ∈ X, let x̃: ∗ //X denote the
unique map such that e(x̃) = x. Now suppose F : Cop //S is an arbitrary functor. For
each C ∈ C and y ∈ F (C) we define a set theoretical function

i(C, y):C // F (∗)

by i(C, y)(c) = F c̃(y) for c ∈ C, i. e. c̃: ∗ // C, and i(C, y)(c) is the image of y ∈ F (C)
under the function F c̃:F (C) // F (∗). Let rF be the set F (∗) with the weak topology
determined by the i(C, y). Thus, U ∈ F (∗) is open iff i(C, y)−1U is open in C for all
C ∈ C and y ∈ FC. Equivalently, if X ∈ Top, a function f :F (∗) //X is continuous
iff each composite f · i(y) is. If γ:F ′ // F is a natural transformation, put

rγ = γ(∗):F ′(∗) // F (∗)

rγ is continuous, since for each C ∈ C, y ∈ F ′C, and c ∈ C, we have the diagram

F ′(∗) F (∗)
γ(∗)

//

F ′(C)

F ′(∗)

F ′c̃

��

F ′(C) F (C)
γ(C) // F (C)

F (∗)

F c̃

��

and hence the diagram

F ′(∗) F (∗)
γ(∗)

//

C

F ′(∗)

i(C,y)

��

C

F (∗)

i(C,γ(C)(y))

��?????????????

With this definition, it is clear that r is a functor.
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As always, we have
s: Top // (Cop,S )

by sX.C = (C,X) for X ∈ Top and C ∈ C. We want to show that r a s. For this, define
natural transformations

ε: rs // 1

η: 1 // sr

as follows. If X ∈ Top, let

εX = e: rsX = (∗, X) //X

εX is continuous, since for each C ∈ C, ϕ:C //X in sX.C, and c ∈ C, we have

i(C,ϕ)(c) = sX(c̃)(ϕ) = ϕ · c̃

and hence

(∗, X) Xe
//

C

(∗, X)

i(C,ϕ)

��

C

X

ϕ

��?????????????

εX is clearly natural in X. If F : Cop //S , and C ∈ C, let

ηF :F // srF

be defined by:
ηF (C)(y) = i(C, y):C // rF = F (∗)

for y ∈ F (C). It is immediate that ηF (C) is natural in both C and F . Consider the
composites

s
ηs // srs

sε // s

and
r

rη // rsr
εr // r

That the first is 1s follows from the computation used to prove εX continuous. For the
second, let F : Cop //S be an arbitrary functor. Then

rF
rηF // rsrF

εrF // rF

is the composite

F (∗) ηF (∗) // (∗, F (∗)) e // F (∗)
If x ∈ F (∗), then

ηF (∗)(x) = i(∗, x): ∗ // F (∗)
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is simply x̃, for
i(∗, x)(∗) = F ∗̃(x) = x

because ∗̃: ∗ // ∗ is 1∗. But then (e · ηF (∗))(x) = x and we are done. Thus, we have

(ε, η): r a s

and in the usual way, we obtain a 1-1 correspondence

(rF,X) ∼ (F, sX)

for F : Cop //S and X ∈ Top. In particular, the latter is a set.
Let G = (rs, ε, rηs) = (Gε, δ) be the model induced cotriple in Top. Then if X ∈ Top,

GX = (∗, X) with the above topology, and

εX = e: (∗, X) //X

εX is clearly a monomorphism, so by 6.2 G is idempotent. Therefore, the category TopG of
G-coalgebras is the full subcategory of Top consisting of allX for which εX:GX //X is a
homeomorphism. That is, spaces X having the weak topology with respect to continuous
maps ϕ:C // X where C ∈ C. Such spaces are called compactly generated weakly
Hausdorff.

Since G is idempotent, it follows that we have ε̄: r̄s̄ ∼
// 1 in the adjoint pair

TopG

s̄ //oo
r̄

(Cop,S )

By considering the category Q of quasi-spaces and quasi-continuous maps, we will show
that η̄: 1 ¯ // sr̄ is not an equivalence. Recall from [Spanier (1963)] that a quasi-space is
a set X together with a family A (C,X) of admissible functions C //X for each C ∈ C.
These families satisfy the following axioms:

(i) Any constant map C //X is in A (C,X).

(ii) If α:C ′ // C is in C and ϕ ∈ A (C,X), then ϕ · α ∈ A (C ′, X).

(iii) If C is the disjoint union of C1 and C2 in C, then ϕ ∈ A (C,X) iff ϕ|Ci ∈ A (Ci, X)
for i = 1, 2.

(iv) If α:C1
//C2 is surjective for C1, C2 ∈ C, then ϕ ∈ A (C2, X) iff ϕ ·α ∈ A (C1, X).

A function f :X // Y is quasi-continuous iff for C ∈ C and ϕ ∈ A (C,X), f · ϕ ∈
A (C, Y ).

The admissible maps provide an embedding

A : Q // (Cop,S )
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defined by AX.C = A (C,X) for X ∈ Q and C ∈ C. The effect on morphisms is compo-
sition in both variables, which makes sense by axiom (ii) and the above definition of quasi-
continuous. (Note that axioms (iii) and (iv) can then be combined to: AX: Cop //S
preserves finite limits.) A is faithful, since if f, g:X // Y are quasi-continuous and
A f = A g: AX // A Y , then, in particular, A f.∗ = A g.∗: A (∗, X) // A (∗, Y ).
However, by (i), if x ∈ X then x̃ ∈ A (∗, X). Thus, f · x̃ = g · x̃ so f(x) = g(x) and f = g.
Clearly, if AX = A Y then X = Y as quasi-spaces, so we may regard Q as a (non-full)
subcategory of (Cop,S ) by means of A .

Now if η̄:F ∼
// s̄r̄F for all F : Cop //S , then for each quasi-space X we must have

η̄AX: AX ∼
// s̄r̄AX

But r̄AX is just
rAX = A (∗, X)

with the weak topology determined by the maps

i(C,ϕ):C //A (∗, X)

for C ∈ C and ϕ ∈ A (C,X). For c ∈ C we have

i(C,ϕ)(c) = AX(c̃)(ϕ) = ϕ · c̃,
so that

(∗, X) Xe
//

C

(∗, X)

i(C,ϕ)

��

C

X

ϕ

��?????????????

By axiom (i) for quasi-spaces, e is a bijection of sets. Making e a homeomorphism, we
provide X with the topology: U ⊂ X is open iff ϕ−1U is open in C for all C ∈ C and
ϕ ∈ A (C,X). With this topology, X is clearly compactly generated weakly Hausdorff—
i.e. a G-coalgebra. Under the identification e, the natural transformation

η̄AX: AX // s̄r̄AX

becomes simply the inclusion
AX // sX

which expresses the fact that every admissible map is continuous. (Note that we can
replace s̄ by s since every continuous map of coalgebras is a coalgebra morphism.) Thus,
if η̄AX is an equivalence we must have

AX = sX

for all X ∈ Q. However, Spanier in [Spanier (1963)] provides an example of a quasi-space
X such that for no topology on X is

AX = sX

in particular, not for the above topology. Hence, η̄: 1 // s̄r̄ is not an equivalence.
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(2.) Sheaves. Let X be a fixed topological space, and denote by X the category of
open sets of X. That is, an object of X is an open set U of X, and a morphism U // V
is an inclusion. Let

I: X // (Top, X)

be the functor which assigns to each open set U ⊂ X the inclusion iU :U //X and to
each inclusion U // V the triangle

U

X

iU

��?????????????U V� � // V

X

iV

���������������

(For properties of (Top, X) see Section 5, example (4.).) I trivially satisfies condition
(a). Since (Top, X) has small colimits, we have the usual adjoint pair

(Top, X)
s //oo
r

(Xop,S )

Here (Xop,S ) is the category of pre-sheaves of sets over X [Godement (1958)]. The
singular functor s is just the section functor, i. e. if p:E // X is in (Top, X), then
sp: Xop //S is the functor

sp(U) = {ϕ:U // E | p · ϕ = iU}

and sp(j)(ϕ) = ϕ · j for j:V // U an inclusion. The realization r is the étalé space
functor described in [Godement (1958), p. 110]. To see this, let F : Xop // S be a
pre-sheaf of sets. Let

rF =
(
EF

πF //X
)

Since colimits in (Top, X) are computed in Top, EF can be described as follows. Consider
all triples (U, s, x) for U ∈ X, s ∈ FU , x ∈ U . Let ≡ be the equivalence relation (4.1)
(U1, s1, x1) ≡ (U2, s2, x2) iff there are j1:V // U1 and j2:V // U2 in X, and x ∈ V
such that j1x = x1, j2x = x2, and Fj1(s1) = Fj2(s2), i. e. iff x1 = x2 ∈ V ⊂ U1 ∩ U2,
and Fj1(s1) = Fj2(s2). Then EF is the set of equivalence classes |U, s, x| with the weak
topology determined by the functions

i(U, s):U // EF

given by i(U, s)(x) = |U, s, x|. πF is given by πF |U, s, x| = x. By 5.8, each i(U, s) is open,
and their images form a basis for the topology of EF . Thus, πF is a local homeomorphism.
Comparing this description with that of [Godement (1958), p. 110], one sees immediately
that rF is the étalé space over X associated to the pre-sheaf F .

Let G = (rs, ε, rηs) be the model induced cotriple in (Top, X). For p:E // X in
(Top, X), the points of Esp are equivalence classes |U,ϕ, x| where ϕ:U //E is a section
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of p over U . The counit εp: rsp // p is given by εp|U,ϕ, x| = ϕx. Let (p, ϑ) be a
G-coalgebra. Then

E

X

p

��?????????????E Esp
ϑ // Esp

X

πsp

��������������

with the usual properties on ϑ. We show εp is monic. Namely, suppose εp|U1, ϕ1, x1| =
εp|U2, ϕ2, x2|, i. e. ϕ1x1 = ϕ2x2. Since ϕ1 and ϕ2 are sections of p, it follows that x1 = x2.
Furthermore, ϑ ·ϕ1 and ϑ ·ϕ2 are clearly sections of πsp, and they agree at x1 = x2. Since
πsp is a local homeomorphism there is an open neighborhood W ⊂ U1 ∩ U2 of x1 = x2

such that
ϑ · ϕ1|W = ϑ · ϕ2|W

But then ϕ1|W = ϕ2|W , so |U1, ϕ1, x1| = |U2, ϕ2, x2|. By 6.2, G is idempotent, and
ε̄: r̄s̄ ∼

// 1. Thus, we may identify (Top, X)G with a full subcategory of the category of

pre-sheaves (Xop,S ). This is the usual identification of an étalé space with its sheaf of
sections.

(3.) Schemes. One of the most interesting examples of a model induced cotriple is
obtained by choosing M = Rop—the dual of the category of commutative rings with
unit. A = LRS—the category of local ringed spaces, and I = Spec: Rop // LRS.
This example has been independently considered by Gabriel [Gabriel (unpublished a)]. If
G = (G, ε, δ) is the model induced cotriple in this situation, then Gabriel considers the
full subcategory of LRS consisting of local ringed spaces X, for which εX:GX ∼

//X.
A scheme is shown to be such an object. By the remark following 6.2 and 6.3, in order to
bring this treatment in line with ours, it suffices to show that G is idempotent. This can
be done, but due to limitations of space and time we will save the details of this example
for a separate paper.



Homology and Standard Constructions

Michael Barr and Jon Beck 1

Introduction

In ordinary homological algebra, if M is an R-module, the usual way of starting to con-
struct a projective resolution of M is to let F be the free R-module generated by the
elements of M and F // M the epimorphism determined by (m) � //m. One then takes
the kernel of F // M and continues the process. But notice that in the construction of
F // M a lot of structure is customarily overlooked. F is actually a functor MG of M ,
F // M is an instance of a natural transformation G // (identity functor); there is also a
“comultiplication” G // GG which is a little less evident. The functor G, equipped with
these structures, is an example of what is called a standard construction or “cotriple”.

In this paper we start with a category C, a cotriple G in C, and show how resolu-
tions and derived functors or homology can be constructed by means of this tool alone.
The category C will be non-abelian in general (note that even for modules the cotriple
employed fails to respect the additive structure of the category), and the coefficients will
consist of an arbitrary functor E: C // A , where A is an abelian category. For ordinary
homology and cohomology theories, E will be tensoring, homming or deriving with or
into a module of some kind.

To summarize the contents of the paper: In Section 1 we define the derived functors
and give several examples of categories with cotriples. In Section 2 we study the derived
functors Hn( , E)G as functors on C and give several of their properties. In Section 3 we
fix a first variable X ∈ C and study Hn(X, )G as a functor of the abelian variable E.
As such it admits a simple axiomatic characterization. Section 4 considers the case in
which C is additive and shows that the general theory can always, in effect, be reduced
to that case. In Section 5 we study the relation between cotriples and projective classes
(defined - essentially- by Eilenberg-Moore [Eilenberg & Moore (1965)]) and show that the
homology only depends on the projective class defined by the cotriple. Sections 6–9 are
concerned largely with various special properties that these derived functors possess in well
known algebraic categories (groups, modules, algebras, . . . ). In Section 10 we consider the
problem of defining a cotriple to produce a given projective class (in a sense, the converse
problem to that studied in Section 5) by means of “models”. We also compare the results
with other theories of derived functors based on models. Section 11 is concerned with
some technical items on acyclic models.

Before beginning the actual homology theory, we give some basic definitions concerning

1The first author is partially supported by NSF Grant GP 5478 and the second has been supported
by an NAS-NRC Postdoctoral Fellowship
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the simplicial objects which will be used. Let G = (G, ε, δ) be a cotriple in C, that is,

C G //C

G
ε //C and G

δ //GG

and the unitary and associative laws hold, as given in the Introduction to this volume.
(Note that here and throughout we identify identity maps with the corresponding objects;
thus C denotes the identity functor C // C.) If X is an object in C, the following is an
augmented simplicial object in C:

XGX
ε0oo XG XG2δ0 // XG2XG

ε0oo
XG2XG

ε1
oo · · ·XG2

oo · · ·XG2 oo · · ·XG2
oo

XG2 · · ·//XG2 · · ·// XGn+1· · ·
oo

XGn+1· · · oo· · · XGn+1... // · · ·XGn+1
oo

· · ·XGn+1
ooXGn+1 · · ·... //

XGn+1 is the n-dimensional component,

εi = GiεGn−i:Gn+1 // Gn and δi = GiδGn−i:Gn+1 // Gn+2

for 0 ≤ i ≤ n, and the usual simplicial identities hold:

εiεj = εj+1εi for i ≤ j

δiδj = δj−1δi for i < j
δiεj =


εj−1δi for i < j − 1

identity for i = j − 1 and i = j

εjδi−1 for i > j.

(composition is from left to right).
If X admits a map s:X // XG such that s ◦Xε = X (such X are called G-projective,

see (2.1)), then the above simplicial object develops a contraction

X
h−1 //XG

h0 //XG2 // · · · //XGn+1 hn // · · ·

namely hn = sGn+1. These operators satisfy the equations

hnε0 = XGn+1 and hnεi = εi−1hn−1

for 0 < i ≤ n+1 and n ≥ −1. They express the fact that the simplicial object (XGn+1)n≥0

is homotopically equivalent to the constant simplicial object which hasX in all dimensions.
If (Xn)n≥−1 is a simplicial set with such a contraction, we conclude Πn(X) = 0 for

n > 0, and Π0(X) = X−1.
On the other hand, if E: C // A is a functor into any other category and E possesses

a natural transformation ϑ:E // GE such that ϑ ◦ εE = E, then (XGn+1E)n≥−1 also has
a contraction

XE
h−1 //XGE

h0 //XG2E // · · · //XGn+1E
hn // · · ·
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Here hn = XGn+1ϑ and the identities satisfied are a little different (This is a “right”
homotopy [Kleisli (1967)]):

hnεi = εihn−1 and hnεn+1 = XGn+1E

for 0 ≤ i ≤ n and n ≥ −1. Both here and above some equations involving degeneracies
also hold, but our concern is usually with homology so we omit them.

If the functor E takes values in an abelian category, then as follows from a well known
theorem of J.C. Moore [Moore (1956)] the homotopy in any sense of (XGn+1E)n≥0 is the
same as the homology of the associated chain complex

0 oo XGE oo
∂1

XG2E oo
∂2 · · · oo ∂n XGn+1E oo · · ·

where ∂n =
∑

(−1)iεiE. If there is a contraction, Hn = 0 for n > 0, H0 = XE.

1. Definition of the homology theory Hn(X,E)G

Let X ∈ C, let G = (G, ε, δ) be a cotriple in C, and let E: C // A be a functor into an
abelian category. Applying E to (XGn+1)n≥−1 we get an augmented simplicial object in
A :

XGEXE oo XGE XG2E// XG2EXGE
oo

XG2EXGE oo · · ·XG2E oo · · ·XG2E oo · · ·XG2E
oo

XG2E · · ·//XG2E · · ·// XGn+1E· · ·
oo

XGn+1E· · · oo· · · XGn+1E... // · · ·XGn+1E
oo

· · ·XGn+1E ooXGn+1E · · ·... //

The homotopy of this simplicial object, or what is the same thing by Moore’s theorem,
the homology of the associated chain complex

0 oo XGE oo
∂1

XG2E oo
∂2 · · ·

is denoted by Hn(X,E)G, for n ≥ 0. These are the homology groups (objects) of
X with coefficients in E relative to the cotriple G. Often G is omitted from the
notation if it is clear from the context.

The homology is functorial with respect to maps X // X1 in C and natural transfor-
mations of the coefficient functors E // E1.

A natural transformation (augmentation)

H0( , E)G
λ=λE // E

is defined by the fact that H0 is a cokernel:

XGE

XE

∂0

��?????????????XGE H0(X,E)// H0(X,E)

XE

λ

��������������
XG2E XGE

∂1 // H0(X,E) 0//
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λ(H0( , E)) and H0( , λE) coincide since they both fit in the diagram

XG2E XGE// XGE H0(X,E)// H0(X,E) 0//

H0(XG2, E) H0(XG,E)//H0(XG2, E)

XG2E

λ

��

H0(XG,E) H0(X,H0( , E))//H0(XG,E)

XGE

λ

��

H0(X,H0( , E))

H0(X,E)
��

H0(X,H0( , E)) 0//

Thus λ can be viewed as a reflection into the subcategory of all functors E: C // A

with λ:H0( , E)
∼= // E. These are the functors which transform XG2 ////XG //X

into a coequalizer diagram in A , for all X ∈ C, a sort of right exactness property.
The following variations occur. If, dually, T = (T, η, µ) is a triple in C and E: C // A

is a coefficient functor, cohomology groups Hn(X,E)T, for n ≥ 0, are defined by means
of the cochain complex

0 //XTE
d1 //XT 2E

d2 // · · · //XT n+1E
dn // · · ·

where dn =
∑

(−1)iXηiE for 0 ≤ i ≤ n, and ηi = T iηT n−i.
If G = (G, ε, δ) is a cotriple and E: Cop // A is a functor (or E: C // A is contravari-

ant), the complex would take the form

0 //XGE //XG2E // · · · //XGn+1E // · · ·

In effect this is cohomology with respect to the triple Gop in the dual category. However,
we write the theory as Hn(X,E)G.

For the most part we will only state theorems about the cotriple-covariant functor
situation and leave duals to the reader. Usually cotriples arise from adjoint functors,
although another method of construction will be essayed in Section 10. If F : A // C
is left adjoint to U : C // A, there are well know natural transformations η: A // FU
and ε:UF // C. If we set G = UF , we have ε:G // C, and if we set δ = UηF , then
δ:G // G2.a The relations obeyed by η and ε

F FUF
ηF //F

F

=

��????????????? FUF

F

Fε

��

U UFU
Uη //U

U

=

��????????????? UFU

U

εU

��

imply that G = (G, ε, δ) is a cotriple in C. This fact was first recognized by Huber [Huber
(1961)].

aEditor’s footnote: The C here and in the sentence before were B in the original, but as this was a
mistake they are corrected now.
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1.1 Additive example: Homology of modules. Let R-Mod be the category of
(left) R-modules. Let G = (G, ε, δ) be the cotriple generated by the adjoint pair

R-Mod

Set

U

��?????????????R-Mod R-ModG // R-Mod

Set

??

F

�������������

U is the usual underlying set functor, F a U is the free R-module functor. Thus we
have MG = R(M), the free R-module with the elements of M as basis, and the counit
Mε:Mg // M is the map which takes each basis element into the same element in M (just
the usual way of starting to construct an R-free resolution of M). The comultiplication
Mδ:MG // MG2 we leave to the reader.

Later we shall show that the complex

0 oo M oo ∂0 MG oo
∂1

MG2 oo · · · oo ∂n MGn+1 oo · · ·
where ∂n =

∑
(−1)iMεi for 0 ≤ i ≤ n, is an R-free resolution of M (the only issue is

exactness). Taking as coefficient functors ME = A ⊗R M or ME = HomR(M,A), we
obtain Hn(M,A⊗R ) and Hn(M,HomR( , A)) as n-th homology or cohomology of

0 oo A⊗RMG oo A⊗RMG2 oo · · ·
0 // HomR(MG,A) // HomR(MG2, A) // · · ·

That is, Hn = TorRn (A,M) and Hn = ExtnR(M,A).
Since R-modules are an additive category and the coefficient functors considered were

additive, we could form the alternating sum of the face operators to obtain a chain complex
in R-Mod before applying the coefficient functor.

As another example of this we mention the Eckmann-Hilton homotopy groups
Πn(M,N) (as re-indexed in accordance with [Huber (1961)]). These are the homol-
ogy groups of the complex

0 oo HomR(M,NG) oo HomR(M,NG2) oo · · ·
Of course, in these examples the homology should have a subscript G to indicate that

the cotriple relative to the underlying category of sets was used to construct the resolution.
Other underlying categories and cotriples are possible. For example, if

K
ϕ //R

is a ring map, we get an adjoint pair

R-Mod

K-Mod
��?????????????R-Mod R-Mod
Gϕ // R-Mod

K-Mod

??

⊗KR

�������������
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where the underlying [functor] is restriction of operators to K by means of ϕ. We have
MGϕ = M ⊗K R. The standard resolution is

M oo M ⊗K R
oo oo M ⊗K R⊗K R oo

oo
oo · · ·

Using the above coefficient functors we will find that the homology and cohomology are
Hochschild’s K-relative Tor and Ext [Hochschild (1956)]:

Hn(M,A⊗R ) = Torϕn(A,M)

Hn(M,HomR( , A)) = Extnϕ(M,A)

Hochschild actually considered a subring K // R and wrote Tor(R,K), etc.
We now turn to homology of groups and algebras. A useful device in the non-additive

generalizations of homology theory is the comma category (C, X) of all objects (of a given
category C) over a fixed object X. That is, an object of (C, X) is a map C // X, and
a map of (C, X) is a commutative triangle

C0

X
##GGGGGGGGC0 C1

// C1

X
{{wwwwwwww

A cotriple G = (G, ε, δ) in C naturally operates in (C, X) as well. The resulting cotriple
(G, X) has

(C
p //X)(G,X) = CG Cε // C

p //X

(C //X)(ε,X) =
CG

X
$$JJJJJCG C
Cε // C

X
zzttttt

(C //X)(δ,X) =
CG

X
$$JJJJJCG CG2Cδ // CG2

X
zzttttt

The standard (G, X)-resolution of an object C // X over X comes out in the form

CGC
ε0oo CG CG2δ0 // CG2CG

ε0oo
CG2CG

ε1
oo · · ·CG2

oo · · ·CG2 oo · · ·CG2
oo

CG2 · · ·//CG2 · · ·// CGn+1· · ·
oo

CGn+1· · · oo· · · CGn+1... // · · ·CGn+1
oo

· · ·CGn+1
ooCGn+1 · · ·... //C

X
''OOOOOOOOOOOOOOOOOOOOOOO CG

X
��????????????? CG2

X
��

CGn+1

X
wwoooooooooooooooooooooo

In other words, the usual faces and degeneracies turn out to be maps over X.
Homology groups Hn(C,E)(G,X) are then defined, when E: (C, X) // A is a coefficient

functor. We could write, with greater precision, Hn(p, E)(G,X), or with less, Hn(C,E)X
or Hn(C,E), leaving X understood.
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Usually the coefficient functors involve a module over the terminal object X. This
can be treated as a module over all the objects of (C, X) simultaneously, by pullback
via the structural maps to X. For example, derivations or differentials with values in an
X-module become functors on the category of all algebras over X. This is the way in
which homology and cohomology of algebras arise.

1.2 Homology of groups. Let Gr be the category of groups and G the cotriple arising
from

Gr

Set
U ##GGGGGGGGGr GrG //Gr

Set

;;

Fwwwwwww

Thus ΠG is the free group on the underlying set of Π, and the counit ΠG // Π is the
natural surjection of the free group onto Π.

If W // Π is a group over Π and M is a left Π-module, a derivation f :W // M
(over Π) is

a function such that (ww′)f = w · w′f + wf (W // Π allows W to act on M). The
abelian group of such derivations, Der(W,M)Π, gives a functor (Gr,Π)op // Ab. We
define the cohomology of W // Π with coefficients in M , Hn(W,M)Π (relative to G) as
the cohomology of the cochain complex

0 //Der(WG,M)Π
//Der(WG2,M)Π

// · · · //Der(WGn+1,M)Π
// · · ·

It is known that this theory coincides with Eilenberg-Mac Lane cohomology except for a
shift in dimension [Barr & Beck (1966)]

Hn(W,M)Π

∼= //

{
Der(W,M)Π for n = 0

Hn+1
E−M(W,M) for n > 0

Derivations W // M are represented by a Π-module of differentials of W (over Π)
which we write as DiffΠ(W ):

Der(W,M)Π ∼= HomW (IW,M)

= HomΠ(ZΠ⊗W IW,M)

Hence DiffΠ(W ) = ZΠ ⊗W IW . (It is well known that the augmentation ideal IW =
ker(ZW // Z) represents derivations of W into W -modules [Cartan & Eilenberg (1956),
Mac Lane (1963)]. This is fudged by ZΠ⊗W to represent derivations into Π-modules.)

The homology of W // Π with coefficients in a right Π-module M is defined
as the homology of

0 oo M ⊗ZΠ DiffΠ(WG) oo M ⊗ZΠ DiffΠ(WG2) oo · · · oo M ⊗ZΠ DiffΠ(WGn+1) oo · · ·

Then

Hn(W,M)Π

∼= //

{
M ⊗ZΠ DiffΠ(W ) = M ⊗ZΠ IW for n = 0

HE−M
n+1 (W,M) for n > 0
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This is because (DiffΠ(WGn+1))n≥−1 is a Π-free resolution of DiffΠ(W ), and as [Cartan
& Eilenberg (1956), Mac Lane (1963)] show, the Eilenberg-Mac Lane homology can be
identified with TorZWn+1(Z, N) = TorZWn (IW,N). Π-Freeness is because DiffΠ(WG) =
ZΠ⊗W I(WG), and I(WG) is well known to beWG-free. As for acyclicity, the cohomology
of

0 // HomΠ(DiffΠ(W ), Q) // HomΠ(DiffΠ(WG), Q) // · · ·

is zero in all dimensions ≥ −1, if Q is an injective Π-module; this is true because the
cohomology agrees with the Eilenberg-Mac Lane theory, which vanishes on injective coef-
ficient modules. A direct acyclic-models proof of the coincidence of the homology theories
can also be given.

As special cases note: if Π is regarded as a group over Π by means of the identity map
Π // Π, the Hn(Π,M)Π and Hn(Π,M)Π are the ordinary (co-)homology groups of Π with
coefficients in a Π-module. On the other hand, if Π = 1, any W can be considered as a
group over Π. Since a 1-module is just an abelian group, Diff1(W ) = W/[W,W ], [which
is] W abelianized, i.e. with its commutator subgroup divided out. The (co-)homology is
that of W with coefficients in a trivial module.

Remark. [Beck (1967), Barr & Beck (1966)] Via interpretation as split extensions,
Π-modules can be identified with the abelian group objects in the category (Gr,Π).
Der(W,M)Π is then the abelian group of maps in (Gr,Π):

W

Π
##GGGGGGGGW Π×M// Π×M

Π
{{wwwwwwww

DiffΠ is just the free abelian group functor, that is, the left adjoint of the forgetful functor

(Gr,Π) oo Ab(Gr,Π) = Π-Mod

where Ab(Gr,Π) denotes the abelian groups in (Gr,Π).

For general triple cohomology this interpretation is essential. In particular, the ana-
logue of Diff exists for any category tripleable over Set, provided the triple has a rank in
the sense of [Linton (1966a)].

For the next example we need the comma category (X,C) of objects and maps in C
under X. An object of this category is a map X // Y , a map is a commutative triangle

Y0 Y1
//

X

Y0

{{wwwwwwww
X

Y1

##GGGGGGGG

Assuming C has coproducts X ∗ Y , a cotriple G = (G, ε, δ) in C naturally induces a
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cotriple (X,G) = ((X,G), . . .) in (X,C):

(X
f // Y )(X,G) = X //X ∗ Y G (coproduct injection)

(X // Y )(X, ε) =
X ∗ Y G Y

(f,Y ε)
//

X

X ∗ Y G
{{wwwwwwww

X

Y
##GGGGGGGG

(X // Y )(X, δ) =
X ∗ Y G X ∗ (X ∗ Y G)G

X∗(Y δ,jG)
//

X

X ∗ Y G
wwooooooooooo X

X ∗ (X ∗ Y G)G
''OOOOOOOOOO

where j:Y G // X ∗ Y G is a coproduct injection.
Actually, the coproductX∗( ) defines an adjoint pair of functors (X,C) // C // (X,C);

the right adjoint is (X // C) � // C, the left adjoint is C � // (X // X ∗ C). By a general
argument [Huber (1961)], the composition

(X,C) //C G //C
X∗( ) // (X,C)

is then a cotriple in (X,C), namely (X,G).
Replacing (X,C) // C // (X,C) by an arbitrary adjoint pair and specializing G to

the identity cotriple proves the remark preceding (1.1).
Homology and cohomology relative to the cotriple (X,G) will be studied in more detail

in Section 8. This cotriple enters in a rather mild way into:

1.3 Homology of commutative rings and algebras. Let Comm be the category
of commutative rings. For A ∈ Comm let (A,Comm) be the category of commutative
rings under A, that is, maps A // B ∈ Comm. Thus (A,Comm) is our notation for the
category of commutative A-algebras. We review the notions of differentials and derivations
in this category.

For the same reason as in the category of groups we place ourselves in a category of alge-
bras over a fixed commutative ringD, that is, in a double comma category (A,Comm, D);
here an object is an A-algebra A // B equipped with a map B // D, and a map is a
commutative diagram

B C//

A

B
{{wwwwwwww

A

C
##GGGGGGGG

B

D
##GGGGGGGGB C// C

D
{{wwwwwwww

If M is a D-module, an A-derivation B // M is an A-linear function satisfying
(bb′)f = b′ · bf + b · b′f , where B ∈ (A,Comm, D) and A and B act on M via the given
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maps A // B // D. Such modules of derivations define a functor

(A,Comm, D)op A-Der( ,M)D //D-Mod

This eventually gives rise to cohomology.
As is well known, any A-derivation B // M , where M is a B-module, factors uniquely

through a B-module map

Ω1
B/A M//_______

B

Ω1
B/A

d

{{wwwwwww
B

M
##GGGGGGGG

where Ω1
B/A is the B-module of A-differentials of B, and d is the universal such

derivation. Ω1
B/A can be viewed as I/I2 where I = ker(B⊗AB // B) and db = b⊗1−1⊗b,

or as the free B-module on symbols db modulo d(b+ b′) = db+db′ as well as d(ab) = a ·db
and d(bb′) = b′ ·db+b·db′ [Lichtenbaum & Schlessinger (1967), Grothendieck & Dieudonné
(1964)]. [A] universal [object] for A-derivations of B // M , where M is a D-module, is
then

DiffD(A // B) = Ω1
B/A ⊗B D

The functor which is usually used as coefficients for homology is

(A,Comm, D)
DiffD(A // ( ))⊗DM=Ω1

( )/A
⊗( )M

//D-Mod

There are two natural ways of defining homology in the category of A-algebras (over D),
depending on the choice of cotriple, or equivalently, choice of the underlying category.

First let G = (G, ε, δ) be the cotriple in the category of commutative rings arising
from the adjoint pair

Comm

Set

U

��?????????????Comm CommG // Comm

Set

??

F

�������������

Then CG = Z[C], the polynomial ring with the elements of C as variables; the counit
CG // C is the map defined by sending the variable c [to the element] c ∈ C. This
cotriple operates in (Comm, D) in the natural fashion described before (1.2).

Now consider the category (A,Comm) of commutative A-algebras. According to the
remarks preceding this section, G gives rise to a cotriple (A,G) in this category. Since
the coproduct in the category Comm is A⊗Z B, we have

(A // C)(A,G) = A // A⊗Z CG

= A // A⊗Z Z[C]

= A // A[C]
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the polynomial A-algebra with the elements of C as variables. This cotriple is just that
which is induced by the underlying set and free A-algebra functors

(A,Comm)

Set

U

��????????????
(A,Comm) (A,Comm)

(A,G) // (A,Comm)

Set

??

F

������������

Furthermore, (A,G) operates in the category of A-algebras over D, (A,Comm, D), the
values of (A,G, D) being given by:

D D

C

D
��

C A[C]A[C]

D
��

C A[C]� //

A

C
��

A AA

A[C]
��








The counit is:

A[C] C//

A

A[C]
{{wwwwwww

A

C
##GGGGGGGG

A[C]

D
##GGGGGGG

A[C] Cε // C

D
{{wwwwwwww

If M is a D-module we thus have homology and cohomology D-modules Hn(C,M)
and Hn(C,M) for n ≥ 0, writing simply C for an A-algebra over D. These are defined
by

Hn(C,M) = Hn[(DiffD(C(A,G)p+1)⊗D M)p≥0]

= Hn[(Ω1
A[···[C]··· ]/A ⊗AM)p≥0]

where there are p + 1 applications of the A-polynomial operation to C in dimension p,
and by

Hn(C,M) = Hn[(A-DerD(C(A,G)p+1,M))p≥0]

= Hn[(A-DerD(A[· · · [C] · · · ],M))p≥0]

again with p+ 1 A[ ]’s.
This homology theory of commutative algebras over D coincides with those considered

in [André (1967), Quillen (1967)]; of course, one generally simplifies the setting slightly
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by taking C = D above. Both of these papers contain proofs that the cotriple theory
coincides with theirs. The homology theory of [Lichtenbaum & Schlessinger (1967)] also
agrees.

This theory, however it is described, is called the “absolute” homology theory of
commutative algebras. The term arises as a reference to the underlying category which is
involved, namely that of sets; no underlying object functor could forget more structure.
But it also seems germane to consider so-called relative homology theories of algebras
for which the underlying category is something else, usually a category of modules.

As an example of this, consider the homology theory in (A,Comm) coming from the
adjoint functors

(A,Comm)

A−Mod

U

��????????????
(A,Comm) (A,Comm)

GA // (A,Comm)

A−Mod

??

F

������������

That is

(A // C)GA = A+ C +
C ⊗A C
S2

+
C ⊗A C ⊗A C

S3

+ · · ·

the symmetric A-algebra on C (the S’s are the symmetric groups). Note that this cotriple
is not of the form (A,G) for any cotriple G on the category of commutative rings. Exactly
as above we now have homology and cohomology groups

Hn(C,M) = Hn[(DiffD(CGp+1
A )⊗D M)p≥0]

= Hn[(Ω1
CGp+1

A /A
⊗D M)p≥0]

Hn(C,M) = Hn[(A-Der(CGp+1
A ,M)D)p≥0]

where M is a D-module, and we are writing C instead of A // C for an A-algebra.
These two cohomology theories should really be distinguished by indicating the cotriple

used to define them:

Hn(C,M)(A,G) = absolute theory, relative to sets

Hn(C,M)GA = theory relative to A-modules

The following is an indication of the difference between them: if C = D and M is a
C-module, then H1(C,M)(A,G) classifies commutative A-algebra extensions E // C such

that I = ker(E // C) is an ideal of E with I2 = 0, and such that there exists a lifting of
the counit

C(A,G) C//

E

C(A,G)

??

�
�

�
�

�
�

�
E

C
��
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H1(C,M)GA classifies those extensions with kernel of square zero that have liftings

CGA C//

E

CGA

??

�
�

�
�

�
�

�
E

C
��

The absolute lifting condition is equivalent to the existence of a set section of E // C,
i.e. to surjectivity, the A-relative condition to the existence of an A-linear splitting of
E // C, as one can easily check. The relative theory is thus insensitive to purely A-linear
phenomena, while the absolute theory takes all the structure into account. (We refer to
[Beck (1967)] for details on classification of extensions).

The A-relative cohomology theory has been studied but little. Harrison has given
an A-relative theory in [Harrison (1962)] (A was a ground field but his formulas are
meaningful for any commutative ring). Barr [Barr (1968)] has proved that

Hn(C,M) ∼=

{
Der(C,M) for n = 0

Harrn+1(C,M) for n > 0

if A is a field of characteristic zero.

1.4 Homology of associative K-algebras. Let GK be the cotriple relative to the
underlying category of K-modules:

K-Alg

K-Mod

F

��????????????
K-Alg K-Alg

GK // K-Alg

K-Mod

??

U

������������

Thus if Λ is an associative algebra with unit over the commutative ring K, then

ΛGK = K + Λ + Λ⊗ Λ + · · ·

the K-tensor algebra.
If Γ // Λ and M is a Λ-Λ-bimodule, we define Hn(Γ,M)Λ as the cohomology of the

cosimplicial object

0 //Der(ΓGK ,M)Λ
////Der(ΓG2

K ,M)Λ
////// · · · //Der(ΓGn+1

K ,M)Λ
// · · ·

It is known that this coincides with Hochschild cohomology [Barr (1966), Barr & Beck
(1966)]:

Hn(Γ,M)Λ

∼= //

{
Der(Γ,M) for n = 0

Hochn+1(Γ,M) for n > 0
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The universal object for K-linear derivations Γ // M , where M is a two-sided Λ-
module, is

DiffΛ(Γ) = DiffΓ(Γ)⊗Γe Λe = Λ⊗Γ JΓ⊗Γ Λ

where JΓ is the kernel of the multiplication Γe = Γ⊗KΓop // Γ and represents derivations
of Γ into Γ-modules [Cartan & Eilenberg (1956), Mac Lane (1963)]. The homology of
Γ // Λ with coefficients in M is defined as the homology of the complex

0 oo DiffΛ(ΓGK)⊗Λe M oo ∂1 DiffΛ(ΓG2
K)⊗Λe M oo ∂2 · · ·

[Barr (1966)] proves that (DiffΛ(ΓGn+1
K ))n≥−1 is a K-contractible complex of Λe-modules

which are free relative to the underlying category of K-modules. Thus

Hn(Γ,M)
∼= //

{
DiffΛ(Γ)⊗Λe M for n = 0

Hochn+1(Γ,M) for n > 0

the last being Hochschild homology as defined in [Mac Lane (1963), Chapter X].
The foregoing is a K-relative homology theory for associative K-algebras, in the sense

of (1.3). There is also an absolute theory, due to Shukla [Shukla (1961)], which Barr has
proved coincides with the cotriple theory relative to the category of sets (with the usual
dimension shift) [Barr (1967)]. We shall not deal with this absolute theory in this paper.

This concludes the present selection of examples. A further flock of examples will
appear in Section 10.

2. Properties of the Hn(X,E)G as functors of X, including exact sequences

Objects of the form XG, that is, values of the cotriple G, can be thought of as free
relative to the cotriple. Free objects are acyclic:

Proposition (2.1).

H0(XG,E)G
λ
∼=
//XGE

Hn(XG,E)G = 0 for n > 0

An object P is called G-projective if P is a retract of some value of G, or equivalently,
if there is a map s:P // PG such that s ◦Pε = P . G-projectives obviously have the same
acyclicity property.

To prove (2.1), we just recall from the Introduction that there is a contraction in the
simplicial object (XGGn+1E)n≥−1.

If f :X // Y in C, we define “relative groups” or homology groups of the map,
Hn(f, E)G for n ≥ 0, such that the following holds:
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Proposition (2.2). If X // Y in C, there is an exact sequence

· · · Hn(X,E)G// Hn(X,E)G Hn(Y,E)G// Hn(Y,E)G Hn(X // Y ,E)G// Hn(X // Y ,E)G

Hn−1(X,E)G

∂

ttiiiiiiiiiiiiiiiiiiiiiiiiiiii

Hn−1(X,E)G · · ·// · · · H0(X // Y ,E)G// H0(X // Y ,E)G 0//

Proposition (2.3). If X // Y // Z in C, there is an exact sequence

· · · Hn(X // Y ,E)G// Hn(X // Y ,E)G Hn(X // Z,E)G// Hn(X // Z,E)G Hn(Y // Z,E)G// Hn(Y // Z,E)G

Hn−1(X // Y ,E)G

∂

ssgggggggggggggggggggggggggggggggggg

Hn−1(X // Y ,E)G · · ·// · · · H0(Y // Z,E)G// H0(Y // Z,E)G 0//

If 0 is an initial object in C, that is, if there is a unique map 0 // X for every X, then
0 is G-projective and

H0(X,E)
∼= //H0(0 // X,E)

Hn(X,E)
∼= //Hn(XG ε //X,E) for n > 0

Examples of these sequences will be deferred to Section 8. There we will show that
under certain conditions the homology group Hn(X // Y,E) can be interpreted as a
cotriple homology group relative to the natural cotriple in the category (X,C). For one
thing, it will turn out that the homology of a map of commutative rings, Hn(A // B), is
just the homology of B as an A-algebra.

Imitative though these sequences may be of theorems in algebraic topology, we don’t
know how to state a uniqueness theorem for G-homology in our present context.

As to the definition of the relative groups, we just let

Hn(X
f // Y,E)G = Hn(Cf)

where Cf is the mapping cone of the chain transformation

fGn+1E:XGn+1E // Y Gn+1E for n ≥ 0

That is,

(CF )n =

{
Y Gn+1E ⊕XGnE for n > 0

Y GE for n = 0

∂n =

(
∂Y 0

fGn+1E −∂X

)
: (Cf)n // (Cf)n−1 for n ≥ 2

∂1 =

(
∂Y
fGE

)
: (Cf)1

// (Cf)0
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(These matrices act on row vectors from the right, ∂X and ∂Y indicate boundary operators
in the standard complexes of X and Y .)

(2.2) follows from the exact sequence of chain complexes

0 // (Y Gn+1E)n≥0
// Cf Π // (XGn+1E)n≥0

// 0

where the projection Π is a chain transformation of degree −1.
(2.3) follows from (2.2) by routine algebraic manipulation ([Eilenberg & Steenrod

(1952), Wall (1966)]).

3. Axioms for the Hn(X,E)G as functors of the abelian variable E

In this section we show that the functors Hn( , E)G : C //A are characterized by the
following two properties. (In Section 4 it will appear that they are characterized by a
little bit less.)

3.1. G-acyclicity.

H0( , GE)G
∼=
λ
//GE,

Hn( , GE)G = 0, n > 0.

3.2. G-connectedness. If 0 //E ′ //E //E ′′ // 0 is a G-short exact sequence
of functors C //A , then there is a long exact sequence in homology:

· · · Hn( , E ′)G// Hn( , E ′)G Hn( , E)G// Hn( , E)G Hn( , E ′′)G// Hn( , E ′′)G

Hn−1( , E ′)G

∂

ttiiiiiiiiiiiiiiiiiiiiiiiiiiii

Hn−1( , E ′)G · · ·// · · · H0( , E ′′)G// H0( , E ′′)G 0//

The acyclicity is trivial: as mentioned in the Introduction, the simplicial object XG∗GE
always has a contraction by virtue of

GE δE //G(GE).

For the homology sequence, we define a sequence of functors 0 //E ′ //E //E ′′ //0
to be G-exact if it is exact in the (abelian) functor category (C,A ) after being composed
with G : C //C, i.e., if and only if 0 // XGE ′ // XGE // XGE ′′ // 0 is an
exact sequence in A for every object X ∈ C. In this event we get a short exact sequence
of chain complexes in A ,

0 // (XGn+1E ′) // (XGn+1E) // (XGn+1E ′′) // 0, n ≥ −1,

from which the homology sequence is standard.
Next we show that properties 3.1 and 3.2 are characteristic of the homology theory

HG. Define L = (Ln, λ, ∂) to be a theory of G-left derived functors if:
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1. L assigns to every functor E : C //A a sequence of functors LnE : C //A , and
to every natural transformation ϑ : E // E1 a sequence of natural transformations
Lnϑ : LnE // LnE1, n ≥ 0, such that Ln(ϑϑ1) = Ln(ϑ) · Ln(ϑ1);

2. λ is a natural transformation L0E // E which has property 3.1 for every functor
which is of the form GE;

3. whenever 0 //E ′ //E //E ′′ //0 is a G-exact sequence of functors C //A ,
then there is a long exact homology sequence

· · · LnE
′// LnE
′ LnE

// LnE LnE
′′// LnE
′′

Ln−1E
′

∂

ttiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Ln−1E
′ · · ·// · · · L0E

′′// L0E
′′ 0//

where ∂ actually depends on the given sequence, of course, and

LnF
′′ Ln−1F

′
∂

//

LnE
′′

LnF
′′
��

LnE
′′ Ln−1E

′∂ // Ln−1E
′

Ln−1F
′

��

commutes for every map of G-short exact sequences

0 F ′// F ′ F// F F ′′// F ′′ 0//

0 E ′// E ′ E//E ′

F ′
��

E E ′′//E

F
��

E ′′

F ′′
��

E ′′ 0//

We now prove a uniqueness theorem for G-left derived functors. A proof in purely
abelian-category language exists also, in fact, has existed for a long time (cf. [Röhrl
(1962)] and F. Ulmer’s paper in this volume.)

Theorem (3.3). If L is a theory of G-left derived functors, then there exists a unique
family of natural isomorphisms

LnE
σn //Hn( , E)G, n ≥ 0,

which are natural in E, and are compatible with the augmentations

L0E

E
��????????????

L0E H0( , E)G
σ0 // H0( , E)G

E
��������������
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and connecting homomorphisms

Hn( , E ′′)G Hn−1( , E ′)G∂
//

LnE
′′

Hn( , E ′′)G

σn

��

LnE
′′ Ln−1E

′∂ // Ln−1E
′

Hn−1( , E ′)G

σn−1

��

corresponding to G-short exact sequences.

Proof. In this proof we write Hn( , E) for Hn( , E)G.
As we shall prove in a moment, the following is a consequence of G-connectedness:

Lemma (3.4). L0(G2E)
L0∂1 // L0(GE)

L0∂0 // L0E
// 0 is an exact sequence in the

functor category (C,A ).

Supposing that λ is a natural transformation L0E
// E which is natural in E as

well, we get a unique map of the cokernels

G2E GE// GE H0( , E)// H0( , E) 0//

L0(G2E) L0(GE)//L0(G2E)

G2E

λ

��

L0(GE) L0E//L0(GE)

GE

λ

��

L0E

H0( , E)

σ0

��

L0E 0//

which is compatible with the augmentations:

L0E

E

λ

��????????????
L0E H0( , E)

σ0 // H0( , E)

E

λ

��������������

Now extend σ0 inductively to a map of G-connected theories, σn : LnE //Hn( , E) for
all n ≥ 0, as follows. Let N = ker(GE // E) so that

0 //N
i //GE // E // 0

is an exact sequence of functors, a fortiori G-exact as well. As σ0 is obviously natural in
the E variable, we get a diagram

0 H1( , E)// H1( , E) H0( , N)
∂
// H0( , N) H0( , GE)//

L1E L0N
∂ //L1E

H1( , E)

σ1

��

L0N L0(GE)//L0N

H0( , N)

σ0

��

L0(GE)

H0( , GE)

σ0

��
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the bottom row being exact by virtue of H1( , GE) = 0. This defines σ1. For σn, n ≥ 2,
use the diagram

(3.6)

Hn( , E) Hn−1( , N)
∂

∼= //

LnE

Hn( , E)

σn

��

LnE Ln−1N
∂ // Ln−1N

Hn−1( , N)

σn−1

��
0 Hn( , E)// Hn−1( , N) 0//

This defines all of the maps σn. But to have a map of G-connected homology theories,
we must verify that each square

Hn( , E ′′) Hn−1( , E ′)
∂

//

LnE
′′

Hn( , E ′′)

σn

��

LnE
′′ Ln−1E

′∂ // Ln−1E
′

Hn−1( , E ′)

σn−1

��

corresponding to a G-exact sequence 0 // E ′ // E // E ′′ // 0 commutes.
We prove this first for σ1 and σ0, using what is basically the classical abelian-categories

method. We are indebted to F. Ulmer for pointing it out. Form the diagram

0 N ′′// N ′′ GE ′′// GE ′′ E ′′// E ′′ 0//

0 M//M GE//M

N ′′
��

GE E ′′//GE

GE ′′
��

E ′′

E ′′

=

��

E ′′ 0//

where M is ker(GE // E ′′). The left vertical arrow exists by virtue of N ′′ being
ker(GE ′′ // E ′′). This induces

(3.7)

0 H1( , E ′′)// H1( , E ′′) H0( ,M)
∂
// H0( ,M) H0( , N ′′)//

L1E
′′ L0M//L1E
′′

H1( , E ′′)

σ1

��

L0M L0N
′′//L0M

H0( ,M)

σ0

��

L0N
′′

H0( , N ′′)

σ0

��

Since the map labeled ∂ is the kernel of H0( ,M) //H0( , GE), there exists a map
L1E

′′ //H1( , E ′′) such that the left square commutes. As the right square com-
mutes by naturality of σ0, the outer rectangle commutes when this unknown map
L1E

′′ //H1( , E ′′) is inserted. But this is exactly the property which determines
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σ1 uniquely. Thus the left square commutes with σ1 put in. As there is obviously a map

0 E ′// E ′ E// E E ′′// E ′′ 0//

0 M//M GE//M

E ′
��

GE E ′′//GE

E
��

E ′′

E ′′

=

��

E ′′ 0//

a prism is induced:

H1( , E ′′) H0( ,M)//

L1E
′′

H1( , E ′′)

σ1

��

L1E
′′ L0M

// L0M

H0( ,M)

σ0

��

L1E
′′

L0E
′

∂ %%LLLLLLL
L1E

′′ L0M
// L0M

L0E
′
yyrrrrrrr

H1( , E ′′)

H0( , E ′)
∂ %%LLLLLLL

H1( , E ′′) H0( ,M)H0( ,M)

H0( , E ′)
yyrrrrrrr

L0E
′

H0( , E ′)

σ0

��

The top and bottom commute by naturality of the connecting homomorphisms in the L-
andH( , )-theories, the right front face commutes by naturality of σ0, the back commutes
as it is the left square of 3.7, so the left front face also commutes, q.e.d.

The proof that the σn are compatible with connecting homomorphisms in dimensions
> 1 is similar.

Finally, assuming that the theory L also satisfies the acyclicity condition 2. (or 3.1):

L0(GE)
∼=
λ
//GE,

Ln(GE) = 0, n > 0,

then from 3.5, σ0 : L0E
∼= //H0( , E), and inductively from 3.7, σn : LnE

∼= //Hn( , E)
for n > 0. This completes the uniqueness proof, except for Lemma 3.4.

Let 0 // N // GE // E // 0 be exact, as above, and let ν : G2E //N be
defined by the kernel property:

(3.8)

N GE
i

//

G2E

N

ν

���������������
G2E

GE

∂1

��
0 N// GE E

∂0

// E 0//
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Then

H0( , N) H0( , GE)//

H0( , G2E)

H0( , N)

H0( ,ν)

zzvvvvvvvvvvvvvvv
H0( , G2E)

H0( , GE)

H0( ,∂1)

��
H0( , GE) H0( , E)

H0( ,∂0)
// H0( , E) 0//

has an exact bottom row as 0 // N // · · · is G-exact as well. To prove H0( , ∂1)
and H0( , ∂0) exact it suffices to prove that H0( , ν) is onto. Let K = ker ν, so that
0 //K //G2E //N is exact. Composing this with G, it is enough to show that

0 //GK //GG2E
Gν //GN // 0

is exact, which just means Gν onto (in fact it turns out to be split). If we apply G to 3.8,
we get

GN GGE
Gi //

GG2E

GN

Gν

}}zzzzzzzzzzzzzzzzzz
GG2E

GGE

OO

h0

GN GGEoo
j

GG2E

GN

Gν

}}zzzzzzzzzzzzzzzzzz
GG2E

GGE

G∂1

��
0 GN// GGE GE

G∂0 //
GGE GEoo

h−i

GE 0//

where the contracting maps h−1 and h0 obey G∂0 · h−1 + h0 ·G∂1 = GGE, among other
things, and the bottom row is split (h−1 = δE and h0 = δGE). Now Gν splits, for
Gi ·h0 ·Gν = GN . Since Gi is a monomorphism it suffices to prove Gi ·h0 ·Gν ·Gi = Gi.
But

Gi · h0 ·G(νi) = Gi · h0 ·G∂1

= Gi · (GGE −G∂0 · h−1)

= Gi−G(i∂0) · h−1

= Gi

since i∂0 is zero.

4. Homology in additive categories

Now we assume that C is an additive category and G = (G, ε, δ) is a cotriple in C. It is
not necessary to suppose that G : C //C is additive or even that 0G = 0.

If E : C //A is a coefficient functor, and this is assumed to be additive, the homology
functors Hn( , E)G : C //A are defined as before, and are additive. They admit of an
axiomatic characterization like that in homological algebra (cf. 4.5).
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G-projectives play a big role in the additive case. We recall P ∈ C is G-projective if
there is a map s : P // PG such that s ·Pε = P . A useful fact, holding in any category,
is that the coproduct P ∗Q of G-projectives is again G-projective.

P ∗Q PG ∗QGs∗t //P ∗Q

P ∗Q

=

$$HHHHHHHHHHHHHHH
PG ∗QG (P ∗Q)G//PG ∗QG

P ∗Q

ε∗ε

��

(P ∗Q)G

P ∗Q

ε

zzvvvvvvvvvvvvvvv

In an additive category the coproduct is P ⊕ Q. We assume from now on that C is
additive.

Definition 4.1.

X ′ i //X
j //X ′′

is G-exact (G-acyclic) if ij = 0 and (AG,X ′) // (AG,X) // (AG,X ′′) is an exact
sequence of abelian groups for all A ∈ C, or equivalently, if ij = 0 and

(P,X ′) // (P,X) // (P,X ′′)

is an exact sequence of abelian groups for every G-projective P . A G-resolution of X
is a sequence 0 oo X oo X0

oo X1
oo · · · which is G-acyclic and in which X0,

X1,. . . are G-projective.

The usual facts about G-resolutions can be proved:

4.2 Existence and comparison theorem. G-resolutions always exist. If

0 oo X oo X0
oo X1

oo · · ·

is a G-projective complex and 0 oo Y oo Y0
oo Y1

oo · · · is a G-acyclic complex
then any f : X // Y can be extended to a map of complexes

Y Y0
oo Y0 Y1

oo

X X0
ooX

Y

f

��

X0 X1
ooX0

Y0

f0

��

X1

Y1

f1

��

0 Xoo

0 Yoo

X1 · · ·oo

Y1 · · ·oo

Any two such extensions are chain homotopic.
In fact,

0 oo X oo
∂0 XG oo

∂1 XG2 oo · · ·

is a G-resolution of X if we let ∂n =
∑

(−1)iXεi. It is a G-projective complex, and if
AG is hommed into the underlying augmented simplicial object XG∗, XG∗? the resulting
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simplicial set has a contraction (AG,X)
h−1 //(AG,XG)

h0 //(AG,XG2)
h1 // · · · defined

by x · hn = Aδ · xG for x : AG //XGn+1. Thus the simplicial group (AG,XG∗) has no
homotopy, or homology, with respect to the boundary operators (AG, ∂n).

The rest of the comparison theorem is proved just as in homological algebra.
Now we characterize the homology theory Hn( , E)G : C //A by axioms on the C

variable. In doing this we use finite projective limits in C, although we still refrain from
assuming G additive. We do assume that the coefficient functor E : C //A is additive,
which forces additivity of the homology functors. The axioms we get are:

4.3. G-acyclicity. If P is G-projective, then

H0(P,E)G
∼=
λ
// PE,

Hn(P,E)G = 0, n > 0.

4.4. G-connectedness. If 0 //X ′ //X //X ′′ // 0 is a G-exact sequence in C,
then there is a long exact sequence in homology:

· · · Hn(X ′, E)G// Hn(X ′, E)G Hn(X,E)G// Hn(X,E)G Hn(X ′′, E)G// Hn(X ′′, E)G

Hn−1(X ′, E)G

∂

ttiiiiiiiiiiiiiiiiiiiiiiiiiiii

Hn−1(X ′, E)G · · ·// · · · H0(X ′′, E)G// H0(X ′′, E)G 0//

The connecting maps are natural with respect to maps of G-exact sequences

0 Y ′// Y ′ Y// Y Y ′′// Y ′′ 0//

0 X ′// X ′ X//X ′

Y ′
��

X X ′′//X

Y
��

X ′′

Y ′′
��

X ′′ 0//

It follows from 4.4 that if X = X ′ ⊕X ′′, then the canonical map

Hn(X ′, E)G ⊕Hn(X ′′, E)G //Hn(X ′ ⊕X ′′, E)G

is an isomorphism, n ≥ 0. Thus the Hn( , E)G are additive functors.
We are able to prove the following characterization:

4.5 Uniqueness. If E0
λ //E is a natural transformation, and E1, E2,. . . , ∂ is a sequence

of functors together with a family of connecting homomorphisms satisfying 4.3 and 4.4,

then there is a unique isomorphism of connected sequences σn : En
∼= //Hn( , E)G, n ≥ 0,

which commutes with the augmentations E0
// E and H0( , E)G // E.

For the proofs of the above, 4.3 = 2.1. For 4.4, we assume that C has splitting
idempotents. This causes no difficulty as G can clearly be extended to the idempotent
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completion of C and any abelian category valued functor can be likewise extended [Freyd
(1964)]. Moreover, it is clear that this process does not affect the derived functors. (Or
assume that C has kernels.)

Now if 0 //X ′ //X //X ′′ // 0 is G-exact it follows from exactness of

(X ′′G,X) // (X ′′G,X ′′) // 0

that there is a map X ′′G //X whose composite with X //X ′′ is X ′′ε. Applying G

to it we have X ′′G X′′δ //X ′′G2 //XG which splits XG //X ′′G. By our assumption
we can find X0 so that

0 //X0
//XG //X ′′G // 0

is split exact. X0 being presented as a retract of a free is G-projective. Also, the composite

X0 XG// XG

X
��
X X ′′//

is zero and we can find X0
//X ′ so that

X ′ X//

X0

X ′
��

X0 XG// XG

X
��

commutes. Continuing in this fashion we have a weakly split exact sequence of complexes

Xn0 // Xn XGn+1// XGn+1 X ′′Gn+1// X ′′Gn+1 0//

...
...

...

Xn

��

...
...

...

XGn+1
��

...

X ′′Gn+1
��

...
...
...

...

Xn

...

��

XGn+1

...

��

X ′′Gn+1

...

��

X00 // X0 XG// XG X ′′G// X ′′G 0//

...
...

...

X0

��

...
...

...

XG
��

...

X ′′G
��

X ′0 // X ′

0
��

X ′ X// X X ′′//X

0
��

X ′′ 0//X ′′

0
��

X0

X ′
��

XG

X
��

X ′′G

X ′′
��
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Homming a Y G into it produces a weakly split exact sequence of abelian group complexes,
two of which are exact, and so, by the exactness of the homology triangle, is the third.
But then the first column is a G-projective resolution of X ′ and the result easily follows.

For uniqueness, 4.5, C must have kernels, and the argument follows the classical
prescription (Section 3). This is reasonable, for otherwise there wouldn’t be enough exact
sequences for 4.4 to be much of a restriction. First, XG2E0

//XGE0
//XE0

// 0
is exact in A . Using λ : E0

// E one gets a unique σ0 : E0
//H0( , E) which is

compatible with the augmentations:

E0

E

λ

��????????????
E0 H0( , E)// H0( , E)

E

λ

��������������

Letting N = ker(XG //X), the sequence 0 //N //XG //X // 0 is G-exact.
σ1 : E1

//H1( , E) is uniquely determined by

0 H1(X,E)// H1(X,E) H0(N,E)// H0(N,E) H0(XG,E)//

XE1 NE0
//XE1

H1(X,E)

σ1

��

NE0 XGE0
//NE0

H0(N,E)

σ0

��

XGE0

H0(XG,E)

σ0

��

σn similarly. Now the argument of the uniqueness part of 3.3 goes through and shows
that the σ’s commute with all connecting maps. Finally, if the En are G-acyclic (4.3), the
σn are isomorphisms.

As examples we cite TorRn (A,M) and ExtnR(M,A) obtained as G-derived functors, or
G-homology, of the coefficient functors

R-Mod
A⊗R //Ab

R-Mod
op HomR( ,A) //Ab

relative to the free R-module cotriple (1.1). Proved in this section are additivity of these
functors and their usual axiomatic characterizations.

Similarly one gets axioms for the K-relative Tor and Ext (1.1), and for the pure Tor
and Ext defined in Section 10.

4.6 Application to Section 3. Let C be arbitrary, G a cotriple in C. Let G operate
in the functor category (C,A ) by composition. The resulting cotriple is called (G,A ):

(E)(G,A ) = GE
(E)(ε,A )=εE // E,

(E)(G,A ) = GE
(E)(δ,A )=δE //G2E = (E)(G,A )2.
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Iterating this cotriple in the usual way, we build up a simplicial functor

E(G,A )E
(ε,A )0oo E(G,A ) E(G,A )2(δ,A )0 // E(G,A )2E(G,A )

(ε,A )0oo
E(G,A )2E(G,A )

(ε,A )1

oo · · ·E(G,A )2
oo · · ·E(G,A )2 oo · · ·E(G,A )2
oo

E(G,A )2 · · ·//E(G,A )2 · · ·// E(G,A )n+1· · ·
oo

E(G,A )n+1· · · oo· · · E(G,A )n+1... // · · ·E(G,A )n+1
oo
· · ·E(G,A )n+1

ooE(G,A )n+1 · · ·... //

from C //A . Rewritten, this is

GEE oo GE G2E// G2EGE
oo

G2EGE oo · · ·G2E oo · · ·G2E oo · · ·G2E
oo

G2E · · ·//G2E · · ·// Gn+1E· · ·
oo

Gn+1E· · · oo· · · Gn+1E... // · · ·Gn+1E
oo

· · ·Gn+1E ooGn+1E · · ·... //

Note that the i-th operator (ε,A )i : (E)(G,A )n+1 // (E)(G,A )n is actually εn−iE
using the notation of the Introduction (dual spaces cause transposition). But reversing
the numbering of face and degeneracy operators in a simplicial object does not change
homotopy or homology. Therefore

Hn(E, id)(G,A ) = Hn( , E)G, n ≥ 0;

on the left coefficients are in the identity functor (C,A ) // (C,A ).
Thus the homology theory H( , E)G can always be obtained from a cotriple on an

additive (even abelian) category, and the cotriple can be assumed additive. How can the
axioms of this section be translated into axioms for the Hn( , E)G in general?

The (G,A )-projective functors are just the retracts of functors of the form GE. Thus
the acyclicity axiom 4.3 becomes:

H0( , E)G
∼=
λ
// E,

Hn( , E)G = 0, n > 0,

if E is (G,A )-projective; this is equivalent to 3.1.
For the homology sequence, 0 //E ′ //E //E ′′ //0 will be (G,A )-exact if and

only if 0 //GE ′ //GE //GE ′′ // 0 is split exact in the functor category. (Prove
this considering the picture

0 E ′// E ′ E// E E ′′//

GE ′′

E

s

���������������
GE ′′

E ′′
��
E ′′ 0//

GE ′′ δE′′ // G2E ′′ Gs // GE splits the sequence.) (G,A )-exactness +3 G-exactness
as defined in 3.2. The homology sequence axiom of this section is weaker than that of
Section 3: it requires the exact homology sequence to be produced for a smaller class of
short exact sequences.

Concepts equivalent to (G,A )-projectivity and -exactness have recently been em-
ployed by Mac Lane to give a projective complex // acyclic complex form to the cotriple
acyclic-models comparison theorem 11.1 (unpublished). In particular, G-representability
in the acyclic-models sense (existence of ϑ : E //GE splitting the counit εE : GE // E)
is the same thing as (G,A )-projectivity, G-contractibility is the same as (G,A )-acyclicity.
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4.7 Application to extensions. Let an n-dimensional G-extension of X by Y be
a G-exact sequence

0 // Y //Xn−1
// · · · //X0

//X // 0, n > 0.

Under the usual Yoneda equivalence these form a set En(X, Y )G. E0(X, Y )G = (X, Y ),
the hom set in C (which is independent of G). Using the comparison theorem 4.2, an
extension gives rise to a map of complexes

0 Y// Y Xn−1
// Xn−1 · · ·//

XGn+1 XGn//XGn+1

Y

a

��

XGn · · ·//XGn

Xn−1

��

· · ·

· · ·

· · · XGn+1//

· · · X0
// X0 X// X 0//

· · · XG//· · ·

· · ·

XG X//XG

X0

��

X

X

=

��

X 0//

The map a is an n-cocycle ofX with values in the representable functor ( , Y ) : C
op //Ab.

We get in this way a map

En(X, Y )G //Hn(X, Y )G, n ≥ 0

(in dimension 0, any X // Y determines a 0-cocycle XG //X // Y ).
In practice cotriples often have the property that XG2 //// XG // X is always a

coequalizer diagram. In this case,

En(X, Y )G //Hn(X, Y )G

is an isomorphism for n = 0, and a monomorphism for n > 0. If G is the free cotriple in a
tripleable adjoint pair C //A //C this coequalizer condition holds; in fact, in that
case

En(X, Y )G
∼= //Hn(X, Y )G, n ≥ 0,

as is proved in [Beck (1967)].
In categories of modules or abelian categories with projective generators [Huber

(1962)], this gives the usual cohomological classification of extensions.

5. General notion of a G-resolution and the fact that the homology depends
on the G-projectives alone

There is no shortage of resolutions from which the G-homology can in principle be com-
puted, as the standard one always exists. But it would be nice to be able to choose more
convenient resolutions in particular problems, and have available something like the addi-
tive comparison theorem (Section 4) in order to relate them to the standard resolutions.
In fact a simplicial comparison theorem does exist [Kleisli (1967)], but we can get by with
something much easier. Any category can be made freely to generate an additive category
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by a well known construction and we find the solution to our problem by transferring it
to this additive context. This is the same technique as is used by André [André (1967),
Section 4].

The free additive category on C, ZC, has formal sums and differences of maps in
C as its maps. Exact definitions and properties connected with ZC are given after the
following definitions.

5.1 Definitions. A G-resolution of X is a complex

X oo
∂0 X0

oo ∂1 X1
oo · · · oo ∂n Xn

oo · · ·

in ZC in which all Xn for n ≥ 0 are G-projective and which is G-acyclic in the sense that

0 oo (AG,X)ZC
oo (AG,X0)ZC

oo · · · oo (AG,Xn)ZC
oo · · ·

has zero homology in all dimensions for all values AG of the cotriple G.
A simplicial G-resolution of X is an augmented simplicial object in C

X0X
ε0oo X0 X1

δ0 // X1X0

ε0oo
X1X0

ε1
oo · · ·X1 oo · · ·X1

oo · · ·X1

oo
X1 · · ·//X1 · · ·// Xn· · ·

oo
Xn· · · oo· · · Xn

... // · · ·Xn

oo
· · ·Xn ooXn · · ·... //

X oo
∂0=(ε0)

X0
oo ∂1=(ε0)−(ε1)

X1
oo · · · oo ∂n Xn

oo · · ·
is a G-resolution as defined above (as usual, ∂n =

∑
(−1)i(εi)). In particular, the standard

complex

XGX
Xε0oo XG XG2Xδ0 // XG2XG

Xε0oo
XG2XG

Xε1

oo · · ·XG2
oo · · ·XG2 oo · · ·XG2
oo

XG2 · · ·//XG2 · · ·// XGn+1· · ·
oo

XGn+1· · · oo· · · XGn+1... // · · ·XGn+1
oo

· · ·XGn+1
ooXGn+1 · · ·... //

is a G-resolution of X, since the simplicial set (AG,XGn+1)n≥−1 has the contraction given
in the proof of 4.2.

To be precise about ZC, its objects are the same as those of C, while a map X //Y in
ZC is a formal linear combination of such maps in C, i.e., if ni ∈ Z and fi : X //Y ∈ C,
we get a map

X
∑
ni(fi) // Y

in ZC. (We enclose the free generators in parentheses for clarity in case C is already addi-
tive.) Composition is defined like multiplication in a group ring, (

∑
mi(fi))(

∑
nj(gj)) =∑∑

minj(figj).
The natural inclusion of the basis C // ZC can be used to express the following

universal mapping property. If E : C //A is a functor into an additive category, there
is a unique additive functor E : ZC //A such that

ZC A
E

//

C

ZC
���������������

C

A

E

��?????????????
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commutes. Explicitly, XE = XE and (
∑
ni(fi))E =

∑
nifiE.

Let G = (G, ε, δ) be a cotriple in C. Thinking of G as taking values in ZC we get an
additive extension

ZC ZC
ZG

//

C

ZC
���������������

C

ZC

G

��?????????????

which is a cotriple ZG = (ZG,Zε, Zδ) in ZC. Explicitly, X · ZG = XG, and the counit
and comultiplication are

XG
(Xε) //X,

XG
(Xδ) //XG2.

Although there are more maps in ZC, the notion of object does not change, and neither
does the notion of projective object. For P ∈ C is G-projective ⇔ P regarded as an
object in ZC is ZG-projective. The forward implication is evident, and if

P

P

∑
ni(fi·Pε)=(P )

��?????????????P PG = P · ZG
∑
ni(fi) // PG = P · ZG

P

(Pε)

���������������

then fi · Pε = P for some i, as (P, P )ZC is a free abelian group on a basis of which both
fi · Pε and P are members; this proves the other implication.

Thus the G-resolutions of 5.1 are exactly the ZG-resolutions relative to the cotriple in
the additive category ZC, in the sense of 4.1. Invoking the comparison theorem 4.2, we
see that if (Xn) and (Yn) are G- or equivalently ZG-resolutions of X−1 = Y−1 = X, then
there is a chain equivalence

(Xn)
∼= // (Yn)

in ZC.
Finally, let E : C // A be a coefficient functor and E : ZC // A its additive

extension constructed above. As the following complexes are identical:

X(ZG)E oo
∂1

X(ZG)2E oo · · · oo
∂n=(

∑n
0 (−1)i(Xεi))E

X(ZG)n+1E oo · · ·

XGE oo
∂1

XG2E oo · · · oo
∂n=

∑n
0 (−1)iXεiE

XGn+1E oo · · ·
we conclude that

Hn(X,E)G = Hn(X,E)ZG, n ≥ 0,
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another reduction of the general homology theory to the additive theory of Section 4. The
last equation states that the diagram

ZC A
Hn( ,E)ZG

//

C

ZC
���������������

C

A

Hn( ,E)G

��?????????????

commutes, that is, the Hn( , E)ZG are the additive extensions of the Hn( , E)G.
Parenthetically, an additive structure on C is equivalent to a unitary, associative

functor ϑ : ZC //C, that is, Z( ) is a triple in the universe, and its algebras are the
additive categories; if C is additive, ϑ is (

∑
ni(fi))ϑ =

∑
nifi.

ZC

C

ϑ

��?????????????ZC A
Hn( ,E)ZG // A

C

Hn( ,E)G

���������������

also commutes. In fact, this commutativity relation is equivalent to additivity of the
homology functors, which in turn is equivalent to the homology functors’ being Z( )-
algebra maps.

In the general case—C arbitrary—the above gives the result that G-homology depends
only on the G-projectives:

Theorem (5.2). Let G and K be cotriples in C such that the classes of G-projectives
and K-projectives coincide. Then G and K determine the same homology theory, that is,
there is an isomorphism

Hn(X,E)G
∼= //Hn(X,E)K, n ≥ 0,

which is natural in both variables X ∈ C, E ∈ (C,A ).

The same isomorphism holds for homology groups of a map X // Y (see Section 2).
If (G, X) and (K, X) are G and K lifted to the category of objects over X, (C, X),

then the (G, X)- and (K, X)-projectives also coincide. Thus if E : (C, X) // A is a
coefficient functor, there is an isomorphism

Hn(W,E)(G,X)

∼= //Hn(W,E)(K,X), n ≥ 0,

natural with respect to the variables W //X ∈ (C, X) and E : (C, X) //A .
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Proof. P ∈ C is ZG-projective ⇔ P is ZK-projective. The augmented complexes

X oo XG oo XG2 oo · · ·
X oo XK oo XK2 oo · · ·

in ZC are thus projective and acyclic with respect to the same projective class in ZC.
The comparison theorem yields a chain equivalence

(XGn+1)
∼= // (XKn+1)n≥−1

As to naturality in X, if X //X1 in C, the comparison theorem also says that

(X1G
n+1) (X1K

n+1)∼=
//

(XGn+1)

(X1G
n+1)
��

(XGn+1) (XKn+1)
∼= // (XKn+1)

(X1K
n+1)
��

commutes up to chain homotopy. The comment about homology of a map follows from
homotopy-invariance of mapping cones. W // X being (G, X)-projective ⇔ W is G-
projective is a trivial calculation.

5.2 can also be proved through the intermediary of homology in categories with models
([Appelgate (1965)], [André (1967), Section 12], and Section 10 below), as well as by a
derived-functors argument (Ulmer).

To conclude this section we state the criteria for G-resolutions and (G, X)-resolutions
which will be used in Sections 6–9.

Proposition (5.3).

X0X oo X0 X1
// X1X0

oo
X1X0 oo · · ·X1 oo · · ·X1
oo · · ·X1

oo
X1 · · ·//X1 · · ·// Xn· · ·

oo
Xn· · · oo· · · Xn

... // · · ·Xn

oo
· · ·Xn ooXn · · ·... //

is a simplicial G-resolution of X = X−1 if the Xn are G-projective for n ≥ 0 and the
following condition, which implies G-acyclicity, holds: the cotriple G factors through an
adjoint pair

C

A

U

��?????????????C CG // C

A

F

���������������

and the simplicial object (XnU)n≥−1 in the underlying category A has a contraction

XU
h−1 //X0U

h0 //X1U
h1 // · · · //XnU

hn // · · ·
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(satisfying hn · εiU = εiU · hn−1 for 0 ≤ i ≤ n and hn · εn+1U = XnU). In particular, the
standard G-resolution (XGn+1)n≥−1 then has such a contraction:

XU
h−1 //XGU

h0 // · · · //XGn+1U
hn // · · ·

to wit, hn = XGnUη where η is the adjointness unit η : A // FU .

Complement. Let

A0A−1

ε0oo A0 A1
δ0 // A1A0

ε0oo
A1A0

ε1
oo · · ·A1 oo · · ·A1

oo · · ·A1

oo
A1 · · ·//A1 · · ·// An· · ·

oo
An· · · oo· · · An

... // · · ·An
oo

· · ·An ooAn · · ·... //A−1

B
''OOOOOOOOOOOOOOOOOOOOOO A0

B
��????????????
A1

B
��

An

B
wwooooooooooooooooooooooo

be a simplicial object in a category of objects over B, (A, B). If

A−1

h−1 // A0

h0 // A1

h1 // · · ·

is a contraction of the simplicial object sans B, then it is also a contraction of the simplicial
object in (A, B), that is, the hn commute with the structural maps into B:

A−1 A0

h−1 // A0 A1

h0 // A1 · · ·h1 // · · · An
//A−1

B
''OOOOOOOOOOOOOOOOOOOOOO A0

B
��????????????
A1

B
��

An

B
wwooooooooooooooooooooooo

Thus when searching for contractions in categories of objects over a fixed object, the base
object can be ignored.

Proof. If the stated condition holds, the simplicial set

(AG,Xn)n≥−1

has a contraction, so the free abelian group complex (AG,Xn)ZC has homology zero in
all dimensions ≥ −1. Indeed,

(AG,Xn)
kn // (AG,Xn+1), n ≥ 1,

is defined by

AG AG2 = AGUF
Aδ // AG2 = AGUF XnUF

xUF // XnUF Xn+1UF = Xn+1G
hnF //AG

Xn+1

xkn

))SSSSSSSSSSSSSSSSSSSSSSSSSSS Xn+1UF = Xn+1G

Xn+1

Xn+1ε

uukkkkkkkkkkkkkkkkkkkkkkkk
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if x : AG //Xn.
As to the Complement, if the maps into B are pn : An //B then

hn · pn+1 = hnεn+1pn = Anpn = pn

so in view of hn’s satisfying the identity hn · εn+1 = An, it is a map over B.

6. Acyclicity and coproducts

Given a G-resolution

X = X−1
oo X0

oooo X1
oooooo · · ·

is its term-by-term coproduct with a fixed object Y ,

X ∗ Y oo X0 ∗ Y
oooo X1 ∗ Y oo

oo
oo · · ·

still a G-resolution? (The new face operators are of the form εi ∗Y .) If Y is G-projective,
so are all the Xn ∗ Y , n ≥ 0. The problem is, is G-acyclicity preserved? In this section
we consider the examples of groups, commutative algebras and (associative) algebras,
and prove that acyclicity is preserved, sometimes using supplementary hypotheses. The
cotriples involved come from adjoint functors

C

A

U

��?????????????C CG // C

A

??

F

�������������

The general idea is to assume that (Xn) has a contraction in A and then show that this
contraction somehow induces one in (Xn ∗Y ), even though the coproduct ∗ is not usually
a functor on the underlying category level.

6.1. Groups. Let (Πn)n≥−1 be an augmented simplicial group and U : G // S the
usual underlying set functor where G is the category of groups.

From simplicial topology we know that the underlying simplicial set (ΠnU) has a
contraction if and only if the natural map into the constant simplicial set

(ΠnU)n≥0
// (Π−1U)

is a homotopy equivalence if and only if the set of components of Π∗U is Π−1U , and
Hn(Π∗U) = 0 for n > 0 (Π∗ = (Πn)n≥0). (This is because simplicial groups satisfy the
Kan extension condition, hence Whitehead’s Theorem; π1 = H1 by the group property,
so the fundamental group is zero, above).
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Now suppose that (ΠnU)n≥−1 is acyclic, or has a contraction, and Π is another group.
We shall prove that ((Πn ∗ Π)U)n≥−1 also has a contraction;

We do this by considering the group ring functor Z( ): G //Rings. The simplicial
ring ZΠ∗ obtained by applying the group ring functor in dimensionwise fashion has a
contraction, namely the additive extension of the given set contraction in Π∗. In (6.3)
below we shall show that the coproduct of this simplicial ring with ZΠ in the category of
rings, (ZΠ∗)∗ZΠ, where the n-dimensional component is ZΠn∗ZΠ, also has a contraction.
But as the group ring functor is a left adjoint,

(ZΠ∗) ∗ ZΠ ∼ // Z(Π∗ ∗ Π)

Thus the set of components of the complex on the right is just Z(Π−1 ∗ Π) and its n-
th homotopy is zero for n > 0. This implies that Π∗ ∗ Π has Π−1 ∗ Π as its set of
components and has no higher homotopy. (This is equivalent to the curiosity that Z( )
as an endofunctor on sets satisfies the hypotheses of the “precise” tripleableness theorem
([Beck (1967), Theorem 1] or [Linton (1969a)].)

6.2. Commutative algebras. First let GA be the cotriple relative to A-modules:

(A,Comm)

A-Mod

U

��????????????
(A,Comm) (A,Comm)

GA // (A,Comm)

A-Mod

??

F

������������

GA-resolutions behave very well with respect to coproducts of commutative A-algebras,
B ⊗A C. Indeed, as the standard resolution

B oo BGA
oooo BG2

A
oooooo · · ·

has an A-linear contraction (5.3), so has

B ⊗A C oo BGA ⊗A C
oo oo BG2

A ⊗A C oo
oo
oo · · · .

On the other hand, let G be the absolute cotriple

K-Alg

K-Mod

U

��????????????
K-Alg K-AlgG // K-Alg

K-Mod

??

F

������������

The standard G-resolution has a contraction on the underlying set level (5.3). Thus the
chain complex of A-modules associated to

B oo BG oooo BG2 oooooo · · ·
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is an A-free resolution of B as an A-module in the usual homological sense. Thus the
nonnegative-dimensional part of

B ⊗A C oo BG⊗A C
oooo BG2 ⊗A C oo

oo
oo · · ·

has Hn = TorAn (B,C), n ≥ 0. Since it is also a group complex, this simplicial object will
have a contraction as a simplicial set ks +3 TorAn (B,C) = 0, n > 0.

6.3. Resolutions and coproducts of associative algebras. Let K-Alg be the
category of associative K-algebras with identity. We are interested in resolutions relative
to the adjoint pair

K-Alg

K-Mod

U

��????????????
K-Alg K-AlgG // K-Alg

K-Mod

??

F

������������

These will give rise to Hochschild homology. Here F is the K-tensor algebra MF =
K + M + M ⊗M +M ⊗M ⊗M + · · · . If Λ,Γ are K-algebras, their coproduct

Λ ∗ Γ = (Λ + Γ)F/I

where I is the 2-sided ideal generated by the elements

λ1 ⊗ λ2 − λ1λ2, γ1 ⊗ γ2 − γ1γ2, 1K − 1Λ, 1K − 1Γ

(1K is in the summand of degree 0, 1Λ and 1Γ are in the summand of degree 1). The
K-linear maps Λ,Γ // (Λ⊕ Γ)F become algebra maps when I is divided out and these
two maps are the coproduct injections Λ,Γ // Λ ∗ Γ. (In fact, I is the smallest ideal
which makes these maps of unitary K-algebras.)

Let (Λn)n≥−1 be an augmented simplicial algebra which is U -contractible, i.e., there
exists a K-linear contraction

Λ−1U
h−1 // Λ0U

h0 // Λ1U
// · · ·

We want to know that such a contraction continues to exist in the simplicial algebra
(Λn ∗ Γ)n≥−1. But we can only prove this in a special case.

An algebra Λ is called K-supplemented if there is a K-linear map Λ //K such that
K //Λ //K is the identity of K. (The first map sends 1K // 1Λ). An algebra map
Λ // Λ1 is called K-supplemented if Λ,Λ1 are K-supplemented and

Λ

K
��??????Λ Λ1

// Λ1

K
��������

commutes.
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We will show that if Λ,Γ are K-supplemented, then the coproduct of the canonical
resolution of Λ with Γ,

Λ ∗ Γ oo ΛG ∗ Γ oooo ΛG2 ∗ Γ oo
oo
oo · · ·

possesses a K-contraction. We refer to (5.3) for the fact that (ΛGn+1)n≥1 always has a
K-linear contraction, and we prove that this contraction survives into the coproduct of
the resolution with Γ.

The cotriple G operates in a natural way in the category of K-supplemented alge-
bras. For if Λ is K-supplemented, the composition ΛG // Λ // K defines a K-
supplementation of ΛG. If Λ //Λ1 is K-supplemented, so is the induced ΛG //Λ1G,

Λ Λ1
//

ΛG

Λ
��

ΛG Λ1G
// Λ1G

Λ1

��
Λ

K
��??????Λ Λ1

// Λ1

K
��������

and if Λ is K-supplemented, the counit and comultiplication maps ΛG //Λ, ΛG //ΛG2

are also K-supplemented.
When Λ is K-supplemented let Λ = ker(Λ //K). If f : Λ //Λ1 is K-supplemented,

then f = K ⊕ f where f : Λ //Λ1 is induced in the obvious way. This means that if we
write f :K ⊕ Λ //K ⊕ Γ in the form of 2× 2 matrix, the matrix is diagonal:(

K 0

0 f

)
Using the above supplementation and writing ΛGn+1 = K ⊕ ΛGn+1, all of the face oper-
ators in the standard resolution (ΛGn+1)n≥−1 will be diagonal:

K ⊕ ΛGn

K 0
0 εi


oo −−−−− K ⊕ ΛGn+1, 0 ≤ i ≤ n .

The K-linear contraction hn: ΛGn+1 // ΛGn+2 is given by a 2× 2 matrix

K ⊕ ΛGn+1

h11 h12

h21 h22


//K ⊕ ΛGn+2

The relation hnεn+1 = ΛGn+1 is equivalent to

h11 = K, h21 = 0, h12εn+1 = 0, h22εn+1 = ΛGn+1
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(the matrix acts on row vectors from the right). The relation hnεi = εihn, 0 ≤ i ≤ n, is
equivalent to h22εi = εih22 as another matrix calculation shows. Thus the contraction
matrix has the form (

K h12

0 h22

)
where entry h22 satisfies the contraction identities with respect to the restrictions of the
face operators εi to the supplementation kernels, i.e. with respect to the maps εi. Thus,
we can switch to

h′n =

(
K 0
0 h22

)
which is also a matrix representation of a K-linear contraction

ΛGn+1
h′n // ΛGn+2

K ⊕ ΛGn+1
K⊕hn // K ⊕ ΛGn+2

where we have written hn in place of h22. This change can be made for all n ≥ −1, so we
get a K-contraction which is in diagonal form.

The next step is to find that the coproduct of two K-supplemented algebras can be
written in a special form. Consider the direct sum

W = K + Λ + Γ + Λ⊗ Γ + Γ⊗ Λ + Λ⊗ Γ⊗ Λ + · · ·

of all words formed by tensoring Λ and Γ together with no repetitions allowed. There is
an evident K-linear map

W // Λ ∗ Γ

given on the fifth summand above, for example, by

Λ⊗ Γ⊗ Λ // Λ⊗ Γ⊗ Λ // (Λ⊕ Γ)F // Λ ∗ Γ

The map W // Λ ∗ Γ is one-one because its image in F does not intersect the ideal I
((Λ + Γ)F/I = Λ ∗ Γ) and it is onto, clearly. Thus viewing Λ ∗Γ as a K-module, we have

Λ ∗ Γ = K + Λ + Γ + Λ⊗ Γ + · · ·

Now let Λ
f //Λ1, Γ

g //Γ1, be K-linear maps which respect both units and supplemen-
tations, that is, writing Λ = K ⊕ Λ, and Λ1,Γ,Γ1 similarly,

K ⊕ Λ
f=K⊕f // K ⊕ Λ1

K ⊕ Γ
g=K⊕g // K ⊕ Γ1
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Then a K-linear map Λ ∗ Γ // Λ1 ∗ Γ1, which we take the liberty of denoting by f ∗ g,
is induced:

K + Λ + Γ + Λ⊗ Γ + · · ·
f
��

g
��

f⊗g
��

K + Λ1 + Γ1 + Λ1 ⊗ Γ1 + · · ·
If we are also given f1: Λ1

// Λ2, g1: Γ1
// Γ2, then f1 ∗ g1: Λ1 ∗ Γ1

// Λ2 ∗ Γ2 and
functoriality holds: (f ∗ g)(f1 ∗ g1) = (ff1 ∗ gg1) (because ff1 = ff 1, and similarly for g,
g1).

To complete the argument, let

Λ
K⊕h−1 // ΛG

K⊕h0 // ΛG2 // · · · // ΛGn+1 K⊕hn // · · ·

be the K-contraction with diagonal matrix constructed above. The K⊕hn preserve both
units and supplementations, so

Λ ∗ Γ
(K⊕h−1)∗Γ

// ΛG ∗ Γ // · · · // ΛGn+1 ∗ Γ
(K⊕hn)∗Γ // · · ·

is a sequence of well defined K-linear maps which satisfies the contraction identities by
virtue of the above functoriality.

Alternative argument. The commutative diagram of adjoint pairs

K-Alg0 (K,K-Mod)

K-Alg

K-Alg0

K-Alg

(K,K-Mod)

??

������������ __

????????????

��������������

��????????????

K-Alg0

K-Mod

K-Alg0 (K,K-Mod)(K,K-Mod)

K-Mod

__

???????????? ??

������������

��????????????

��������������

arises from a distributive law TS //ST in K-Mod; T is the triple M //K⊕M , whose
algebras are unitary K-modules (objects of the comma category (K,K-Mod)) and S is
the triple M //M+M⊗M+· · · , whose algebras are associative K-algebras without unit;
this is the category denoted KAlg0. Let G be the cotriple in K-Alg relative to K-Mod,
and G1 that relative to unitary K-modules (K,K-Mod). By an easy extrapolation of
[Barr (1969), 5.2], the cotriples G, G1 operate in the full subcategory K-Alg′ consisting
of those Λ ∈ K-Alg whose underlying unitary K-modules are projective relative to K-
modules, and G, G1 restricted to this subcategory have the same projective objects. Now
Λ, as a unitary K-module, is projective relative to K-modules ks +3 there is a commutative
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diagram of K-linear maps

Λ K ⊕ Λ// K ⊕ Λ Λ//

K

Λ
������������

K

K ⊕ Λ
��

K

Λ
��??????????

ks +3 Λ has a K-linear supplementation. Thus if Λ is such an algebra, the standard
resolutions

(ΛGn+1), (ΛGn+1
1 )n≥−1

are chain equivalent in Z(K-Alg). ( )∗Γ extends to an additive endofunctor of Z(K-Alg).

(ΛGn+1 ∗ Γ), (ΛGn+1
1 ∗ Γ)n≥−1

are therefore also chain equivalent in Z(K-Alg). Finally, (ΛGn+1
1 ∗Γ)n≥−1 has a K-linear

contraction. This implies that

Hp(ΛG, (ΛG
n+1 ∗ Γ)n≥−1) = 0, p ≥ 0,

so (ΛGn+1 ∗ Γ) is G-acyclic.
As to the last K-contraction, if Λ is any K-algebra for a moment, and Γ is K-linearly

supplemented, then as a K-module Λ ∗ Γ can be viewed as a direct sum

Λ + Γ + Λ⊗ Γ + Γ⊗ Λ + · · ·

modulo the relations γ ⊗ 1Λ = 1Λ ⊗ γ = γ, and the ideal generated by them, such as
λ ⊗ γ ⊗ 1Λ = λ ⊗ γ, . . . . Thus if f : Λ // Λ1 is a unitary K-linear map, “f ∗ Γ”: Λ ∗
Γ // Λ1 ∗ Γ is induced, and functoriality holds: ff1 ∗ Γ = (f ∗ Γ)(f1 ∗ Γ). Now the
resolution (ΛGn+1

1 )n≥−1 has a unitary K-linear contraction (5.3). This contraction goes
over into (ΛGn+1

1 ∗ Γ)n≥−1 provided Γ is K-linearly supplemented.

7. Homology coproduct theorems

Let G be a cotriple in C and let E be a coefficient functor C //A . E preserves coproducts
if the map induced by the coproduct injections X, Y //X ∗ Y is an isomorphism for all
X, Y ∈ C:

XE ⊕ Y E
∼= // (X ∗ Y )E

(In this section we assume C has coproducts). Particularly if E preserves coproducts, it
is plausible that the similarly-defined natural map in homology is an isomorphism; if it is
indeed the case that

Hn(X,E)G ⊕Hn(Y,E)G //Hn(X ∗ Y,E)G

is an isomorphism, we say that the homology coproduct theorem holds (strictly speaking,
for the objects X, Y , in dimension n; it is characteristic of the theory to be developed
that the coproduct theorem often holds only for objects X, Y with special properties).
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In this section we show that the homology coproduct theorem holds for the various cat-
egories and various cotriples considered in Section 6. As one gathers from the arguments
resorted to in that section, there must be something the matter with the slick method of
proving coproduct theorems sketched in [Barr & Beck (1966), §5]. First, to correct a slip,
(5.4) in [Barr & Beck (1966)] should read u: (X1 ∗X2)GU //(X1G∗X2G)U , that is, it is
in the underlying category that u should be sought. However, even with that correction,
such a natural u does not exist so far as we know, in group theory (relative to sets) or in
Hochschild theory, contrary to our earlier claims. The morphisms u which we had in mind
in these cases turned out on closer inspection not to be natural, because of misbehavior of
neutral elements of one kind or another in coproducts viewed at the underlying-category
level. Only in “case 3” of [Barr & Beck (1966), §5], namely that of commutative algebras
relative to K-modules, does the method of that paper work. However, we are able to
retrieve most of the results claimed there although in the case of Hochschild theory we
are forced to impose an additional linear-supplementation hypothesis.

Such tests as we possess for the coproduct theorem are contained in the next two
propositions.

Proposition (7.1). If X and Y possess G-resolutions

X = X−1
oo X0

oooo X1
oooooo · · ·

Y = Y−1
oo Y0

oooo Y1
oooooo · · ·

such that the coproduct

X ∗ Y oo X0 ∗ Y0
oooo X1 ∗ Y1

oooooo · · ·

is a G-resolution, then the coproduct theorem holds for X, Y and any coproduct-preserving
coefficient functor. (The issue is G-acyclicity.)

In particular, if each row and column of the double augmented simplicial object

(Xm ∗ Yn)m,n≥−1

is a G-resolution, then the above diagonal object (Xn ∗ Yn)n≥−1 is a G-resolution.

Proposition (7.2). Suppose that the cotriple G factors through an adjoint pair

C

A

U

��?????????????C CG // C

A

??

F

�������������

and that (X ∗ Y )U is naturally equivalent to XU ∗A Y U where ∗A: A×A //A is some
bifunctor; in other words, the coproduct is definable at the underlying-category level. Then
the homology coproduct theorem holds for any coproduct-preserving coefficient functor.
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As to (7.1), coproducts of projectives being projective, we are left to consider the
augmented double simplicial set

(AG,Xm ∗ Yn)m,n≥−1

As the rows and columns lack homology, so does the diagonal, by the Eilenberg-Zilber
theorem [Eilenberg & Zilber (1953)]. For (7.2), identify

((XGn+1 ∗ Y Gn+1)U)n≥−1 with (XGn+1U ∗A Y Gn+1U),

of which

XU ∗A
h−1∗Ak−1 //XGU ∗A Y GU // · · ·

is a contraction (see (5.3)).
In the following examples we use the fact that the coproduct in the category of objects

over X, (C, X), is “the same” as the coproduct in C:

(X1

P1 //X) ∗ (X2

P1 //X) = (X1 ∗X2

(P1,P2) //X)

7.3. Groups.
Hn(Π1, E)⊕Hn(Π2, E) ∼ //Hn(Π1 ∗ Π2, E)

for any coproduct-preserving functor E:G //A , such as ⊗M or Hom( ,M) where M
is a fixed abelian group.

To deduce the usual coproduct theorems for homology and cohomology with coef-
ficients in a module, we apply the complement to (5.3) to see that (Π1G

n+1)n≥−1 is a
(G,Π1 ∗ Π2)-resolution of Π1 as a group over Π1 ∗ Π2 (using the coproduct injection
Π1

//Π1 ∗Π2). By (6.1) and the complement to (5.3) again, (Π1G
n+1 ∗Π2G

n+1)n≥−1 is
a (G,Π1 ∗ Π2)-resolution of Π1 ∗ Π2

// Π1 ∗ Π2. If M is a Π1 ∗ Π2-module, then M can
be regarded both as a Π1-module and as a Π2-module by means of Π1,Π2

// Π1 ∗ Π2.
Thus in homology we have a chain equivalence between the complexes

(DiffΠ1∗Π2
(Π1G

n+1)⊗M ⊕DiffΠ1∗Π2
(Π2G

n+1)⊗M),

(DiffΠ1∗Π2
(Π1G

n+1 ∗ Π2G
n+1)⊗M), n ≥ 0,

⊗ being over Π1 ∗ Π2. As a result,

Hn(Π1,M)⊕Hn(Π2,M) s // imHn(Π1 ∗ Π2,M).

In cohomology, taking coefficients in HomΠ1∗Π2
( ,M),

Hn(Π1 ∗ Π2,M) ∼ //Hn(Π1,M)⊕Hn(Π2,M).

These isomorphisms, apparently known for some time, appear to have been first proved
(correctly) in print in [Barr & Rinehart (1966)]. Similar isomorphisms hold for (co-)homol-
ogy of W1 ∗W2 where W1

// Π1, W2
// Π2 are groups over Π1, Π2. (Earlier proof:

[Trotter (1962)].)
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7.4. Commutative Algebras. Let B, C be A-algebras over D, that is, B,C //D,
and M a D-module.

IfH is homology relative to the “absolute” cotriple G coming from (A,Comm) //Sets,
we have

Hn(B,M)⊕Hn(C,M) ∼ //Hn(B ⊗A C,M),

Hn(B ⊗A C,M) ∼ //Hn(B,M)⊕Hn(C,M)

provided TorAp (B,C) = 0 for p > 0; this is because the coproduct of the standard resolu-
tions,

(BGn+1 ⊗A CGn+1)n≥−1,

has Tor(B,C) as its homology (use the Eilenberg-Zilber theorem), which is the obstruction
to a contraction in the underlying category of sets. The result is also proved in [André
(1967), Quillen (1967), Lichtenbaum & Schlessinger (1967), Harrison (1962)].

If H is the theory relative to A-modules, the isomorphisms hold without any condition
(6.2).

7.5. Associative K-algebras. If Λ1,Λ2
// Γ are K-algebra maps and M is a two-

sided Γ-module, and Λ1, Λ2 possess K-linear supplementations, then

Hn(Λ1,M)⊕Hn(Λ2,M) ∼ //Hn(Λ1 ∗ Λ2,M),

n ≥ 0; the same cohomology with coefficients in M , or for any coproduct-preserving
coefficient functor. The cotriple employed is that relative to K-modules; the proofs are
from (6.3), (7.1).

8. On the homology of a map

In Section 2 we defined homology groups of a map so as to obtain an exact sequence

· · · //Hn(X,E) //Hn(Y,E) //Hn(X // Y,E) ∂ //Hn−1(X,E) // · · ·

In fact, although we had to use a mapping cone instead of a quotient complex, the
definition is the same as in algebraic topology. In this section we show (with a proviso)
that these groups are the same as the cotriple groups

Hn(X // Y, (X,E))(X,G), n ≥ 0,

where X // Y is considered as an object under X, (X,E) is the extension to a functor
(X,C) // A of a given coefficient functor E: C // A and (X,G) is G lifted into
the comma category as described before (1.2); the proviso is that a homology coproduct
theorem should hold for the coproduct of any object with a free object.

The coefficient functor we use,

(X,C)
(X,E) //A ,
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is defined by (X //Y )(X,E) = coker XE //Y E. Recalling the formulas for (X,G), we
have that the Hn(X // Y, (X,E))X,G are the homology groups of the standard complex
which in dimensions 0 and 1 reads:

0 oo coker (XE // (X ∗ Y G)E)
∂1oo − coker (XE // (X ∗ (X ∗ Y G)G)E)

∂2oo − · · · .

Theorem (8.1). There is a sequence of homology maps

Hn(X // Y,E)G
Hn(ϕ) //Hn(X // Y, (X,E))(X,G), n ≥ 0,

resulting from a natural chain transformation

C(X // Y )n
ϕn // (X // Y )(X,G)n+1(X,E).

(C(X // Y ) is the mapping defined in Section 2 and functoriality is respect to maps of
objects under X). The Hn(ϕ) are isomorphisms if the following theorem holds: for all
X, Y ∈ C, the coproduct injections induce isomorphisms

Hn(X ∗ Y G,E)G
∼oo −

{
H0(X,E)G ⊕ Y GE, n = 0,

Hn(X,E)G, n > 0,

that is, if E satisfies the homology coproduct theorem when one summand is G-free.

Proof. We augment both complexes by attaching H0 as (−1)-dimensional term. We
first define ϕ0, ϕ1 so as to obtain the commutative square ϕ1∂1 = ∂1ϕ0, which induces a
natural map ϕ−1 on the augmentation terms.

Y GE (X ∗ Y G)Eϕ0

// (X ∗ Y G)E (X // Y )(X,G)(X,E)
coker

//

Y G2E ⊕XGE (X ∗ (X ∗ Y G)G)E
ϕ1 //Y G2E ⊕XGE

Y GE

∂1

��

(X ∗ (X ∗ Y G)G)E (X // Y )(X,G)2(X,E)coker //(X ∗ (X ∗ Y G)G)E

(X ∗ Y G)E

∂1

��

(X // Y )(X,G)2(X,E)

(X // Y )(X,G)(X,E)

∂1

��
Y GE

H0(X // Y,E)G
��

(X // Y )(X,G)(X,E)

H0(X // Y, (X,E))(X,G)

��
H0(X // Y,E)G H0(X // Y, (X,E))(X,G)ϕ−1

//

If we write i:X // Y ∗ Y G, j:Y G //X ∗ Y G for coproduct injections, then ϕ0 = jE,
and ϕ1 is determined by

(X ∗ Y G)GE

Y G2E

99

jGErrrrrrr

XGE

(X ∗ Y G)GE

iGE

%%LLLLLLLLXGE

Y G2E

(X ∗ Y G)GE (X ∗ (X ∗ Y G)G)E
j1E //
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where j1 is also a coproduct injection. That ϕ0, ϕ1 commute with ∂1 is readily checked.
The higher ϕn could be written down similarly but we don’t bother with that as

they automatically fall out of the acyclic-models argument which we need for the iso-
morphism anyway. We use (X,G) as the comparison cotriple. The cotriple complex
(X //Y )(X,G)n+1(X,E) is representable and contractible with respect to this cotriple,
as always. Furthermore, C(X // Y ) is (X,G)-representable via

ϑn:C(X // Y )n // C(X //X ∗ Y G)n

Y Gn+1E ⊕XGnE
(Y δ.jG)GnE⊕id. // (X ∗ Y G)Gn+1E ⊕XGnE,

if n > 0, and ϑ0 = jE. This proves ϕ−1 can be extended to a chain transformation defined
in all dimensions. It happens that the extension produced by (11.1) agrees with the above
ϕ0, ϕ1 in the lowest dimensions.

To conclude, if the homology coproduct assumption in (8.1) holds, then

Hn(X //X ∗ Y G,E)G
∼=

{
Y GE, n = 0,

0, n > 0,

since this homology group Hn fits into the exact sequence

· · · Hn(X,E)// Hn(X,E) Hn(X ∗ Y G,E)// Hn(X ∗ Y G,E) Hn
// Hn

ttjjjjjjjjjjjjj

∂

j j j j j j j j

H0(X,E)
ttjjjjjjjjj

H0(X,E) H0(X ∗ Y G,E)// H0(X ∗ Y G,E) H0
// H0 0//

Thus the ϕn induce homology isomorphisms between the two theories (11.3).

8.2. Groups. If

Π0

Π
��??????

Π0 Π1

f // Π1

Π
��������

is a map in (G ,Π) and M is a Π-module we get an exact sequence

· · · //Hn(Π0,M) //Hn(Π1,M) //Hn(f,M) //Hn−1(Π0,M) // · · ·

and a similar one in cohomology. The relative term arises either as in Section 2 or by
viewing f as an object in the double comma category (Π0,G ,Π1) and using this section.
The equivalence results from the fact that the homology coproduct theorem holds for
groups.

This sequence can be obtained topologically by considering the map of Eilenberg-
MacLane spaces K(Π0, 1) //K(Π1, 1). It is also obtained in [Takasu (1959/60)].
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As a special case, if

Π

1
��???????Π Π/N
f // Π/N

1
��������

is division by a normal subgroup and we take coefficients in Z as a 1-module, then
H0(f) = 0 and H1(f) ∼= N/[Π, N ]. Thus the Stallings-Stammbach sequence ([Stallings
(1965)],[Stammbach (1966)]) falls out:

H1(Π) //H1(Π/N) //N/[Π, N ] //H0(Π) //H0(Π/N) // 0

(our dimensional indices). Doubtless many of the other sequences of this type given in
[Eckmann & Stammbach (1967)] can be got similarly.

8.3. Commutative rings and algebras. Given maps of commutative rings

A B//A

D
��?????? B C//B

D
��

C

D
��������

we obtain exact sequences

· · · //Hn(A,M) //Hn(B,M) //Hn(A //B,M) ∂ //Hn−1(A,M) // · · ·

· · · //Hn(A //B,M) //Hn(A //C,M) //Hn(B //C,M) ∂ //Hn−1(A //B,M) // · · ·
for a D-module M ; similar sequences are obtainable in cohomology. Taking B = C = D,
and homology with respect to the cotriple G arising from

Comm

Sets
��?????????????Comm CommG // Comm

Sets

??

�������������

these sequences coincide with those of [Lichtenbaum & Schlessinger (1967), André (1967),
Quillen (1967)], as a result of the following facts:

(a) (A,G) is the cotriple arising from

(A,Comm)

Sets

U

��????????????
(A,Comm) (A,Comm)// (A,Comm)

Sets

??

F

������������

where (A //B)U = B.
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(b) If E: (Comm, D) //D-Mod is AE = DiffD(A)⊗D M , then (A //B)(A,E) =
Ω1
B/A ⊗B M . If E: (Comm, D)∗ //D-Mod is AE = Der(A,M)D, then

(A //B)(A,E) = A-Der(B,M)D

(c)

Hn(A //B,E)G
∼ //Hn(A //B, (A,E))A,G

for any coproduct preserving coefficient functor E: (Comm, D) //A (writing A
for A //D).

(a) has been noted in Section 1. For (b),

(A //B)(A,E) = coker(DiffD(A)⊗D M //DiffD(B)⊗D M)

= coker(DiffD(A) //DiffD(B))⊗D M
= (Ω1

B/A ⊗B D)⊗D M
= Ω1

B/A ⊗B M .

In the dual theory, it is appropriate to lift a functor E: C∗ //A to a functor

(E,A): (C∗, A) //A

by defining (B //A)(E,A) = ker(BE //AE). For E the contravariant functor in (b),
we have then

(A //B)(A,E) = ker(Der(B,M)D //Der(A,M))

= A-Der(B,M)D.

Alternatively and of course equivalently, dualize the coefficient category of D-modules.
Finally (c) follows from the fact that the coproduct theorem holds for homology in this
category when one factor is free. Indeed, C.(A,G) is the polynomial A-algebra A[C] and
is A-flat; thus the coproduct ( )⊗A C.(A,G) preserves (A,G)-resolutions.

For the A-relative theory (1.2), the same exact sequences are available.

8.4. Associative Algebras. Let G denote the cotriple on K-Alg arising out of the
adjoint pair

K-Alg

K-Mod
��????????????

K-Alg K-AlgG // K-Alg

K-Mod

??

������������

If Λ ∈ K-Alg, Γ // Λ ∈ (K-Alg,Λ) and M is a Λ-bimodule, we let Hn(Γ,M)G
and Hn(Γ,M)G denote the derived functors with respect to G of DiffΛ( ) ⊗Λ eM and
DerΛ( ,M) respectively. Let us drop Λ from the notation from now on. Hence Γ // Γ1

below really refers to Γ // Γ1
// Λ etc.
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Theorem (8.5).

Hn(Γ // Γ1,M)G
∼= Hn(Γ1,M)(Γ,G),

Hn(Γ // Γ1,M)G
∼= Hn(Γ1,M)(Γ,G).

Proof. According to (8.1) this requires showing that for any Γ′,

Hn(Γ ∗ Γ′G,M)G
∼=

{
H0(Γ,M)G ⊕Der(Γ′G,M), n = 0

Hn(Γ,M)G, n > 0,

and similarly for cohomology. Before doing this we require

Proposition. Let G1 be the cotriple described in (6.3) above. Then

Hn(Γ,M)G
∼= Hn(Γ,M)G1

,

Hn(Γ,M)G
∼= Hn(Γ,M)G1

.

The proof will be given at the end of this section.
Now observe that any G-projective is G1-projective and also is supplemented. Now

(ΓGn+1
1 )n≥0 is a G1-resolution of Γ, which means it has a unitary K-linear contraction.

As observed in (6.3) above, (ΓGn+1
1 ∗Γ′G)n≥0 also has a unitary K-linear contraction and

it clearly consists of G1-projectives. Thus it is a G1-resolution of Γ ∗ Γ′G. But then

DiffΛ(ΓGn+1
1 ∗ Γ′G)n≥0

∼= DiffΛ(ΓGn+1
1 )n≥0 ⊕DiffΛΓ′G

the second summand being a constant simplicial object, and the result follows easily.
To prove (8.6) we use acyclic models in form (11.3) below with G1 as the comparison

cotriple. First observe that there is a natural transformation ϕ:G //G1 which actually
induces a morphism of cotriples (meaning it commutes with both comultiplication and
counit). Actually G1 is presented as a quotient of G and ϕ is the natural projection.
Now we prove the theorem for cohomology. The proof for homology is similar. For any
Γ′ // Γ and any Γ-bimodule M , let Γ′E = Der(Γ′,M), Γ′En = Der(Γ′Gn+1,M). Let
ϕ: Der(Γ′,M) // Γ′E be the identity and ϕn: Der(Γ′Gn+1

1 ,M) // Γ′En be the map
Der(Γ′ϕn+1,M). Define ϑn: Γ′G1E

n // Γ′En to be the composite

Der(Γ′G1G
n+1,M)

Der(Γ′ϕGn+1,M) //Der(Γ′Gn+2,M)
Der(Γ′δGn,M) //Der(Γ′Gn+1,M)

Then it is easily seen that Der(Γ′ε1G
n+1,M).ϑn is the identity. (Of course, everything is

dualised for cohomology.) Thus the proof is finished by showing that the complex

· · · // Γ′G1E
n // Γ′G1E

n−1 // · · · // Γ′G1E
1 // Γ′G1E

// 0

is exact. But the homology of that complex is simply the Hochschild homology of Γ′G,
(with the usual degree shift), which in turn is Ext(Γe,K)(DiffΓΓ′G1,M). Hence we complete
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the proof by showing that DiffΓΓ′G is a K-relative Γe-projective. But Der(Γ′G1,M)
consists of those derivations of Γ′G //M which vanish on the ideal of Γ′G generated by
1Γ′−1K or, since all derivations vanish on 1K , it simply consists of those derivations which
vanish on 1Γ′ . But Der(Γ′G,M) ∼= HomK(Γ′,M) and it is easily seen that Der(Γ′G1,M) ∼=
HomK(Γ′/K,M) where Γ′/K denotes coker(K // Γ). This in turn is ∼= HomΛe(Λ

e ⊗
Γ′/K,M) and so DiffΓΓ′G1

∼= Λe⊗Γ′/K which is clearly a K-relative Λe-projective. This
completes the proof.

9. Mayer-Vietoris theorems

Using assumptions about the homology of coproducts, we shall deduce some theorems
of Mayer-Vietoris type. We learned of such theorems from André’s work [André (1967)].
In the case of commutative algebras we obtain slightly more comprehensive results (9.5).
Mostly, however, we concentrate on the case of groups (9.4).

Let E: C //A be a coefficient functor.

Theorem (9.1). Let

X2 Y//

X

X2

��

X X1
// X1

Y
��

be a pushout diagram in C and suppose that the homology coproduct theorem holds for Y
viewed as a coproduct in (X,C):

Hn(X //X1, E)⊕Hn(X //X2, E) ∼ //Hn(X // Y,E), n ≥ 0.

Then there is an exact sequence,

· · · Hn(X,E)// Hn(X,E) Hn(X1, E)⊕Hn(X2, E)// Hn(X1, E)⊕Hn(X2, E) Hn(Y,E)// Hn(Y,E)

Hn−1(X,E)

∂

sshhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Hn−1(X,E) // _______ H0(Y,E)// H0(Y,E) 0//

(The maps in the sequence are the usual Mayer-Vietoris maps (β,−γ), (β1, γ1) trans-
pose, if we momentarily write

β:H(X) //H(X1), β1:H(X1) //H(Y ),

γ:H(X) //H(X2), γ1:H(X2) //H(Y ).)
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Theorem (9.2). Suppose that the natural map is an isomorphism

Hn(X,E)⊕Hn(Y,E) ∼ //Hn(X ∗ Y,E), n ≥ 0

for any map X ∗ Y // Z there is an exact sequence

· · · Hn(Z,E)// Hn(Z,E) Hn(X // Z,E)⊕Hn(Y // Z,E)// Hn(X // Z,E)⊕Hn(Y // Z,E) Hn(X ∗ Y // Z,E)// Hn(X ∗ Y // Z,E)

Hn−1(Z,E)

∂

ssfffffffffffffffffffffffffffffffffffffff

Hn−1(Z,E) // ____ H0(X ∗ Y // Z,E)// H0(X ∗ Y // Z,E) 0//

For the proof of (9.1), write down the diagram

H(Y,E) H(X // X1, E)⊕H(X // X2, E)// H(X // X1, E)⊕H(X // X2, E) H(X,E)∂ //

H(X1, E) H(X // X1, E)//H(X1, E)

H(Y,E)
��

H(X // X1, E) H(X,E)∂ //H(X // X1, E)

H(X // X1, E)⊕H(X // X2, E)
��

H(X,E)

H(X,E)

=

��

H(X2, E) H(X // X2, E)// H(X // X2, E) H(X,E)
∂

//

H(Y,E)

H(X2, E)

OO
H(X // X1, E)⊕H(X // X2, E)

H(X // X2, E)

OO
H(X,E)

H(X,E)

OO

=

H(X,E) H(X1, E)//

H(X,E) H(Y,E)//

H(X,E) H(X2, E)//

H(X,E)

H(X,E)

=

��

H(X,E)

H(X,E)

=

OO

All three triangles are exact, the middle one by the coproduct theorem in (X,C). Lemma
(9.3) below then yields that

H(X,E) //H(X1, E)⊕H(X2, E) //H(Y,E) //H(X,E)

is an exact triangle. For (9.2), write

H(X ∗ Y // Z,E) H(X,E)⊕H(Y,E)∂ // H(X,E)⊕H(Y,E) H(Z,E)//

H(X // Z,E) H(X,E)∂ //H(X // Z,E)

H(X ∗ Y // Z,E)
��

H(X,E) H(Z,E)//H(X,E)

H(X,E)⊕H(Y,E)
��

H(Z,E)

H(Z,E)

=

��

H(Y // Z,E) H(Y,E)
∂

// H(Y,E) H(Z,E)//

H(X ∗ Y // Z,E)

H(Y // Z,E)

OO
H(X,E)⊕H(Y,E)

H(Y,E)

OO
H(Z,E)

H(Z,E)

OO

=

H(Z,E) H(X // Z,E)//

H(Z,E) H(X ∗ Y // Z,E)//

H(Z,E) H(Y // Z,E)//

H(Z,E)

H(Z,E)

=

��

H(Z,E)

H(Z,E)

=

OO

and again apply
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Lemma (9.3). In an abelian category

A1 B′ ⊕ C ′
(β′1,−γ′1)

// B′ ⊕ C ′ A

β′
γ′


//

B B′
β1β
′
1 //B

A1

β1

��

B′ A
β′ //B′

B′ ⊕ C ′

(B′,0)

��

A

A

=

��

C C ′
−γ1γ′1

// C ′ A
γ′

//

A1

C

OO

γ1

B′ ⊕ C ′

C ′

OO

(0,C′)

A

A

OO

=

A B
β //

A A1
//

A C
γ //

A

A

=

��

A

A

=

OO

is commutative with exact triangles for rows ks +3

B ⊕ C A1

 β1

−γ1


// A1 A//

B B′
β1β
′
1 //B

B ⊕ C

B
0


��

B′ A
β′ //B′

A1

β′1

��

A

A

=

��

C C ′
−γ1γ′1

// C ′ A
γ′

//

B ⊕ C

C

OO0

C


A1

C ′

OO

γ′1

A

A

OO

=

A B
β //

A B ⊕ C(β,γ) //

A C
γ //

A

A

=

��

A

A

=

OO

is commutative and has exact triangles for rows.

This lemma is dual to its converse and needn’t be proved.

9.4 Groups. Theorem (9.2) holds without restriction. Because of the validity of the
homology coproduct theorem (7.3), if Π0 ∗ Π1

// Π we get an exact sequence

· · · //Hn(Π,M) //Hn(Π0
// Π,M)⊕Hn(Π1

// Π,M)
//Hn(Π0 ∗ Π1

// Π,M) //Hn−1(Π,M) // · · ·

if M is a Π-module; similar sequences hold in cohomology, or in homology with coefficients
in any coproduct-preserving functor.

As to (9.1), its applicability is a little more restricted. Suppose that Π0 is a subgroup
of Π1 and Π2 and that Π is the pushout or amalgamated coproduct:

Π2 Π//

Π0

Π2

��

Π0 Π1
// Π1

Π
��
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It will be shown that if M is a Π-module, then the Π0-coproduct theorem holds for
homology:

Hn(Π0
// Π1,M)⊕Hn(Π0

// Π2,M) ∼ //Hn(Π0
// Π,M).

Then the Mayer-Vietoris sequence

· · · //Hn(Π0,M) //Hn(Π1,M)⊕Hn(Π2,M) //Hn(Π,M)

//Hn−1(Π0,M) //Hn−1(Π1,M)⊕Hn−1(Π2,M) //Hn−1(Π,M) // · · ·

is exact. There is a similar exact sequence for cohomology with coefficients in M . While
our argument will involve DiffΠ, we cannot claim this for arbitrary coefficient functors but
only for those that are a composition of DiffΠ: (G ,Π) //Π-Mod and an additive functor
E: Π-Mod //A . This theorem also has a topological proof using Eilenberg-Mac Lane
spaces. Similar results have been obtained by [Ribes (1967)]. We now launch into the
algebraic details:

The free group cotriple preserves monomorphisms: let Yn be the pushout or amalga-
mated coproduct

Π2G
n+1 Yn

//

Π0G
n+1

Π2G
n+1
��

Π0G
n+1 Π1G

n+1// Π1G
n+1

Yn
��

(n ≥ −1)

Thus (Yn) is an augmented simplicial group, with Y−1 = Π. Moreover Yn is a free group
when n ≥ 0 as Yn = SF where S is the set-theoretic pushout

Π2G
nU S//

Π0G
nU

Π2G
nU
��

Π0G
nU Π1G

nU// Π1G
nU

S
��

and F is the free group functor S // G , which as a left adjoint preserves pushouts.
Applying DiffΠ, we get a square

(a)

DiffΠ(Π2G
n+1) DiffΠ(Yn)//

DiffΠ(Π0G
n+1)

DiffΠ(Π2G
n+1)

��

DiffΠ(Π0G
n+1) DiffΠ(Π1G

n+1)// DiffΠ(Π1G
n+1)

DiffΠ(Yn)
��

which is exact, i.e., simultaneously a pushout and a pullback. We will prove this later, as
also fact (b) arrayed below. For the rest of this section we write

Diff = DiffΠ.
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Now using the usual Mayer-Vietoris maps we get an exact sequence of chain complexes

0 // (Diff(Π0G
n+1)) // (Diff(Π1G

n+1)⊕Diff(Π2G
n+1)) // (Diff(Yn)) // 0

for n ≥ 0, whence the homology sequence

(b)

· · · 0// 0 0// 0 Hp(Diff(Y∗))// Hp(Diff(Y∗))

0 ssggggggggggggggggggggg

0 · · ·// · · · H1(Diff(Y∗))// H1(Diff(Y∗))

Diff(Π0)

∂

rrffffffffffffffffffffff

Diff(Π0) Diff(Π1)⊕Diff(Π2)// Diff(Π1)⊕Diff(Π2) H0(Diff(Y∗))// H0(Diff(Y∗)) 0//

(The p illustrated is ≥ 2); in addition, the map ∂ is zero. This yields the conclusion that
(Diff(Yn)), n ≥ −1, is a Π-free resolution of Diff(Π) = IΠ in the category of Π-modules.

Let E be any additive functor Π-Mod //A . The first two columns of the following
commutative diagram are exact, hence the third column which consists of the mapping
cones of the horizontal maps is also exact.

Diff(Π0G
n+1)E ⊕Diff(Π0G

n+1)E Diff(Π1G
n+1)E ⊕Diff(Π2G

n+1)E// Diff(Π1G
n+1)E ⊕Diff(Π2G

n+1)E C//

Diff(Π0G
n+1)E

0

��
Diff(Π0G

n+1)E Diff(Π0G
n+1)E//Diff(Π0G

n+1)E

Diff(Π0G
n+1)E ⊕Diff(Π0G

n+1)E
��

Diff(Π0G
n+1)E C ′//Diff(Π0G
n+1)E

Diff(Π1G
n+1)E ⊕Diff(Π2G

n+1)E
��

Diff(Π0G
n+1)E

0

��
C ′

C
��

C ′

0

��

Diff(Π0G
n+1)E

0
��

Diff(Π0G
n+1)E Diff(Y∗)E// Diff(Y∗)E C ′′//Diff(Y∗)E

0
��

C ′′

0
��

Diff(Π0G
n+1)E ⊕Diff(Π0G

n+1)E

Diff(Π0G
n+1)E
��

Diff(Π1G
n+1)E ⊕Diff(Π2G

n+1)E

Diff(Y∗)E
��

C

C ′′
��

for n ≥ 0. C ′ is acyclic as it is the mapping cone of an identity. Clearly,

Hn(C) = Hn(Π0
// Π1, E)⊕Hn(Π0

// Π2, E) and

Hn(C ′′) = Hn(Π0
// Π, E).

The homology sequence of 0 //C ′ //C //C ′′ // 0 then proves the coproduct
theorem for groups under Π0. This completes the proof that (9.1) applies to amalgamated
coproduct diagrams in G , modulo going back and proving (a), (b).

Square (a) is obviously a pushout since DiffΠ: (G ,Π) //Π-Mod is a left adjoint and
preserves pushouts. The hard part is proving that it is a pullback. For that it is enough
to show that the top map DiffΠ(Π0G

n+1) //DiffΠ(Π1G
n+1) is a monomorphism, in view

of:
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Lemma. In an abelian category,

A2 A3β2

//

A0

A2

α2

��

A0 A1

α1 // A1

A3

β1

��

is a pushout ks +3

A0

(α1,α2) // A1 ⊕ A2

( β1
−β2) // A3

// 0

is exact, and dually, is a pullback ks +3

0 // A0

(α1,α2) // A1 ⊕ A2

( β1
−β2) // A3

is exact.

This is standard. Thus, we are reduced to:

Lemma. If Π0
//Π is a subgroup, then DiffΠ(Π0) //DiffΠ(Π) is a monomorphism of

Π-modules. If
Π0

Π
��?????????

Π0 Π1
// Π1

Π
�����������

is a diagram of subgroups, then

DiffΠ(Π0)

DiffΠ(Π)
$$JJJJJJJJJJJ

DiffΠ(Π0) DiffΠ(Π1)// DiffΠ(Π1)

DiffΠ(Π)
zzttttttttttt

commutes, hence DiffΠ(Π0) //DiffΠ(Π1) is a monomorphism of Π-modules.

Proof. 2 We write x ∈ Π0, y ∈ Π and present an isomorphism

DiffΠ(Π0) = ZΠ⊗Π0
IΠ0

IΠ
��????????????

DiffΠ(Π0) = ZΠ⊗Π0
IΠ0 D

f // D

IΠ
���������������

2There is a simple exact-sequences argument.
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where D is the Π-submodule generated by all x − 1. f and f−1 are the Π-linear maps
determined by the correspondence 1 ⊗ (x − 1) ks +3 x − 1. f is more-or-less obviously
well-defined. As for f−1, it is deduced from the exact sequence of Π-modules

R F
∂1 // F D

∂0 //F

ZΠ⊗Π0
IΠ0

f0

��

D

ZΠ⊗Π0
IΠ0

f−1

���
�

�
�

�
�

�
D 0//

where F is the free Π-module on generators [x], [x]∂0 = x − 1, and ∂1 is the sub-module
generated by all elements of the form

y[x] + y1[x1]− y1[y−1
1 yx]

where y = y1x1. f0 is defined by [x]f0 = 1⊗ (x− 1) and annihilates ∂1.
For the proof of the statements around (b), we know that

Hp(DiffΠ0
(Π0G

n+1)n≥0) =

{
DiffΠ0

(Π0) p = 0

0 p > 0

by (1.2). After tensoring over Π0 with ZΠ, which is Π0-projective since Π0
//Π is a sub-

group, we find that the homology becomes DiffΠ(Π0) in dimension 0 and 0 in dimensions
> 0. This accounts for the two columns of 0’s in (b). The fact that ∂ = 0 results from
exactness and the above Lemma, which implies that DiffΠ(Π0) //DiffΠ(Π1)⊕DiffΠ(Π2)
is monomorphic. This completes the proof.

(9.5) Commutative algebras. If

C B ⊗A C//

A

C
��

A B// B

B ⊗A C
��

is a pushout in the category of commutative K-algebras, where K is a commutative ring
and M is a B ⊗A C-module, then

Hn(A //B,M)⊕Hn(A // C,M) ∼ //Hn(A //B ⊗A C,M)

for n ≥ 0 if TorAp (B,C) = 0 for p > 0 (homology with respect to the absolute cotriple
in the category of commutative K-algebras (cf. (7.4)). In this case (9.1) gives an exact
sequence

· · · //Hn(A,M) //Hn(B,M)⊕Hn(C,M) //Hn(B ⊗A C,M)
//Hn−1(A,M) // · · ·
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A similar sequence holds in cohomology under the same Tor assumption. If K = A, this
coincides with the homology coproduct theorem.

If A⊗KB //C is a K-algebra map and TorKp (A,B) = 0 for p > 0, then the homology
assumption in (9.2) is satisfied and we get the sequence

· · · //Hn(C,M) //Hn(A // C,M)⊕Hn(B // C,M)
//Hn(A⊗K B // C,M) //Hn−1(C,M) // · · ·

if M is a C-module; similarly in cohomology. This is the same sequence as in [André
(1967)], Section 5, but the assumption TorKp (C,C) = 0, p > 0 employed there is seen to
be superfluous.

10. Cotriples and models

For our purposes it is sufficient to consider a category with models to be a functor
M // C where M is discrete. The objects of M are known as the models. Many
cotriples can be constructed in the following manner.

(10.1) Model-induced cotriple. If X ∈ C let

XG =FM //X
M∈M

M

the coproduct indexed by all maps of model objects M //X.
We assume that such coproducts exist in C, and write M //X instead of MI //X

in order to avoid having to name I: M //C
Let 〈x〉:M // XG denote the canonical map of the cofactor indexed by a map

x:M //X. Then
XG Xε //X

is the map such that 〈x〉Xε = x for all x:M //X, M ∈M.

XG
Xδ //XGG

is the map such that 〈x〉Xδ = 〈〈x〉〉 for all such x. (Since 〈x〉:M //XG, 〈〈x〉〉:M //(XG)G.)
Both ε and δ are natural transformations, and as

〈x〉Xδ.XGδ = 〈〈〈x〉〉〉 = 〈x〉Xδ.XδG and

〈x〉Xδ.XGε = 〈〈x〉〉XGε = 〈x〉 = 〈〈x〉〉XεG = 〈x〉Xδ.XεG

we have that G = (G, ε, δ) is a cotriple in C, which we call model-induced. (This special
case is dual to the “triple structure” which Linton discusses in [Linton (1969)]; see also
[Appelgate & Tierney (1969)].)

If M is a model, then M viewed as an object in C is G-projective (even a G-coalgebra):

M
〈M〉 //MG

Mε //M.
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Some other relations between model concepts and cotriple concepts are: A simplicial
object X∗, has zero homotopy relative to G (every (AG,X∗) has zero homotopy) ks +3 every
simplicial set (M,X∗) has zero homotopy. In the additive case, G-acyclicity is equivalent
to acyclicity relative to all of the objects M ∈M.

(10.2) Examples of model-induced cotriples. (a) Let 1 //R-Mod be the func-
tor whose value is R. Then AG = ⊕R, over all elements R // A, is the free R-module
cotriple (1.1). More generally, if C is tripleable over sets and 1 //C has value 1F , the
free object on 1 generator, then the model-induced cotriple G is the free cotriple in C,
e.g., C = K-Alg, 1F = K[x],C = Groups, 1F = Z.

(b) Let 1 //Ab have value Q/Z (rationals mod one). Let T be the model-induced
triple in Ab

AT =
∏

A // Q/Z

Q/Z.

(AT n+1)n≥−1 is an injective resolution of A. The composition

R-Mod //Ab T //Ab
HomZ(R, ) //R-Mod

is the Eckmann-Schopf triple TR in R-Mod. (AT n+1)n≥−1 is an R-injective resolution
of an R-module A.

(c) Let M //R-Mod be the subset of cyclic R-modules. The model-induced cotriple
is the pure cotriple

CG =
⊕

R/I // C
I⊂R
I 6=0

R/I.

The G-homology and cohomology of C ∈ R-Mod with coefficients in A ⊗R ( ), resp.
HomR( , A), are Harrison’s PtorRn (A,C), PextnR(C,A); Pext classifies pure extensions of
R-modules [Harrison (1959)]. This example is one of the original motivations for relative
homological algebra.

(d) Let ∆ // Top be the discrete subcategory whose objects are the standard Eu-
clidian simplices ∆p, p ≥ 0. Then

XG =
⋃

∆p
//X

p≥0

∆p

If Top E //A is H0( ,M)sing, the 0-th singular homology group of X with coefficients in
M , then

Hn(X,H0( ,M)sing)G
∼= Hn(X,M)sing.

This is proved by a simple acyclic-models argument (11.2) or equivalently by collapsing
of a spectral sequence like that in (10.5) . Singular cohomology is similarly captured.

(e) Let ∆ // Simp be the discrete subcategory of all ∆p, p ≥ 0, where Simp is the
category of simplicial spaces. The model-induced cotriple is XG = ∪∆p over all simplicial
maps ∆p

//X, p ≥ 0. The G-homology is simplicial homology.



Michael Barr and Jon Beck 242

(10.3) Homology of a category. In [Roos (1961)], [André (1965)] Roos and André
defined a homology theory Hn(X, E) of a category X with coefficients in a functor
E: X //A . The homology theory arises from a complex

Cn(X, E) =
∑

M0

α0 //M1
// ···

αn−1 //Mn

M0E, n ≥ 0.

Using the 〈〉 notation for the coproduct injections M0E //Cn(X, E), the face operators
εi:Cn // Cn−1, 0 ≤ i ≤ n, are

〈α0, . . . , αn−1〉εi =


α0E.〈α1, . . . , αn−1〉, i = 0

〈α0, . . . , αi−1αi, . . . , αn−1〉, 0 < i < n

〈α0, . . . , αn−2〉, i = n;

it is understood that 〈α0〉ε0 = α0E.〈M1〉, 〈α0〉ε1 = 〈M0〉 and C0(X, E) =
∑
ME over all

M ∈ X. The homology groups of this complex, with respect to the boundary operator
∂ =

∑
(−1)iεi, are denoted by Hn(X, E).

Clearly, H0(X, E) = lim// E, and Roos proves that if A has exact direct sums (AB4),

then Hn(X, E) = (Ln lim// )(E), the left satellite of the direct limit functor (X,A ) //A ,

for n > 0.
If there is a terminal object 1 ∈ X, then Hn(X, E) = 0 for n > 0. This follows from

the existence of homotopy operators

C0

h0 // C1
// · · · // Cn

hn // · · ·

defined by 〈α0, . . . , αn〉hn = 〈α0, . . . , αn, ( )〉 where ( ) is the unique map of the appropri-
ate object into 1. This is also obvious from the fact that lim// E = 1E, that lim// is an exact

functor (assuming A is AB4).
More generally, if X is directed and A is AB5, then Hn(X, E) = 0 for n > 0.

“Directed” means that if X0, X1 ∈ X, then there exist an object X ∈ X, maps
X0

// X oo X1, and if x, y:X1
// X0, then there exists a map z:X0

// X,
such that xz = yz. AB5 is equivalent to exactness of direct limits over directed index
categories.

(10.4) André-Appelgate homology. In a models situation, let Im M be the full
subcategory of C generated by the image of M // C. If X ∈ C, (Im M, X) is the
category whose objects are maps of models M // X and whose maps are triangles
X oo M0

// M1
// X. If E0: Im M // A is a coefficient functor, E0 can be

construed as a functor (Im M, X) //A by (M //X)E0 = ME0.
The André-Appelgate homology ofX with coefficients in E0 (relative to the models

M //C) is
An(X,E0) = Hn[(Im M, X), E0]
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where on the right we have the Roos-André homology of the comma category. Explicitly,
the chain complex which gives rise to this homology theory has

Cn(X, E0) =
∑

M0

α0 //M1
// ··· //Mn

x //X

M0E

with boundary operator as in [André (1967)], Section 1. We note that H. Appelgate
[Appelgate (1965)] developed this homology theory in a different way. He viewed the
above complex as being generated by its 0-chains acting as a cotriple in the functor
category (C,A ).

A basic property of this theory is that if M is a model, then

An(M,E0) ∼=

{
ME0, n = 0

0, n > 0,

for any functor E0: Im M //A . The category (Im M,M) has M as final object and the
contracting homotopy in (10.3) in available [André (1967)], Sub-section 1.1.

In general,
A0(X,E0) = X.EJ(E0)

where EJ : (Im M,A ) // (C,A ), the Kan extension, is left adjoint to the restric-
tion functor (Im M,A ) oo (C,A ). As the Kan extension can also be written as
lim// (E0: (Im M, X) //A ), Roos’s result implies that

An(X,E0) = X.(LnEJ)(E0), n > 0.

provided that A is AB4. (For further information about Kan extension, see Ulmer’s
paper in this volume.)

The theory An(X,E) is also defined when E: C //A by restricting E to Im M. It
can always be assumed that the coefficient functor is defined on all of C. If not, take
the Kan extension. The restriction of EJ(E0) to Im M is equivalent to the given E0 since
J : Im M //C is full.

Now suppose we have both a models situation M // C and a cotriple G in C. To
compare the homology theories An(X,E) and Hn(X,E) = Hn(X,E)G, we use:

(10.5) Spectral sequence. Suppose that all models M ∈M are G-projective. Then
there is a spectral sequence

Hp(X,Aq( , E)) //// Ap+q(X,E)

where the total homology is filtered by levels ≤ p.

Proof. For each M ∈M choose a map Mσ:M //MG such that Mσ.Mε = M . Define
ϑq:Cq(X,E) //Cq(XG,E) by the identity map from the 〈α0, . . . , αq−1, x〉-th summand
to the 〈α0, . . . , αq−1.Mqσ, xG〉-th. This makes C∗(X,E) G-representable, and the result
follows from (11.3).
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Proposition (10.6). If each category (Im M, XG) is directed and the coefficient cate-
gory A is AB5, then the above spectral sequence collapses and gives edge isomorphisms

Hn(X,A0( , E)) ∼ // An(X,E), n > 0.

The André-Appelgate theory has a natural augmentation A0( , E) // E, which is
induced by the following cokernel diagram and map e such that 〈x〉e = xE:

C1(X,E) C0(X,E)// C0(X,E) A0(X,E)//C0(X,E)

XE

e

��

A0(X,E)

XE
zzv

v
v

v
v

v
v

v
A0(X,E) 0//

We obtain isomorphisms Hn
∼= An from (10.6) when the augmentation is an isomorphism.

Proposition (10.7). Equivalent are:

(1) A0(-, E) // E is an isomorphism,

(2) E = EJ(E0), where E0: Im M //A

(3) E = EJ(E), the Kan extension of E restricted to Im M.

Finally, (1) (2) (3) are implied by:
(4) E commutes with direct limits and Im M //C is adequate [Isbell (1964)]

/dense [Ulmer (1968a)].

The equivalences are trivial in view of fullness of J : Im M //C. As to (4), this results
from the fact that J is adequate/dense ks +3 lim// [(Im M, X) //C] = X for all X ∈ C

(10.8) Examples in which the models are G-projective. (a) Let the models be
the values of the cotriple, that is, all XG,X ∈ C. The comma category (Im M, XG) has
XG as terminal object, hence is directed. Thus Aq(XG,E) = 0 for q > 0 and any E, and
(10.6) gives an isomorphism

Hn(XA0( , E)) ∼ // An(X,E), n ≥ 0.

(10.7) is inapplicable in general.
A stronger result follows directly from acyclic models (11.2). The complex C∗(X,E)

is G-representable (10.5) and is G-acyclic since each XG is a model. Thus

Hn(X,E) ∼ // An(X,E)

(b) Another convenient set of models with the same properties is that of all G-
projectives.

Here and above, existence of the André-Appelgate complex raises some difficulties.
The sets of models are too large. However, for coefficient functors with values in AB5
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categories with generators, the problem can be avoided. Such categories are Ab-topos
[Roos (1961)], realizable as categories of abelian sheaves on suitable sites, and it suffices
to pass to models or abelian groups in a larger universe. (See the discussion of this point
in [André (1967)] as well.)

(c) Let G be the free R-module cotriple and let M // R-Mod be the set of finitely
generated free R-modules. The categories (Im M, XG) are directed, since any M //XG
can be factored

M

SF
��?????????????M XG = XUF// XG = XUF

SF

iF

���������������

where i:S //XU is a finite subset of the free basis XU , (U is the underlying set functor.)
Moreover, Im M //R-Mod is adequate. Thus if E is any cocontinuous coefficient functor
with values in an AB5 category, then Hn(X,E) ∼= An(X,E) for all R-modules X.

(d) More generally, if C is tripleable over sets, ℵ is a rank of the triple [Linton (1966a)]
and M is the set of free algebras on fewer than ℵ generators, then (Im M, XG) can be
proved directed in the same way, Thus homology relative to the models agrees with the
cotriple homology (for cocontinuous AB5–category-valued coefficient functors; G is the
free algebra cotriple relative to sets).

In these examples, adequacy/denseness of Im M is well known or easily verified. In
the following case adequacy fails. Let 1 //R-Mod have R as value. A0(X, id.) //X
is non-isomorphic (coefficients are in the identity functor R-Mod // R-Mod). In fact
A0(X, id.) = R(X)/I, the free R-module on X modulo the submodule generated by all
r(x)− (rx). Of course, H0(X, id.) ∼= X (homology with respect to the absolute cotriple,
which is induced by the above model).

(e) Cohomology. Let E: C // A ∗ be a “contravariant” coefficient functor. Iso-

morphisms An(X,E) ∼ //Hn(X,E) follow purely formally in cases (a), (b) above. Cases
(c), (d) offer the difficulty that the coefficient category A ∗ cannot be assumed to be AB5,
since in practice it is usually dual to a category of modules and therefore AB 5∗. Assume
that the rank ℵ of the triple T is ℵ0, however, one can proceed as follows.

If X is a T-algebra, the category of X-modules is abelian, AB5, has a projec-
tive generator and is complete and cocomplete. Thus injective resolutions can be
constructed, in the abelian category sense. Moreover, the free abelian group functor
DiffX : (C, X) // X-Mod exists. Consider the André-Appelgate complex with values
in X-Mod: (Cp(X)) = (Cp(X,DiffX)p≥0). Its homology, written Ap(X), measures the
failure of the André-Appelgate theory to be a derived functor on the category X-Mod.
If Y //X is an X-module, (HomX(CpX, Y )p≥0) has AP (X, Y ) as its cohomology. Let
(Y q)q≥0 be an injective resolution of Y . We get a double complex (HomX(CpX, Y

q)p,q≥0),
hence a universal-coefficients spectral sequence

ExtqX(Ap(X), Y ) //// Ap+q(X, Y ),
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where the total cohomology is filtered by q. (Use the fact that the complex Cp(X) consists
of projective X-modules.)

For example, in the case of commutative A-algebras over B, one obtains

ExtqB(Hp(A,B,B),M) //Hp+q(A,B,M)

in the notation of [André (1967)], Section 16.
Similarly, in the cotriple theory, there is a spectral sequence

ExtqX(Hp(X), Y ) //Hp+q(X, Y )

Now, by the assumption that the rank of the triple is ℵ0, the free T-algebra XG //X
is a filtered direct limit of free T-algebras of finite type, that is, of models. Since the homol-
ogy Ap( ) commutes with filtered limits, Ap(XG) = 0 for p > 0, A0(XG) = DiffX(XG).
Thus the above spectral sequence yields An(XG, Y ) = 0 for n > o, A0(XG, Y ) =
HomX(XG, Y ). Acyclic models (11.2) now yields isomorphisms

An(X, Y ) ∼ //Hn(X, Y ).

A case in which this comparison technique runs into difficulty is the following. Let
M // K-Alg be the set of tensor algebras of finitely generated K-modules, and let
G be the cotriple in K-Alg relative to K-modules. Homology isomorphisms Hn

∼ // An
are easily obtained, as in (d). But the above derivation of the universal-coefficients spec-
tral sequence does not work, because one seems to need to resolve the module variable
both S -relatively and K-relatively at the same time.

11. Appendix on acyclic models

Let 0 oo C−1
oo C0

oo C1
oo · · · be a chain complex of functors C //A . (Cn)

is G−representable, where G is a cotriple in C, if there are natural transformations
ϑn:Cn // GCn such that ϑn.εCn = Cn for all n ≥ 0. (Cn) is G-contractible if the
complex (GCn)n≥−1 has a contracting homotopy (by natural transformations).

Proposition [(11.1)]. [Barr & Beck (1966)] Suppose that (Cn) is G-representable, (Kn)
is G-contractible, and ϕ−1:C−1

//K−1 is a given natural transformation, then ϕ−1 can
be extended to a natural chain transformation (ϕn): (Cn) // (Kn)n≥−1 by the inductive
formula

Cn GCn
ϑn // GCn

GCn−1

G∂

��
GCn−1 GKn−1Gϕn−1

// GKn−1

GKn

h

OO
GKn Kn

εKn //

Any two extensions of ϕ−1 are naturally chain homotopic (we omit the formula).



Homology and Standard Constructions 247

In particular, if C−1 = K−1, then there are natural chain equivalences (Cn)
∼ //oo (Kn).

If E: C // A is a functor with values in an additive category, then the standard
chain complex

0 oo E oo GE oo G2E oo · · ·
is G-representable and G-contractible by virtue of ∂GnE:Gn+1E //Gn+2E. Thus if

0 oo E oo E0
oo E1

oo · · ·

is any G-representable chain complex of functors C //A , there exists a unique natural
chain transformation (ϕn): (En) // (Gn+1E) such that ϕ−1 = E (up to homotopy).

The proof is more of less contained in the statement. The term “G-contractible” was
not used in [Barr & Beck (1966)], the term “G-acyclic” used there is reintroduced below
with a different meaning.

The conclusions of (11.1) in practice are often too hard to establish and too strong
to be relevant, At present all we need is homology isomorphism - a conclusion which is
much weaker than chain equivalence. Thus it is convenient and reasonably satisfying to
have the following weaker result available (as M. André has pointed out to us—see also
[André (1967)]), that one can conclude a homology isomorphism H(XE∗) //H(X,E)G
from the information that the complex E∗ is G-representable as above and G-acyclic
merely in the sense that Hn(XGE∗) = 0 if n > 0, and = XGE if n = 0. This observation
greatly simplifies proofs of agreement between homology theories arising from standard
complexes, such as those of [Barr & Beck (1966)].

Proposition (11.2). Let

0 oo E oo E0
oo E1

oo · · ·

be a complex of functors C //A such that

Hn(XGE∗) =

{
XGE, n = 0

0 n > 0,

and the G-homology groups

Hp(X,Eq)G =

{
XEq, p = 0

0, p > 0,

for all X ∈ C, q ≥ 0. Then the spectral sequences obtained from the double complex

(XGp+1Eq)p,q≥0

by filtering by levels ≤ p and ≤ q both collapse, giving edge isomorphisms

Hn(XE∗)
∼ // total Hn (p filtration)

Hn(X,E)G
∼ // total Hn (q filtration)
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for all n ≥ 0, hence natural isomorphisms Hn(XE∗)
∼ //Hn(X,E)G.

In particular, G-representability of the complex (En) guarantees the second acyclicity
condition, since the Eq are then retracts of the G-acyclic functors GEq, q ≥ 0.

There is an obvious overlap between these two propositions which we encountered in
Theorem (8.1):

Proposition (11.3). Let 0 oo E oo E0
oo · · · be a G-representable chain complex

of functors C //A and (ϕn): (En) // (Gn+1E), n ≥ −1, a chain transformation such
that ϕ−1 = E (see (11.1)). By G-representability, the acyclicity hypothesis

Hp(X,Eq) =

{
XEq, p = 0

0, p > 0,

is satisfied and the rows of the double complex XGp+1Eq have homology zero. We obtain
a spectral sequence

Hp(X,Hq( , E∗))G
////Hp+q(XE∗),

where the total homology is filtered by levels ≤ p. The edge homomorphisms are

H0(X,Hn( , E∗))G
λG //Hn(XE∗)

and the top map in the commutative diagram

Hn(XE∗) Hn(X,H0( , E∗))G//Hn(XE∗)

Hn(X,E)G

Hn(Xϕ∗)

&&MMMMMMMMMMMMMMMMM
Hn(X,H0( , E∗))G

Hn(X,E)G
��

Finally suppose that

Hn(XGE∗) =

{
XGE, n = 0

0 n > 0.

The spectral sequence collapses, as Hp(X,Hq( , E∗))G = 0 if q > 0. The edge homomor-
phism λG is zero. The second edge homomorphism and the vertical map in the above
triangle both become isomorphisms. Thus the homology isomorphism produced by (11.2)
is actually induced by the chain map ϕ∗:E∗ // (Gn+1E)n≥0.

The proof is left to the reader.



Composite cotriples and derived functors

Michael Barr 1

Introduction

The main result of [Barr (1967)] is that the cohomology of an algebra with respect to
the free associate algebra cotriple can be described by the resolution given by U. Shukla
in [Shukla (1961)]. That looks like a composite resolution; first an algebra is resolved
by means of free modules (over the ground ring) and then this resolution is given the
structure of a DG-algebra and resolved by the categorical bar resolution. This suggests
that similar results might be obtained for all categories of objects with “two structures”.
Not surprisingly this turns out to involve a coherence condition between the structures
which, for ordinary algebras, turns out to reduce to the distributive law. It was suggested
in this connection by J. Beck and H. Appelgate.

If α and β are two morphisms in some category whose composite is defined we let α ·β
denote that composite. If S and T are two functors whose composite is defined we let ST
denote that composite; we let αβ = αT ′ · Sβ = S ′β · αT :ST // S ′T ′ denote the natural
transformation induced by α:S // S ′ and β:T // T ′. We let αX:SX // S ′X denote the
X component of α. We let the symbol used for an object, category or functor denote also
its identity morphism, functor or natural transformation, respectively. Throughout we let
M denote a fixed category and A a fixed abelian category. N will denote the category of
simplicial M objects (see 1.3. below) and B the category of cochain complexes over A.

1. Preliminaries

In this section we give some basic definitions that we will need. More details on cotriples
may be found in [Barr & Beck (1966)], [Beck (1967)] and [Huber (1961)]. More details on
simplicial complexes and their relevance to derived functors may found in [Huber (1961)]
and [Mac Lane (1963)].

Definition 1.1. A cotriple G = (G, ε, δ) on M consists of a functor G:M // M
and natural transformations ε:G // M and δ:G // G2 (= GG) satisfying the identities
εG · δ = Gε · δ = G and Gδ · δ = δG · δ. From our notational conventions εn:Gn // M
is given the obvious definition and we also define δn:G // Gn+1 as any composite of δ’s.
The “coassociative” law guarantees that they are all equal.

1This research has been partially supported by the NSF under grant GP-5478.
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Proposition 1.2. For any integers n,m ≥ 0,

(1) εn ·GiεmGn−i = εn+m, for 0 ≤ i ≤ n,

(2) GiδmGn−i · δn = δm+n, for 0 ≤ i ≤ n,

(3) Gn−i+1εmGi · δn+m = δn, for 0 ≤ i ≤ n+ 1,

(4) εn+m ·GiδGn−i−1 = εn, for 0 ≤ i ≤ n− 1.

The proof is given in the Appendix (A.1).

Definition 1.3. A simplicial M object X = {Xn, d
i
nX, s

i
nX} consists of objects Xn,

n ≥ 0, of M together with morphisms di = dinX:Xn
// Xn−1 for 0 ≤ i ≤ n called

face operators and morphisms si = sinX:Xn
// Xn+1 for 0 ≤ i ≤ n called degeneracies

subject to the usual commutation identities (see, for example [Huber (1961)]). A mor-
phism α:X // Y of simplicial objects consists of a sequence αn:Xn

// Yn of morphisms
commuting in the obvious way with all faces and degeneracies. A homotopy h:α ∼ β
of such morphisms consists of morphisms hi = hin:Xn

// Yn+1 for 0 ≤ i ≤ n for each
n ≥ 0 satisfying d0h0

n = αn, dn+1hnn = βn and five additional identities tabulated in [Huber
(1961)].

From now on we will imagine M embedded in N as the subcategory of constant
simplicial objects, those X = {Xn, d

i
n, s

i
n} for which Xn = C, din = sin = C for all n and

all 0 ≤ i ≤ n.

Definition 1.4. Given a cotriple G = (G, ε, δ) on M we define a functor G∗:N // N
by letting X = {Xn, d

i
nX, s

i
nX} and G∗X = Y = {Yn, dinY, sinY }, where Yn = Gn+1Xn,

dinY = GiεGn−i(dinX) and sinY = GiδGn−i(sinX).a

Theorem 1.5. If h:α ∼ β where α, β:X // Y , then G∗h:G∗α ∼ G∗β where (G∗h)in =
GiδGn−ihin.

The proof is given in the Appendix (A.2).

Theorem 1.6. Suppose R is any subcategory of M containing all the terms and all the
faces and degeneracies of an object X of M. Suppose there is a natural transformation
ϑ:R // G|R such that ε · ϑ = R. Then there are maps α:G∗X // X and β:X // G∗X
such that α · β = X and G∗X ∼ β · α.

The proof is given in the Appendix (A.3).

2. The distributive law

The definitions 2.1 and Theorem 2.2 were first discovered by H. Appelgate and J. Beck
(unpublished).

aEditor’s footnote: This definition makes no sense. The definition of dni should be GiεGn−i.Gn+1dinX
and similarly I should have had sinY = GiδGn−i.Gn+1sinX. I (the editor) no longer know what I (the
author) was thinking when I wrote this. Many thanks to Don Van Osdol, who was evidently doing a lot
more than proofreading, for noting this. This notation appears later in this paper too and I have decided
to keep it as in the original.
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Definition 2.1. Given cotriples G1 = (G1, ε1, δ1) and G2 = (G2, ε2, δ2) on M, a natural
transformation λ:G1G2

// G2G1 is called a distributive law of G1 over G2 provided the
following diagrams commute

G1G
2
2 G2

2G1

G1G2

G1G
2
2

G1δ2

��

G1G2 G2G1G2G1

G2
2G1

δ2G1

��

G1G2 G2G1λ //

G2
1G2

G1G2

OO

δ1G2

G2
1G2 G2G

2
1G2G
2
1

G2G1

OO

G2δ1

G2
1G2 G1G2G1

G1λ // G1G2G1 G2G
2
1

λG1 //

G1G
2
2 G2G1G2λG2

// G2G1G2 G2
2G1G2λ

//

G1 G2G1
oo
ε2G1

G1G2

G1

G1ε2

��

G1G2 G2

ε1G2 // G2

G2G1

OO

G2ε1

G1G2

G2G1

λ
??????

��??????

Theorem 2.2. Suppose λ:G1G2
// G2G1 is a distributive law of G1 over G2. Let

G = G1G2, ε = ε1ε2 and δ = G1λG2 · δ1δ2. Then G = (G, ε, δ) is a cotriple. We write
G = G1

◦
λG2.

The proof is given in the Appendix (A.4).

Definition 2.3. For n ≥ 0 we define λn:Gn
1G2

// G2G
n
1 by λ0 = G2 and λn = λn−1G1 ·

Gn−1
1 λ. Also λn:Gn+1

1 Gn+1
2

// Gn+1 is defined by λ0 = G and λn = G1G2λn−1 ·G1λ
nGn

2 .
Let λ∗:G∗1G

∗
2

// G∗ be the natural transformation whose n-th component is λn.

Proposition 2.4.

(1) Gn
2ε1 · λn = ε1G

n
2 , for n ≥ 0,

(2) Gn
2δ1 · λn = λnG1 ·G1λ

n · δGn
2 , for n ≥ 0,

(3) Gi
2ε2G

n−i
2 G1 · λn+1 = λn ·G1G

i
2ε2G

n−i
2 , for 0 ≤ i ≤ n,

(4) Gi
2δ2G

n−i
2 G1 · λn+1 = λn+2 ·G1G

i
2δ2G

n−i
2 , for 0 ≤ i ≤ n.

The proof is given in the Appendix (A.5).

3. Derived Functors

Definition 3.1. Given a functor E:M // A we define EC :N // B by letting ECX
where X = {Xn, d

i
n, s

i
n} be the complex with EXn in degree n and boundary

n∑
i=0

(−1)iEdin:EXn
// EXn−1

The following proposition is well known and its proof is left to the reader.

Proposition 3.2. If α, β:X // Y are morphisms in N and h:α ∼ β and we let

ECh:ECXn
// ECYn+1 be

n∑
i=0

(−1)iEhin then ECh:ECα ∼ ECβ.
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Definition 3.3. If E:M // A is given, the derived functors of E with respect to the
cotriple G, denoted by H(G;−, E), are the homology groups of the chain complex ECG

∗X
(where X is thought of as a constant simplicial object).

Theorem 3.4. If G = G1
◦
λG2 then for any E:M // A, ECλ

∗:ECG
∗
1G
∗
2

// ECG
∗ is a

chain equivalence.

Proof. The proof uses the method of acyclic models described (in dual form) in [Barr &
Beck (1966)]. We let V and W be the chain complexes ECG

∗
1G
∗
2 and ECG

∗, respectively.
Then we show that ECλ

∗ induces an isomorphism of 0-homology, that both Vn and Wn

are G-retracts (in the sense given below- we use this term in place of G-representable to
avoid conflict with the more common use of that term) and that each becomes naturally
contractible when composed with G. For W , being the G-chain complex, these properties
are automatic (see [Barr & Beck (1966)]).

Proposition 3.5. ECλ
∗ induces an isomorphism of 0-homology.

Proof. Consider the commutative diagram with exact rows

EG2 EG
∂

// EG H0Wπ
// H0W 0//

EG2
1G

2
2 EG1G2

d //EG2
1G

2
2

EG2

Eλ1

��

EG1G2 H0V
p //EG1G2

EG

EG

��

H0V

H0W

ζ

���
�
�
�
�

H0V 0//

where d = Eε1G1ε2G2 −EG1ε1G2ε2, ∂ = EεG−EGε, p = coker d, π = coker ∂ and ζ is
induced by EG:EG1G2

// EG since π · d = π · ∂ ·Eλ1 = 0. To show ζ is an isomorphism
we first show that p ·∂ = 0. In fact, p ·EεG = p ·Eε1ε2G1G2 = p ·Eε1G1G2 ·EG1ε2G1G2 =
p · Eε1G1ε2G2. EG1ε2G1δ2 = p · EG1ε1G2ε2 · EG1ε2G1δ2 = p · EG1ε1ε2G2. In a similar
way this is also equal to p · EGε and so p · ∂ = 0. But then there is a ξ:H0W

// H0V
such that ξ · π = p. But then ξ · ζ · p = ξ · π = p from which, since p is an epimorphism
we conclude ξ · ζ = H0V . Similarly ζ · ξ = H0W .

Now we return to the proof of 3.4. To say that Vn is a G-rectract means that there are
maps ϑn:Vn // VnG such that Vnε · ϑn = Vn. Let ϑn = ECG

n
1 (G1λ

n+1G2 · δ1G
n
2δ2). Then

Vnε ·ϑn = ECG
n+1
1 Gn+1

2 ε1ε2 ·ECGn
1 (G1λ

n+1G2 · δ1G
n
2δ2) = ECG

n
1 (G1G

n+1
2 ε1ε2 ·G1λ

n+1G2 ·
δ1G

n
2δ2) = ECG

n
1 (G1ε1G

n+1
2 · δ1G

n
2δ2) = EGn

1 (G1G
n+1
2 ) = Vn.

To see that the augmented complex V G // H0V G
// 0 has a natural contracting ho-

motopy, observe that for any X the constant simplicial object GX satisfies Theorem 1.6
with respect to the cotriples G1 and G2, taking R to be the full subcategory generated
by the image of G. In fact δ1G2X:GX // G1GX amd λG2X · G1δ2X:GX // G2GX
are natural maps whose composite with ε1GX and ε2GX, respectively, is the identity.
This means, for i = 1, 2, that the natural map αiX:G∗iGX // GX whose n-th com-
ponent is εn+1

i GX has a homotopy inverse βiX:GX // G∗iGX with αi · βi = G. Let
hi:G

∗
iG ∼ βi · αi denote the natural homotopy. Then if α = α1 · G∗1α2, β = G∗1β2 · β1 we

have Ecα:ECG
∗
1G
∗
2G // ECG and ECβ:ECG // ECG

∗
1G
∗
2G. Moreover, noting that the
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boundary operator in ECG simply alternates 0 and EG it is obvious that the identity
map of degree 1 denoted by h3 is a contracting homotopy. Then if

h = ECG
∗
1h2 + EC(G∗1β2 · h1 ·G∗1α2) + EC(β · h3 · α),

d · h+ h · d = d · ECG∗1h2 + d · EC(G∗1β2 · h1 ·G∗1α2) + d · EC(β · h3 · α) + ECG
∗
1h2 · d

+EC(G∗1β2 · h1 ·G∗1α2) · d+ EC(β · h3 · α) · d
= EC(G∗1G

∗
2G−G∗1(β2 · α2)) + ECG

∗
1β2 · EC(dh1 + h1d) · ECG∗1α2

+ECβ · EC(dh3 + h3d) · ECα
= V G− ECG∗1(β2 · α2) + ECG

∗
1β2 · EC(G∗1G− β1 · α1) · ECG∗1α2

+EC(β · α)

= V G− ECG∗1(β2 · α2) + ECG
∗
1(β2 · α2)− EC(G∗1β2 · β1 · α1 ·G∗1α2)

+EC(β · α)

= V G.

This completes the proof.

4. Simplicial Algebras

In this section we generalize from the category of associative k-algebras to the category
of simplicial associative k-algebras the theorem of [Barr & Beck (1966)] which states that
the triple cohomology with respect to the underlying category of k-modules is equivalent
to a “suspension” of the Hochschild cohomology. The theorem we prove will be easily
seen to reduce to the usual one for a constant simplicial object.

Let Λ be an ordinary algebra. We let M be the category of k-algebras over Λ. More
precisely, an object of M is a Γ // Λ and a morphism of M is a commutative triangle
Λ oo Γ // Γ′ // Λ. In what follows we will normally drop any explicit reference to Λ.
As before we let N denote the category of simplicial M objects. Let Gt denote the tensor
algebra cotriple on M lifted to N in the obvious way: Gt{Xn, d

i, si} = {GtXn, Gtd
i, Gts

i}.
Let Gp denote the functor on N described by Gp{Xn, d

i
n, s

i
n} = {Xn+1, d

i+1
n+1, s

i+1
n+1}. This

means that the n-th term isXn+1 and the i-th face and degeneracy are di+1 and si+1 respec-
tively. Let εp:GpX

// X be the map whose n-th component is d0
n+1 and δp:GpX

// G2
pX

be the map whose n-th component is s0
n+1.

Proposition 4.1.

(1) Gp = (Gp, εp, δp) is a cotriple; in particular εp and δp are simplicial maps.

(2) If G is any cotriple “lifted” from a cotriple on M, then the equality GGp = GpG is
a distributive law.

(3) The natural transformations α and β where αX:GpX // X0 whose n-th component
is d1 · d1 · · · · · d1 and βX:X0

// GpX whose n-th component is s0 · s0 · · · · · s0 are
maps between GpX and the constant object X0 such that α · β = X0. There is a
natural homotopy h:GpX ∼ β · α.
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Proof. (1) The simplicial identity d0di+1 = did0, i > 0, says that d0 commutes with the
face maps. The identity d0si+1 = sid0, i > 0, does the same for the degeneracies and
so εp is simplicial. For δp we have s0di+1 = di+2s0 and s0si+1 = si+2s0 for i > 0, so it
is simplicial. Gpδp has n-th component s0

n+2 and δpGp has n-th component s1
n+2, and so

δpGp · δp = s1
n+2 · s0

n+1 = s0
n+2 · s0

n+1 = Gpδp · δp, which is the coassociative law. Finally,
εpGp · δp = d1

n+2 · s0
n+1 = Xn+1 = d0

n+2 · s0
n+1 = Gpεp · δp.

(2) This is completely trivial.
(3) This is proved in the Appendix (A.6).

We note that under the equivalence between simplicial sets and simplicial topological
spaces the “same” functor Gp is analogous to the topological path space.

From this we have the cotriple G = Gt
◦Gp where the distributive law is the identity

map. If we take as functor the contravariant functor E, whose value at X is Der(π0X,M)
where M is a Λ-bimodule, the G-derived functors are given by the homology of the cochain
complex 0 // Der(π0GX,M) // · · · // Der(π0G

n+1X,M) // · · · . π0X is most easily
described as the coequalizer of X1 ⇒ X0. Let d0 = d0

0:X0
// π0X be the coequalizer

map. But by the above, π0GX w GtX0 and GtX = εtd
0. Then π0G

n+1X = Gn+1
t Xn and

the i-th face is Gi
tεtG

n−i
t di. Thus H(G;X,E) is just the homology of KX, the cochain

complex whose n-th term is Der(Gn+1
t Xn,M). When X is the constant object Γ, this

reduces to the cotriple cohomology of Γ with respect to Gt.

If X is in N, the normalized chain complex NX given by NnX =
n⋂
i=1

ker din
b naturally

bears the structure of a DG-algebra. In fact, if NX ⊗ NX is the tensor product in
the category of DG modules over k given by (NX ⊗ NX)n =

∑
NiX ⊗ Nn−iX and

X⊗X is the tensor product in the category of simplicial k-modules given by (X⊗X)n =
Xn ⊗ Xn, then the Eilenberg-Zilber map g:NX ⊗ NX // N(X ⊗ X) is known to be
associative in the sense that g · (NX ⊗ g) = g · (g ⊗ NX). From this it follows easily
that if µ:X ⊗ X // X is the multiplication map in X, then Nµ · g makes NX into
a DG-algebra. Actually it can be shown that the Dold-Puppe equivalence ([Dold &
Puppe (1961)]) between the categories of simplicial k-modules and DG-modules (chain
complexes) induces an analogous equivalence between the categories of simplicial algebras

and DG-algebras. Given a DG-algebra V α // Λ, we let B̃V be the chain complex given
by B̃nV =

∑
Λ ⊗ Vi1 ⊗ · · · ⊗ Vim ⊗ Λ, the sum taken over all sets of indices for which

i1 + · · · + im + m = n. The boundary ∂ = ∂B̃ is given by ∂ = ∂′ + ∂′′ where ∂′ is the
Hochschild boundary and ∂′′ arises out of boundary in V . Let λ [v1, . . . , vm]λ′ denote the
chain λ ⊗ v1 ⊗ · · · ⊗ vm ⊗ λ′, deg [v1, . . . , vm] denote the total degree of [v1, . . . , vm], and
exp q denote (−1)q for an integer q. Then

∂′ [v1, . . . , vm] = α(v1) [v2, . . . , vm] +
∑

exp (deg [v1, . . . , vi])
[
v1, . . . , vivi+1, . . . , vm

]
+ exp

(
deg

[
v1, . . . , vn−1

]) [
v1, . . . , vn−1

]
α(vn)

bEditor’s footnote: N0X = X0; an empty intersection of subobjects of an object is the object itself
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∂′′ [v1, . . . , vm] =
∑

exp
(
deg

[
v1, . . . , vi−1

])
[v1, . . . , dvi, . . . , vm]

where d is the boundary in V . Then it may easily be seen that ∂′∂′′ + ∂′′∂′ = 0, and so
∂B̃ = ∂′ + ∂′′ is a boundary operator. It is clear that B̃ reduces to the usual Hochschild
complex when V is concentrated in degree zero.

BV is defined by letting BnV = B̃n+1V and ∂B = −∂B̃. This is where the degree
shift in the comparison theorems between triple cohomology and the classical theories
comes in. Then we define for a simplicial algebra over Λ and M a Λ-bimodule

LX = HomΛ−Λ(BNX,M)

Theorem 4.2. The cochain complexes K and L are homotopy equivalent.

Proof. We apply the theorem of acyclic models of [Barr & Beck (1966)] with respect to
G. As usual, the complex K, being the cotriple resolution, automatically satisfies both
hypotheses of that theorem. Let ϑn:LnG // Ln (where Ln is the n-th term of L) be the
map described as follows. We have for each n ≥ 0 a k-linear map ϕnX:Xn

// (GX)n

given by the composite Xn
s0 // Xn+1 = GpXn

// (GtGpX)n where the second is the
isomorphism of an algebra with the terms of degree 1 in its tensor algebra. Also it is clear
that εX · ϕnX = Xn. Thus we have k-linear maps ϕ̃n:Nn

// NnG with Nnε · ϕ̃n = Nn.
This comes about because N is defined on the level of the underlying modules and extends
to algebras. Then the Λ-bilinear map

Λ⊗ ϕ̃i1 ⊗ · · · ⊗ ϕ̃im ⊗ Λ: Λ⊗Ni1
⊗ · · · ⊗Nim

⊗ Λ // Λ⊗Ni1
G⊗ · · · ⊗Nim

G⊗ Λ (∗)

is a map whose composite with the map induced by ε is the identity. Then forming the
direct sum of all those maps (*) for which i1 + i2 + · · · + im + m = n + 1 we have the
map of Bn

// BnG whose composite with Bnε is Bn. Let ϑn: HomΛ−Λ(BnG,M) //

HomΛ−Λ(Bn,M) be the map induced. Clearly ϑn · Lnε = Ln.
Now we wish to show that the augmented complex L+GX = LGX oo H0(LGX) oo 0

is naturally contractible. First note that by Proposition 4.1 (3) there are natural maps
α = αGtX:GX = GpGtX

// GtX0 and β = βGtX:GtX0
// GX with α ·β = GtX0, and

there is a natural homotopy h:GX ∼ β · α. Then we have L+α:L+GX // L+GtX0 and
L+β:L+GtX0

// L+GX such that L+α · L+β = L+GtX0 and L+h:L+GX ∼ L+β · L+α.
If we can find a contracting homotopy t in L+GtX0, then s = h+L+β · t ·L+α will satisfy
ds+sd = dh+hd+L+β · (dt+ td) ·L+α = L+GX−L+β ·L+α+L+β ·L+α = L+GX. But
NGtX0 is just the normalized complex associated with a constant. For n > 0,

⋂
i>0

ker din =

0, since each din = GtX0. Thus NGtX0 is the DG-algebra consisting of GtX0 concentrated
in degree zero. But then LGtX0 is simply the Hochschild complex with degree lowered
by one. I.e. LGtX0 is the complex · · · // (GtX0)(4) // (GtX0)(3) // 0 with the usual
boundary operator. But this complex was shown to be naturally contractible in [Barr
(1966)]. In fact this was the proof that the Hochschild cohomology was essentially the
triple cohomology with respect to Gt. What remains in order to finish the proof of theorem
4.2 is to show:
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Proposition 4.3. H0(K) ∼= H0(L) ∼= Der(π0X,M).

An auxiliary proposition will be needed. It is proved in the Appendix (A.7).

Proposition 4.4. If X is as above, then εtd
0:GtX0

// π0X is the coequalizer of εtGtd
0

and Gtεtd
1 from G2

tX1 to GtX0.

Proof of Proposition 4.3. From Proposition 4.4 it follows that for any Γ, M(π0X,Γ)
is the equalizer of M(GtX0,Γ) ⇒ M(G2

tX1,Γ). But by letting Γ be the split extension
Λ ×M and using the well-known fact Der(Y,M) ∼= M(Y,Λ ×M) for any Y of M, we
have that Der(π0X,M) is the equalizer of Der(GtX0,Γ) ⇒ Der(G2

tX1,Γ) or simply the
kernel of the difference of the two maps. I.e. Der(π0X,M) is the kernel of K0X // K1X
and thus is isomorphic to H0KX.

To compute H0L, it suffices to show that H0(BNX) = Diff π0X where, for an algebra
ϕ: Γ // Λ, Diff Γ represents Der(Γ,−) on the category of Λ-modules. Explicitly, Diff Γ is
the cokernel of Λ⊗ Γ⊗ Γ⊗ Λ // Λ⊗ Γ⊗ Λ where the map is the Hochschild boundary
operator ∂(λ ⊗ γ ⊗ γ′ ⊗ λ′) = λ · ϕγ ⊗ γ′ ⊗ λ′ − λ ⊗ γγ′ ⊗ λ′ + λ ⊗ γ ⊗ ϕγ′ · λ′. If for
convenience we denote the cokernel of an f :A // B by B/A, we have π0X = N0X/N1X,
and then

H0(BNX) =
Λ⊗N0X ⊗ Λ

Λ⊗N1X ⊗ Λ + Λ⊗N0X ⊗N0X ⊗ Λ
∼=

Λ⊗ π0X ⊗ Λ

Λ⊗N0X ⊗N0X ⊗ Λ

∼=
Λ⊗ π0X ⊗ Λ

Λ⊗ π0X ⊗ π0X ⊗ Λ
∼= Diff π0X

The next to last isomorphism comes from the fact that Λ⊗N0X⊗N0X⊗Λ //Λ⊗π0X⊗Λ
factors through the surjection Λ⊗N0X⊗N0X⊗Λ // Λ⊗π0X⊗π0X⊗Λ. This argument
is given by element chasing in [Barr (1967)], Proposition 3.1.

We now recover the main theorem 1.1. of [Barr (1967)] as follows.

Definition 4.5. Given a k-algebra Γ // Λ we define GkΓ // Λ by letting GkΓ be the
free k-module on the elements of Γ made into an algebra by letting the multiplication in
Γ define the multiplication on the basis. That is, if γ1, γ2 ∈ Γ and if [γi] denotes the basis
element of GkΓ corresponding to γi, i = 1, 2, then [γ1][γ2] = [γ1γ2].

Theorem 4.6. There are natural transformations εk and δk such that Gk = (Gk, εk, δk)
is a cotriple. Also there is a natural λ:GtGk

// GkGt which is a distributive law.

Proof. εk:GkΓ // Γ takes [γ] to γ and δk takes [γ] to [[γ]] for γ ∈ Γ. Gk is made into a
functor by Gkf [γ] = [fγ] for f : Γ // Γ′ and γ ∈ Γ. Then

Gkδk · δk[γ] = Gkδk[[γ]] = [δk[γ]] = [[[γ]]] = δkGk[[γ]] = δkGk · δk[γ]

Also
Gkεk · δk[γ] = Gkεk[[γ]] = [εk[γ]] = [γ] = εkGk[[γ]] = εkGk · δk[γ]

To define λ we note that GtGkΓ is the free algebra on the set underlying Γ. In fact, any
algebra homomorphism GtGkΓ // Γ′ is, by adjointness of the tensor product with the



Composite cotriples and derived functors 257

underlying k-module functor, determined by its value on the k-module underlying GkΓ.
As a k-module this is simply free on the set underlying Γ. Thus an algebra homomorphism
GtGkΓ // GkGtΓ is prescribed by a set map of Γ // GkGtΓ. Let 〈γ〉 denote the element
of GtΛ corresponding to γ ∈ Γ. Then λ〈[γ]〉 = [〈γ〉] is the required map. In this form the
laws that must be verified become

completely transparent. For example,

λGt ·Gtλ · δtGk〈[γ]〉 = λGt ·Gtλ〈〈[γ]〉〉 = λGt · 〈λ〈[γ]〉〉 = λGt〈[〈γ〉]〉

= [〈〈γ〉〉] = [δt〈γ〉]Gkδt[〈γ〉]= Gkδt · λ〈[γ]〉

The remaining identities are just as easy. It is, however, instructive to discuss somewhat
more explicitly what λ does to a more general element of GtGkΓ.

A general element of GtGkΓ is a formal (tensor) product of elements which are formal
k-linear combinations of elements of Γ. We are required to produce from this an element of
GkGtΓ which is a formal k-linear combination of formal products of elements of Γ. Clearly
the ordinary distributive law is exactly that: a prescription for turning a product of sums
into a sum of products. For example λ (〈[γ]〉 ⊗ (〈α1[γ1] + · · ·+ αn[γn]〉)) = α1[〈γ〉⊗〈γ1〉]+
· · ·+αn[〈γ〉⊗〈γn〉]. The general form is practically impossible to write down but the idea
should be clear. It is from this example that the term “distributive law” comes.

Now G∗kΓ is, for any Γ // Λ, an object of N. Its cohomology with respect to
G = GpGt is with coefficients in the Λ-module M , as we have seen, the cohomology

of 0 // Der(GtGkΓ,M) // · · · // Der(Gn+1
t Gn+1

k Γ,M) // · · · which by theorem 3.4 is
chain equivalent to 0 // Der(GtGkΓ,M) // · · ·Der((GtGk)

n+1Γ,M) // · · · , in other
words the cohomology of Γ with respect to the free algebra cotriple GtGk. On the other
hand, NGkΓ is a DG-algebra, acyclic and k-projective in each degree. Thus BNGkΓ is,
except for the dimension shift, exactly Shukla’s complex. Thus if Shukn(Γ,M) denotes
the Shukla cohomology groups as given in [Shukla (1961)], the above, together with
Proposition 4.3 shows:

Theorem 4.7. There are natural isomorphisms

Hn(Gt
◦
λ
Gk; Γ,M) ∼=

{
Der(Γ,M), n = 0
Shukn+1(Γ,M), n > 0

5. Other applications

In this section we apply the theory to get two theorems about derived functors, each
previously known in cohomology on other grounds.

Theorem 5.1. Let Gf and Gbf denote the cotriples on the category of groups for which
GfX is the free group on the elements of X and GbfX is the free group on the elements
of X different from 1.c Then the Gf and Gbf derived functors are equivalent.

cEditor’s footnote: On first glance, it is not obvious why Gbf is even a functor, let alone a cotriple. We
leave it an exercise for the reader to show that Gbf can be factored by an adjunction as follows. Let PF
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Theorem 5.2. Let M be the category of k-algebras whose underlying k-modules are k-
projective. Then if Gt, Gk and λ are as above (Section 4), the Gt and Gt

◦
λGk derived

functors are equivalent.

Before beginning the proofs we need the following:

Definition 5.3. If G is a cotriple on M, then an object X of M is said to be G-projective

if there is a sequence X α //GY
β //X with β ·α = X. We let P (G) denote the class of

all G-projectives.

The following theorem is shown in [Barr & Beck (1969)].

Theorem 5.4. If G1 and G2 are cotriples on M with P (G1) = P (G2), then the G1 and
G2 derived functors are naturally equivalent.

Proposition 5.5. Suppose G1 and G2 are cotriples on M, λ:G1G2
// G2G1 is a dis-

tributive law, and G = G1
◦
λG2. Then P (G) = P (G1) ∩ P (G2).

Proof. If X is G-projective, it is clearly G1-projective. If X α // G1G2Y
β // X is a

sequence with β · α = X, then

X
α //G1G2Y

G1δ2 //G1G
2
2Y

λG2Y //G2G1G2Y
ε2β //X

is a sequence whose composite is X. If X is both G1- and G2-projective, find

X
αi //GiYi

βi //X

for i = 1, 2, with βi · αi = X; then

X
α1 //G1Y1

δ1Y1 //G2
1Y1

G1β1 //G1X
G1α2 //G1G2Y2

ε1G2Y2 //G2Y2

β2 //X

is a sequence for which

β2 · ε1G2Y ·G1α2 ·G1β1 · δ1Y1 · α1 = ε1X ·G1β2 ·G1α2 ·G1β1 · δ1Y1 · α1

= ε1X ·G1β1 · δ1Y1 · α1 = β1 · ε1G1Y1 · δ1Y1 · α1 = β1 · α1 = X

and thus exhibits X as a retract of GY2.

Theorem 5.6. Suppose G1, G2, λ, G are as above. If P (G1) ⊂ P (G2), then the G1-
derived functors and the G-derived functors are equivalent; if P (G2) ⊂ P (G1), then the
G2-derived functors and the G-derived functors are equivalent.

Proof. The first condition implies that P (G) = P (G1), while the second that P (G) =
P (G2).

denote the category of sets and partial functions. Let Ubf :Groups // PF that takes a group to the
elements different from the identity, while Fbf :PF //Groups takes a set to the free group generated
by it and when f :X // Y is a partial function, Fbff takes every element not in dom f to the identity.
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Proof of theorem 5.1. Let Gz denote the cotriple on the category of groups for
which GzX = Z + X where Z is the group of integers and + is the coproduct (free
product). The augmentation and comultiplication are induced by the trivial map Z // 1
and the “diagonal” map Z // Z + Z respectively. By the “diagonal” map Z // Z + Z
is meant the map taking the generator of Z to the product of the two generators of
Z + Z. Map Z // GbfZ by the map which takes the generator of Z to the generator
of GbfZ corresponding to it. For any X, map GbfZ

// Gbf (Z + X) by applying Gbf

to the coproduct inclusion. Also map GbfX
// Gbf (Z + X) by applying Gbf to the

other coproduct inclusion. Putting these together we have a map which is natural in X,
λX:Z+GbfX // Gbf (Z+X), which can easily be seen to satisfy the data of a distributive
law GzGbf

//GbfGz. Also it is clear that Z +GbfX
∼= GfX, since the latter is free on

exactly one more generator than GbfX. Thus the theorem follows as soon as we observe
that P (Gz) ⊃ P (Gbf ). In fact, the coordinate injection α:X // Z + X is a map with
εZ · α = X, and thus P (Gz) is the class of all objects.

Proof of theorem 5.2. It suffices to show that on M, P (Gt) ⊂ P (Gt
◦
λGk). To do

this, we factor Gt = FtUt where Ut:M // N, the category of k-projective k-modules, and
Ft is its coadjoint (the tensor algebra). For any Y , the map UtεkY :UtGkY

// UtY is
easily seen to be onto, and since UtY is k-projective, it splits, that is, there is a map

γ:UtY // UtGkY such that UtεkY · γ = UtY . Then GtY
Ftγ // GtGkY

GtεkY // GtY
presents any GtY as a retract of GtGkY . Clearly any retract of GtY enjoys the same
property.

The applicability of these results to other situations analogous to those of theorems
5.1 and 5.2 should be clear to the reader.

Appendix

In this appendix we give some of the more computational -and generally unenlightening-
proofs so as to avoid interrupting the exposition in the body of the paper.

A.1. Proof of Proposition 1.2. (1) When n = i = 0 there is nothing to prove. If
i = 0 and n > 0, we have by induction on n,

εn · εmGn = ε · εn−1G · εmGn = ε · (εn−1 · εmGn−1)G = ε · εn+m−1G = εn+m

If i = n > 0, then we have by induction

εn ·Gnεm = ε ·Gεn−1 ·Gnεm = ε ·G(εn−1 ·Gn−1εm) = ε ·Gεn+m−1 = εn+m

Finally, we have for 0 < i < n, again by induction,

εn ·GiεmGn−i = εi ·Giεn−i ·GiεmGn−i = εi ·Giεn+m−i = εn+m

(2) This proof follows the same pattern as in (1) and is left to the reader.
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(3) When n = 0 and m = 1 these are the unitary laws. Then for n = 0, we have, by
induction on m,

Gεm · δm = G(ε · εm−1G) · δm = Gε ·Gεm−1G · δm−1G · δ

= Gε · (Gεm−1 · δm−1)G · δ = Gε · δ = G = δ0

and similarly εmG · δm = δ0. Then for n > 0, we have, for i < n+ 1,

Gn−i+1εmGi · δn+m = Gn−i+1εmGi ·Gn−iδmGi · δn = Gn−i(Gεm · δm)Gi · δn = δn

Finally, for i = n+ 1,

εmGn+1 · δn+m = εmGn+1 · δmGn · δn = (εmG · δm)G · δn = δn

(4) The proof follows the same pattern as in (3) and is left to the reader.

A.2. Proof of theorem 1.5.
We must verify the seven identities which are to be satisfied by a simplicial homotopy.

In what follows we drop most lower indices.

(1) εGn+1d0 · δGnh0 = Gn+1(d0 · h0) = Gn+1αn

(2) Gn+1εdn+1 ·Gnδhn = Gn+1(dn+1 · hn) = Gn+1βn

(3) For i < j,

GiεGn+1−idi ·GjδGn−jhj = Gi(εGn+1−idi ·Gj−iδGn−jhj)

= Gi(Gj−i−1δGn−jhj−1 · εGn−idi) = Gj−1δGn−jhj−1 ·GiεGn−idi

(4) For 0 < i = j < n+ 1,

GiεGn+1−idi ·GiδGn−ihi = Gn+1(di · hi) = Gn+1(di · hi−1)

= GiεGn+1−idi ·Gi−1δGn−i+1hi−1

(5) For i > j + 1,

GiεGn+1−idi ·GjδGn−jhj = Gj(Gi−jεGn+1−idi · δGn−jhj)

= Gj(δGn−j−1hj ·Gi−j−1εGn+1−idi−1) = GjδGn−j−1hj ·Gi−1εGn+1−idi−1

(6) For i ≤ j,

GiδGn+1−isi ·GjδGn−jhj = Gi(δGn+1−isi ·Gj−iδGn−jhj)

= Gi(Gj−i+1δGn−jhj+1 · δGn−isi) = Gj+1δGn−jhj+1 ·GiδGn−isi

(7) For i > j,

GiδGn+1−isi ·GjδGn−jhj = Gj(Gi−jδGn+1−isi · δGn−jhj)

= Gj(δGn+1−jhj ·Gi−1−jδGn+1−isi−1) = GjδGn+1−jhj ·Gi−1δGn+1−isi−1
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A.3. Proof of theorem 1.6.
We define αn = εn+1Xn:Gn+1Xn

// Xn and βn = δnXn · ϑXn:Xn
// Gn+1Xn. First

we show that these are simplicial. We have

di · αn = di · εn+1Xn = εn+1Xn−1 · di == εnXn ·GiεGn−iXn−1 ·Gn+1di = αn ·GiεGn−idi

Similarly,

si · αn = si · εn+1Xn = εn+1Xn+1 · si = εn+2Xn+1 ·GiδGn−iXn+1 · si = αn+1 ·GiδGn−isi

GiεGn−idi · βn = GiεGn−idi · δnXn · ϑXn

= Gndi · δn−iXn · ϑXn = δn−1Xn−1 · ϑXn−1 · di = βn−1 · di

Similarly,

GiδGn−isi · βn = GiδGn−isi · δnXn · ϑXn = δn+1si · ϑXn

= δn+1Xn+1 ·Gsi · ϑXn = δn+1Xn+1 · ϑXn+1 · si = βn+1 · si

Moreover, αn · βn = εn+1Xn · δnXn · ϑXn = εXn · ϑXn = Xn.
Let hin = Gi+1(δn−isin·ϑXn·εn−iXn):Gn+1Xn

// Gn+2Xn+1 for 0 ≤ i ≤ n. Then we will
verify the identities which imply that h: β ·α ∼ G∗X. At most places in the computation
below we will omit lower indices and the name of the objects under consideration.

(1)

εGn+1d0 · h0
n = εGn+1d0 ·G(δns0 · ϑ · εn) = δn(d0 · s0) · ϑ · εn · εGn = δn · ϑ · εn+1 = βn · αn

(2)
Gn+1εdn+1 · hnn = Gn+1εdn+1 ·Gn+1(Gsn · ϑ) = Gn+1(εdn+1 ·Gsn · ϑ)

= Gn+1(ε · ϑ) = Gn+1Xn

(3) For i < j,

GiεGn+1−idi · hjn = GiεGn+1−idi ·Gj+1(δn−jsj · ϑ · εn−j)

= Gi(εGn+1−idi ·Gj−i+1(δn−jsj · ϑ · εn−j))

= Gi(Gj−i(δn−j · sj−1 · ϑ · εn−j) · εGn−idi)

= Gj(δn−jsj−1 · ϑ · εn−j) ·GiεGn−idi = hj−1
n−1 ·GiεGn−idi
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(4) For 0 < i = j < n+ 1,

GiεGn+1−idi · hin = GiεGn+1−idi ·Gi+1(δn−isi · ϑ · εn−i)

= Gi(εGn+1−idi ·G(δn−isi · ϑ · εn−i))

= Gi(δn−i(di · si) · ϑ · εn−i · εGn−i)

= Gi(δn−i · ϑ · εn+1−i) = Gi(δn−i(di · si−1) · ϑ · εn−i+1)

= Gi(εGn+1−idi · δn−i+1si−1 · ϑ · εn−i+1)

= GiεGn+1−idi ·Gi(δn−i+1si−1 · ϑ · εn−i+1) = GiεGn+1−idi · hi−1
n

(5) For i > j + 1,

GiεGn+1−idi · hjn = GiεGn+1−idi ·Gj+1(δn−jsj · ϑ · εn−j)

= Gj+1(Gi−j−1εGn+1−idi · δn−jsj · ϑ · εn−j)

= Gj+1(δn−j−1(di · sj) · ϑ · εn−j)

= Gj+1(δn−j−1(sj · di−1) · ϑ · εn−j)

= Gj+1(δn−j−1sj · ϑ · εn−j−1 ·Gi−1εGn−i+1di−1)

= hjn−1 ·Gi−1εGn−i+1di−1

(6) For i ≤ j,

GiδGn+1−isi · hjn = GiδGn+1−isi ·Gj+1(δn−jsj · ϑ · εn−j)

= Gi(δGn+1−isi ·Gj−i+1(δn−jsj · ϑ · εn−j))

= Gi(Gj−i+2(δn−jsj+1 · ϑ · εn−j) · δGn−isi)

= Gj+2(δn−jsj+1 · ϑ · εn−j) ·GiδGn−isi = hj+1
n+1 · si



Composite cotriples and derived functors 263

(7) For i > j,

GiδGn+1−isi · hjn = GiδGn+1−isi ·Gj+1(δn−jsj · ϑ · εn−j)

= Gj(Gi−jδGn+1−isi ·Gδn−jsj ·Gϑ ·Gεn−j)

= Gj(Gδn−j+1(si · sj) ·Gϑ ·Gεn−j)

= Gj(Gδn−j+1(sj · si−1) ·Gϑ ·Gεn−j)

= Gj(Gδn−j+1sj ·Gϑ ·Gεn−j ·Gi−j−1(Gε · δ)Gn+1−isi−1)

= Gj(Gδn−j+1sj ·Gϑ ·Gεn−j ·Gi−jεGn+1−i ·Gi−j−1δGn+1−isi−1)

= Gj(Gδn−j+1sj ·Gϑ ·Gεn−j+1 ·Gi−j−1δGn+1−isi−1)

= Gj+1(δn−j+1sj · ϑ · εn−j+1) ·Gi−1δGn+1−isi−1 = hjn+1 ·Gi−1δGn+1−isi−1

This proof is adapted from the proof of Theorem 4.5 of [Appelgate (1965)].

A.4. Proof of theorem 2.2.
We must verify the three identities satisfied by a cotriple.

(1)
Gε · δ = G1G2ε1ε2 ·G1λG2 · δ1δ2 = G1ε1G2ε2 · δ1δ2

= (G1ε1 · δ1)(G2ε2 · δ2) = G1G2 = G

(2)
εG · δ = ε1ε2G1G2 ·G1λG2 · δ1δ2 = ε1G1ε2G2 · δ2δ2

= (ε1G1 · δ1)(ε1G2 · δ2) = G1G2 = G

(3)
Gδ · δ = G1G2G1λG2 ·G1G2δ1δ2 ·G1λG2 · δ1δ2

= G1G2G1λG2 ·G1λG1G
2
2 ·G2

1λG
2
2 ·G1δ1G2δ2 · δ1δ2 = λ2 · δ2

1δ
2
2

and by symmetry this latter is equal to δG · δ.

A.5. Proof of Proposition 2.4.

(1) For n = 0 this is vacuous and for n = 1 it is an axiom. For n > 1, we have by
induction

Gn
2ε1 · λn = Gn

2ε1 ·G2λ
n−1 · λGn−1

2 = G2(Gn−1
2 ε1 · λn−1) · λGn−1

2

= G2(ε1G
n−1
2 ) · λGn−1

2 = (G2ε1 · λ)Gn−1
2 = (ε1G2)Gn−1

2 = ε1G
n
2



Michael Barr 264

(2) For n = 0 this is vacuous and for n = 1 it is an axiom. For n > 1, we have by
induction

Gn
2δ1 · λn = Gn

2δ1 ·G2λ
n−1 · λGn−1

2 = G2(Gn−1
2 δ1 ·G2λ

n−1) · λGn−1
2

= G2(λn−1G1 ·G1λ
n−1 · δ1G

n−1
2 ) · λGn−1

2

= G2λ
n−1G1 ·G2G1λ

n−1 · (G2δ1 · λ)Gn−1
2

= G2λ
n−1G1 ·G2G1λ

n−1 · (λG1 ·G1λ · δ1G2)Gn−1
2

= G2λ
n−1G1 ·G2G1λ

n−1 · λG1G
n−1
2 ·G1λG

n−1
2 · δ1G

n
2

= G2λ
n−1G1 · λGn−1

2 G1 ·G1G2λ
n−1 ·G1λG

n−1
2 · δ1G

n
2 = λnG1 ·G1λ

n · δ1G
n
2

(3) For n = 0 this is an axiom. For n > 0, first assume that i = 0. Then we have by
induction,

ε2G
n
2G1 · λn+1 = ε2G

n
2G1 ·Gn

2λ · λnG2 = Gn−1
2 λ · ε2G

n−1
2 G1G2 · λnG2

= Gn−1
2 λ · (ε2G

n−1
2 G1 · λn)G2 = Gn−1

2 λ · (λn−1 ·G1ε2G
n−1
2 )G2

= Gn−1
2 λ · λn−1G2 ·G1ε2G

n
2 = λn ·G1ε2G

n
2

For i > 0 we have, again by induction,

Gi
2ε2G

n−i
2 G1 · λn+1 = Gi

2ε2G
n−i
2 G1 ·G2λ

n · λGn
2 = G2(Gi−1

2 ε2G
n−i
2 G1 · λn) · λGn

2

= G2(λn−1 ·G1G
i−1
2 ε2G

n−i
2 ) · λGn

2 = G2λ
n−1 ·G2G1G

i−1
2 ε2G

n−i
2 · λGn

2

= G2λ
n−1 · λGn−1

2 ·G1G
i
2ε2G

n−i
2 = λn ·G1G

i
2ε2G

n−i
2

(4) For n = 0 this is an axiom. For i = 0, we have by induction

δ2G
n
2G1 · λn+1 = δ2G

n
2G1 ·Gn

2λ · λnG2 = Gn+1
2 λ · δ2G

n−1
2 G1G2 · λnG2

= Gn+1
2 λ · (δ2G

n−1
2 G1 · λn)G2 = Gn+1

2 λ · (λn+1 ·G1δ2G
n−1
2 )G2

= Gn+1
2 λ · λn+1G2 ·G1δ2G

n
2 = λn+2 ·G1δ2G

n
2

For i > 0 we have, again by induction,

Gi
2δ2G

n−i
2 G1 · λn+1 = Gi

2δ2G
n−i
2 G1 ·G2λ

n · λGn
2 = G2(Gi−1

2 δ2G
n−i
2 G1 · λn) · λGn

2

= G2(λn+1 ·G1G
i−1
2 δ2G

n−i
2 ) · λGn

2 = G2λ
n+1 ·G2G1G

i−1
2 δ2G

n−i
2 · λGn

2

= G2λ
n+1 · λGn+1

2 ·G1G
i
2δ2G

n−i
2 = λn+2 ·G1G

i
2δ2G

n−i
2
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A.6. Proof of Proposition 4.1 (3).
In the following we let di and si stand for diX and siX respectively. If Y = GpX,

then Yn = Xn+1, diY = di+1 and siY = si+1. αn = (d1)n+1:Yn // X0 and βn =
(s0)n+1:X0

// Yn. Then αn ·βn = (d1)n+1 ·(s0)n+1 = Yn. Let hin = (s0)i+1(d1)i:Yn // Yn+1

for 0 ≤ i ≤ n.

(1) d0Y · h0 = d1 · s0 = Yn.

(2) dn+1Y · hn = dn+2 · (s0)n+1 · (d1)n = (s0)n+1 · d1 · (d1)n = βn · αn.

(3) For i < j,
diY · hj = di+1 · (s0)j+1 · (d1)j = (s0)j · di · (d1)j

= (s0)j · (d1)j−1 · di+1 = hj−1 · diY

(4)
diY · hi = di+1 · (s0)i+1 · (d1)i = (s0)i · (d1)i

= (s0)i · d1 · (d1)i−1 = di+1 · (s0)i · (d1)i−1 = diY · hi−1

(5) For i > j + 1,

diY · hj = di+1 · (s0)j+1 · (d1)j = (s0)j+1 · di−j · (d1)j

= (s0)j+1 · (d1)j · di = hj · di−1Y

(6) For i ≤ j,
siY · hj = si+1 · (s0)j+1 · (d1)j = (s0)j+2 · (d1)j

= (s0)j+2 · (d1)j+1 · si+1 = hj+1 · siY

(7) For i > j,
siY · hj = si+1 · (s0)j+1 · (d1)j = (s0)j+1 · si−j · (d1)j

= (s0)j+1 · (d1)j · si = hj · si−1Y

A.7. Proof of Proposition 4.4.
Form the double simplicial object E = {Eij = Gi+1

t Xj} with the maps gotten by
applying G to the faces and degeneracies of X in one direction and the cotriple faces and
degeneracies in the other. Let D = {Di = Gi+1

t Xi} be the diagonal complex. We are
trying to show that π0D

∼= π0X. But the Dold-Puppe theorem asserts that π0D
∼= H0ND

and the Eilenberg-Zilber theorem asserts that H0ND is H0 of the total complex associated
with E. But we may compute the zero homology of
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GtX1 GtX0
//

G2
tX1

GtX1

��

G2
tX1 G2

tX0
//
G2
tX0

GtX0

��
GtX1 GtX0//

G2
tX1

GtX1

��

G2
tX1 G2

tX0// G2
tX0

GtX0

��

G2
tX0 0//

GtX0 0//GtX1

0
��

GtX0

0
��

by first computing the 0 homology vertically, which gives, by another application of the
Dold-Puppe theorem,

π0(G∗tX1) // // π0(G∗tX0) // 0

But G∗t is readily shown to be right exact (i.e. it preserves coequalizers) and so this is
X1

////X0
// 0. Another application of the Dold-Puppe theorem gives that H0 of this

is π0X.



Cohomology and obstructions: Commutative algebras

Michael Barr 1

Introduction

Associated with each of the classical cohomology theories in algebra has been a theory
relating H2 (H3 as classically numbered) to obstructions to non-singular extensions and
H1 with coefficients in a “center” to the non-singular extension theory (see [Eilenberg &
Mac Lane (1947), Hochschild (1947), Hochschild (1954), Mac Lane (1958), Shukla (1961),
Harrison (1962)]). In this paper we carry out the entire process using triple cohomology.
Because of the special constructions which arise, we do not know how to do this in
any generality. Here we restrict attention to the category of commutative (associative)
algebras. It will be clear how to make the theory work for groups, associative algebras and
Lie algebras. My student, Grace Orzech, is studying more general situations at present.
I would like to thank her for her careful reading of the first draft of this paper.

The triple cohomology is described at length elsewhere in this volume [Barr & Beck
(1969)]. We use the adjoint pair

CommAlg

Sets

U

��????????????
CommAlg CommAlgG // CommAlg

Sets

??

F

������������

for our cotriple G = (G, ε, δ). We let

εi = GiεGn−i:Gn+1 //Gn,

δi = GiδGn−i:Gn+1 //Gn+2 and

ε = Σ(−1)iεi:Gn+1 //Gn.

It is shown in [Barr & Beck (1969)] that the associated chain complex

· · · ε //Gn+1R
ε // · · · ε //G2R

ε //GR
ε //R // 0

is exact. This fact will be needed below.
More generally we will have occasion to consider simplicial objects (or at least the first

few terms thereof)

X: · · · Xn
... //X: · · · Xn

//
Xn · · ·... //Xn · · ·

//
· · · X2//· · · X2//· · · X2

//· · · X2

//
X2 X1

//X2 X1//X2 X1

//
X1 X0//X1 X0

//

1This work was partially supported by NSF grant GP-5478
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with face maps di:Xn
//Xn−1, 0 ≤ i ≤ n, and degeneracies si:Xn−1

//Xn, 0 ≤ i ≤
n − 1 subject to the usual identities (see [Huber (1961)]). The simplicial normalization
theorem2, which we will have occasion to use many times, states that the three complexes
K∗X, T∗X and N∗X defined by

KnX =
n⋂
i=1

ker(di:Xn
//Xn−1)

with boundary d induced by d0,
TnX = Xn,

with boundary d =
∑n

i=0(−1)idi, and

NnX = Xn

/ n∑
i=0

im(si:Xn−1
//Xn)

with boundary d induced by
∑n

i=0(−1)idi are all homotopic and in fact the natural inclu-
sions K∗X ⊆ T∗X and projections T∗X //N∗X have homotopy inverses. In our context
the Xn will be algebras and the di will be algebra homomorphisms, but of course d is
merely an additive map.

We deliberately refrain from saying whether or not the algebras are required to have
a unit. The algebras Z, A, Z(T,A), ZA are proper ideals (notation A < T ) of other
algebras and the theory becomes vacuous if they are required to be unitary. On the other
hand the algebras labeled B, E, M , P , R, T can be required or not required to have a unit,
as the reader desires. There is no effect on the cohomology (although G changes slightly,
being in one case the polynomial algebra cotriple and in the other case the subalgebra of
polynomials with 0 constant term). The reader may choose for himself between having a
unit or having all the algebras considered in the same category. Adjunction of an identity
is an exact functor which takes the one projective class on to the other (see [Barr &
Beck (1969), Theorem 5.2], for the significance of that remark). (Also, see [Barr (1968a),
Section 3])

Underlying everything is a commutative ring which everything is assumed to be an
algebra over. It plays no role once it has been used to define G. By specializing it to the
ring of integers we recover a theory for commutative rings.

1. The class E

Let A be a commutative algebra. If A < T , let Z(A, T ) = { t ∈ T | tA = 0 }. Then
Z(A, T ) is an ideal of T . In particular ZA = Z(A,A) is an ideal of A. Note that Z is
not functorial in A (although Z(A, -) is functorial on the category of algebras under A).

2(see [Dold & Puppe (1961)])
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It is clear that ZA = A ∩ Z(A, T ). Let E = EA denote the equivalence classes of exact
sequences of algebras

0 // ZA // A // T/Z(A, T ) // T/(A+ Z(A, T )) // 0

for A < T . Equivalence is by isomorphisms which fix ZA and A. (A priori it is not a set;
this possibility will disappear below.)

Let E′ denote the set of λ:A // E where E is a subalgebra of HomA(A,A) which
contains all multiplications λa:A // A, given by (λa)(a′) = aa′.

Proposition 1.1. There is a natural 1-1 correspondence E ∼= E′.

Proof. Given A < T , let E be the algebra of multiplications on A by elements of T .
There is a natural map T //E and its kernel is evidently Z(A, T ). If T > A < T ′, then
T and T ′ induce the same endomorphism of A if and only if T/Z(A, T ) = T ′/Z(A, T ′) by
an isomorphism which fixes A and induces T/(A+ Z(A, T )) ∼= T ′/(A+ Z(A, T ′)).

To go the other way, given λ:A // E ∈ E′, let P be the algebra whose module
structure is E × A and multiplication is given by (e, a)(e′, a′) = (ee′, ea′ + e′a+ aa′). (ea
is defined as the value of the endomorphism e.) A // P is the coordinate mapping and
embeds A as an ideal of P with Z(A,P ) = { (−λa, a) | a ∈ A }. The associated sequence
is easily seen to be

0 // ZA // A
λ // E

π //M // 0

where π is cokerλ.

From now on we will identify E with E′ and call it E.
Notice that we have constructed a natural representative P = PE in each class of E.

It comes equipped with maps d0, d1:P // E where d0(e, a) = e + λa and d1(e, a) = e.
Note that A = ker d1 and Z(A,P ) = ker d0. In particular ker d0 · ker d1 = 0.

P = P (T/Z(A, T )) can be described directly as follows. Let K //// T be the kernel
pair of T // T/A. This means that

T T/A//

K

T
��

K T// T

T/A
��

is a pullback. Equivalently K = { (t, t′) ∈ T × T | t + A = t′ + A }, the two maps being
the restrictions of the coordinate projections. It is easily seen that ∆Z = { (z, z) | z ∈
Z(A, T ) } < K and that K/∆Z

∼= P .
Let d0, d1, d2:B //P be the kernel triple of d0, d1:P //A. This means that d0d0 =

d0d1, d1d1 = d1d2, d0d2 = d1d0, and B is universal with respect to these identities.
Explicitly B is the set of all triples (p, p′, p′′) ∈ P × P × P with d0p = d0p′, d1p′ = d1p′′,
d0p′′ = d1p, the maps being the coordinate projections.
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Proposition 1.2. The “truncated simplicial algebra”,

0 B// B P//B P//B P
//
P E//P E// E M//M 0//

is exact in the sense that the associated (normalized) chain complex

0 // ker d1 ∩ ker d2 // ker d1 // E //M // 0

is exact. (The maps are those induced by restricting d0 as in K∗.)

The proof is an elementary computation and is omitted.

Note that we are thinking of this as a simplicial algebra even though the degeneracies
have not been described. They easily can be, but we have need only for s0:E // P ,
which is the coordinate injection, s0e = (e, 0). Recall that d:B //P is the additive map
d0 − d1 + d2. The simplicial identities imply that d0d = d0(d0 − d1 + d2) = d0d2 = d1d0 =
d1(d0 − d1 + d2) = d1d.

Finally note that ZA is a module over M , since it is an E-module on which the image
of λ acts trivially. This implies that it is a module over B, P and E and that each face
operator preserves the structure.

Proposition 1.3. There is a derivation ∂:B // ZA given by the formula

∂x = (1− s0d0)dx = (1− s0d1)dx

Proof. First we see that ∂x ∈ ZA = ker d0 ∩ ker d1, since di∂x = di(1 − s0di)dx(di −
di)dx = 0 for i = 0, 1. To show that it is a derivation, first recall that ker d0 · ker d1 =
Z(A,P ) · A = 0. Then for b1, b2 ∈ B,

∂b1 · b2 + b1 · ∂b2 = (1− s0d0)db1 · d0b2 + d1b1 · (1− s0d0)db2

= d0b1 · d0b2 − d1b1 · d0b2 + d2b1 · d0b2 − s0d0d2b1 · d0b2

+ d1b1 · d0b2 − d1b1 · d1b2 + d1b1 · d2b2 − d1b1 · s0d0d2b2

To this we add (d2b1− d1b1)(d2b2− s0d0d2b2) and (s0d0d2b1− d2b1)(d0b2− s0d0d2b2), each
easily seen to be in ker d0 · ker d1 = 0, and get

d0b1 · d0b2 − d1b1 · d1b2 + d2b1 · d2b2 − s0d0d2b1 · s0d0d2b2

= d0(b1b2)− d1(b1b2) + d2(b1b2)− s0d0d2(b1b2)

= (1− s0d0)d(b1b2) = ∂(b1b2)

2. The obstruction to a morphism

We consider an algebra R and are interested in extensions

0 // A // T //R // 0
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In the singular case, A2 = 0, such an extension leads to an R-module structure on A.
This comes about from a surjection T // E where E ∈ E, and, since A is annihilated,
we get a surjection R // E by which R operates on A. In general we can only map
R //M . Obstruction theory is concerned with the following question. Given a surjection
p:R //M , classify all extensions which induce the given map. The first problem is to
discover whether or not there are any. (Note: in a general category, “surjection” should
probably be used to describe a map which has a kernel pair and is the coequalizer of
them.) Since GR is projective in the category, we can find p0:GR // E with πp0 = pε.

If d̃0, d̃1: P̃ //E is the kernel pair of π, then there is an induced map u:P //P̃ such that
diu = d̃i, i = 0, 1 which is easily seen to be onto. The universal property of P̃ guarantees
the existence of a map p̃1:G2R // P̃ with d̃ip̃1 = p0ε

i, i = 0, 1. Projectivity of G2R
and the fact that u is onto guarantee the existence of p1:G2R // P with up1 = p̃1, and

then dip1 = diup̃1 = d̃ip̃1 = p0ε
i, i = 0, 1. Finally, the universal property of B implies

the existence of p2:G3R // B with dip2 = p1ε
i, i = 0, 1, 2. Then ∂p2:G3R // ZA is

a derivation and ∂p2ε = (1 − s0d0)dp2ε = (1 − s0d0)p1εε = 0. Thus ∂p2 is a cocycle in
Der(G3R,ZA).

Proposition 2.1. The homology class of ∂p2 in Der(G3R,ZA) does not depend on the
choices of p0, p1 and p2 made. (p2 actually is not an arbitrary choice.)

Proof. ∂p2 = (1 − s0d0)p1ε and so doesn’t depend on p2 at all. Now let σ0, σ1 be new

choices of p0, p1. Since πp0 = εp = πp1, there is an h̃0:GR // P̃ with d̃0h̃0 = p0,

d̃1h̃0 = σ0. Again, since u is onto, there exists h0:GR // P with uh0 = h̃0, and then
d0h0 = p0, d1h0 = σ0. Also πd0p1 = πp0ε

0 = πσ0ε
0 = πd0σ1 = πd1σ1 and by a similar

argument we can find v:G2R // P with d0v = d0p1 and d1v = d1σ1. Now consider
the three maps p1, v, h

0ε1:G2R // P . d0p1 = d0v, d1v = d1σ1 = σ0ε
1 = d1h0ε1 and

d0h0ε1 = p0ε
1 = d1p1, so by the universal mapping property of B, there is h0:G2R //B

with d0h0 = p1, d1h0 = v, d2h0 = h0ε1. By a similar consideration of h0ε0, v, σ1:G2R //P
we deduce the existence of h1:G2R // B such that d0h1 = h0d0, d1h1 = v, d2h1 = σ1.
The reader will recognize the construction of a simplicial homotopy between the pi and
the σi. We have

(∂h0 − ∂h1)ε = (1− s0d0)d(h0 − h1)ε

= (1− s0d0)(d0h0 − d1h0 + d2h0 − d0h1 + d1h1 − d2h1)ε

= (1− s0d0)(d0h0 − d2h1 + h0ε1 − h0ε0)ε

= (1− s0d0)(p1 − σ1 + h0ε)ε = (1− s0d0)(p1 − σ1)ε

= (1− s0d0)d(p2 − σ2) = ∂p2 − ∂σ2

This shows that ∂p2 and ∂σ2 are in the same cohomology class in Der(G3R,ZA), which
class we denote by [p] and which is called the obstruction of p. We say that p is unob-
structed provided [p] = 0.
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Theorem 2.2. A surjection p:R // M arises from an extension if and only if p is
unobstructed.

Proof. Suppose p arises from

0 // A // T //R // 0

Then we have a commutative diagram

P Eoo E M//M 0//

0 K// K TooK

P

ν0

��

T R//T

E

ν1

��

R

M

p

��

R 0//

P E
//
E M//

K T//K

P

T RT

E

R

MP E// E M//

K T//K

P

T RT

E

R

MB PooB P
//

B P//0 B//

where e0, e1:K // // T is the kernel pair of T // R and t0:T // K is the diagonal
map. Commutativity of the leftmost square means that each of three distinct squares
commutes, i.e. with the upper, middle or lower arrows. Recalling that E = T/Z(A, T )
and P = K/∆Z we see that the vertical arrows are onto. Then there is a σ0:GR // T
with ν0σ0 = p0. Since K is the kernel pair, we have σ1:G2R // K with eiσ1 = σ0ε

i,
i = 0, 1. Then ν1σ1 is a possible choice for p1 and we will assume p1 = ν1σ1. Then
∂p2 = (1 − s0d0)p1ε = (1 − s0d0)ν1σ1ε = ν1(1 − t0e0)σ1ε. But e0(1 − t0e0)σ1ε = 0 and
e1(1 − t0e0)σ1ε = (e1 − e0)σ1ε = σ0(ε1 − ε0)ε = σ0εε = 0, and since e0, e1 are jointly
monic, i.e. define a monic K // T × T , this implies that ν1(1− t0e0)σ1ε = 0.

Conversely, suppose p, p0, p1, p2 are given and there is a derivation τ :G2R // ZA
such that ∂p2 = τε. Let p̃1:G2R //P be p1− τ where we abuse language and think of τ
as taking values in P ⊇ ZA. Then p̃1 can be easily shown to be an algebra homomorphism
above p0. Choosing p̃2 above p̃1 we have new choices p, p0, p̃1, p̃2 and

∂p̃2 = (1− s0d0)dp̃2ε = (1− s0d0)p̃1ε = (1− s0d0)(p1 − τ)ε

= (1− s0d0)p1ε− (1− s0d0)τε = ∂p2 − τε = 0,

since (1 − s0d0) is the identity when restricted to ZA = ker d0 ∩ ker d1. Thus we can
assume that p0, p1, p2 has been chosen so that ∂p2 = 0 already.

Let

GR Ep0
//

Q

GR

q2

��

Q P
q1 // P

E

d1

��

be a pullback. Since the pullback is computed in the underlying module category, d1

is onto so q2 is onto. Also the induced map ker q2
// ker d1 = A is an isomorphism

(this is true in an arbitrary pointed category) and we will identify ker q2 with a map
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a:A //Q such that q1a = ker d1. Now let u0, u1:G2R //Q be defined by the conditions
q1u

0 = s0d0p1, q2u
0 = ε0, q1u

1 = p1, q2u
1 = ε1. In the commutative diagram

G2R Q
u0 // Q Tq //

A

G2R

A A//A

Q

a

��

A

0

��
A

T

a

��

G2R GR
ε0 // GR Rε

//GR

0
��

R

0
��

G2R

G2R
��

Q

GR

q2

��

T

R

ϕ

��

G2R Q
u1

// Q Tq //

A

G2R

A A//A

Q

a

��

A

0

��
A

T

a

��

G2R GR
ε1

// GR Rε
//GR

0
��

R

0
��

G2R

G2R
��

Q

GR

q2

��

T

R

ϕ

��

the rows are coequalizers and the columns are exact. The exactnes of the right column
follows from the commutativity of colimits. We claim that the map ā is 1-1.

This requires showing that im a ∩ ker q = 0. ker q is the ideal generated by the image
of u = u0 − u1. Also im a = ker q2. Consequently the result will follow from

Proposition 2.3. The image of u is an ideal and imu ∩ ker q2 = 0.

Proof. If x ∈ G2R, y ∈ Q, let x′ = δq2y. We claim that u(xx′) = ux · y. To prove
this it suffices to show that qiu(xx′) = qi(ux · y) for i = 1, 2 (because of the definition of
pullback). But

q2u(xx′) = ε(xx′) = ε0x · ε0x′ − ε1x · ε1x′

= ε0x · q2y − ε1x · q2y = q2(u0x · y)− q2(u1x · y)

= q2(ux · y)

Next observe that our assumption is that (1−s0d1)p1 is zero on im ε = ker ε. In particular,
(s0d1−1)p1δ = 0. (εδ = ε0δ−ε1δ = 0.) Also (s0d0−1)p1x·(s0d1−1)q1y ∈ ker d0·ker d1 = 0.
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Then we have,

q1u(xx′) = (q1u
0 − q1u

1)(xx′) = (s0d0p1 − p1)(xx′)

= s0d0p1x · s0d0x′ − p1x · p1x
′

= (s0d0p1x− p1x)s0d0p1x
′ + p1x · (s0d0p1x

′ − p1x
′)

= (s0d0 − 1)p1x · s0d0p1δq2y + p1x · (s0d0 − 1)p1δq2y

= (s0d0 − 1)p1x · s0p0ε
0δq2y

= (s0d0 − 1)p1x · s0p0q2y = (s0d0 − 1)p1x · s0d1q1y

= (s0d0 − 1)p1x · q1y + (s0d0 − 1)p1x · (s0d1 − 1)q1y

= (s0d0p1x− p1x)q1y = q1ux · q1y = q1(ux · y)

Now if ux ∈ ker q2, then 0 = q2ux = εx, x ∈ ker ε = im ε, and 0 = (s0d0 − 1)p1x = q1ux.
But then ux = 0.

Now to complete the proof of 2.2 we show

Proposition 2.4. There is a τ :T // E which is onto, whose kernel is Z(A, T ) and
such that pϕ = πτ .

Proof. Let τ be defined as the unique map for which τq = d0q1. This defines a map,
for d0q1u

0 = d0s0d0p1 = d0p1 = d0q1u
′. τ is seen to be onto by applying the 5-lemma to

the diagram,

A E// E M//M 0//

0 A// A T//A

A

=

��

T R//T

E

τ

��

R

M

p

��

R 0//

since p is assumed onto. πτq = πd0q1 = πd1q1 = πp0q2 = pεq2 = pϕq and q is onto,
so πτ = pϕ. Now if we represent elements of Q as pairs (x, ρ) ∈ GX × P subject to
p0x = d1ρ, τ(x, ρ) = d0ρ. Then ker τ = { (x, ρ) | d0ρ = 0 }. That is,

GX Ep0
//

ker τ

GX
��

ker τ ker d0// ker d0

E

d1| ker d0

��

is a pullback. A is represented as { (0, ρ′) | d1ρ′ = 0 }. Now

Z(A, T ) = { (x, ρ) ∈ Q | d1ρ′ = 0 +3 ρρ′ = 0 }

= { (x, ρ) ∈ Q | ρ ∈ Z(A,P ) }
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It was observed in Section 1 that Z(A,P ) = ker d1. Thus Z(A, T ) = { (x, ρ) ∈ Q | ρ ∈
ker d1 } = ker τ .

3. The action of H1

This section is devoted to proving the following.

Theorem 3.1. Let p:R //M be unobstructed. Let Σ = Σp denote the equivalence
classes of of extensions

0 // A // T //R // 0

which induce p. Then the group H1(R,ZA) acts on Σp as a principal homogeneous rep-
resentation. (This means that for any Σ ∈ Σ, multiplication by Σ is a 1-1 correspondence
H1(R,ZA) ∼= Σ.)

Proof. Let Λ denote the equivalence classes of singular extensions

0 // ZA // U //R // 0

which induce the same module structure on ZA as that given by p (recallng that ZA is
always an M -module). Then Λ ∼= H1(R,ZA) where the addition in Λ is by Baer sum and
is denoted by Λ1 + Λ2, Λ1,Λ2 ∈ Λ. We will describe operations Λ ×Σ //Σ, denoted
by (Λ,Σ) � // Λ + Σ, and Σ×Σ //Λ, denoted by (Σ,Σ′) � // Σ− Σ′, such that

a) (Λ1 + Λ2) + Σ = Λ1 + (Λ2 + Σ)

b) (Σ1 − Σ2) + Σ2 = Σ1

c) (Λ + Σ)− Σ = Λ

for Λ,Λ1,Λ2 ∈ Λ, Σ,Σ1,Σ2 ∈ Σ (Proposition 3.2). This will clearly prove Theorem 3.1.
We describe Λ + Σ as follows. Let

0 // ZA // U
ψ //R // 0 ∈ Λ

0 // A // T
ϕ //R // 0 ∈ Σ

(Here we mean representatives of equivalence classes.) To simplify notation we assume
ZA < U and A < T . Let

T R//

V

T
��

V U// U

R
��

be a pullback. This means V = { (t, u) ∈ T × U | ϕt = ψu }. Then I = { (z,−z) | z ∈
ZA } < V . Let T ′ = V/I. Map A //T ′ by a � //(a, 0)+I. Map T ′ //R by (t, u)+I � //ϕt =
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ψu. This is clearly well defined modulo I. Clearly 0 //A //T ′
ϕ′ //R //0 is a complex

and ϕ′ is onto. It is exact since ker(V //R) = ker(T //R)× 0 + 0× ker(U //R) =
A×0+ 0×ZA = A×0+ I (since ZA ⊆ A). Z(T ′, A) = { (t, u)+ I ∈ V/I | t ∈ Z(T,A) }.
Map T ′ // T/Z(T,A) by (t, u) + I � // t+Z(T,A). This is well defined modulo I and its
kernel is Z(T ′, A). Since U //R is onto, so is V //T , and hence T ′ //T/Z(T,A) is
also. Thus T ′/Z(T ′, A) ∼= T/Z(T,A) and the isomorphism is coherent with ϕ and ϕ′ and
with the maps T oo A // T ′. Thus

0 // A // T ′
ϕ′ //R // 0 ∈∈ Σ

(This notation means the sequence belongs to some Σ′ ∈ Σ.)
To define Σ1 − Σ2 let Σi be represented by the sequence

0 // A // Ti
ϕi //R // 0, i = 1, 2

where we again suppose A < Ti. We may also suppose T1/Z(A, T1) = E = T2/Z(A, T2)

and T1

τ1 // E oo
τ2 T2 are the projections. Let

W E

T1

W

??

������������
T1

E
��????????????

W

T2

��?????????????W EE

T2

??

�������������
R

T2

88

qqqqqqqqqqqqqqqqqqqqq

T1

R
&&MMMMMMMMMMMMMMMMMMMMMT1

T2

be a limit. This means W = { (t1, t2) ∈ T1 × T2 | τ1t1 = τ2t2 and ϕ1t1 = ϕ2t2 }. Then
J = { (a, a) | a ∈ A } < W . Map ZA //W/J by z � // (z, 0) + J and ϕ:W/J // R by
(t1, t2) +J � //ϕ1t1 = ϕ2t2. If (t1, t2) +J ∈ kerϕ, then ϕ1t1 = 0 = ϕ2t2, so t1, t2 ∈ A. Then
(t1, t2) = (t1 − t2, 0) + (t2, t2). But then τ1(t1 − t2) = 0, so t1 − t2 ∈ A ∩ Z(A, T1) = ZA.
Thus ZA ⊆ kerϕ, and clearly kerϕ ⊆ ZA. Now given r ∈ R, we can find ti ∈ Ti
with ϕiti = r, i = 1, 2. Then π(τ1t1 − τ2t2) = πτ1t1 − πτ2t2 = pϕ1t1 − pϕ2t2 = 0, so
τ1t1− τ2t2 = λa for some a ∈ A. (Recall λ:A //E is the multiplication map.) But then
τ1t1 = τ2(t2 + a) and ϕ1t1 = ϕ2(t2 + a), so (t1, t2 + a) + J ∈ W/J and ϕ(t1, t2 + a) = r.
Thus ϕ is onto and

0 // ZA //W/J //R // 0 ∈∈ Λ

Note that the correct R-module structure is induced on ZA because p is the same.
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Proposition 3.2. For any Λ,Λ1,Λ2 ∈ Λ, Σ,Σ1,Σ2 ∈ Σ,

a) (Λ1 + Λ2) + Σ = Λ1 + (Λ2 + Σ)

b) (Σ1 − Σ2) + Σ2 = Σ1

c) (Λ + Σ)− Σ = Λ

Proof. a) Let

0 // ZA // Ui
ψi //R // 0, i = 1, 2,

0 // Z // T
ϕ //R // 0

represent Λ1, Λ2, Σ respectively. An element of (Λ1 + Λ2) + Σ is represented by a triple
(u1, u2, t) such that ψ(u1, u2) = ϕt where ψ(u1, u2) = ψ1u1 = ψ2u2. An element of
Λ1 + (Λ2 + Σ) is represented by a triple (u1, u2, t) where ψ1u1 = ϕ′(u2, t) and ϕ′(u2, t) =
ψ2u2 = ϕt. Thus each of them is the limit

W U2
// U2 R//

U1

W

??

������������
U1

U2

U1

R
��????????????

W

T
��?????????????W RR

T

??

�������������

modulo a certain ideal which is easily seen to be the same in each case, namely
{ (z1, z2, z3) | zi ∈ Z and z1 + z2 + z3 = 0 }.

b) Let Σ1 and Σ2 be represented by sequences 0 // A // Ti
ϕi // R // 0. Let

τi:Ti // E as above for i = 1, 2. Let (Σ1 − Σ2) + Σ2 be represented by

0 // A // T //R // 0

Then an element of T can be represented as a triple (t1, t2, t
′
2) subject to the condition

τ1t1 = τ2t2, ϕ1t1 = ϕ2t2 = ϕ2t
′
2. These conditions imply that t′2 − t2 ∈ A and we

can map σ:T // T2 by σ(t1, t2, t
′
2) = t1 + (t′2 − t2). To show that σ is an algebra

homomorphism, recall that τ1t1 = τ2t2 implies that t1 and t2 act the same on A. Now if
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(t1, t2, t
′
2), (s1, s2, s

′
2) ∈ T ,

σ(t1, t2, t
′
2) · σ(s1, s2, s

′
2) = (t1 + (t′2 − t2))(s1 + (s′2 − s2))

= t1s1 + t1(s′2 − s2) + (t′2 − t2)s1 + (t′2 − t2)(s′2 − s2)

= t1s1 + t2(s′2 − s2) + (t′2 − t2)s2 + (t′2 − t2)(s′2 − s2)

= t1s1 + t′2s
′
2 − t2s2 = σ(t1s1, t2s2, t

′
2s
′
2)

= σ((t1, t2, t
′
2)(s1, s2, s

′
2))

Also the diagram

0 A// A T2
// T2 R// R 0//

0 A// A T//A

A
��

T R//T

T2

��

R

R
��

R 0//

commutes and the sequences are equivalent.
c) Let Λ and Σ and (Λ + Σ)− Σ be represented by sequences

0 // ZA // U
ψ //R // 0

0 // A // T
ϕ //R // 0

0 // ZA // U ′
ψ′ //R // 0,

respectively. An element of U ′ is represented by a triple (t, u, t′) subject to ϕt = ψu = ϕt′

and τt = τt′. The equivalence relation is generated by all (z, a−z, a), a ∈ A, z ∈ ZA. The
relations imply that t− t′ ∈ ZA, so the map σ:U ′ //U which takes (t, u, t′) � //u+(t− t′)
makes sense and is easily seen to be well defined. For s, s′, t, t′ ∈ T , u, v ∈ U , we have

σ(t, u, t′)σ(s, v, s′) = (u+ t− t′)(v + s− s′)

= uv + u(s− s′) + (t− t′)v + (t− t′)(s− s′)

= uv + t(s− s′) + (t− t′)s′

= uv + ts− t′s′ = σ(ts, uv, t′s′)

= σ((t, u, t′)(s, v, s′))

Since ZA // U ′ takes z � // (z, 0, 0) and ψ′(t, u, t′) = ψu = ψu+ ψ(t− t′), the diagram

0 ZA// ZA U// U R// R 0//

0 ZA// ZA U ′//ZA

ZA
��

U ′ R//U ′

U
��

R

R
��

R 0//

commutes and gives the equivalence.
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4. Every element of H2 is an obstruction

The title of this section means the following. Given an R-module Z and a class ξ ∈
H2(R,Z), it is possible to find an algebra A and an E ∈ EA of the form

0 // ZA // A // E //M // 0

and a surjection p:R //M such that Z ∼= ZA as an R-module (via p) and [p] = ξ. It
is clear that this statement together with Theorem 2.2 characterizes H2 completely. No
smaller group contains all obstructions and no factor group is fine enough to test whether
a p comes from an extension. In particular, this shows that in degrees 1 and 2 these
groups must coincide with those of Harrison (renumbered) (see [Harrison (1962)]) and
Lichtenbaum and Schlessinger (see [Lichtenbaum & Schlessinger (1967)]). In particular
those coincide. See also Gerstenhaber ([Gerstenhaber (1966), Gerstenhaber (1967)]) and
Barr ([Barr (1968a)]).

Theorem 4.1. Every element of H2 is an obstruction.

Proof. Represent ξ by a derivation ρ:G3R //Z. This derivation has the property that
ρε = 0 and by the simplicial normalization theorem we may also suppose ρδ0 = pδ1 = 0.
Let V = { (x, z) ∈ G2R × Z | ε1x = 0 }. (Here Z is given trivial multiplication.) Let
I = { (ε0y,−ρy) | y ∈ G3R, ε1y = ε2y = 0 }. I ⊆ V for ε1ε0y = ε0ε2y = 0. I claim
that I < V . In fact for (x, z) ∈ V , (ε0y,−ρy) ∈ I, (x, z)(ε0y,−ρy) = (x · ε0y, 0). Now
δ0x · y ∈ G3R satisfies ε0(δ0x · y) = x · ε0y, εi(δ0x · y) = εiδ0xεiy = 0, i = 1, 2. Moreover
ρ(δ0x · y) = ρδ0x · y + δ0x · ρy. Now ρδ0 = 0 by assumption and the action of G3R on Z
is obtained by applying face operators into R (any composite of them is the same) and
then multiplying. In particular, δ0x · ρy = ε1ε1δ0x · ρy = ε1x · ρy = 0, since ε1x = 0. Thus
(x, z)(ε0y,−ρy) = (ε0(δ0x · y),−ρ(δ0x · y)) and I is an ideal. Let A = V/I. I claim that
the composite Z // V // V/I is 1-1 and embeds Z as ZA. For if (0, z) = (ε0y,−ρy),
then ε0y = ε1y = ε2y = 0 so that y is a cycle and hence a boundary, y = εz. But then
ρy = ρεz = 0. This shows that Z ∩ I = 0. If (x, z) + I ∈ ZA, (x, z)(x′, z′) = (xx′, 0) ∈ I
for all (x′, z′) ∈ V . In particular ε(xx′) = ε0(xx′) = ε0x · ε0x′ = 0 for all x′ with ε1x′ = 0.
By the simplicial normalization theorem this mean ε0x · ker ε = 0. Let w ∈ GR be the
basis element corresponding to 0 ∈ R. Then w is not a zero divisor, but w ∈ ker ε. Hence
ε0x = 0 and x = εy and by the normalization theorem we may suppose ε1y = ε2y = 0.
Therefore (x, z) = (ε0y,−ρy) + (0, z + ρy) ≡ (0, z + ρy) (mod I). On the other hand
Z + I ⊆ ZA.

Let GR operate on V by y(x, z) = (δy · x, yz) where GR operates on Z via pε. I is
a GR-submodule for y′(ε0y,−ρy) = (δy′ · ε0y,−y′ · ρy) = (ε0(δδy′ · y),−ρ(δδy′ · y)), since
ρ(δδy′ · y) = δδy′ · ρy + ρδδy′ · y = y′ · ρy. Hence A is a GR-algebra.

Let E be the algebra of endomorphisms of A which is generated by the multiplications
from GR and the inner multiplications. Let p0:GR //E and λ:A //E be the indicated
maps. Then E = im p0 + imλ. This implies that πp0 is onto where π:E //M is cokerλ.

Now we wish to map p:R //M such that pε = πp0. In order to do this we must show
that for x ∈ G2R, p0ε

0x and p0ε
1x differ by an inner multiplication. First we show that if
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(x′, z) ∈ V , then (x ·x′−δε0x ·x′, 0) ∈ I. In fact let y = (1−δ0ε1)(δ1y ·δ0x). Then ε1y = 0
and ε2y = 0 also, since ε2δ0x′ = δε1x′ = 0. ε0y = (ε0 − ε1)(δ1x · δ0x′) = δε0y · x − x · x′.
Finally ρy = 0 because of the assumption we made that ρδi = 0. Now

(p0ε
0x− p0ε

1x)(x′, z) = ((δε0x− δε1x)x′, xz − xz)

= ((x− δε1x)x′, 0) (mod I)

= (x− δε1x, 0)(x′, z)

where (x− δε1x, 0) ∈ V . Thus we have shown

Lemma 4.2. p0ε
0x− p0ε

1x is the inner multiplication λ((x− δε1x, 0) + I).

Then map p:R //M as indicated. Now πp0 = pε is a surjection and so is p.
P is constructed as pairs (e, a), e ∈ E, a ∈ A with multplication (e, a)(e′, a′) =

(ee′, ea′ + e′a + aa′). Map p1:G2R // E by p1x = (p0ε
1x, (x − δ0ε1x, 0) + I). Then

d0p1x = p0ε
1x+λ((x− δ0ε1, 0) + I) = p0ε

1x+ p0ε
0x− p0ε

1x = p0ε
0x by Lemma 4.2. Also

d1p1x = p0ε
1x and thus p1 is a suitable map. If p2:G3R // B is chosen as prescribed,

then for any x ∈ G3R,

(1− s0d1)dp2x = (1− s0d1)p1εx

= (1− s0d1)(p0ε
1εx, (εx− δ0ε1εx, 0) + I)

= (p0ε
1εx, (εx− δ0ε1εx, 0) + I)− (p0ε

1εx, 0)

= (0, (εx− δ0ε1εx, 0) + I)

The proof is completed by showing that (εx − δ0ε1εx, 0) ≡ (0, ρx) (mod I). Let y =
(1 − δ0ε1)(1 − δ1ε2)x. Then ε1y = ε2y = 0 clearly and ε0y = (ε0 − ε1)(1 − δ1ε2)x =
(ε0−ε1 +ε2−δ0ε1ε0)x = (ε0−ε1 +ε2−δ0ε1(ε0−ε1 +ε2))x = (ε−δ0ε1ε)x, while ρy = ρx,
since we have assumed that ρδi = 0. Thus ∂p = ρ and [p] = ξ. This completes the proof.



On cotriple and André (co)homology, their
relationship with classical homological algebra.

Friedrich Ulmer 1

This summary is to be considered as an appendix to [André (1967), Beck (1967),
Barr & Beck (1969), Barr & Beck (1966)]. Details will appear in another Lecture Notes
volume later on [Ulmer (1969)].a When André and Barr–Beck presented their non-abelian
derived functors in seminars at the Forschungsinstitut during the winter of 1965–66 and
the summer of 1967, I noticed some relationship to classical homological algebra.2 On the
level of functor categories, their non-abelian derived functors A∗ and H∗ turn out to be
abelian derived functors. The aim of this note is to sketch how some of the properties of
A∗ and H∗ can be obtained within the abelian framework and also to indicate some new
results. Further applications are given in the detailed version [Ulmer (1969)]. The basic
reason why abelian methods are adequate lies in the fact that the simplicial resolutions
André and Barr-Beck used to construct A∗ and H∗ become acyclic resolutions in the
functor category in the usual sense. However, it should be noted that the abelian approach
is not always really different from the approach of André and Barr-Beck. In some cases the
difference lies rather in looking at the same phenomena from two different standpoints,
namely, from an elementary homological view instead of from the view of the newly
developed machinery which is simplicially oriented. In other cases, however, the abelian
viewpoint leads to simplifications of proofs and generalizations of known facts as well as
to new results and insights. An instance for the latter is the method of acyclic models
which turns out to be standard procedure in homological algebra to compute the left
derived functor of the Kan extension EJ by means of projectives3 or, more generally by
EJ -acyclic resolutions.4 We mostly limit ourselves to dealing with homology and leave it
to the reader to state the corresponding (i.e. dual) theorems for cohomology. To make

1Part of this work was supported by the Forschungsinstitut für Mathematik der E.T.H. and the
Deutsche Forschungsgemeinschaft

aEditor’s footnote: See also F. Ulmer, Acyclic models and Kan extensions. Category Theory, Homol-
ogy Theory and their Applications, I. Lecture Notes in Math. 86 (1969) 181–204 Springer, Berlin. The
reviewer who reviewed this paper and [Ulmer (1969)] together, commented that the two papers together
covered the contents of the present paper.

2In the meantime some of the results presented here were found independently by several authors.
Among them are M. Bachmann (in a thesis under the supervision of B. Eckmann), E. Dubuc [Dubuc
(1968)], U. Oberst [Oberst (1968)], and R. Swan (unpublished). The paper of U. Oberst, which [has
appeared] in Math. Zeischrift, led me to revise part of this note (or rather [Ulmer (1969)]) to include
some of his results. Part of the material herein was first observed during the winter of 1967–68 after I
had received an earlier version of [Barr & Beck (1969)]. The second half of [Barr & Beck (1969), Section
10] was also developed during this period and illustrates the mutual influence of the material presented
there and of the corresponding material here and in [Ulmer (1969)].

3This is the case for the original version of Eilenberg-Mac Lane.
4This is the case for the version of Barr-Beck [Barr & Beck (1969), Section 11].
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this work in practice, we try to avoid exactness conditions (i.e. AB5) on the coefficient
category A. However, a few results depend on AB5 and are provably false without it.
This reflects the known fact that certain properties hold only for homology, but not for
cohomology.

Morphism sets, natural transformations and functor categories are denoted by brackets
[-, -], comma categories by parentheses (-,-). The categories of sets and abelian groups are
denoted by S and Ab.Gr. The phrase “Let A be a category with direct limits” always
means that A has direct limits over small index categories. However, we sometimes also
consider direct limits of functors F : D //A where D is not necessarily small. Of course
we then have to prove that this specific limit exists.

I am indebted to Jon Beck and Michael Barr for many stimulating conversations
without which the paper would not have its present form.

Our approach is based on the notions of Kan extension [Kan (1958), Ulmer (1968)]
and generalized representable functor [Ulmer (1968)], which prove to be very useful in
this context. We recall these definitions.

(1). A generalized representable functor from a category M to a category A (with sums)
is a composite5

A⊗ [M, -]: M // Sets //A

where [M, -]: M //S is the hom-functor associated with M ∈M and A⊗ the left adjoint
of [A, -]: A // S, where A ∈ A. Recall that A⊗ : S //A assigns to a set Λ the Λ-fold
sum of A (cf. [Ulmer (1968)] introduction).6

(2). Let M be a full subcategory of C and let J : M //C be the inclusion. The (right)
Kan extension7 of a functor t: M //A is a functor EJ(t): C //A such that for every
functor S: C //A there is a bijection [EJ(t), S] ∼= [t, S · J ], natural in S. Clearly EJ(t)
is unique up to equivalence. One can show that EJ(t) · J ∼= t, in other words EJ(t) is an
extension of t. If EJ(t) exists for every t, then EJ : [M,A] // [C,A] is left adjoint to
the restriction RJ : [C,A] // [M,A]. The functor EJ is called the Kan extension. We
show below that it exists if either M is small and A has direct limits or if M consists
of “projectives” in C and A has coequalizers. Necessary and sufficient conditions for the
existence of EJ can be found in [Ulmer 1966].

The notions of generalized representable functors and Kan extensions are closely re-
lated.8 Before we can illustrate this, we have to recall the two basic properties of rep-
resentable functors which illustrate that they are a useful substitute for the usual hom-
functors in an arbitrary functor category [M,A].9

5In the following we abbreviate Sets to S
6For the notion of a corepresentable functor M //A we refer the reader to [Ulmer (1968)]. Note that

a corepresentable is also covariant. The relationship between representable and corepresentable functors
M //A is entirely different from the relationship between covariant and contravariant hom-functors.

7There is a dual notion of a left Kan extension. Here we will only deal with the right Kan extension
and call it the Kan extension.

8The same holds for the left Kan extension and corepresentable functors.
9In view of this we abbreviate “generalized representable functor” to “representable functor”.
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Lemma Yoneda. (3) For every functor t: M //A there is a bijection

[A⊗ [M, -], t] ∼= [A, tM ]

natural in t, M ∈M and A ∈ A.

This is an immediate consequence of the usual Yoneda Lemma and the induced adjoint
pair [M,A] // [M,S], t � // [-, A] · t and [M,S] // [M,A], r � // A ⊗ · r. (Note that
[A⊗ [M, -], t] ∼= [[M, -], [A, -] · t] ∼= [A, tM ].)

Theorem (4). Every functor t: M //A is canonically a direct limit of representable
functors.

In other words, like the usual Yoneda embedding, the Yoneda functor Mop: A //[M,A],
M × A � // A ⊗ [M, -] is dense (cf. [Ulmer (1968a)]) or adequate in the sense of Isbell.
Moreover, there is a direct limit representation

(5) t = lim// tdα⊗ [rα, -]

where α runs through the morphisms of M and dα and rα denote the domain and range
of α respectively.10 Note that M need not be small. For a proof we refer the reader to
[Ulmer (unpublished), 2.15, 2.12] or [Ulmer (1969)].

Corollary. (6) If M is small, then there is, for every functor t: M //A a canonical
epimorphism

ϕ(t):
⊕
α

(tdα⊗ [rα, -]) // t

which is object-wise split.

This can also be established directly using the Yoneda Theorem (3). (Note that
ϕ(t) restricted on a factor tdα⊗ [rα, -] corresponds to tα under the Yoneda isomorphism
[tdα⊗ [rα, -], t] // [tdα, trα].)

(7). From the Yoneda Lemma (3) it follows immediately that the Kan extension of a
representable functor A⊗ [M, -]: M //A is A⊗ [JM, -]: C //A. Since J : M //C
is full and faithful, A ⊗ [JM, -] is an extension ofA ⊗ [M, -]. Since the Kan extension
EJ : [M,A] // [C,A] is a left adjoint, it is obvious from (5) and the above that EJ(t) =
lim// tdα ⊗ [Jrα, -] is valid. (Hence EJ(t) is an extension of t.) This also shows that

EJ : [M,A] // [C,A] exists if M is small and A has direct limits.11

10More precisely, the index category for this representation is the subdivision of M in the sense of [kan].
11[Kan (1958)] gave a different proof of this. He constructed EJ(t):C //A object-wise using the

category (M, C) over C ∈ C (also called comma category. Its objects are morphisms M // C with
M ∈M). He showed that the direct limit of the functor (M, C) //A, M // C � // tM is Eα(t)(C).
The relation between the two constructions is discussed in [Ulmer 1966]. It should be noted that be-
sides smallness there are other conditions on M which guarantee the existence of the Kan extension
EJ : [M,A] // [C,A] (for instance if M consists of “projectives” of C). One can also impose conditions
which imply the existence of EJ(t) for a particular functor t. This is the case one meets mostly in practice.
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(8). If ψ: t // t′ is an object-wise split natural transformation of functors from M to A
(i.e. ψ(M): t(M) // t′(M) admits a section σ(M) for every M ∈M, but σ need not be
a natural transformation) then every diagram

(9)

A⊗ [M, -] t′//

t

A⊗ [M, -]

??

�
�

�
�

�
�

�
t

t′

ψ

��

can be completed in the indicated way. This a consequence of the Yoneda Lemma (3).
Thus if A is abelian12 then the representable functors are projective relative to the class
P of short exact sequences in [M,A] which are object-wise split exact. From (6) it follows
that there are enough relative projectives in [M,A] if M is small.

(10). If, however, A is projective in A, then it follows from the Yoneda Lemma that the
above diagram can be completed by assuming only that ψ: t // t′ is epimorphic. This
shows that A ⊗ [M, -] is projective in [M,A], provided A ∈ A is projective. One easily
deduces from this and (6) that [M,A] has enough projectives if A does and M is small.

By standard homological algebra we obtain the following:

Theorem. (11) Let J : M // C be the inclusion of a small subcategory of C and A
be an abelian category with sums. Then the Kan extension EJ : [M,A] // [C,A] and
its left derived functor P-L∗EJ relative to P exist. If either A has enough projectives
or A satisfies Grothendieck’s axiom AB4,13 then the absolute derived functors LnEJ and
P-LnEJ coincide for n ≥ 0.

In the following we denote L∗EJ(-) by A∗( , -) and call it the André homology.

Proof. The only thing to prove is that the functors P-L∗EJ are the absolute derived
functors of EJ if A is AB4. For every t ∈ [M,A] the epimorphism ϕ(t) in (6) gives rise
to a relative projective resolution

(12)
P∗(t): · · ·

ϕ(tn+1)
//
⊕

α(tndα⊗ [rα, -])
ϕ(tn) // · · ·

ϕ(t2) //
⊕

α(t1dα⊗ [rα, -])
ϕ(t1) //

⊕
α(t0dα⊗ [rα, -])

ϕ(t) // t // 0

where t0 = t, t1 = kerϕ(t), etc.14 Using (7) and the property AB4 of A, one can show
that a short exact sequence of functors 0 // t′ // t // t′′ // 0 in [M,A] gives rise
to a short exact sequence

0 // EJP∗(t
′) // EJP∗(t) // EJP∗(t

′′) // 0

12From now on we will always assume that A is abelian
13I.e. sums are exact in A.
14P∗(t) denotes the non-augmented complex, i.e. without t.
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of chain complexes in [C,A]. The long exact homology sequence associated with it takes
P-L∗EJ into an absolute exact connected sequence of functors. Since P-LnEJ vanishes
for n > 0 on sums15

⊕
α(tdα ⊗ [rα, -]), it follows by standard homological algebra that

P-L∗EJ is left universal. In other words, the functors P-LnEJ are the (absolute) left
derived functors LnEJ of the Kan extension EJ : [M,A] // [C,A].

(13). A comparison with André’s homology theory H∗( , -): [M,A] // [C,A] in [André
(1967), page 14] shows that H0( , -) agrees with the Kan extension EJ on sums of rep-
resentable functors.16 Since both H0( , -) and EJ are right exact, it follows from the
exactness of (12) that they coincide. Since Hn( , -): [M,A] // [C,A] vanishes for n > 0
on sums of representable functors, it follows by standard homological algebra that the
functors H∗( , -) are the left derived functors of EJ . Hence H∗( , -) ∼= A∗( , -) = L∗EJ(-)
is valid. It may seem at first that this is “by chance” because André constructs H∗ in an
entirely different way (cf. [André (1967), page 3]). This however is not so. Recall that
he associates with every functor t: M //A a complex of functors C∗(t): C //A and
defines Hn(-, t) to be the nth homology of C∗(t) (cf. [André (1967), page 3]). It is not
difficult to show that the restriction of Cn(t) on M is a sum of representable functors
and that the Kan extension of Cn(t) · J is Cn(t). Moreover, C∗(t) · J is an object-wise
split exact resolution of t. Thus André’s construction turns out to be the standard pro-
cedure in homological algebra to compute the left derived functors EJ . Namely: choose
an EJ -acyclic17 resolution of t, apply EJ and take homology. The same is true for his
computational device [André (1967), Proposition 1.5] (i.e. the restriction of the complex
S∗ on M is an EJ -acyclic resolution of S · J and EJ(SJ · J) = S∗ is valid).18

We now list some properties of A∗( , -) which in part generalize the results of [André
(1967)]. They are consequences of (11), (12) and the nice behavior of the Kan extension
on representable functors.

Theorem. (14)

(a) For every functor t the composite Ap(J-, t): M //C //A is zero for p > 0.

(b) Assume that A is an AB5 category and let C be an object of C such the comma
category (M, C) is directed.19 Then Ap(C, t) vanishes for p > 0.

(c) Assume moreover that for every M ∈M the hom-functor [JM, -]: C //S preserves
direct limits over directed index categories. Then A∗(-, t) also preserves direct lim-
its. (In most examples, this assumption is satisfied if the objects of M are finitely
generated.)

15Recall that tdα⊗ [rα, -] is a relative projective in [M,A].
16In the notation of André, C should be replaced by N. Note that in view of (7), a “foncteur

élémentaire” of André is the Kan extension of a sum of representable functors M //A.
17A functor is called EJ -acyclic if LnEJ : [M,A] // [C,A] vanishes on it for n > 0.
18We will show later that this computational method is closely related with acyclic models.
19A category D is called directed if for every pair D, D′ of objects in D, there is a D′′ ∈ D together

with morphisms D //D′′, D′ //D′′, and if for every pair of morphisms λ, µ:D0
////D1 there is a

morphism γ:D1
//D2 such that γλ = γµ.
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If M has finite sums, it follows from from (a) and (c) that Aρ(-, t): C //A vanishes
on arbitrary sums

⊕
νMν where Mν ∈ M. As for applications, it is of great interest to

establish this without assuming that A is AB5. We will sketch later on how this can be
done.

The properties (a)–(c) are straightforward consequences of (12), (11), (7), footnote
11 and the fact that in an AB5 category direct limits over directed index categories are
exact.

(15). A change of models gives rise to a spectral sequence (cf. [André (1967), Propo-
sition 8.1]). For this let M′ be a small full subcategory of C containing M. Denote by
J ′: M′ //C′ and J ′′: M //M′ the inclusions and by A′∗ and A′′∗ the associated André
homologies. Since J = J ′ · J ′′, it follows that EJ : [M,A] // [C,A] is the composite
of EJ ′′ : [M,A] // [M′,A] with EJ ′ : [M′,A] // [C,A]. Thus by standard homological
algebra there is for every functor t: M //A a spectral sequence

(16) A′p( , A′′q(-, t)) +3 Ap+q(-, t)

provided A is AB4 or A has enough projectives (cf. [Grothendieck (1957), 2.4.1]). One
only has to verify that EJ ′′ takes EJ -acyclic objects into EJ ′-acyclic objects. But this is ob-
vious from (7), because the Kan extension of a representable functor is again representable.
The same holds for projective representable functors (cf. (10)).20 The Hochschild–Serre
spectral sequence of [André (1967), page 33] can be obtained in the same way.

Likewise a composed coefficient functor gives rise to a universal coefficient spectral
sequence.

Theorem. (17) Let t: M //A and F : A //A′ be functors where A and A′ are either
AB4 categories or have enough projectives. Assume that the left derived functors L∗F
exist and that F has a right adjoint. Then there is a spectral sequence

LpF · Aq(-, t) +3 Ap+q(-, F · t)

provided the values of t are F -acyclic (i.e. LqF (tM) = 0 for q > 0).

Corollary. (18) If for every p > 0 the functor Ap(-, t): C //A vanishes on an object
C ∈ C, then A∗(C,F ·t) ∼= L∗F (A0(C, t)). This gives rise to an infinite coproduct formula,
provided A0(-, t): C // A is sum preserving. For, let C =

⊕
ν Cν be an arbitrary set

with the property Ap(C∗, t) = 0 for p > 0. Then the canonical map

(19)
⊕
ν

A∗(Cν , F · t)
∼= // A∗

(⊕
ν

Cν , F · t

)

is an isomorphism.

20The assumption that M′ is small can be replaced by the following: The Kan extension
EJ′ : [M′,A] // [C,A] and its left derived functors L∗EJ′ exist and LnEJ′ vanish on sums of rep-
resentable functors for n > 0.
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This is because
⊕

ν L∗F (A0(Cν , F · t)) ∼= L∗F (
⊕

ν A0(Cν , F · t)) ∼= L∗F (A0(
⊕

ν Cν , F ·
t)) holds.21

Corollary. (20) Assume that A is AB5 (but not A′). Then every finite coproduct
formula for A∗(-, t): C // A gives rise to an infinite coproduct formula for A∗(-, F ·
t): C //A′.

In other words, A∗(
⊕

ν Cν , F · t) ∼=
⊕

ν A∗(Cν , F · t) holds if (14c) holds and
A∗(
⊕

iCνi , t)
∼=
⊕

i(Cνi , t) is valid for every finite subsum
⊕

iCνi of
⊕

ν Cν .
22

Proof of (17) and (20). (Sketch.) By EC : [C,A] //A and E ′C : [C,A′] //A′ we
mean the evaluation functors associated with C ∈ C. The assumptions on F and t imply
that the diagram

[M,A] [C,A′]
E′J (F ·-)

// [C,A′] A′
E′C

//

A

[M,A]

99

EC ·EJ

sssssssssssssssss A

[C,A′]

A

A′

F

%%KKKKKKKKKKKKKKKKKKK

is commutative. The derived functors of E ′CE
′
J(F · -): [M,A] // A can be identified

with t � // A∗(C,F · t). As above in (15) and (16), the spectral sequence arises from the
decomposition of E ′CE

′
J(F · -) into EC · Ej and F . The infinite coproduct formula for

A∗(-, t): C // A can be established by means of (14c). Thus it also holds for the E2-
term of the spectral sequence (17). One can show that the direct sum decomposition of the
E2-term is compatible with the differentials and the associated filtration of the spectral
sequence. In this way one obtains an infinite coproduct formula for A∗(-, F ·t): C //A′.

(21). An abelian interpretation of André’s non-abelian resolution and neighborhoods is
contained in a forthcoming paper [Oberst (1968)]. We include here a somewhat improved
version of this interpretation and use it to solve a central problem which remained open in
[Barr & Beck (1969), Section 10]. For this we briefly review the tensor product ⊗ between
functors, which was investigated in [Buchsbaum (1968), Fisher (1968), Freyd (1964), Kan
(1958), Oberst (1967), Oberst (1968), Watts (1966, Yoneda (1961)] and by the present
author. The tensor is a bifunctor

(22) ⊗: [Mop,Ab.Gr.]× [M,A] //A

defined by the following universal property. For every s ∈ [Mop,Ab.Gr.], t ∈ [M,A] and
A ∈ A, there is an isomorphism

(23) [s ⊗ t, A] ∼= [s, [t-, A]]

21This applies to the categories of groups and semigroups and yields infinite coproduct formulas for
homology and cohomology of groups and semigroups without conditions. For it can be shown that they
coincide with A∗ and A∗ if t = Diff and F is tensoring with or homming into some module (cf. [Barr &
Beck (1969), Sections 1 and 10]).

22This applies to all finite coproduct theorems established in [Barr & Beck (1969), Section 7] and
[André (1967)] with t and F as in footnote 21.
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natural in s. t and A. It can be constructed like the tensor product between Λ-modules,
namely stepwise:

1) Λ⊗ Y = Y ;

2) (
⊕

ν Λν ⊗ Y =
⊕

ν Yν) where Λν = Λ and Yν = Y ;

3) for an arbitrary module X, choose a presentation
⊕

Λν
//
⊕

Λµ
// X // 0

and define X ⊗ Y to be the cokernel of the induced map
⊕

Yν
//
⊕

Yµ, where
Yν = Y = Yµ.

The role of Λ is played by the family of contravariant representable functors Z ⊗
[-,M ]: Mop // Ab.Gr., where M ∈ M and Z denotes the integers.23 Thus we de-
fine

(24) (Z⊗ [-,M ])⊗ t = tM

and continue as above. The universal mapping property (23) follows from the Yoneda
Lemma (3) in the following way:

[Z⊗ [-,M ] ⊗ t, A] ∼= [tM,A] ∼= [Z, [tM,A]] ∼= [Z⊗ [-,M ], [t-, A]]

One can now show by means of (24), (3) and the classical argument about balanced
bifunctors that the derived functors of ⊗ t: [Mop,Ab.Gr] //A and s ⊗: [M,A] //A
have the property that L∗(s ⊗)(t) = L∗(⊗ t)(s), provided A is AB4, (resp. AB5) and
the values of s are free (resp. torsion free) abelian groups. Under these conditions, the
notion Tor∗(s, t) makes sense and has its usual properties, e.g. Tor∗(s, t) can be computed
by projective or flat resolutions in either variable. We remark without proof that every
representable functor A ⊗ [M, -]: M // A is flat. It should be noted that for this and
the following (up to (31)) one cannot replace the condition AB4 by the assumption that
A have enough projectives.

(25). [Oberst (1968)] considers the class P of short exact sequences in [Mop,Ab.Gr.]
and [M,A] which are object-wise split exact. He shows that the derived functors of s and
t relative to P have the property P-L∗(s ⊗)(t) ∼= P-L∗(⊗ t)(s) without any conditions
on s and t. Thus the notion P-Tor∗(s, t) makes sense. With every object C ∈ C there
is associated a functor Z⊗ [J-, C]: Mop //Ab.Gr. the values of which are free abelian
groups. (Recall that J : M //C is the inclusion.) He establishes an isomorphism

(26) A∗(C, t) = P-Tor∗(Z⊗ [J-, C], t)

for every functor t: M // A and points out that a non-abelian resolution of C in the
sense of [André (1967), page 17] is a relative projective resolution of Z ⊗ [J-, C]. Thus

23Note that the functors Z ⊗ [-,M ], M ∈ M, are projective and form a generating family in
[Mop,Ab.Gr.]. This follows easily from the Yoneda Lemma (3) and (10).
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André’s result that A∗(C, t) can be computed either by the complex C∗(t): C // A
evaluated at C (cf. (13) and [André (1967), page 3]) or a non-abelian resolution of C
turns out to be a special case of the well-known fact that P-Tor∗(-, -) can be computed
by a relative projective resolution of either variable. U. Oberst also observes that a
neighborhood (“voisinage”) if C (cf. [André (1967), page 38]) gives rise to a relative
projective resolution of Z ⊗ [J-, C]. Therefore it is obvious that A∗(C, t) can also be
computed by means of neighborhoods.

(27). The notion of relative P-Tor∗(-, -) is somewhat difficult to handle in practice. For
instance, the spectral sequences (16) and (17) and the coproduct formulas (19) and (20)
cannot be obtained with it because of the misbehavior of the Kan extension relative pro-
jective resolutions. Moreover, André’s computation method [André (1967), Proposition
1.8] (cf. also (13)) cannot be explained by means of P-Tor∗(Z ⊗ [J-, C], t) because the
resolution of the functor t in question need not be relative projective. It appears that
our notion of an absolute Tor∗ does not have this disadvantage. The basic reason for the
difference lies in the fact that relative projective resolutions of s and t are always flat
resolutions of s and t but the converse is not true.24 The properties (26), etc. of the rela-
tive P-Tor∗ can be established similarly for absolute Tor∗ using the techniques of [Oberst
(1968)]. We now sketch a different way to obtain these. The fundamental relationship
between ⊗ and the Kan extension EJ : [M,A] // [C,A] is given by the equation

(28) (Z⊗ [J-, C]) ⊗ t = EJ(t)(C)

where t and C are arbitrary objects of [M,A] and C, respectively. To see this, let
[J-, C] = lim// [-,Mν ] be the canonical representation of [J-, C]: Mop //S as a direct limit

of contravariant hom-functors (cf. [Ulmer (1968), 1.10]). Note that the index category
for this representation is isomorphic with the comma category (M,C) (cf. footnote 11).
Hence Z⊗ [J-, C] = lim// Z⊗ [-,Mν ] and it follows from (24) and Kan’s construction (cf.

footnote 11) that (Z⊗ [J-, C]) ⊗ t = lim// tMν = EJ(t)(C). Since AJ(-, t) is the homology

of the complex EJP∗(t), where P∗(t) is the flat resolution (12) of t, it follows from (28)
that

(29) A∗(C, t)
∼= Tor∗(Z⊗ [J-, C], t)

Thus A∗(C, t) can be computed either by projective resolutions of Z ⊗ [J-, C] (e.g. non-
abelian resolutions and neighborhoods25) or flat resolutions of t (e.g. P∗(t) or André’s
resolution C∗(t) · J and S∗, cf. (13)).

24Note that a projective resolution of Z⊗ [J-, C] is also relative projective and vice versa.
25Further examples are provided by the simplicial resolutions of [Barr & Beck (1969), Section 5], the

projective simplicial resolutions of [Tierney & W. Vogel (1969)]. A corollary of this is that the André
(co)homology coincides with the theories developed by [Barr & Beck (1969), Dold & Puppe (1961),
Tierney & W. Vogel (1969)] when C and M are defined appropriately.

Note that there are many more projective resolutions of Z⊗ [J-, C] than the ones described so far (for
instance, the resolutions used in the proof of (30)).
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The above methods prove very useful in establishing the theorem below which is basic
for many applications.

Theorem. (30) Let M be a full small subcategory of a category C which has sums. M
need not have finite sums. However, if a sum

⊕
Mi ∈ C is already in M, it is assumed

that every subsum of
⊕

Mi is also in M. Moreover, assume that for every pair of objects
M ∈ M and

⊕
νMν ∈ C every morphism M //

⊕
Mν factors through a subsum

belonging to M, where Mν ∈M.b Let A be an AB4 category and t: M //A be a sum-
preserving functor.26 Then for p > 0 the functor Ap(-, t): C //A vanishes on arbitrary
sums

⊕
µMµ, where Mµ ∈M.27.

The idea of the proof is to construct a projective resolution of Z ⊗ [J-,
⊕

µMµ]
which remains exact when tensored with ⊗ t: [Mop,Ab.Gr.] // A. It is a subcom-
plex of the complex Z ⊗M∗(-,

⊕
µMµ) André associated with the object

⊕
µMµ ∈ C

and the full subcategory M of M consisting of those subsums of
⊕

µMµ which belong
to M (cf. [André (1967), page 38]). In dimension n the resolution consists of a sum⊕

(Z ⊗ [-,Mn]) with Mn ∈ M; more precisely, for every ascending chain of subsums
Mn

// Mn−1
// · · · // M0

//
⊕

µMµ in
⊕

µMµ such that Mi ∈M for n ≥ i ≥ 0 there
is a summand Z⊗ [−,Mn]. The conditions on the inclusion J : M //C imply that the
subcomplex evaluated at each M ∈ M has a contraction and hence it is a resolution of
Z⊗ [J-,

⊕
µMµ]. The condition on t implies that the resolution, when tensored with ⊗ t,

also has a contraction. For details, see [Ulmer (1969)].

Corollary. (31) Let M′ be the full subcategory of C consisting of sums of objects in M.
Assume that the Kan extension EJ ′ : [M′,A] // [C,A] exist and its left derived functors
L∗EJ ′ = A′∗ exist and that LnEJ ′ vanishes on representable functors for n > 0. Then by
(30) the spectral sequence (16) collapses and one obtains an isomorphism

A∗(-, t)
∼= // A′∗(-, A′′0(-, t))

where t: M //A is a functor as in (30) and A′′0(-, t): M′ //A is its Kan extension on
M′.28

The value of (31) lies in the fact that A′∗: C //A can be identified with the homology
associated with a certain cotriple in C (the model induced cotriple (cf. (42), (43))). In
this way every André homology can be realized as a cotriple homology and all information
about the latter carries over to the former and vice versa.

bEditor’s footnote: What he is trying to say is that for any object M and any family of objects {Mν},
all belonging to M, every map M // ⊕Mν factors through a subsum of the sum that belongs to M.

26The meaning is that t has to preserve the sums that exist in M
27In an earlier version of this theorem I assumed in addition that a certain semi-simplicial set satisfies

the Kan condition, which is the case in the examples I know. M. André then pointed out that this
condition is redundant. This led to some simplification in my original proof. He also found a different
proof which is based on the methods he developed in [André (1967)]

28If A is AB5, then the theorem is also true if M′ is an arbitrary full subcategory of C with the
property that for every M ′ ∈ M′ the associated category (M,M ′) is directed. This follows from (14b)
and (16).
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It has become apparent in several places that the smallness of M is an unpleasant
restriction which should be removed. André did this by requiring that every C ∈ C have a
neighborhood in M. Another way of expressing the same condition is to assume that every
functor Z⊗ [J-, C]: Mop //Ab.Gr. admits a projective resolution. It is then clear from
the above that there is an exact connected sequence of functors A∗( , -): [M,A] //[C,A]
with the properties A0( , -) = EJ and An(-, A⊗[-,M ]) = 0 for n > 0. Since M is not small,
not every functor t: M //A need be a quotient of a sum of representable functors and
one cannot automatically conclude that L∗EJ = A∗. In many examples this is however
the case, e.g. if M consists of the G-projectives of a cotriple G in C.

(32). So far we have only dealt with André homology with respect to an inclusion
J : M //C and not with the homology associated with a cotriple G in C (for the defi-
nition of cotriples, we refer to [Barr & Beck (1969), Introduction]). One reason for this is
that the corresponding model category M is not small. Another is that the presence of a
cotriple is a more special situation in which theorems often hold under weaker conditions
and proofs are easier. The additional information is due to the simple behavior of the

Kan extension on functors of the form M G //M t //A, where G is the restriction of the
[functor part of the] cotriple to M. We now outline how our approach works for cotriple
homology.

(33). Let G be a cotriple in C and denote by M any full subcategory of C, the objects
of which are G-projectives and include every GC, where C ∈ C. (Recall that an object
X ∈ C is called G-projective if εX:GX //X admits a section, where ε:G // idC is the
counit of the cotriple. The objects GC are called free.) With every functor t: C //A,
[Barr & Beck (1969)] associates the cotriple derived functors H∗(-, t)G: C // A, also
called cotriple homology with coefficient functor t. Their construction of H∗(-, t)G only
involves the values of t on the free objects of C. Thus H∗(-, t)G is also well-defined when
t is only defined on M.

Theorem. (34) The Kan extension EJ : [M,A] // [C,A] exists. It assigns to a functor
t: M //A the zeroth cotriple derived functor H0(-, t)G: C //A. In particular EJ(t·G) =
t ·G is valid. (Note that A need not be AB3 or AB4 for this.)

Proof. According to (2), we have to show that for every S: C // A the restriction
map [H0(-, t)G, S] // [t, S · J ] is a bijection. We limit ourselves to giving a map in the
opposite direction and leave it to the reader to check that they are inverse to each other.
A natural transformation ϕ: t // S · J gives rise to a diagram

SG2C SGC
Sε(GC) // SGC SC

Sε(C)
//

tG2C tGC
tε(GC) //

tG2C

SG2C

ϕ(G2C)

��

tGC H0(C, t)G
//tGC

SGC

ϕ(GC)

��

H0(C, t)G

SCSG2C SGC
SG(εC)

// SGC SC
Sε(C)

//

tG2C tGC
tG(εC)

//tG2C

SG2C

ϕ(G2C)

��

tGC H0(C, t)G
//tGC

SGC

ϕ(GC)

��

H0(C, t)G

SC
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for every C ∈ C. The top row is by construction of H0(C, t)G a coequalizer. Thus there
is a unique morphism H0(C, t) // SC which makes the diagram commutative. In this
way, one obtains a natural transformation H0(-, t)G // S.

The properties established in [Barr & Beck (1969), Section 1] imply that

H∗( , -)G: [M,A] // [C,A]

is an exact connected sequence of functors. Since Hn(-, t · G) = 0 for every functor
t: M //A [and every n > 0] and since the canonical natural transformation tG // t
is an (object-wise split) epimorphism, we obtain by standard homological algebra the
following:

Theorem. (35) The left derived functors of the Kan extension EJ : [M,A] // [C,A]
exist and L∗EJ(-) ∼= H∗( , -)G is valid. Moreover P-L∗EJ(-) ∼= H∗( , -)G holds, where
P denotes the class of short exact sequences in [M,A] which are object-wise split exact.
We remark without proof that for n > 0, Hn( , -)G vanishes on sums of representable
functors.

Corollary. (36) The cotriple homology depends only on the G-projectives.29 In par-
ticular, two cotriples G and G′ in C give rise to the same homology if their projectives
coincide. One can show that the converse is also true.

(37). It is obvious from the above that the axioms of [Barr & Beck (1969), Section 3]
for H∗( , -)G are the usual acyclicity criteria for establishing the universal property of an
exact connected sequence of functors. As in (13) the construction of H∗(-, t)G in [Barr
& Beck (1969)] by means of a semisimplicial resolution tG∗: C // A is actually the
standard procedure in homological algebra. This is because the restriction of tG∗ on M
is an EJ -acyclic resolution of t and because EJ(tG∗ · J) = tG∗ holds.

(38). It also follows from (35) that cotriple homology H∗( , -)G and André homology
A∗(-, t) coincide, provided the models for the latter are M. One might be tempted to
deduce this from the first half of (35), but apparently it can only be obtained from the
second half. The reason is a set-theoretical difficulty. For details, we refer to [Ulmer
(1969)].

From this it is obvious that the properties previously established for the André homol-
ogy carry over to the cotriple homology. We list below some useful modifications which
result from direct proofs of these properties.

(39). The assumption in (14c), which is seldom present in examples when M is not small,
can be replaced by the following: The [functor part of the] cotriple G: C //M and the
functor t: M //A preserve directed direct limits.

In (17)–(20) the functor F need not have a right adjoint. It suffices instead that F
be right exact. For (20) G has to preserve directed direct limits. From (35), (36) and

29In many cases the cotriple homology depends only on the finitely generated G-projectives. An object
X ∈ C is called finitely generated if the hom-functor [X, -]:C // S preserves filtered unions.
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footnote 20 we obtain for a small subcategory M of M a spectral sequence

(40) Hp(-, Aq(-, t))G
//// Ap+q(-, t)

where M is as in (33), and A∗ and A∗ denote the left derived functors of the Kan extensions
[M,A] // [M,A] and [M,A] // [C,A] respectively.

The tensor product ⊗: [Mop,Ab.Gr.]× [M,A] //A, (s, t) � // s ⊗ t is defined as in
(23) but may not exist for every s ∈ [Mop,Ab.Gr.]. However (28) and

(41) Tor∗(Z⊗ [J-, C], t) ∼= H∗(C, t)G
∼= P-Tor∗(Z⊗ [J-, C], t)

hold. The first isomorphism shows that H∗(C, t)G can be computed by either a projective
resolution of Z ⊗ [J-, C] or an EJ -acyclic resolution of t. The former is a generalization
of the main result in [Barr & Beck (1969), 5.1], because a G-resolution is a projective
resolution of Z ⊗ [J-, C]; the latter generalizes the acyclic model argument in [Barr &
Beck (1966)] (cf. also (53)).

(42). With every small subcategory M of a category C there is associated a cotriple G,
called the model-induced cotriple (cf. [Barr & Beck (1969), Section 10]). Recall that its
functor part G: C //C assigns to an object C ∈ C the sum⊕

df
f
// C

df

indexed by all the morphisms f : df // C whose domain df belongs to M. The counit
ε(C):

⊕
df // C restricted on a summand df is f : df // C. The theorems (35) and

(31) enable us to compare the André cohomology A∗(-, -) of the inclusion M //C with
the homology of the model-induced cotriple G in C. Since every sum

⊕
νMν of objects

Mν ∈M is G-projective, we obtain the following:

Theorem. (43) Assume that the inclusion M // C satisfies the conditions in (30).
Then for every sum-preserving functor t: M //A the canonical map

A∗(-, t)
∼= //H∗(-, A0(-, t))G

is an isomorphism, provided A is an AB4 category.
If t is contravariant and takes sums into products, we obtain likewise for cohomology

A∗(-, t) oo
∼=

H∗(-, A0(-, t))G

provided A is an AB4* category.

The theorem asserts that André (co)homology can be realized under rather weak
conditions as (co)homology of a cotriple, even of a model-induced cotriple. In this way,
the considerations of [Barr & Beck (1969), 7.1, 7.2 (coproduct formulas), 8.1 (homology
sequence of a map) and 9.1, 9.2 (Mayer-Vietoris)] also apply to André (co)homology.
Moreover, the fact that cotriple cohomology tends to classify extensions (cf. [Beck (1967)])
carries over to André cohomology. We illustrate the use of this realization with some
examples.



Friedrich Ulmer 294

(44) Examples.

(a) Let C be a category of algebras with rank(C) = α in the sense of [Linton (1966a)].
Recall that if α = ℵ0, then C is a category of universal algebras in the classical sense
(cf. [Lawvere (1963)]). By means of (43) and (36) one can show that (co)homology
of the free cotriple in C coincides with the André (co)homology associated with
the inclusion M //C, where the objects of M are free algebras on fewer than α
generators.

(b) Let C = Ab.Gr. and let M be the subcategory of finitely generated abelian groups.
Using (43), one can show that the first André cohomology group A1(C, [-, Y ]) is
isomorphic to to the group of pure extensions of C ∈ Ab.Gr. with kernel Y ∈
Ab.Gr. in the sense of [Harrison (1959)]. The same holds if C is a category of
Λ-modules, where Λ is a ring with unit.

(c) Let C = Λ-algebras and let M be the subcategory of finitely generated tensor
algebras. Let C be a Λ-algebra and Y be a Λ-bimodule. Then A1(C, (-, Y )) classifies
singular extensions E // C with kernel Y such that the underlying Λ-module is
pure in the sense of Harrison (cf. (b)).30

The cases (b) and (c) set the tone for a long list of similar examples, which indicate
that Harrison’s theory of pure group extensions can be considerably generalized.

We conclude the summary by establishing a relationship between acyclic models and
elementary homological algebra. The generalization of acyclic models31c in [Barr & Beck
(1969), Section 11] and the fact that the cotriple derived functors are the left derived
functors of the Kan extension EJ : [M,A] // [C,A] (cf. (35)) make it fairly obvious that
acyclic models and Kan extensions are closely related. Roughly speaking, the technique
of acyclic models (à la Eilenberg–Mac Lane) turns out to be the standard procedure in
homological algebra to compute the left derived functor of the Kan extension by means of
projectives.32 Eilenberg–Mac Lane showed that the two augmented complexes T∗ //T−1

and T ∗ //T−1 of functors from C to A with the property T−1
∼= T−1 are homotopically

30I am indebted to M. Barr for correcting an error I had made in this example.
31The method of acyclic models was introduced in [Eilenberg & Mac Lane (1953)]. [Barr & Beck (1966)]

gave a different version by means of cotriples.
cEditor’s footnote: The history is a bit different from what this note suggests. The real story is this.

[Eilenberg & Mac Lane (1953)] introduced the method as an ad hoc technique to define operations by
extending from “models” such as simplexes to arbitrary spaces. Eilenberg, Appelgate’s thesis supervisor,
asked the latter to categorify the technique and he responded with the model-induced cotriple version.
Appelgate mentioned this to Beck when he and Barr were attempting to compare the cohomology theories
of, for example, [Eilenberg & Mac Lane (1947)] with the cotriple cohomology. They quickly realized that
if one already had a cotriple, then the model-induced cotriple was not needed. For a modern take on
acyclic models, see [M. Barr (2002), Acyclic Models, Amer. Math. Soc.]

32In a recent paper [Dold et.al. (1967)] a relationship between acyclic models and projective classes
was also pointed out. As in [André (1967), Barr & Beck (1969)], the Kan extension does not enter into
the picture of [Dold et.al. (1967)], and all considerations are carried out in [C,A], the range of the Kan
extension. The reader will notice that the results of this chapter are based on the version of acyclic
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equivalent, provided they are acyclic on models M and the functors Tn, T n and “repre-
sentable”33d for n ≥ 0. The homotopy equivalence between T∗ and T ∗ can be obtained in
the following way34 : There are projective resolutions t∗ and t∗ of T−1 ·J and T−1 ·J which
are mapped onto T∗ and T ∗ be the Kan extension EJ : [M,A] // [C,A]. By standard
homological algebra, t∗ and t∗ are homotopically equivalent. Hence so are T∗ and T ∗.

(45). In more detail, let J : M // C be the inclusion of a full small subcategory (re-
ferred to as models) and let A be an abelian category with sums and enough projec-
tives. As shown in (10), a representable functor P ⊗ [M, -]: M // A is projective iff
P is projective in A. Choose for every functor t: M // A and every M ∈ M an epi-
morphism PM

// tM , where PM is projective.35 In view of the Yoneda isomorphism
[PM ⊗ [M, -], t] ∼= [PM , tM ] (cf. (3)) and the family of epimorphisms determines a natural
transformation

⊕
M∈M(PM ⊗ [M, -]) // t which can easily be shown to be epimorphic.

Thus t is projective in [M,A] iff it is a direct summand of a sum of projective repre-
sentables. If t is the restriction of a functor T : C //A, then the family and the Yoneda
isomorphisms [PM ⊗ [JM, -], T ] ∼= [PM , TJM ] determine also a natural transformation
ϕ(T ):

⊕
M∈M(PM ⊗ [JM, -]) // T .

Theorem. (46) A functor T : C //A is presentable iff T ·J is projective in [M,A] and
EJ(T · J) = T holds.36

Proof. Eilenberg–Mac Lane call a functor T : C //A presentable if the above natural
transformation ϕ(T ):

⊕
M(PM ⊗ [JM, -]) // T admits a section σ (in other words, T is

a direct summand of
⊕

M(PM ⊗ [JM, -])). Since EJ(PM ⊗ [M, -) = PM⊗; JM, -] (cf. (7))
and J is a full inclusion, the composite EJ · RJ : [C,A] // [M,A] // [C,A] maps the
sum

⊕
M(PM ⊗ [JM, -]) on itself. Obviously the same holds for a direct summand T of⊕

M(PM ⊗ [JM, -]), i.e. EJ(T · J) = T is valid. The theorem follows readily from this
and the above (45).

As a corollary, we obtain

models of [Barr & Beck (1969), Section 11] and not that of [Dold et.al. (1967)]. It seems to me that the
use of the Kan extension establishes a much closer relationship between acyclic models and homological
algebra that the one in [Dold et.al. (1967)]. Moreover, it gives rise to a useful generalization of acyclic
models which cannot be obtained by the methods of the latter.

33In order not to confuse Eilenberg–Mac Lane’s notion of a “representable” functor with ours, we use
quotation marks for the former.

dEditor’s footnote: Representability is a notion of such primordial importance that this usage has been
totally disappeared. The Eilenberg–Mac Lane notion is now always called “presentable”. Accordingly,
we have taken the liberty to change all instances of “representable” to “presentable”.

34This was also observed by R. Swan (unpublished).
35If A is the category of abelian groups, one can choose PM to be the free abelian group on tM . It

is instructive to have this example in mind. It links our approach with the original one of Eilenberg–
Mac Lane.

36This shows that the notions of a presentable functor (Eilenberg–Mac Lane’s “representable”) and a
representable functor ([Ulmer (unpublished)]) are closely related. Actually the functor T is also projective
in [C,A], but this is irrelevant in the following.
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Theorem. (47) Let T∗: C // A be a positive complex37 of functors together with an
augmentation T∗ // T−1. The following are equivalent:

(i) The functors Tn are presentable for n ≥ 0 and the augmentated complex T∗ ·
J // T−1 · J // 0 is exact.

(ii) T∗ · J is a projective resolution of T−1 · J and EJ(Tn · J) = T holds for n ≥ 0.

Corollary. (48) If T ∗ // T−1 is another augmented complex satisfying (i) such that
T−1 · J ∼= T−1 · J holds, then T∗ and T ∗ are homotopically equivalent. Every chain map
T∗

// T ∗ is a homotopy equivalence provided its restriction on M is compatible with the
augmentation isomorphism T−1 · J ∼= T−1 · J . Moreover, the nth homology of T∗ (and T ∗)
us the value of the nth left derived functor of EJ at t, where T−1 · J ∼= t ∼= T−1 · J (i.e.
Hn(T∗)

∼= LnEJ(t)).

Proof of (48). By (47) the complexes T∗ · J and T ∗ · J are projective resolutions of
t and hence there is a homotopy equivalence f∗J :T∗ · J ∼= T ∗ · J . Applying the Kan
extension yields T∗

∼= T ∗. Clearly the restriction of every chain map f∗:T∗ // T ∗ on
M is a homotopy equivalence f∗J :T∗ · J ∼= T ∗ · J , provided f∗J is compatible with the
augmentation isomorphism T−1 · J ∼= T−1 · J . Applying the Kan extension EJ on f∗J
yields again f∗. Hence f∗ is also a homotopy equivalence. By standard homological algebra
LnEJ(t) ∼= HnEJ(T∗ · J) = HnT∗ holds.

(49) Remark. Roughly speaking, the above shows that the method of acyclic models
is the standard procedure in homological algebra to compute the left derived functors of
the Kan extension by means of projectives. It is well known that the left derived functors
of EJ can be computed not only with projectives but, more generally, by EJ -acyclic
resolutions. This leads to a useful generalization of acyclic models. For the consideration
below, one can drop the assumption that A has enough projectives and sums. Call a
functor T : C // A weakly presentable iff EJ(T · J) = T and LnEJ(T · J) = 0 for
n > 0. Clearly a presentable functor is weakly presentable. By standard homological
algebra we obtain the following:

Theorem. (50) Let T∗, T ∗: C //A be complexes of weakly presentable functors together
with augmentations T∗ // T−1 and T ∗ // T−1 such that T−1 · J ∼= T−1 · J , is valid and
the augmented complexes T∗ · J //T−1 · J // 0 and T ∗ · J //T−1 · J // 0 are exact.
Then Hn(T∗)

∼= LnEJ(t) ∼= Hn(T ∗) where t is a functor isomorphic to T−1 ·J or T−1 ·J .

(51). Moreover, one can show that every chain map f∗:T∗ // T ∗, whose restriction on
M is compatible with T−1 ·J ∼= T−1 ·J , induces a homology isomorphism. In general, there
is no homotopy equivalence between T∗ and T ∗. In practice this lack can be compensated
by the following: Let F : A //A′ be an additive functor with a right adjoint, such that
the objects TnC and T nC are F -acyclic for C ∈ C and n ≥ 038 (A abelian). Then Ff∗:F ·

37This means that Tn = 0 for negative n. In the following we abbreviate “positive complex” to
“complex”

38In the examples, TnC and TnC are usually projective for C ∈ C, n ≥ 0.
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T∗
//F · T ∗ is still a homology isomorphism. If in addition A and A′ are Grothendieck

AB4 categories, then Hn(F ·T∗) ∼= Hn(F ·T ∗) and every chain map g∗:F ·T∗ //F ·T ∗ is a
homology isomorphism provided its restriction on M is compatible with F ·T−1

∼= F ·T−1.
This can be proved by means of (18) and the mapping cone technique of [Dold (1960)].

(52) Remark. The isomorphism Hn(T∗)
∼= Hn(T ∗) in (51) can also be obtained from a

result of [André (1967), page 7], provided A is AB4. Since A0( , -): [M,A] // [C,A]
coincides with EJ (for A0( , -), see (11)), it follows from (13) that a functor C //A is
weakly presentable iff it satisfies André’s condition in [André (1967), page 7]. Hence it
follows that Hn(T∗)

∼= An(-, T−1 · J) ∼= Hn(T ∗). This shows that André’s computational
device is actually a generalization of acyclic modules, the notion presentable being re-
placed by weakly presentable. [Barr & Beck (1969), Section 11] used this computational
device to improve their original version of acyclic models in [Barr & Beck (1966)]. Their
presentation in [Barr & Beck (1969), Section 11] made me realize the relationship be-
tween acyclic models and Kan extensions. We conclude this summary with an abelian
interpretation of their version of acyclic models.

(53). Let A be an abelian category and G be a cotriple in a category C. Let M be the
full subcategory of C consisting of objects GC, where C ∈ C, and denote by J : M //C
the inclusion. Let T∗: C //A be a complex of functors together with an augmentation
T∗

// T−1. Their modified definition of presentability: H0(-, Tn) = Tn and Hj(-, Tn) = 0
for j > 0 and n ≥ 0; and of acyclicity: T∗M // T−1M

// 0 is an exact complex for
every M ∈M. Note that these conditions are considerably weaker than their original ones
in [Barr & Beck (1966)]. To make the connection between this version of acyclic models
and homological algebra, we first recall that H0( , -)G: [C,A] // [C,A] is the composite
of the restriction RJ : [C,A] // [M,A] with the Kan extension EJ : [M,A] // [C,A]
(cf. (35)). Moreover, H∗( , -)G is the composite of RJ with L∗EJ : [M,A] // [C,A].
This shows that the modified notions of acyclicity and presentability of [Barr & Beck
(1969), Section 11] coincide with “acyclic” and “weakly presentable” as defined in (49).
Hence their method of acyclic models is essentially the standard procedure in homological
algebra to compute the left derived functor of the Kan extension EJ : [M,A] // [C,A]
by means of EJ -acyclic resolutions. We leave it to the reader to state theorems analogous
to (50) and (51) in this situation.
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Zürich (1966).

A. Kock, Limit monads in categories. University of Aarhus Math. preprint 6 (1967/68).

F. W. Lawvere, Functorial semantics of algebraic theories. Dissertation, Columbia
University, New York. Republished electronically, Reprints in Theory and Applica-
tions of Categories 5 (2003), http://www.tac.mta.ca/tac/reprints/articles/5/
tr5abs.html . Summarized in Proc. Nat. Acad. Sci. 50 (1963), 869–872.



302

F. W. Lawvere, An elementary theory of the category of sets. Mimeographed, ETH Zürich
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H. Röhrl, Über satelliten halbexakter Funktoren. Math. Z. 79 (1962), 193–223.
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