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DIAGONAL ARGUMENTS

AND
CARTESIAN CLOSED CATEGORIES

F. WILLIAM LAWVERE

Author Commentary

In May 1967 I had suggested in my Chicago lectures certain applications of category
theory to smooth geometry and dynamics, reviving a direct approach to function spaces
and therefore to functionals. Making that suggestion more explicit led later to elementary
topos theory as well as to the line of research now known as synthetic differential geometry.
The fuller development of those subjects turned out to involve a truth value object that
classifies subobjects, but in the present paper (presented in the 1968 Battelle conference
in Seattle) I refer only to weak properties of such an object; it is the other axiom, cartesian
closure, that plays the central role.

Daniel Kan had recognized that the function space construction for simplicial sets
and other categories is a right adjoint, thus unique. Because this uniqueness property
of adjoints implies their main calculational rules, I took the further axiomatic step of
defining functor categories as a right adjoint to the finite product construction in my
1963 thesis. In 1965, Eilenberg and Kelly introduced the term closed to mean that there
is a hom functor valued in the category itself. Such a hom functor is characterized in a
relative way as right adjoint to a given tensor product functor; we concentrate here on
the absolute case where the tensor is cartesian.

Although the cartesian-closed view of function spaces and functionals was intuitively
obvious in all but name to Volterra and Hurewicz (and implicitly to Bernoulli), it has
counterexamples within the rigid framework advocated by Dieudonné and others. Ac-
cording to that framework the only acceptable fundamental structure for expressing the
cohesiveness of space is a contravariant algebra of open sets or possibly of functions.
Even though such algebras are of course extremely important invariants, their nature is
better seen as a consequence of the covariant geometry of figures. Specific cases of this
determining role of figures were obvious in the work of Kan and in the popularizations of
Hurewicz’s k-spaces by Kelley, Brown, Spanier, and Steenrod, but in the present paper
I made this role a matter of principle: the Yoneda embedding was shown to preserve
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Transmitted by R. Paré, R. Rosebrugh and R.J. Wood. Reprint published on 2006-02-24.
2000 Mathematics Subject Classification: 08.10, 02.00.
Originally published as: Lecture Notes in Mathematics, No. 92, pages 134-145, 1969; used by

permission.

1



2 F. WILLIAM LAWVERE

cartesian closure, and naturality of functionals was shown to be equivalent to Bernoulli’s
principle. Further, I posed the problem of comparing this principle to practice in the
specific cases of smooth and recursive mathematics.

Later detailed work on those particular cases justified the classical intuition embodied
in my general definition. In their books Froelicher and Kriegl (1988), and Kriegl and
Michor (1997), extensively develop smooth analysis; their higher-order use of the adequacy
of figures is based in part on a lower-order result of Boman 1967 (implicit in Hadamard)
concerning the adequacy of paths. They cite the result of Lawvere-Schanuel-Zame showing
that the natural functionals in this case are indeed the distributions of compact support, as
practice would suggest. Nilpotent infinitesimals fall far short of even one-dimensionality,
but if taken to be non-commutative, are already adequate for holomorphic functions, as
was strikingly shown by Steve Schanuel (1982). The recursive example was studied by
Phil Mulry (1982) who constructed a topos that does include as full sub-categories both
the Banach-Mazur and the Ersov versions of higher recursive functionals.

I hope that in the future this adequacy of one-dimensional figures will be explained be-
cause it occurs in many different examples. Many kinds of cohesion (algebraic geometry,
smooth geometry, continuous geometry) are well-expressed as a subtopos of the classify-
ing topos of a finitary single-sorted algebraic theory. But often that algebraic theory is
determined by its monoid M of unary operations via naturality only: for example, the
binary operations, instead of being independently specified, are just the maps of right
M -sets from M2 to M . If a common explanation can be found (for this adequacy of one-
dimensional considerations in the determination of n-dimensional and infinite-dimensional
functionals, in so many disparate cases) it would further establish that the Eilenberg-Mac
Lane notion of naturality is far more powerful than the mere tautology it is sometimes
considered to be.

The original aim of this article was to demystify the incompleteness theorem of Gödel
and the truth-definition theory of Tarski by showing that both are consequences of some
very simple algebra in the cartesian-closed setting. It was always hard for many to com-
prehend how Cantor’s mathematical theorem could be re-christened as a“paradox” by
Russell and how Gödel’s theorem could be so often declared to be the most significant
result of the 20th century. There was always the suspicion among scientists that such
extra-mathematical publicity movements concealed an agenda for re-establishing belief
as a substitute for science. Now, one hundred years after Gödel’s birth, the organized
attempts to harness his great mathematical work to such an agenda have become explicit.

I thank the editors of TAC, and especially Christoph Schubert whose dedication and
expertise made this reprint possible.

F. William Lawvere
Buffalo, N.Y.
19 February 2006
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Introduction

The similarity between the famous arguments of Cantor, Russell, Gödel and Tarski is
well-known, and suggests that these arguments should all be special cases of a single
theorem about a suitable kind of abstract structure. We offer here a fixed-point theorem
in cartesian closed categories which seems to play this role. Cartesian closed categories
seem also to serve as a common abstraction of type theory and propositional logic, but the
author’s discussion at the Seattle conference of the development of that observation will
be in part described elsewhere [“Adjointness in Foundations”, to appear in Dialectica, and
“Equality in Hyperdoctrines and the Comprehension Schema as an Adjoint Functor”, to
appear in the Proceedings of the AMS Symposium on Applications of Category theory].

1. Exponentiation, surjectivity, and a fixed-point theorem

By a cartesian closed category is meant a category C equipped with the following three
kinds of right-adjoints: a right adjoint 1 to the unique

C �� 1,

a right adjoint × to the diagonal functor

C �� C × C,

and for each object A in C, a right-adjoint ( )A to the functor

C
A×( ) �� C.

The adjunction transformations for these adjoint situations, also assumed given, will be
denoted by δ, π in the case of products and by λA, εA in case of exponentiation by A.
Thus for each X one has

X
XλA �� (A × X)A

and for each Y one has

A × Y A Y εA �� Y.

Given f : A × X �� Y , the composite morphism

X
XλA �� (A × X)A fA

�� Y A

will be called the “λ-transform” of the morphism f . A morphism h : X �� Y A is the
λ-transform of f iff the diagram

A × X
f

�����������

A×h
��

A × Y A
Y εA

�� Y
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is commutative, showing in particular that f can be uniquely recovered from its λ-
transform. Taking the case X = 1, one has that every f : A �� Y gives rise to a
unique �f� : 1 �� Y A and that every 1 �� Y A is of that form for a unique f . Since
for every a : 1 �� A one has (dropping the indices A, Y on ε when they are clear)

〈a, �f�〉ε = a.f,

one calls ε the “evaluation” natural transformation; note however that we do not assume
in general that f is determined by the knowledge of all its “values” a.f .

Although we do not make use of it in this paper, the usefulness of cartesian closed
categories as algebraic versions of type theory can be further illustrated by assuming that
the coproduct

2 = 1 + 1

also exists in C. It then follows (using the closed structure), that for every object A

A × 2 = A + A

and so in particular that 2 is a Boolean-algebra-object in C, i.e. that among the morphisms

2 × 2 × . . . × 2 �� 2

in C there are well determined morphisms corresponding to all the finitary (two-valued)
truth tables, and that these satisfy all the commutative diagrams expressing the axioms
of Boolean algebra. Equivalently, for each X the set

PC(X) = C(X, 2)

of “C-attributes of type X” becomes canonically an actual Boolean algebra, and varying X
along any morphism of C induces contravariantly a Boolean homomorphism of attribute
algebras. The morphisms 1 �� 2 form PC(1) the Boolean algebra of “truth-values”;
among these are the two coproduct injections which play the roles of “true” and “false”.
For any “constant of type X” x : 1 �� X and any attribute ϕ of type X, x.ϕ is then a
truth-value. Now noting that

X × 2X (2)εX �� 2

is a “binary operation” we could write it between its arguments, so that we have

x ε �ϕ� = x.ϕ,

an equality of truth-values; thus if we think of �ϕ� : 1 �� 2X as the constant naming the
subset of X corresponding to the attribute ϕ, one sees that the above equation expresses
the usual “comprehension” axiom.

Returning to our immediate concern, we define a morphism g : X �� Z to be point-
surjective iff for every z : 1 �� Z there exists x : 1 �� X with x.g = z. This does
not imply that g is necessarily “onto the whole of Z”, since there may be few morphisms
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with domain 1; for example if (as in the next section) X and Z are set-valued functors,
then a natural transformation g is point-surjective if every element of the inverse limit of
Z comes from an element of the inverse limit of X. In case Z is of the form Y A, an even
weaker notion of surjectivity can be considered, which in fact suffices for our fixed point
theorem. Namely

X
g �� Y A

will be called weakly point-surjective iff for every f : A �� Y there is x such that for
every a : 1 �� A

〈a, xg〉ε = a.f

Finally we say that an object Y has the fixed point property iff for every endomorphism
t : Y �� Y there is y : 1 �� Y with y.t = y.

1.1. Theorem. In any cartesian closed category, if there exists an object A and a weakly
point-surjective morphism

A
g �� Y A

then Y has the fixed point property.

Proof. Let g be the morphism whose λ-transform is g. Then for any f : A �� Y there
is x : 1 �� A such that for all a : 1 �� A

〈a, x〉g = a.f.

Now consider any endomorphism t of Y and let f be the composition

A Aδ �� A × A
g �� Y t �� Y ;

thus there is x such that for all a

〈a, x〉g = 〈a, a〉gt

since a(Aδ) = 〈a, a〉. But then y = 〈x, x〉g is clearly a fixed point for t.

The famed “diagonal argument” is of course just the contrapositive of our theorem.
Cantor’s theorem follows with Y = 2.

1.2. Corollary. If there exists t : Y �� Y such that yt �= y for all y : 1 �� Y then
for no A does there exist a point-surjective morphism

A �� Y A

(or even a weakly point-surjective morphism).
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2. Russell’s Paradox is a case of Cantor’s theorem; natural functionals in
recursive function theory and smooth manifold theory

Russell’s Paradox does not presuppose that set theory be formulated as a higher type
theory; that is, for A the set-theoretical universe, we do not need 2A for the argument.
In fact we need only apply the proof of our theorem, with g : A × A �� 2 as the set-
theoretical membership relation, dispensing with g entirely. That is, more generally, our
theorem could have been stated and proved in any category with only finite products (no
exponentiation) by simply phrasing the notion of (weak) point-surjectivity as a property
of a morphism

A × X �� Y ;

however discovering the latter form (or at least calling it surjectivity!) seems to require
thinking of such a morphism as a family of morphisms A �� Y indexed by the elements
of X, suggesting that a closed category is the “natural” setting for the theorem.

In fact the more general form of the theorem just alluded to (for categories with
products) follows from the cartesian closed version which we have proved, by virtue of
the following remark. Notice that it would suffice to assume C small (just take the full
closure under finite products of the two objects A, Y ).

2.1. Remark. Any small category C can be fully and faithfully embedded in a cartesian
closed category in a manner which preserves any products or exponentials that may exist
in C.

Proof. We consider the usual embedding

C �� SCop

which identifies an object Y with the contravariant set-valued functor

X �−→ C(X,Y ).

By “Yoneda’s Lemma” one has for any functor Y and any object A that the value at A
of Y

AY ∼= SCop

(A, Y )

where the right hand side denotes the set of all natural transformations from (the functor
corresponding to) A into Y , so that in particular the embedding is full and faithful. It
is then also clear that the embedding preserves products (in particular if 1 exists in C it
corresponds to the functor that is constantly the one-element set, which is the 1 of SCop

).
For any two functors A, Y the functor

C �−→ SCop

(A × C, Y )

plays the role of Y A. In particular if BA exists in C for a pair of objects A, B in C then

(C)BA ∼= C(C,BA) ∼= C(A × C,B) ∼= SCop

(A × C,B)

showing that the embedding preserves exponentiation.
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2.2. Theorem. Let A, Y be any objects in any category with finite products (including
the empty product 1); then the following two statements cannot both be true

a) there exists g : A×A �� Y such that for all f : A �� Y there exists x : 1 �� A
such that for all a : 1 �� A

〈a, x〉g = a.f

b) there exists t : Y �� Y such that for all y : 1 �� Y

y.t �= y.

Proof. Apply above remark and the proof in the previous section.

Of course the “transcendental” proof just given is somewhat ridiculous, since the
incompatibility of a) and b) can be proved directly just as simply as it was proved in the
previous section under the more restrictive hypothesis on C. However we wish to take
the opportunity to make some further remarks about the above canonical embedding of
an arbitrary (small) category into a cartesian closed category C (let the latter denote the
smallest full cartesian closed subcategory of SCop

which contains C). One of the standard
ways of embedding a structure into a higher-order structure is to consider “definable”
functionals, operators, etc.; however this is difficult to oversee from a simple-minded point
of view since it usually requires enumerating all possible definitions. On the other hand
in many situations (e.g. functorial semantics of algebraic theories or functorial semantics
of elementary theories if the elementary theories are complete) one has come to expect
that natural transformations are identical with definable ones or at least a reasonable
substitute for definable ones. The latter alternative seems to be a least partly true in the
present case. Thus for example we are led to the following definition. If A, B, C, D are
objects in a category C with finite products, a natural operator

BA Φ �� DC

shall be simply a natural transformation between the exponential functors of the (functors
corresponding to the) given objects in SCop

(hence in C). In particular if C = 1 we would
call a natural operator a natural functional. Note that 1 will not be a generator for all of
SCop

unless C = 1; however it might conceivably be so for C, and we have a partial result
in that direction. In fact, in the case that 1 is a generator for C itself, we can describe in
more familiar terms what a natural operator is.

Recall that “1 is a generator for C” simply means that a morphism f : X �� Y in
C is determined by its “values” x.f : 1 �� Y for x : 1 �� X. In that case it is sensible
to call the elements of the set C(1, X) of points of X also the elements of X. Then a
function

C(1, X) �� C(1, Y )

is induced by at most one C-morphism X �� Y , and in case it is, we say by abuse of
language that the function is a morphism of C.
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2.3. Proposition. Suppose that C is a category with finite products in which 1 is a
generator, and A, B, C, D are objects of C. Then

1) a natural operator

BA Φ �� DC

is entirely determined by a single function

C(A,B)
1Φ �� C(C,D)

and

2) such a function determines a natural operator iff for every object X of C and for
every C-morphism f : A × X �� B, the function

C(1, C × X)
(f)(XΦ) �� C(1, D)

is a C-morphism, where (f)(XΦ) is defined by

〈c, x〉 ((f)(XΦ)) = (c) ((fx)(1Φ))

for any c : 1 �� C, x : 1 �� X, fx denoting the composition

A ∼= A × 1
A×x �� A × X

f �� B.

Proof. We are abusing notations to the extent of identifying a morphism with its λ-
transform via the bijections of the form

C(A × X,B) ∼= C(A × X,B) ∼= C(X,BA).

Actually the given operator Φ is a family of functions

C(X,BA) XΦ �� C(X,DC)

one for each object of C; the “naturalness” condition that this family must satisfy is, via
the abuse, that for every morphism x : X ′ �� X of C, the diagram

C(A × X,B)

x

��

XΦ �� C(C × X,D)

x

��
C(A × X ′, B)

X′Φ
�� C(C × X ′, D)

should commute. Now let X ′ = 1. Since 1 is a generator for C, the value of the function
XΦ at a given f : A × X �� B is determined by the knowledge, for each element x of
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X and each element c of C, the result reached in the lower right hand corner by going
first across, then down, in the commutative diagram

C(A × X,B)

x

��

XΦ �� C(C × X,D)

x

��

c �� C(X,D)

x

��
C(A,B)

1Φ
�� C(C,D) c

�� C(1, D).

But since the same results are obtained by going down, then across, all the functions XΦ
are determined by one function 1Φ, proving the first assertion. The second assertion is
then clear, since the definition of (f)(XΦ) given in the statement of the proposition is
just such as to assure naturality of XΦ provided its values exist.

To make the situation perfectly clear, notice that morphisms whose codomain is an
exponential object can be discussed even though the exponential object does not exist, just
by considering instead morphisms whose domain is a product. There is however then the
problem of determining the morphisms whose domain is an exponential, and considering
them to be the natural operators is in many contexts the smoothest and most “natural”
thing to do. Experts on recursive functions or C∞ functions between finite-dimensional
manifolds may wish to consider the result of taking C to be these particular categories
in the above considerations. They may also wish to consider whether the fixed-point
theorem of section one has any applications in those cases.

3. Presentation-free formulations of satisfaction, truth, and provability
according to Gödel and Tarski; representability vs. definability

In order to apply the theorem of the previous section to obtain Tarski’s theorem concerning
the impossibility of defining truth for a theory within the theory itself, we first note briefly
how a theory gives rise to a category C with finite products. Consider two objects A, 2 and
let the C-morphisms be equivalence classes of (tuples of) formulas or terms of the theory,
where two formulas (or terms) are considered equivalent iff their logical equivalence (or
equality) is provable in the theory. Thus the morphisms 1 �� A are (classes of) constant
terms, the morphisms A × A �� A are (classes of) terms with two free variables, while
morphisms An �� 2 are (classes of) formulas with n free variables so that in particular
morphisms 1 �� 2 are (classes of) sentences of the theory. In particular there is a
morphism true : 1 �� 2 corresponding to the class of sentences provable in the theory
and similarly a morphism false : 1 �� 2 corresponding to the class of sentences whose
negation is provable in the theory. Morphisms 2n �� 2 would include all propositional
operations, but we will make no use of that except for the following case:

If the theory is consistent there is a morphism not : 2 �� 2 such that
ϕ not �= ϕ for all morphisms ϕ : 1 �� 2.
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In particular we will not need to use the fact that 2 = 1 + 1, although that determines
the nature of those hom-sets not explicitly spelled out above. Defining composition to
correspond to substitution (for example a constant a : 1 �� A composed with a unary
formula ϕ : A �� 2 composed with not gives the sentence aϕ not : 1 �� 2, etc.) we
get a category C with finite products which might be called the Lindenbaum category of
the theory. Models of the theory can then be viewed as certain functors C �� S. We
make no use here of the operation in C induced by quantification in the theory, but the
categorical description of this operation will be clear to readers of the two papers cited
in the introduction. In our construction above of C we have tacitly assumed that the
theory was a first order single-sorted one, in which case all objects of C are isomorphic
to those of the form An × 2m, but with trivial modification we could have started with a
higher-order or several-sorted theory with no change of any significance to the arguments
below. To make one point somewhat more explicit note that the projection morphisms
An �� A arise from the variables of the theory.

We then say that satisfaction is definable in the theory iff there is a binary formula
sat : A×A �� 2 in C such that for every unary formula ϕ : A �� 2 there is a constant
c : 1 �� A such that for every constant a the following diagram commutes in C

1
a ��

〈a,c〉
��

A

ϕ

��
A × A

sat
�� 2

Here we imagine taking for c a Gödel number for (one of the representatives of) ϕ. The
condition would traditionally be expressed by requiring that the sentence

a sat c ⇐⇒ aϕ

be provable in the theory, but if C arises from our construction of the Lindenbaum
category this amounts to the same thing.

Combining the above notion with our remark about the meaning of consistency and
the theorem of the previous section we have immediately the

3.1. Corollary. If satisfaction is definable in the theory then the theory is not consis-
tent.

In order to show that Truth cannot be defined we first need to say what Truth would
mean; that seems to require some further assumptions on the theory, which are however
often realizable. Namely we suppose that there is a binary term

A × A
subst �� A

in C and a (“metamathematical”) binary relation

Γ ⊆ C(1, A) × C(1, 2)

between constants and sentences for which the following holds.



DIAGONAL ARGUMENTS AND CARTESIAN CLOSED CATEGORIES 11

1) For all ϕ : A �� 2 there is c : 1 �� A such that for all a : 1 �� A

(a subst c)Γ(aϕ)

For example we could imagine that dΓσ means that d is the Gödel number of some one of
the sentences that represent σ, and that subst is a binary operation which, when applied
to a constant a and to a constant c that happens to be the Gödel number of a unary
formula ϕ, yields the Gödel number of the sentence obtained by substituting a into ϕ.

Given a binary relation Γ ⊆ C(1, A) × C(1, 2) we say that Truth (of sentences) is
definable in the theory (relative to Γ) provided there is a unary formula Truth : A �� 2
such that

2) For all σ : 1 �� 2 and d : 1 �� A, if dΓσ then dTruth = σ.

Again the traditional formulation would require that the sentence

�σ�Truth ⇐⇒ σ, for �σ�Γσ

be provable, but in the Lindenbaum category this just amounts to the equation �σ�Truth =
σ.

3.2. Theorem. If the theory is consistent and substitution is definable relative to a given
binary relation Γ between constants and sentences, then Truth is not definable relative to
the same binary relation.

Proof. If both 1) and 2) hold then the diagram

1
a ��

d

����
��

��
��

��

〈a,c〉
��

A
ϕ

���
��

��
��

�

A × A
subst

�� A
Truth

�� 2

shows that

A × A
subst ��

sat
����������� A

Truth
��
2

is a definition of satisfaction, contradicting the previous result.

We will also prove an “incompleteness theorem”, using the notion of a Provability
predicate. Given a binary relation Γ between constants and sentences, we say that Prov-
ability is representable in the theory iff there is a unary formula Pr : A �� 2 such
that

3) Whenever dΓσ then dPr = true iff σ = true.
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3.3. Theorem. Suppose that for a given binary relation Γ between constants and sen-
tences of C, substitution is definable and Provability is representable. Then the theory is
not complete if it is consistent.

Proof. Suppose on the contrary that C(1, 2) = {false, true}. Our notion of consistency
implies that false �= true. Condition 3) states that for dΓσ

a) σ = true implies dPr = true

b) σ �= true implies dPr �= true

By completeness b) implies

b’) σ = false implies dPr = false

But a) and b’) together with completeness mean that whenever dΓσ,

1

d
��

σ

���
��

��
��

�

A
Pr

�� 2

is commutative, i.e. that Pr satisfies condition 2) for a Truth-definition, which by our
previous theorem yields a contradiction.

Note: Our proposition in section 2. can be interpreted as a fragment of a general theory
developed by Eilenberg and Kelly from an idea of Spanier.

Appendix

Shortly after this article was published I realized that the relation Γ used in section 3.
is actually superfluous for the purpose at hand. A mere existential condition suffices
because the trace of a specific Gödel numbering is not required. The essential content
of the contrast between provability (attainable) and a truth definition (unattainable) can
as well be expressed simply by requiring less of a given map of the satisfaction type: for
every unary formula φ there should exist a number c that B-represents it in the sense
that for every number a the satisfaction map gives the result of substituting a into φ

a sat c = aφ

but only in case both sides of the equation are in the specified subset B ⊆ C(1, 2). The
usual meaning of representability and provability is thus expressed if B contains at least
the two elements true and false; by contrast, completeness is represented if B = C(1, 2),
in other words, if all nullary formulas are in B. However, if the present point of view is
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to be extended to include also Gödel’s second incompleteness theorem, a specific relation
between formulas and their numbers may be required.
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